
ar
X

iv
:1

80
8.

08
82

2v
2

 [
cs

.D
B

]
 1

 M
ar

 2
01

9

A Monotone Preservation Result for Boolean

Queries Expressed as a Containment of

Conjunctive Queries

Dimitri Surinx Jan Van den Bussche

Hasselt University

Abstract

When a relational database is queried, the result is normally a relation.
Some queries, however, only require a yes/no answer; such queries are
often called boolean queries. It is customary in database theory to express
boolean queries by testing nonemptiness of query expressions. Another
interesting way for expressing boolean queries are containment statements
of the form Q1 ⊆ Q2 where Q1 and Q2 are query expressions. Here, for
any input instance I , the boolean query result is true if Q1(I) is a subset
of Q2(I) and false otherwise.

In the present paper we will focus on nonemptiness and containment
statements about conjunctive queries. The main goal is to investigate the
monotone fragment of the containments of conjunctive queries. In partic-
ular, we show a preservation like result for this monotone fragment. That
is, we show that, in expressive power, the monotone containments of con-
junctive queries are exactly equal to conjunctive queries under nonempti-
ness.

1 Introduction

In this paper, we compare boolean queries (or integrity constraints) expressed
using conjunctive queries (CQs [1]) in two different ways:

Nonemptiness: As an expression of the form Q 6= ∅, with Q a CQ;

Containment: As an expression of the form Q1 ⊆ Q2, with Q1 and Q2 two
CQs.

An example of a nonemptiness query is “there exists a customer who bought
a luxury product”. An example of a containment query is “every customer
who bought a luxury product also bought a sports product”. A qualitative
difference between nonemptiness and containment queries is that nonemptiness
queries are always monotone: when the result is true on some input instance, it
is also true on any larger instance. In contrasts, containment queries need not be

1

http://arxiv.org/abs/1808.08822v2

monotone, as shown by the example above. The nonemptiness of a CQ is always
expressible as the containment of two CQs. For example, the nonemptiness of
(x)← Customer(x),Bought(x , y),Luxury(y) is expressed as

()← true ⊆ ()← Customer(x),Bought(x , y),Luxury(y).

Conversely, one may suspect that, as far as monotone queries are concerned,
nothing more is expressible by a containment of two CQs. Indeed, we show in
this paper that every monotone query expressed as the containment of two CQs
is already expressible as the nonemptiness of a CQ. Such a result fits the profile
of a preservation theorem since it gives a syntactical language for a semantical
sublanguage. Preservation theorems have been studied intensively in model
theory, finite model theory and database theory [7, 2, 6, 9, 8, 4].

From our proof it also follows that monotonicity testing of a containment of
two CQs is decidable; specifically, the problem is NP-complete.

2 Preliminaries

A database schema Γ is a finite nonempty set of relation names. Every relation
name R is assigned an arity, which is a natural number. Let V be some fixed
infinite universe of data elements and let R be a relation name of arity n. An
R-fact is an expression of the form R(a1, . . . , an) where ai ∈ V for i = 1, . . . , n.
Generally, a fact is an R-fact for some R. An R-instance I is a finite set of
R-facts. More generally, an instance I of a database schema Γ is defined to be
a nonempty union

⋃

R∈Γ I(R), where I(R) is an R-instance. The active domain
of an instance I, denoted by adom(I), is the set of all data elements from V that
occur in I. An instance I is called connected when for every two data elements
a, b ∈ adom(I) there is a sequence of facts f1, . . . , fn in I such that: a is in
adom({f1}), b is in adom({fn}), and adom({fi}) ∩ adom({fi+1}) 6= ∅ for any
i = 1, . . . , n − 1. An instance J is a called a connected component of I if J is
connected, J ⊆ I and J is maximal in I with respect to inclusion.

We have defined database and instances under the so called “logic program-
ming perspective” [1]. We will define the results of conjunctive queries, however,
under the so-called “named” perspective [1]. This will allow a lighter notation
in our proof of Lemma 5 where we are taking subtuples of heads of conjunctive
queries.

In the named perspective, tuples are defined over a finite set of attributes,
which we refer to as a relation scheme. Formally, tuples, say t = (ui)i∈S on
a relation scheme S, are considered as mappings, so t is a mapping on S and
t(i) = ui. Then, subtuples, say t|K for K ⊆ S are treated as restrictions of
the mapping H to K. On the empty relation scheme, there is only one tuple,
namely the empty mapping, also called the empty tuple. We denote the empty
tuple by ().

