
ar
X

iv
:1

80
8.

09
22

6v
2 

 [
cs

.G
T

] 
 2

9 
Ju

l 2
02

0

A Note on the Complexity of Manipulating

Weighted Schulze Voting✩,✩✩

Julian Müllera, Sven Kosubb

aDepartment of Humanities, Social and Political Sciences, ETH Zurich, Weinbergstrasse 109, CH-8092 Zurich, Switzerland
bDepartment of Computer and Information Science, University of Konstanz, D-78457 Konstanz, Germany

Abstract

We prove that the constructive weighted coalitional manipulation problem for the Schulze voting rule can be solved in
polynomial time for an unbounded number of candidates and an unbounded number of manipulators.

Keywords: computational social choice; Schulze voting; computational complexity

1. Introduction

The Schulze voting rule [13] is a recent method for
preference aggregation among a group of agents or voters.
Because of its many desirable mathematical properties, it
has attracted a lot of attention in collective decision mak-
ing and has found its way into implementations for various
applications.

This interest also sparked research on the robustness
of election outcomes under Schulze voting (margin of vic-
tory [11]) and the rule’s resistance to outcome engineering
(bribery [7, 10], control [7, 9, 10] and voting manipula-
tion [5, 7, 10]). In particular, several studies have sug-
gested that the Schulze voting rule is vulnerable to vot-
ing manipulation (aka strategic voting). In the light of
the famous Gibbard-Satterthwaite theorem [6, 12] (and
its extension by the Duggan-Schwartz theorem [4] to ir-
resolute voting rules), which in principle excludes non-
manipulatibility in most cases, voting manipulation could
be made prohibitive by using computational hardness (cf.,
e.g., [1, 2, 3]). However, the manipulation problem for
Schulze voting has been shown to be solvable in polyno-
mial time for many computational scenarios.

Parkes and Xia [10] showed that, for Schulze voting,
constructive unweighted coalitional manipulation (UCM)
for a single manipulator and destructive UCM for an arbi-
trary number of manipulators are solvable in polynomial

✩Work done in part while the first author was with University
of Konstanz; material is based upon the first author’s bachelor’s
thesis [8].

✩✩This document is the accepted manuscript of a work that
has been formally published in Information Processing Let-
ters. To access its final edited and published form, visit
https://doi.org/10.1016/j.ipl.2020.105989.
c© 2020. This manuscript version is made available under a Creative
Commons BY-NC-ND License. To view a copy of the license, visit
https://creativecommons.org/licenses/by-nc-nd/4.0/.

Email addresses: Julian.Mueller@gess.ethz.ch (Julian
Müller), Sven.Kosub@uni-konstanz.de (Sven Kosub)

time. Building on this work, Gaspers et al. [5] found that
constructive UCM is polynomial-time computable and es-
tablished that constructive weighted coalitional manipula-
tion (WCM) is fixed-parameter tractable (in the number
of candidates) in the nonunique-winner model. In addi-
tion, Hemaspaandra, Lavaee and Menton [7] proved that
constructive WCM in the unique-winner model and de-
structive WCM in both models are also fixed-parameter
tractable.

We improve on these results and give an algorithm that
solves constructive WCM in polynomial time even for an
unbounded number of candidates. As the Parkes-Xia al-
gorithm [10] for destructive UCM in the unique-winner
model is easily adaptable to destructive WCM in both the
unique and the nonunique-winner model,1 all open prob-
lems identified in [7] regarding the complexity of WCM for
Schulze voting are thus settled: they are all polynomial-
time computable.

