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Abstract

We present some complexity results concerning the problems of covering a
graph with p convex sets and of partitioning a graph into p convex sets. The
following convexities are considered: digital convexity, monophonic convex-
ity, P3-convexity, and P ∗

3 -convexity.
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1. Introduction

A convexity of a graph G is a pair (V (G), C) where C is a family of subsets
of V (G) satisfying all the following conditions: ∅ ∈ C, V (G) ∈ C, and C is
closed under intersections (i.e., V1 ∩ V2 ∈ C for each V1, V2 ∈ C). Each set
of the family C is called C-convex. Distinct convexities of a graph have been
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widely studied in the last years. Several articles can be found in the litera-
ture dealing with algorithmic and complexity issues of parameters related to
different kind of convexities. Interesting enough is to compare the behavior
of these parameters under different convexities from a computational com-
plexity perspective. For an introduction to the different parameters studied
in the literature related to a convexity of a graph, see e.g. [1].

A family {V1, . . . , Vp} of p C-convex sets, each of which different from
V (G), is a C-convex p-cover if V1 ∪ · · · ∪ Vp = V (G) and a C-convex p-
partition if, in addition, Vi ∩ Vj = ∅ for each i, j ∈ {1, . . . , p} with i 6= j.
In this work, we consider two associated decision problems: in one case, the
input is just a graph G and, in the other case, the input is a graph G and
an integer p ≥ 2. In both cases, the decision problem is: ‘Does the graph G
have a C-convex p-cover (resp. C-convex p-partition)?’.

All graphs in this work are finite, undirected, without no loops and no
multiple edges. Let G be a graph. We denote by V (G) and E(G) the vertex
set and the edge set of G, respectively. The neighborhood of a vertex v of
G is denoted by NG(v), and NG[v] stands for the set NG(v) ∪ {v}. If X is a
set, |X| denotes its cardinality. The degree of a vertex v of G is |NG(v)|. If
S is a subset of V (G), then the set of those vertices of G with at least one
neighbor in S is denoted by NG(S), and NG[S] stands for NG(S) ∪ S. The
length of a path is its number of edges. The distance between two vertices
u and v of G, denoted by dG(u, v), is the minimum length of a path having
u and v as end-vertices. The diameter of a graph is the maximum distance
between two of its vertices. A path is induced if there is no edge joining two
nonconsecutive vertices of the path. We denote by P3 the induced path on
three vertices. We denote the complement graph of G by G. Graph G is
co-bipartite if G is bipartite. For any other graph-theoretic notions not given
here, see [2].

Let P be a set of paths in G and let S ⊆ V (G). If u and v are two vertices
of G, then the P-interval JP [u, v] is the set of all vertices lying in some path
P ∈ P having u and v as its end-vertices. Let JP [S] =

⋃
u,v∈S JP [u, v]. Let

C be the family of all sets S of vertices of G such that for each path P ∈ P
whose end-vertices belong to S, every vertex of P also belongs to S; i.e., C
consists in those subsets S of V (G) such that JP [S] = S. It is easy to show
that (V (G), C) is a convexity of G and C is called the path convexity generated

by P. Some of the most studied path convexities are the geodesic convexity,
the monophonic convexity, the P3-convexity, and the P ∗

3 -convexity, which are
the convexities whose convex sets are generated by the set of all minimum
paths, the set of all induced paths, the set of all paths of length three, and
the set of all induced paths of length three of the graph, respectively.

A set S of vertices of a graph G is digitally convex if, for each vertex v
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of G, NG[v] ⊆ NG[S] implies v ∈ S. The digital convexity of a graph G is
the pair (V (G), C) where C is the set of all digitally convex sets of G. This
convexity was introduced in [3] as a tool to filter digital images.

The problem of deciding whether G has a C-convex p-partition was intro-
duced by Artigas et al. [4]. They proved that the problem is NP-complete
for each fixed integer p ≥ 2, under the geodesic convexity. Centeno et al. [5]
proved that the problem is also NP-complete under the P3-convexity if a
graph G and an integer p ≥ 2 are given as input. The problem of deciding
whether a graph has a C-convex p-cover was introduced in [6] also by Artigas
et al. This problem is NP-complete under the geodesic convexity for each
fixed integer p ≥ 2 [6, 7].

