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Abstract

The greedy algorithm for approximating dominating sets is a simple method that
is known to compute a factor (lnn+ 1) approximation of a minimum dominating
set on any graph with n vertices. We show that a small modification of the
greedy algorithm can be used to compute a factor O(t · ln k) approximation,
where k is the size of a minimum dominating set, on graphs that exclude the
complete bipartite graph Kt,t as a subgraph.

Keywords: Dominating set problem, approximation algorithms, greedy
algorithms, structural graph theory.

1. Introduction

A dominating set in an undirected and simple graph G is a set D ⊆ V (G)
such that every vertex v ∈ V (G) lies either in D or has a neighbour in D. The
Minimum Dominating Set problem takes a graph G as input and the objective
is to find a minimum size dominating set of G. The corresponding decision
problem is NP-hard [11] and this even holds in very restricted settings, e.g. on
planar graphs of maximum degree 3 [7].

The following greedy algorithm approximates Minimum Dominating Set in
an n-vertex graph G up to a factor Hn =

∑n
i=1 1/i ≤ (lnn+ 1) [9, 13]. Starting

with the empty dominating set D, the algorithm iteratively adds vertices to D
according to the following greedy rule until all vertices are dominated: in each
round, choose the vertex v ∈ V (G) that dominates the largest number of vertices
which still need to be dominated. The greedy algorithm on general graphs is
almost optimal: it is NP-hard to approximate Minimum Dominating Set
within factor c · lnn for some constant c > 0 [14], and by a recent result it is even
NP-hard to approximate Minimum Dominating Set within factor (1− ε) · lnn
for every ε > 0 [4].

1Full address: Sebastian Siebertz, Humboldt-Universität zu Berlin, Institut für Informatik,
Chair for Algorithm Engeneering, email: sebastian.siebertz@hu-berlin.de

2This work was supported by the National Science Centre of Poland via POLONEZ grant
agreement UMO-2015/19/P/ST6/03998, which has received funding from the European Union’s
Horizon 2020 research and innovation programme (Marie Skłodowska-Curie grant agreement
No. 665778).

January 18, 2019

ar
X

iv
:1

80
6.

02
59

0v
3 

 [
cs

.D
M

] 
 1

7 
Ja

n 
20

19



2

On several restricted graph classes Minimum Dominating Set can be ap-
proximated much better. For instance, the problem admits a polynomial-time
approximation scheme (PTAS) on planar graphs [1] and, more generally, on
graph classes with subexponential expansion [8]. It admits a constant factor
approximation on classes of bounded arboricity [2] and an O(d · ln k) approxi-
mation (where k denotes the size of a minimum dominating set) on classes of
VC-dimension d [3, 6]. While the above algorithms on restricted graph classes
yield good approximations, they are computationally much more complex than
the greedy algorithm. Unfortunately, the greedy algorithm does not provide any
better approximation on these restricted graph classes than on general graphs
(see for example Section 4 of [3] for an instance of the set cover problem, which
can easily be transformed into a planar instance of the dominating set problem,
where the greedy algorithm achieves only an Ω(lnn) approximation). Jones et
al. [10] showed how to slightly change the classical greedy algorithm to obtain a
constant factor approximation algorithm on sparse graphs, more precisely, the
algorithm computes a d2 approximation of Minimum Dominating Set on any
graph of degeneracy at most d.

Our results. We follow the approach of Jones et al. [10] and study small mod-
ifications of the greedy algorithm which lead to improved approximations on
restricted graph classes. We denote the complete bipartite graph with i vertices
on one side and j vertices on the other side by Ki,j .

We present a greedy algorithm which takes as input a graph G and an optional
parameter i ∈ N. If run with the integer parameter i and G excludes Ki,j as a
subgraph for some j ≥ 1, then the algorithm computes an O

(
i2 · ln k + i · ln j

)
approximation of Minimum Dominating Set (where k denotes the size of a
minimum dominating set in G). If run without the integer parameter i, the
algorithm outputs the largest subgraph Kt,t that it found during its computation,
as well as an O(t2 · ln k+ t · ln t) = O(t2 · ln k) approximation of Minimum
Dominating Set. By running the classical greedy algorithm in parallel, the
approximation ratios can be improved to O(i · ln k + ln j), and O(t · ln k),
respectively.