2. The Schulze voting rule

Voting. Let X = {x1, . . . , xm} be a finite, non-
empty set of m alternatives or candidates, and let V =
{v1, . . . , vn} be a finite, non-empty multi-set of n agents
or voters. We assume that each voter vi has a weight
wi ∈ N \ {0}; e.g., vi could stand representatively for a
coalition of wi unanimous voters. Each voter vi ∈ V im-
poses a total order on the set of candidates which expresses
vi’s preferences and which is called vi’s vote; more specifi-
cally, a vote of voter vi ∈ V is given by a bijective function

1Since all manipulators vote in the same way in the Parkes-Xia
algorithm, weights actually do not matter for the construction of ma-
nipulators’ voting profiles. Furthermore, the number of manipulators
and non-manipulators has no influence on the runtime of the core
algorithm except for computing the weighted majority graph and
outputting the voting profiles (for the relevant notions, see Sect. 2).
Thus, the algorithm runs in polynomial time on weighted instances.

http://arxiv.org/abs/1808.09226v2
https://doi.org/10.1016/j.ipl.2020.105989
https://creativecommons.org/licenses/by-nc-nd/4.0/


πi : X → {1, . . . ,m}, where πi(x) > πi(y) means that vi
strictly prefers x to y.2 A weighted voting profile is a se-
quence (π,w) = (π1, . . . , πn;w1, . . . , wn) containing a vote
(of weight wi) from each voter vi.

A voting rule is a mapping F : (π1, . . . , πn;w1, . . . , wn)
7→ Y ∈ P(X), i.e., F assigns a set of candidates to each
possible weighted voting profile (π1, . . . , πn;w1, . . . , wn). If
F (π1, . . . , πn;w1, . . . , wn) is a singleton set then the win-
ning candidate is called unique winner of the election under
voting rule F .

Weighted majority graph. The Schulze voting rule is
based on the method of pairwise comparisons. Given a
weighted voting profile (π,w) = (π1, . . . , πn;w1, . . . , wn)
and distinct candidates x, y ∈ X , let ω(π,w)(x, y) denote
the weighted number of voters that strictly prefer x to y

minus the weighted number of voters that strictly prefer y
to x, i.e.,

ω(π,w)(x, y) =def

∑

πi(x)>πi(y)

wi −
∑

πi(y)>πi(x)

wi.

So, if ω(π,w)(x, y) > 0 then the majority of voters prefers
x to y.

The outcomes of the pairwise comparisons are collected
as edge annotations to the complete directed graph K =
(X,E) on vertex set X , i.e, the edge set of K is E =
X×X\{ (x, x) | x ∈ X }. In particular, for weight function
ω(π,w) : E → Z : (x, y) 7→ ω(π,w)(x, y), the skew-symmetric
graph (K,ω(π,w)) is the weighted majority graph for the
weighted voting profile (π,w). In the forthcoming, we also
consider weight functions for K that do not necessarily
correspond to voting profiles.

Schulze method. The Schulze voting rule evaluates the
weighted majority graph in a specific path-based way. For
our purposes, it is useful to introduce the relevant notions
for a weighted graph (K,ω) equipped with an arbitrary
weight function ω : E → Z. For each path p = (y1, . . . , yℓ)
in (K,ω), the strength s[ω](p) of path p is defined to be the
minimum weight of two candidates consecutively occurring
on p, i.e.,

s[ω](p) =def min { ω(yi, yi+1) | i ∈ {1, . . . , ℓ− 1} }.

For distinct candidates x and y, the path strength
S[ω](x, y) is defined to be the maximum strength of
an (x, y)-path in (K,ω), i.e.,

S[ω](x, y) =def

max { s[ω](p) | p is an (x, y)-path in (K,ω) }.

2Note that incomparable candidates are excluded. Note also
that we reverse the usual preference order (with best alternative at
rank 1), which is more appropriate for score-based representations of
rankings in line with algorithmic constructions in this article.

Finally, a candidate x ∈ X is a Schulze winner for weighted
voting profile (π,w) if and only if S[ω(π,w)](x, y) ≥
S[ω(π,w)](y, x) for all candidates y ∈ X \ {x}.

The following proposition summarizes both that the
Schulze voting rule always selects at least one winner and
that deciding whether there is a unique Schulze winner is
also easily possible.

Proposition 1. Let (π,w) be any weighted voting profile
for candidate set X and voter set V .