This article is organized as follows. In Section 2, we deal with the prob-
lems of covering with convex sets and of partitioning into convex sets a graph
under the digital convexity. In Section 3, we present results in connection
with the problem of partitioning a graph into convex sets under the P3-
convexity, as well as the P ∗

3 -convexity, and we also consider the problem of
covering a graph with P3-convex sets. In Section 4, we address these problems
under the monophonic convexity.

2. Digital convexity

We will call d-convex to any convex set under the digital convexity. Our
first result characterizes d-convex sets as the complements of the closed neigh-
borhoods of sets of vertices.

Proposition 1. Let G be a graph, S ⊆ V (G), and W = V (G) \NG[S]. For
each vertex v of G, NG[v] ⊆ NG[S] if and only if v /∈ NG[W ].

Proof. In fact, NG[v] ⊆ NG[S] is equivalent to NG[v] ∩ W = ∅ which, in
turn, is equivalent to v /∈ NG[W ].

Lemma 2. A set of vertices S of a graph G is d-convex if and only if S =
V (G) \NG[W ] for some set W ⊆ V (G).

Proof. Suppose that S is a d-convex set of G and let W = V (G) \NG[S].
We claim that S = V (G) \NG[W ]. On the one hand, if v ∈ S, then NG[v] ⊆
NG[S] and, by virtue of Proposition 1, v /∈ NG[W ]. On the other hand, if
v /∈ NG[W ], then, by Proposition 1, NG[v] ⊆ NG[S] and, since S is d-convex,
v ∈ S. We conclude that S = V (G) \NG[W ], as desired.

Conversely, let W ⊆ V (G) and S = V (G) \ NG[W ]. Let v ∈ V (G) such
that NG[v] ⊆ NG[S]. Notice that NG[S]∩W = ∅ (in fact, if there were some
vertex w ∈ W ∩ NG[S], then there would be some vertex s ∈ NG[W ] ∩ S,
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a contradiction). Thus, NG[v] ∩W = ∅ or, equivalently, {v} ∩ NG[W ] = ∅.
Hence, v ∈ V (G) \NG[W ] = S. This proves that S is a d-convex set of G.

A total dominating set of a graph G is a set S of vertices of G such each
vertex of G has at least one neighbor in S. Our next result shows that the
existence of a covering with few digitally convex sets is equivalent to the
existence of sufficiently small total dominating sets in the complement.

Theorem 3. A graph G has a d-convex p-cover if and only if G has a total

dominating set of cardinality at most p.

Proof. Let X = {w1, w2, . . . , wk} ⊆ V (G) be a total dominating set of G
with k ≤ p. By virtue of Lemma 2, Vi = V (G) \NG[wi] is a d-convex set for
each i ∈ {1, . . . , k}. We claim that {V1, V2, . . . , Vk} is a cover of V (G). Since
X is a total dominating set of G, for each v in V (G) ( = V (G)), there exists
some i ∈ {1, . . . , k} such that v ∈ NG(wi) = V (G) \NG[wi] = Vi. Therefore,

V (G) =
⋃k

i=1 Vi.
Conversely, let {V1, . . . , Vp} be a d-convex p-cover of G. Hence, by Lemma

2, Vi = V (G) \ NG[Wi] for some Wi ⊆ V (G). Choose a vertex wi ∈ Wi

for each i ∈ {1, . . . , p}. Notice that it may happen that wi = wj even if
i 6= j. Let W = {w1, . . . , wp}. By construction, |W | ≤ p. As {V1, . . . , Vp}
is a cover of G, for each v ∈ V (G) there is some i ∈ {1, . . . , p} such that
v ∈ Vi = V (G) \NG[Wi] ⊆ V (G) \NG[wi] = NG(wi). This proves that W is
a total dominating set of G with at most p vertices.

Since the problem of deciding, given a graph G and a positive integer p,
whether G has a total dominating set of size at most p is NP-complete [8],
Theorem 3 implies the following.