We formalize the notion of conjunctive queries as follows. From the outset
we assume an infinite universe of variables. A conjunctive query is an expression
of the form Q : H ← B where the head H is a tuple of variables (tuple in the

2

sense as just defined), and the body B is a set of atoms over Γ. An atom is an
expression of the form R(v1, . . . , vn) where R ∈ Γ and v1, . . . , vn are variables.
We will denote the set of conjunctive queries over Γ as CQΓ. For a conjunctive
query Q we will write HQ for the head and BQ for the body of Q. The result

scheme of a conjunctive query Q is the relation scheme of the head HQ. Note
that we allow unsafe queries, i.e., queries with head variables that do not appear
in the body. Semantically, for any instance I over Γ, Q(I) is defined as:

{f ◦HQ | f is a homomorphism from Q into I}.

Here, a homomorphism f from Q into I is a function on the variables in HQ

and BQ to adom(I) such that f(BQ) ⊆ I. When the variables in HQ are all
present in BQ, we will also write that f is a homomorphism from BQ into I.
Interchangeably, we will write that BQ maps into I.

Example 1. Consider the database schema with the relation name Flights of
arity two. The following conjunctive query returns all the city pairs that are
connected by flight with one stopover:

(A : x,B : y)← Flight(x, z),Flights(z, y).

This query returns {(A : Vienna, B : Brussels), (A : Paris , B : Rome)} on
the instance

{Flights(Paris ,Brussels),Flights(Brussels ,Rome),Flights(Vienna,Paris)}.

Remark 2. It is convenient to assume that variables are data elements in V .
Then, we can use the body of a conjunctive query as a database instance. As a
consequence, an R-atom can then be thought of as an R-fact.

For any two queries Q1 and Q2, we write Q1 ⊑ Q2 if Q1(I) ⊆ Q2(I) for any
database instance I over Γ. We recall:

Theorem 3 ([5]). Let Q1 and Q2 be conjunctive queries. Then, Q1 ⊑ Q2 iff

HQ1
∈ Q2(BQ1

).

A boolean query over a database schema Γ is a mapping from instances of Γ
to {true, false}. We can associate to any conjunctive query Q, a boolean query

Q 6= ∅, that is true on I if Q(I) 6= ∅ and false if Q(I) = ∅. We will write CQ 6=∅
Γ

for the family of boolean queries of the form Q 6= ∅ where Q is in CQΓ.
As argued in the introduction, this is not the only natural way to express

boolean queries. Containment statements of the form Q1 ⊆ Q2 provide a clean
way to express interesting nonmonotone boolean queries. Formally, the boolean
query Q1 ⊆ Q2 is true on I if Q1(I) is a subset of Q2(I), and false on I

otherwise. It is understood that we can only take containment boolean queries
of two conjunctive queries Q1 and Q2 if they have the same result scheme.
We write CQ⊆

Γ for the family of boolean queries expressible by containment
statements Q1 ⊆ Q2 where Q1 and Q2 are in CQΓ with the same result scheme.

Recall that every conjunctive query Q is monotone, in the sense that for any
two instances I, J over Γ, such that I ⊆ J , we have Q(I) ⊆ Q(J). Furthermore,

3

we say that a boolean query Q is monotone if for any two instances I, J over Γ,
such that I ⊆ J , we have Q(I) = true implies Q(J) = true. We denote the set
of monotone boolean queries with MON.

We will frequently use the following property of conjunctive queries with
connected bodies. If Q is a conjunctive query with a connected body, then
Q(I ∪ J) = Q(I) ∪ Q(J) for any domain-disjoint instances I and J . We will
refer to this property as the additivity property. Furthermore, we say that a
query Q is additive if it has the additivity property.

3 Main result

In this section we will prove the main theorem of the present paper. This
preservation theorem can be summarized as follows:

Theorem 4. For any database schema Γ, CQ⊆
Γ ∩MON = CQ6=∅

Γ . Specifically,

every monotone query Q1 ⊆ Q2, where Q1 and Q2 are CQs, is equivalent to a

query of the form (()← B) 6= ∅, where B is empty or B consists of some of the

connected components of BQ2
.