Based on a known hardness result for the set cover problem on families with
intersection 1 it is easy to show that it is unlikely that polynomial time constant
factor approximations exist even on K3,3-free graphs.

Comparison to other algorithms. Every Kt,t-free graph has VC-dimension at
most t, hence the algorithms of [3, 6] achieve O(t · ln k) approximations on the
graphs we consider. The algorithm presented in [3] is based on finding ε-nets
with respect to a weight function and a polynomial number of reweighting steps.
The algorithm presented in [6] requires solving a linear program. Hence, even
though these algorithms achieve the same approximation bounds as our modified
greedy algorithm, our algorithm is much easier to implement and has much
better running times. On the other hand, Kt,t-free-graphs are strictly more
general than degenerate graphs. Hence, our algorithm is applicable to a more
general class of graphs than the algorithm of Jones et al. [10].
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2. The greedy algorithm on biclique-free graphs

We first consider the following greedy algorithm which takes as input an
optional parameter i ∈ N and a graph G. We start by presenting how the
algorithm works if the parameter i is given with the input.

We initialise D0 := ∅ and A0 := V (G). The set D0 denotes the initial
dominating set and A0 denotes the set of vertices that have to be dominated.
The algorithm runs in rounds and in every round it makes a greedy choice
on a few vertices to add to the dominating set, until no vertices remain to be
dominated. Formally, in each round m = 1, . . . , we construct a new set Dm

which is obtained from Dm−1 by adding at most i− 1 vertices v1, . . . , v`. The
set Am is obtained from Am−1 by removing v1, . . . , v` and their neighbours. We
output the set Dm as a dominating set, when Am = ∅.

Let us describe a round of the modified greedy algorithm. Assume that after
round m we have constructed a partial dominating set Dm and vertices Am

remain to be dominated. We choose ` vertices v1, . . . , v`, ` < i, as follows. We
choose as v1 an arbitrary vertex that dominates the largest number of vertices
which still need to be dominated, i.e., a vertex which maximises |N [v1] ∩Am|.
Here, N [v] denotes the neighbourhood of a vertex v, including the vertex v. Let
B1 := (N [v1]∩Am)\{v1}. We continue to choose vertices v2, . . . , v` inductively as
follows. If the vertices v1, . . . , vs and sets B1, . . . , Bs ⊆ V (G) have been defined,
we choose the next vertex vs+1 as an arbitrary vertex not in {v1, . . . , vs} that
dominates the largest number of vertices of Bs, i.e., a vertex which maximises
|N [vs+1]∩Bs| and let Bs+1 := (N [vs+1]∩Bs)\{vs+1}. We terminate this round
and add v1, . . . , v` to Dm+1 if either we have ` = i− 1, or N [v]∩B` = ∅ for each
v ∈ V (G) \ {v1, . . . , v`}. We mark the vertices v1, . . . , v` and their neighbours
as dominated, i.e., we remove from the set Am all vertices of

⋃
1≤m≤`N [vm] to

obtain the set Am+1 and start the next round.
The crucial difference between the above modified greedy algorithm and the

classical greedy algorithm is that the former is guaranteed to choose in every
round m at least one vertex from every minimum dominating set for Am, given
that Am is still large. This is made precise in the following lemma.

Lemma 1. Let G be a graph which excludes Ki,j as a subgraph. Let Am ⊆ V (G)
be a set of vertices to be dominated and let M be a dominating set of Am of
size k in G. If |Am| ≥ ki · (j + i), then the algorithm applied to Am will find
vertices v1, . . . , v` with M ∩ {v1, . . . , v`} 6= ∅.

Proof. By assumption, Am is dominated by the set M of size k. Hence there
must exist a vertex v1 ∈ V (G) which dominates at least a 1/k fraction of Am,
that is, at least ki−1 · (j + i) vertices of Am. Let B1 := (N [v1] ∩ Am) \ {v1},
hence |B1| ≥ ki−1 · (j + i)− 1 ≥ ki−1 · (j + i− 1).