Corollary 4. It is NP-complete to decide, given a graph G and an integer

p ≥ 2, whether G has a d-convex p-cover.

Notice that Corollary 4 proves the NP-completeness of deciding whether
a graph G has d-convex p-cover when p is part of the input. However, the
complexity for the case in which p is a fixed integer is unknown.

We were not able to determine the computational complexity of the prob-
lem of deciding, given a graph G and an integer p, whether the graph G has
a d-convex p-partition. Below, we present a result that shows that if the
graph G is assumed bipartite and we fix p = 2, then the problem becomes
polynomial-time solvable. We first prove the following lemma.

Lemma 5. Let G be a connected graph. If G has a d-convex 2-partition,
then G has diameter at least 3.
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Proof. Let {V1, V2} be a d-convex 2-partition of a connected graphG. Since
G is connected, there exists ui ∈ Vi for each i ∈ {1, 2} such that u1 is adjacent
to u2. Since ui ∈ NG[Vi+1] (where sums should be considered modulo 2) and
Vi+1 is a d-convex set, there exists some vertex vi adjacent to ui such that
vi /∈ NG[Vi+1]. By construction, v1, u1, u2, v2 is an induced path of length
three of G. Consequently, the diameter of G is at least 3.

We are now ready to prove the following result.

Theorem 6. A bipartite graph G has a d-convex 2-partition if and only if G
has diameter at least 3. Moreover, if such a partition exists, it can be found

in polynomial time.

Proof. If G is disconnected and C is any connected component of G, then
{C, V (G) − C} is clearly a d-convex 2-partition of G that, in addition, can
be built in polynomial time. Hence we assume, without loss of generality,
that G is connected. We have already proved in Lemma 5 that if G is
a connected graph having a d-convex 2-partition, then G has diameter at
least 3. Conversely, assume now that G is a connected bipartite graph with
bipartition {X, Y } and diameter at least 3. Two vertices u, v ∈ V (G) such
that dG(u, v) = 3 and the two sets V1 = NG[u] ∪ {x ∈ X : NG(x) ⊆ NG[u]}
and V2 = V (G) \ V1 can be computed polynomial time. It is not hard to see
that {V1, V2} is a d-convex 2-partition of G.

3. Convexities generated by paths of length three

We1 call P3-convex (resp. P ∗
3 -convex ) to any convex set under the P3-

convexity (resp. P ∗
3 -convexity). Let G be a bipartite graph with a bipartition

{X, Y } and let p be an integer such that p ≥ 2. We construct a bipartite
graph G′ as follows: we take a copy of G and a complete bipartite graph
Kr,r where r = max{p+ 2, |X|, |Y |}, we add an edge connecting each vertex
in X with a vertex of one of the partite sets of Kr,r, and we add an edge
connecting each vertex in Y with a vertex of the other partite set of Kr,r, so
that there are no two vertices in the copy of G in G′ adjacent to the same
vertex in the complete bipartite graph Kr,r.

A cut of a graph G is a partition of V (G) into two sets X and Y , denoted
by (X, Y ). The set of all edges having one endpoint in X and the other one
in Y is called the edge cut of the cut (X, Y ). A matching cut set is an edge
cut that is a (possible empty) matching (i.e., no two edges of the edge cut
share an endpoint).

It can be easily proved that the problem of deciding whether a graph has
a P3-convex 2-partition and the problem of deciding whether a graph has
matching cut set are equivalent.
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Lemma 7. A graph G has a P3-convex 2-partition if and only if G has a

matching cut set.

Lemma 8. Let p be an integer such that p ≥ 2. A graph G has a P3-convex

p-partition if and only if G′ has a P3-convex (p+ 1)-partition.

Proof. If G has a P3-convex p-partition {V1, . . . , Vp}, then G′ has a P3-
convex (p + 1)-partition {V1, . . . , Vp, Vp+1}, where Vp+1 is the set of vertices
of the copy of Kr,r in G′.