Note that CQ 6=∅
Γ ⊆ CQ⊆

Γ ∩MON already follows from the fact that Q 6= ∅
is equivalent to () ← ∅ ⊆ () ← BQ . To prove the remaining inclusion we first
establish a few technical results. First, we show that any monotone containment
of conjunctive queries is equivalent to a containment of conjunctive queries with
empty heads. For the remainder of this section, we write Za to be the instance
where there is exactly one fact R(a, a, . . . , a) for every R ∈ Γ. Note that for
every CQ Q, we have Q(Za) = {(a, a, . . . , a)}.

Lemma 5. Let Q1 and Q2 be conjunctive queries. If Q1 ⊆ Q2 is monotone,

then it is equivalent to the conjunctive query ()← BQ1
⊆ ()← BQ2

.

Proof. Let S be the result scheme of Q1 and Q2. Write BQ2
as B1, . . . , Bk, B

where the Bj are the connected components of BQ2
that contain at least one

variable in HQ2
, and B is the collection of the remaining connected components.

Define Aj = {i ∈ S | HQ2
(i) ∈ adom(Bj)} for j = 1, . . . , k and let A0

contain the remaining attributes in S. Furthermore, define A =
⋃

1≤j≤k Aj .
We first show that there is a function f such that f ◦ HQ2

|A0
= HQ1

|A0
.

Let a be a fresh data element. Define I = Za ∪ BQ1
∪
⋃

i∈C ZHQ1
(i) where

C = {i ∈ S | HQ1
(i) 6∈ adom(BQ1

)}. Since, Q1(Za) = Q2(Za) and Q1 ⊆ Q2 is
monotone, we haveQ1(I) ⊆ Q2(I). Therefore, HQ1

∈ Q2(I) since HQ1
∈ Q1(I).

Hence, there is a homomorphism f from Q2 into I such that f ◦HQ2
= HQ1

.
In particular, f ◦HQ2

|A0
= HQ1

|A0
as desired.

Next, we show for each j = 1, . . . , k that

(HQ1
|Aj
← BQ1

) ⊑ (HQ2
|Aj
← Bj). (⋆)

Let I be a nonempty instance over Γ and let a be a fresh data element.
Suppose t ∈ (HQ1

|Aj
← BQ1

)(I). Since (HQ1
|Aj
← BQ1

) and Q1 have the

4

same body, and HQ1
|Aj

is a subtuple of HQ1
, we can extend t to t′ such that

t′ ∈ Q1(I). Furthermore, since Q1 ⊆ Q2 is monotone and Q1(Za) = Q2(Za),
we have Q1(I ∪ Za) ⊆ Q2(I ∪ Za). Thus, t

′ ∈ Q2(I ∪ Za), whence we also have
t ∈ (HQ2

|Aj
← Bj)(I ∪ Za). Since HQ2

|Aj
← Bj is additive, t ∈ (HQ2

|Aj
←

Bj)(I) ∪ (HQ2
|Aj
← Bj)(Za). This implies that t ∈ (HQ2

|Aj
← Bj)(I) since t

is a tuple of data elements in I.
We now show that Q1 ⊆ Q2 is equivalent to Q′

1 ⊆ Q′
2 where Q′

1 = ()← BQ1

and Q′
2 = () ← BQ2

, which proves our lemma. Clearly, Q1(I) ⊆ Q2(I) implies
that Q′

1(I) ⊆ Q′
2(I). For the other direction, suppose that Q′

1(I) ⊆ Q′
2(I) and

let t ∈ Q1(I). Then, we have the following:

• There is a homomorphism f1 from BQ1
to I such that f1 ◦HQ1

= t.

• There is a homomorphism f2 from BQ2
to I since ∅ 6= Q′

1(I) ⊆ Q′
2(I).

• There is a function h such that h ◦HQ2
|A0

= HQ1
|A0

.

• For every j = 1, . . . , k, t|Aj
∈ (HQ2

|Aj
← Bj)(I) by (⋆). Hence, there is a

homomorphism hj from Bj into I such that hj ◦HQ2
|Aj

= t|Aj
.

We now construct a homomorphism f from Q2 into I such that f ◦HQ2
= t.

We define this f as follows:

f : x 7→











f2(x), if x ∈ B;

hj(x), if x ∈ adom(Bj);

f1 ◦ h(x), otherwise.