Assume v1 6∈ M . We repeat the same argument as above for B1. Also B1

is dominated by M of size k, hence there must exist a vertex v2 ∈ V (G) which
dominates at least a 1/k fraction of B1, that is, at least ki−2 · (j + i− 1) vertices
of B1. Let B2 := (N [v2] ∩ B1) \ {v2}, hence |B2| ≥ ki−2 · (j + i − 1) − 1 ≥
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ki−2 · (j + i− 2). We repeat the argument for v2, v3, . . . , v` and B2, B3, . . . , B`,
each Bx for 0 ≤ x ≤ ` < i (set B0 = Am) of size at least ki−x · (j+ i−x), ending
with a set B` of size at least k · (j + 1).

Hence, assuming that v1, . . . , v` 6∈ M , we have ` = i − 1 and there must
exist a vertex v with |N [v] ∩ B` \ {v}| ≥ j. Fix any subset B = {w1, . . . , wj}
of N [v] ∩ B` \ {v} of size exactly j. Then the vertices v, v1, . . . , vi−1 and the
vertices w1, . . . , wj form a subgraph Ki,j , contradicting that such a subgraph
does not exist in G. Hence, one of v1, . . . , v` must be contained in M . �

Hence, as long as it remains to dominate a large set Am, the modified greedy
algorithm makes an almost optimal choice. Once we are left with a small set Am,
it performs only slightly worse than the classical greedy algorithm.

Theorem 2. If G is a graph which excludes Ki,j as a subgraph, then the modi-
fied greedy algorithm called with parameter i computes an O(i2 · ln k + i · ln j)
approximation of a minimum dominating set of G, where k is the size of a
minimum dominating set of G.

Proof. Fix any minimum dominating set M of size k of G. By Lemma 1, as
long as it remains to dominate a set of size at least ki · (j + i), the modified
greedy algorithm chooses in every round at least one vertex of M . Hence, when
it remains to dominate a set Am of size smaller than ki · (j + i), the algorithm
has chosen at most i · k vertices.

Once we have reached this situation, let n := |Am| ≤ ki ·(j+i). We argue just
as in the proof of Lemma 1 that there exists a vertex v ∈ V (G) which dominates
at least a 1/k fraction of Am, that is, a subset of Am of size at least n/k. The
algorithm chooses such a vertex together with at most i other vertices which
in the worst case dominate nothing else. Hence after the first round we are
left to dominate at most n1 = n− n/k = n · (1− 1/k) vertices. In the second
round, we find again a vertex which dominates at least a 1/k fraction of the
remaining vertices, hence after the second round we are left to dominate at
most n2 = n1 − n1/k = n1 · (1− 1/k) = n · (1− 1/k)2 vertices. We repeat this
argumentation and conclude that after executing x rounds of the algorithm it
remains to dominate at most nx = n · (1− 1

k )x elements. Let us determine for
what value of x we have nx < 1, in which case we have dominated all vertices.

We have nx ≤ n ·(1−1/k)x < n ·e−x/k, where the last inequality follows from
the bound 1− z < e−z, which holds for all z > 0. Thus, for x ≥ k · lnn we have
nx < n · e− lnn = 1. We conclude that the algorithm terminates after at most
k · lnn steps, in particular, it computes a dominating set of size at most i ·k · lnn.
Now, as n ≤ ki · (j + i), we have lnn ∈ O(i · ln k + ln j). Hence, in total the set
has size at most O

(
i · k + (i2 · ln k + i · ln j) · k

)
∈ O

(
(i2 · ln k + i · ln j) · k

)
. �

With slightly more computational effort we can compute an O(i · ln k + ln j)
approximation on Ki,j-free graphs (and an O(t · ln k) approximation on Kt,t-free
graphs, respectively) as follows. For each of the sets D0, D1, . . . constructed in
the course of the algorithm, run the standard greedy algorithm to extend it
to a dominating set, and return the smallest of the sets obtained in this way.
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Letting p be the first index such that Dp dominates all but at most n = ki · (i+j)
vertices of the graph, the above argument shows that |Dp| ≤ i · k. The standard
greedy algorithm then adds at most lnn ·k ∈ O((i · ln k+ln j) ·k) further vertices
to the dominating set, resulting in a dominating set of size O((i · ln k + ln j) · k).