Conversely, suppose that G′ has a P3-convex (p+1)-partition {V1, . . . , Vp,
Vp+1}. Let V be the vertex set of the copy of G in G′ and let V ′ be the
vertex set of the copy of Kr,r in G′. We claim that V ′ ⊆ Vi for some i ∈
{1, . . . , p, p+1}. Indeed, since r ≥ p+2, there exist at least two nonadjacent
vertices x, y ∈ V ′∩Vi for some i ∈ {1, . . . , p, p+1} and thus V ′ ⊆ Vi (because
Vi is P3-convex). We assume, without losing generality, that i = p + 1;
i.e., V ′ ⊆ Vp+1. Let W = Vp+1 ∩ V . Arguing towards a contradiction,
suppose that W 6= ∅. Notice that if no vertex in W has a neighbor in Vi for
some i ∈ {1, . . . , p}, then {V1, . . . , Vp−1, Vp ∪ W} is a P3-convex p-partition
of the copy G in G’ and, in particular, a P3-convex p-partition of G, as
desired. Hence, we assume, without loss of generality, that there is some
vertex a ∈ W adjacent to some vertex b ∈ Vi for some i ∈ {1, . . . , p}. By
the construction of G′, there exists a vertex c ∈ V ′ ⊆ Vp+1 which is adjacent
to b and nonadjacent to a. Consequently, a, b, c is a path on three vertices
of G′ such that a, c ∈ Vp+1 but b /∈ Vp+1, contradicting the fact that Vp+1 is
a P3-convex set of G′. This contradiction arose from assuming that W 6= ∅.
Hence, W = ∅ and thus Vp+1 = V ′. Therefore, {V1, . . . , Vp} is a P3-convex
p-partition of the copy of G in G′ and, in particular, a P3-convex p-partition
of G.

Since the matching cut set problem is NP-complete even when the input is
a bipartite graph [9], by virtue of Lemma 8, we obtain the following theorem.

Theorem 9. For each fixed integer p ≥ 2, it is NP-complete to decide, given

a graph G, whether G has a P3-convex p-partition, even if G is a bipartite

graph.

Notice that, in a bipartite graph, the family of P3-convex sets in G′ coincides
with the family of P ∗

3 -convex sets in G′. Hence, Corollary 9 still holds if
‘P3-convex’ is replaced by ‘P ∗

3 -convex’.
A stable set is a set of pairwise nonadjacent vertices. A clique is a set

of pairwise adjacent vertices. A split graph is a graph whose vertex set can
be partitioned into an independents set S and a clique K; the pair (K,S) is
called a split partition.
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Lemma 10. Let G be a split graph with split partition (K,S) and p be an

integer such that p ≥ 2. If every vertex s ∈ S has degree at least two, then

G has a P3-convex p-partition if and only if G has a P3-convex p-cover.

Proof. The ‘only if’ part is clear. Assume that G has a P3-convex p-
cover {V1, V2, . . . , Vp}. Notice that, for each i ∈ {1, . . . , p}, |Vi ∩ C| ≤ 1
because otherwise every vertex x ∈ C would belong to Vi and, since every
vertex of S is adjacent to at least two vertices of C, y ∈ Vi for every vertex
y ∈ S, contradicting Vi 6= V (G). Besides, if x ∈ C and y ∈ S are adjacent,
then there is no i ∈ {1, . . . , p} such that x, y ∈ Vi; otherwise, any other
neighbor z of y in C would belong to Vi and so x, z ∈ Vi ∩ C. We have
proved that Vi is an independent set for each i ∈ {1, . . . , p}. Let V ′

1 = V1

and let V ′
i+1 = Vi+1 \ (

⋃i

j=1 Vj) for each j ∈ {2, . . . , p}. By construction,
{V ′

1 , . . . , V
′
p} is a partition. We claim that, for each i ∈ {1. . . . .p}, V ′

i is a P3-
convex set. Arguing towards a contradiction, suppose that there exists some
i ∈ {1, . . . , p} and some vertex x ∈ V (G) \V ′

i such that {u, v} ⊆ NG(x)∩V ′
i .

In particular, u, v ∈ Vi and, since Vi is P3-convex, x ∈ Vi, contradicting
the fact that Vi is an independent set. This contradiction proves the claim.
Hence, {V ′

1 , V
′
2 , . . . , V

′
p} is a P3-convex p-partition of G.