We first show that f ◦HQ2
= t.

f ◦HQ2
= f ◦ (HQ2

|A0
∪

⋃

1≤j≤k

HQ2
|Aj

)

= f ◦HQ2
|A0
∪

⋃

1≤j≤k

f ◦HQ2
|Aj

= f1 ◦ h ◦HQ2
|A0
∪

⋃

1≤j≤k

hj ◦HQ2
|Aj

= f1 ◦HQ1
|A0
∪

⋃

1≤j≤k

t|Aj
= t|A0

∪
⋃

1≤j≤k

t|Aj
= t

Finally, we show that f(BQ2
) ⊆ I.

f(BQ2
) = f(B ∪

⋃

1≤j≤k

Bj) = f(B) ∪
⋃

1≤j≤k

f(Bj)

= f2(B) ∪
⋃

1≤j≤k

hj(Bj) ⊆ I

5

To prove Theorem 4 we may thus limit ourselves to conjunctive queries with
empty heads. First, we have a look at containments of the form Q1 ⊆ Q2 where
BQ1

contains at least two non-redundant atoms. In what follows, when we
write that a conjunctive query Q is minimal, we mean that BQ does not contain
redundant atoms. (An atom in BQ is called redundant if the query obtained
from Q by removing that atom is equivalent to Q.)

Lemma 6. Let Q1 and Q2 be CQs where Q1 is minimal and HQ1
= HQ2

= ().
If BQ1

contains at least two atoms, then Q1 ⊆ Q2 is equivalent to true or is not

monotone.

Proof. If Q1 ⊆ Q2 is not equivalent to true, then Q1 6⊑ Q2. Thus, Q2(BQ1
) = ∅

by Theorem 3, whence we have Q1(BQ1
) 6⊆ Q2(BQ1

). Since |BQ1
| ≥ 2, there

exists a nonempty B (BQ1
. We have Q1(B) = ∅ for otherwise Q1 would not

be minimal.
Clearly, Q1(B) = ∅ implies that Q1(B) ⊆ Q2(B). Hence, Q1 ⊆ Q2 is not

monotone.

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let Q1 ⊆ Q2 be in CQ⊆
Γ ∩MON. We want to show that

Q1 ⊆ Q2 is equivalent to (()← B) 6= ∅ where B is empty or B consists of some
of the connected components of BQ2

.
By Lemma 5 we may assume that HQ1

= HQ2
= (). We may furthermore

assume that Q1 is minimal. The constant true query is expressed by ()← ∅ 6= ∅,
so we may assume that Q1 6⊑ Q2. Thus, Q2(BQ1

) = ∅ by Theorem 3.
If BQ1

contains at least two atoms, then Q1 ⊆ Q2 is equivalent to true by
Lemma 6.

If BQ1
= ∅, then Q1 ⊆ Q2 is equivalent to Q2 6= ∅ which is in CQ 6=∅

Γ .
Finally, suppose that BQ1

contains exactly one atom. First, let us consider
BQ1

= {R(x1, . . . , xn)} where there is a repetition among x1, . . . , xn. Define
I1 = {R(y1, . . . , yn)} where y1, . . . , yn are all different and not equal to any
of x1, . . . , xn. Clearly, Q1(I1) = ∅. Since Q2(BQ1

) = ∅, there is a connected
component C of BQ2

that does not map in BQ1
. Furthermore, C does not map

into I1 either, whence we also have Q2(I1) = ∅. Indeed, if C would map into I1,
then C would also map into BQ1

since I1 maps into BQ1
. It follows that C does

not map into I1∪BQ1
either, since C is connected and adom(I1) is disjoint from

adom(BQ1
). Therefore, Q2(I1∪BQ1

) = ∅. Hence, Q1(I1∪BQ1
) 6⊆ Q2(I1∪BQ1

)
since the head of Q1 is in Q1(I1 ∪ BQ1

). This contradicts that Q1 ⊆ Q2 is
monotone, since Q1(I1) = ∅ ⊆ Q2(I1).

So, the only body left to consider is BQ1
= {R(x1, . . . , xn)} where x1, . . . , xn

are all different and R ∈ Γ. Our proof now depends on the size of Γ.