We now modify the algorithm slightly to work without the parameter i. In
each round let the algorithm choose elements v1, . . . , v`, defining sets B1, . . . , B`

in the above notation, until we do not find a vertex v`+1 defining a set B`+1 with
|B`+1| ≥ `+ 1 any more. Let t = `+ 1 for the largest ` that was encountered
in any round. Hence, the modified algorithm chooses at most t − 1 elements
in every round. Observe that in this construction, when we are at step i and
the corresponding set Bi has size at least j, 1 ≤ i ≤ `, j ≥ 1, then we have
found a subgraph Ki,j . Hence, t is the least number such that the algorithm
did not find Kt,t as a subgraph and we can argue as above that the algorithm
performs as if Kt,t was excluded from G. We output Kt−1,t−1 as a witness for
this performance guarantee.

Finally, note that the algorithm can be used to approximate the minimum
size of a set which dominates a given subset S of vertices of the graph, by
initializing A0 = S instead of A0 = V (G).

3. Hardness beyond degenerate graphs

By the result of Bansal and Umboh [2] one can compute a 3d approximation
of a minimum dominating set on any d-degenerate graph. The approximation
factor was improved to 2d + 1 by Dvořák [5]. To the best of our knowledge,
degenerate graphs are currently the most general graphs on which polynomial
time constant factor approximation algorithms for the dominating set problem
are known. It is easy to see that the existence of such algorithms on bi-clique free
graphs, even on K3,3-free graphs, is unlikely. This result is a simple consequence
of the following result of Kumar et al. [12]. Given a family F of subsets of a
set A, a set cover is a subset G ⊆ F such that

⋃
F∈G F = A. The Minimum Set

Cover problem is to find a minimum size set cover. The intersection of a set
family F is the maximum size of the intersection of two sets from F .

Theorem 3 (Kumar et al. [12]). The Minimum Set Cover problem on set
families of intersection 1 cannot be approximated to within a factor of c logn

log logn

for some constant c in polynomial time unless for some constant ε < 1/2 it holds
that NP ⊆ DTIME(2n

1−ε

).

Now it is easy to derive the following theorem.

Theorem 4. The Minimum Dominating Set problem on K3,3-free graphs
cannot be approximated to within a factor of c logn

log logn for some constant c in poly-

nomial time unless for some constant ε < 1/2 it holds that NP ⊆ DTIME(2n
1−ε

).

Proof. We present an approximation preserving reduction from Minimum Set
Cover on instances of intersection 1 to Minimum Dominating Set on K3,3-free
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graphs. Let F be an instance of Minimum Set Cover with intersection 1.
Let A =

⋃
F∈F F . We compute in polynomial time an instance of Minimum

Dominating Set on a graph G as follows. We let V (G) = A∪F ∪{x, y}, where
x, y are new vertices that do not appear in A. We add all edges {u, F} if u ∈ F ,
as well as all edges {x, F} for F ∈ F and the edge {x, y}.

Now if G ⊆ F is a feasible solution for the Minimum Set Cover instance,
then G (as a subset of G) together with the vertex x is a dominating set for G of
size at most |G|+ 1. Conversely, let D be a dominating set for G. We construct
another dominating set X such that |X| ≤ |D| and X ⊆ F ∪ {x}. We simply
replace each u ∈ A by a neighbour F ∈ F . Furthermore, if y ∈ D, we replace y
by x. Observe that x or y must belong to D, as y must be dominated. Hence, in
any case, x ∈ X. Now G ∩X is a set cover of size |X| − 1. Hence, the reduction
preserves approximations.

Let us show that G excludes K3,3 as a subgraph. Assume towards a con-
tradiction that K3,3 ⊆ G. Then K2,3 ⊆ G − x. Since G is bipartite we find
elements a1, a2 ∈ A and F1, F2 ∈ F (as vertices of G) with {ai, Fj} ∈ E(G),
i, j ∈ {1, 2}, which form a K2,2 subgraph of this graph. By construction of G we
have |F1 ∩ F2| ≥ |{a1, a2}| = 2, contradicting that F is a Minimum Set Cover
instance with intersection 1.

Finally observe that the reduction is obviously polynomial time computable.
�
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