In [5], it is proved that it is NP-complete to decide whether a split graph
G with split partition (K,S) has a P3-convex p-partition when p is part of
the input. Looking carefully at the proof given in [5], one can readily verify
that it is still valid if every vertex in S has degree at least two.

Theorem 11 ([5, Theorem 2.1]). The problem of deciding, given a split

graph G with a split partition (K,S), where G has a P3-convex p-partition is

NP-complete, even if each vertex in S has at least two neighbors.

Therefore, in virtue of Lemma 10, the result below follows.

Corollary 12. It is NP-complete to decide, given a graph G and an integer

p ≥ 2, whether G has a P3-convex p-cover, even if G is a split graph.

4. Monophonic convexity

We will call m-convex to any convex set under the monophonic convexity.
We will prove that it is NP-complete to decide, given a graphG and an integer
p ≥ 3, whether G has an m-convex p-partition, by adapting the proof of [6,
Theorem 1] for the analogous result for the geodesic convexity. If p is a
positive integer, Clique p-Partition is the problem of deciding, given a
graph G, whether the vertex set of G can be partitioned into p cliques of G.
It is well known that this problem is NP-complete for all p ≥ 3.
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Theorem 13. It is NP-complete to decide, given a graph G and an integer

p ≥ 3, whether G has an m-convex p-cover.

Proof. Deciding if a set S ⊆ V (G) is m-convex can be done in polynomial
time [10] and thus the problem of deciding if a graph G has an m-convex
p-cover belongs to NP . Let G be an instance of the Clique p-Partition
problem. We assume, without loss of generality, that |V (G)| ≥ 2 and G is not
a complete graph. We construct a graph G′ whose vertex set is V (G)∪{u, v}
and E(G′) = E(G)∪{ux, vx: x ∈ V (G)}. The proof follows in the same way
as the proof of the NP-completeness of Theorem 1 in [6, Theorem 1]. It is
not hard to prove that any proper m-convex set of G′ is a clique. From this
assertion, it follows that G′ has an m-convex p-partition if and only if G has
an ℓ-clique partition for some integer ℓ such that p− 2 ≤ ℓ ≤ p.

Next, we will prove that deciding whether a graph G has an m-convex
p-cover becomes polynomial-time solvable for p = 2. A clique separator of a
connected graph G is a clique C such that G− C is disconnected.

Lemma 14 ([10]). Let G be a connected graph, C a clique separator of G,

and S the union of the vertex sets of some of the connected components of

G− C. Then S ∪ C is an m-convex set of G.

Corollary 15. If G is a connected graph having a clique separator, then G
has an m-convex 2-cover.

Proof. If C is a clique separator of G and G1 is any connected component
of G− C, then, by virtue of Lemma 14, {V (G1) ∪ C, (V (G) \ V (G1)) ∪ C} is
an m-convex 2-cover of G.

Let G be a graph. The m-convex hull of a set S ⊆ V (G) is the inclusion-
wise minimal m-convex set M of G containing S or, equivalently, M = JP [S]
where P is the set of all induced paths of G. A set X of vertices of G is an
m-hull set of G if the m-convex hull of X is V (G).

Lemma 16 ([10]). If G is a connected graph having no clique separator that

is not a complete graph, then every pair of nonadjacent vertices is an m-hull

set of G.

The following result is an immediate consequence of Lemma 16.

Corollary 17. If G is a connected graph having no clique separator, then

every proper m-convex of G is a clique. Moreover, G has an m-convex 2-
cover if and only if G is a co-bipartite graph.
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Theorem 18. It is polynomial-time solvable to decide, given a graph G,

whether G has an m-convex 2-cover.

Proof. In order to decide whether a connected graph G has an m-convex
2-cover, we first look for a clique separator in O(nm) time [11]. If a clique
separator is found, then, by Corollary 15, G has an m-convex 2-cover. If G
has no clique separator, we test if G is co-bipartite, which can be performed
in linear time. Consequently, it can be decided in O(nm) time whether or
not a given graph G has an m-convex 2-cover.
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