1. Suppose that Γ only contains the relation name R. Then Q1(I) 6= ∅ for
any instance I over Γ since BQ1

= {R(x1, . . . , xn)} where x1, . . . , xn are
all different. Since Q1 and Q2 have empty heads, we may thus conclude
that Q1 ⊆ Q2 is equivalent to Q2 6= ∅ in CQ 6=∅

Γ .

6

2. Suppose that Γ only contains R and exactly one other relation name T .
Define I1 = {T (y1, . . . , ym)} where y1, . . . , ym are different from each other
and from x1, . . . , xn. Since the body of Q1 is an R-atom and I1 only
contains a T -atom, we have Q1(I1) = ∅. Hence, Q1(I1) ⊆ Q2(I1). By the
monotonicity of Q1 ⊆ Q2, we also have Q1(I1 ∪ BQ1

) ⊆ Q2(I1 ∪ BQ1
).

Therefore, every connected component of BQ2
maps in I1 or BQ1

. Indeed,
Q2(I1∪BQ1

) 6= ∅ since the head of Q1 is in Q1(I1∪BQ1
). This observation

partitions the connected components of BQ2
into two sets B′ and B′′,

where B′ contains the components that map into I1, and B′′ contains the
components that map into BQ1

.

We now show that Q1 ⊆ Q2 is equivalent to Q′ = () ← B′ 6= ∅. To this
end, suppose that Q′(I) 6= ∅ and Q1(I) 6= ∅ for some instance I over Γ.
Thus B′ and BQ1

map into I. Since B′′ maps into BQ1
by construction,

we also have that B′′ maps into I. Hence, Q2(I) 6= ∅ as desired. For the
other direction, suppose that Q1(I) ⊆ Q2(I) for some instance I over Γ. If
Q1(I) 6= ∅, then Q2(I) 6= ∅ by assumption. Clearly, Q′(I) 6= ∅ since BQ′ is
a subset of BQ2

. On the other hand, if Q1(I) = ∅, then I has no R-facts.
Since instances cannot be empty, it must contain at least one T -fact, so
I1 maps into I. Thus B′ also maps into I, whence Q′(I) 6= ∅ as desired.

3. Finally, suppose that Γ contains at least three relation names. Since
Q2(BQ1

) = ∅, there is a connected component C of BQ2
that does not

map into BQ1
. In particular, we know that C is not empty, whence

it contains at least one atom, say a T -atom. (Note that T might be
equal R.) Since there are three relation names in Γ there is at least
one other relation name S in Γ that is not equal to T or R. Define
I2 = {S(z1, . . . , zl)} where z1, . . . , zl are all different from each other and
from x1, . . . , xn. By construction, C do not map into I2 either, since C con-
tains an atom different from S. Thus, Q2(I2 ∪BQ1

) = ∅, whence we have
Q1(I2∪BQ1

) 6⊆ Q2(I2∪BQ1
) since Q1(I2∪BQ1

) 6= ∅. However, Q1(I2) = ∅
since R and S are different, which implies that Q1(I2) ⊆ Q2(I2). This con-
tradicts the assumption that Q1 ⊆ Q2 is monotone.

The proof of Theorem 4 gives us a procedure for deciding monotonicity for
containments of CQs.

Corollary 7. Deciding whether a containment in CQ⊆
Γ is monotone is NP-

complete.

Proof. Let Q1 ⊆ Q2 be in CQ⊆
Γ . By Lemma 5 we may remove the head variables

of Q1 and Q2. The NP-hardness of our problem is taken care of by Lemma 6.
Indeed, when BQ1

contains at least two non-redundant body atoms, the problem
is equivalent to deciding Q1 ⊑ Q2, which is known to be NP-hard [5].

Let us now show that the problem is in NP. By the proof of Theorem 4 we
have the following cases when Q1 is minimal:

7

• If BQ1
= ∅, then Q1 ⊆ Q2 is always monotone.

• If |BQ1
| ≥ 2, then Q1 ⊆ Q2 is monotone if and only if Q1 ⊑ Q2 (Lemma 6).

• If Q1 = {R(x1, . . . , xn)} where there is a repetition among x1, . . . , xn,
then Q1 ⊆ Q2 is monotone if and only if Q1 ⊑ Q2.

• If BQ1
= {R(x1, . . . , xn)} where x1, . . . , xn are all different, then:

(a) If |Γ| = 1, then Q1 ⊆ Q2 is always monotone;

(b) If |Γ| = 2, then Q1 ⊆ Q2 is always monotone;

(c) If |Γ| ≥ 3, then Q1 ⊆ Q2 is monotone if and only if Q1 ⊑ Q2.

These properties suggest the following algorithm:

1. Check if BQ1
= ∅; if so, accept;

2. Check if Q1 ⊑ Q2; if so, accept;

3. Non-deterministically pick an atom R(x1, . . . , xn) in BQ1
;

4. Check the following:

• ()← R(x1, . . . , xn) ⊑ Q1;

• x1, . . . , xn are all different.

5. Accept if |Γ| ≤ 2 and the two checks above succeed; otherwise reject.

The containment checks (⊑) are well known to be in NP [5], so this algorithm
is an NP algorithm.

If the algorithm accepts in step 1, then Q1 ⊆ Q2 is equivalent to Q2 6= ∅,
which is monotone. If the algorithm accepts in step 2, then the queryQ1 ⊆ Q2 is
the constant true query, whence is trivially monotone. If the algorithm accepts
in step 5, then the query () ← R(x1, . . . , xn) is equivalent to Q1, which is
clearly minimal. Hence, by cases (a) and (b) in the above properties, Q1 ⊆ Q2

is monotone.
Conversely, suppose that Q1 ⊆ Q2 is monotone. If BQ1

= ∅ or Q1 ⊑ Q2,
then the algorithm accepts in step 1 or 2 respectively. Otherwise, consider a
CQ Q′

1 obtained from Q1 by omitting all redundant atoms. Certainly, Q′
1 is

minimal. Since Q′
1 ⊆ Q2 is monotone and Q′

1 6⊑ Q2, the above properties
imply that BQ′

1
consists of a single atom R(x1, . . . , xn) where x1, . . . , xn are all

different, and moreover that |Γ| ≤ 2. Hence, by picking this atom in step 3, the
algorithm will accept.

8

4 Future Work

There are several directions for future work. In this paper, conjunctive queries
are not allowed to have constants in the head and/or body. Our proof method
does not work in the presence of constants. Whether our characterization still
holds in this case is still open.

Now that we have a syntactical characterization for monotone CQ⊆ we can
look at other query languages. The first languages that come to mind are con-
junctive queries with nonequalities, or negation, or unions. Another interesting
language to consider is the more expressive first-order logic. When we allow
infinite instances, the monotone first-order boolean queries are characterized by
the positive first-order sentences with nonequalities [4]. Whether this charac-
terization still holds in restriction to finite instances remains open.

Another interesting line of work is to consider preservation theorems for other
semantical properties, e.g., additivity. It can readily be verified that the additive
queries in CQ6=∅ are exactly those with connected bodies. Another example of a
preservation theorem for additivity is: connected Datalog¬ captures the additive
Datalog¬ queries under stratified semantics [3].

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] Miklos Ajtai and Yuri Gurevich. Monotone versus positive. J. ACM,
34(4):1004–1015, October 1987.

[3] Tom J. Ameloot, Bas Ketsman, Frank Neven, and Daniel Zinn. Datalog
queries distributing over components. ACM Trans. Comput. Log., 18(1):5:1–
5:35, 2017.

[4] M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura. Generating Plans

from Proofs: The Interpolation-based Approach to Query Reformulation.
Morgan&Claypool, 2016.

[5] A.K. Chandra and P. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proceedings 9th ACM Symposium on the Theory

of Computing, pages 77–90. ACM, 1977.

[6] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, 3rd edition,
1990.

[7] Y. Gurevich. Toward logic tailored for computational complexity. In M.M.
Richter et al., editors, Computation and Proof Theory, volume 1104 of Lec-
ture Notes in Mathematics, pages 175–216. Springer-Verlag, 1984.

[8] Benjamin Rossman. Homomorphism preservation theorems. J. ACM,
55(3):15:1–15:53, August 2008.

9

[9] Alexei P. Stolboushkin. Finitely monotone properties. In Proceedings of

the 10th Annual IEEE Symposium on Logic in Computer Science, LICS ’95,
pages 324–, Washington, DC, USA, 1995. IEEE Computer Society.

10

	1 Introduction
	2 Preliminaries
	3 Main result
	4 Future Work