1. [13] There always exists a Schulze winner for the
weighted voting profile (π,w).

2. [10] A candidate x ∈ X is a unique Schulze win-
ner for weighted voting profile (π,w) if and only
if S[ω(π,w)](x, y) > S[ω(π,w)](y, x) for all y ∈ X \
{x}.

3. Unique-Winner Constructive Weighted Coali-

tional Manipulation

Constructive voting manipulation consists of fixing the
voting behavior of a coalition of manipulators in order to
make a certain candidate the winner of the election. More
specifically, we consider the following computational prob-
lem for finding a unique winner with respect to the Schulze
voting rule (the nonunique-winner version will be discussed
in Sect. 4):

Problem: Unique-Winner WCM

Instance: A candidate set X , weighted voting profile
(π1, . . . , πk;w1, . . . , wk) of non-manipulators,
weights (wk+1, . . . , wn) of manipulators, and
a preferred candidate c ∈ X

Task: Find votes πk+1, . . . , πn such that c is a
unique Schulze winner for the weighted vot-
ing profile (π1, . . . , πn;w1, . . . , wn), or indi-
cate non-existence

The following theorem is the key to a polynomial algo-
rithm for Unique-Winner WCM.

Theorem 2. Let (X, (π1, . . . , πk;w1, . . . , wk),
(wk+1, . . . , wn), c) be a Unique-Winner WCM instance.
There exists a (finite) function U : X → Z which can be
computed in polynomial time such that the following two
statements are equivalent:

1. There exist votes (πk+1, . . . , πn) such that c is a
unique Schulze winner for the weighted voting pro-
file (π1, . . . , πn;w1, . . . , wn).

2. U(x) > ω(π1,...,πk;w1,...,wk)(x, c) − (wk+1 + · · · + wn)
for all x ∈ X \ {c}.

The idea behind Theorem 2 is to construct upper
bounds U(x) on the strengths of backward paths from al-
ternative candidates x to the preferred candidate c in any

2



successful manipulation scenario. Consequently, if the sec-
ond condition of the theorem does not hold true at one can-
didate x, then c will never beat some other candidate due
to a backward path that traverses x. On the other hand,
we will see that such bounds U(x) can be constructed suf-
ficiently small to guarantee the existence of a successful
manipulation if the second condition is satisfied at each
alternative candidate.

In Lemma 5, we will see that such a function U

can be computed in (non-optimal) time O(m5) (for an
O(m3) bound, see [8]), given the weighted majority graph.
Together with checking the second condition of Theorem
2 for m− 1 candidates, this gives an algorithm whose run-
ning time is dominated by the time needed for computing
function U . Note that it takes O(nm2) steps to compute
the weighted majority graph in the first place.

The proof of Theorem 2 is split into two parts, each of
which is covered by its own subsection. Subsection 3.1 (ne-
cessity) describes an algorithm for computing function U

and proves its correctness given that there exist manip-
ulators’ votes to make c a unique Schulze winner. Sub-
section 3.2 (sufficiency) describes an algorithm for using
function U to determine the manipulators’ votes, given
that the second condition of Theorem 2 is satisfied. For-
mally, Theorem 2 follows from Lemma 5 and Corollary 9.

3.1. Computing function U

Notation. We use the following notation for success-
ful Unique-Winner WCM instances: (π◦, w◦) denotes
the weighted voting profile of the non-manipulators, i.e.,
π◦ = (π1, . . . , πk) and w◦ = (w1, . . . , wk); (π•, w•) de-
notes a successfully manipulating weighted voting pro-
file of the manipulators, i.e., π• = (πk+1, . . . , πn) and
w• = (wk+1, . . . , wn) such that the first condition of Theo-
rem 2 is satisfied; (π◦•, w◦•) denotes a successfully manip-
ulating weighted voting profile of non-manipulators and
manipulators, i.e., (π◦•, w◦•) = (π◦π•;w◦w•). Likewise,
we use ω◦, ω•, and ω◦• to denote the edge weight function
of the weighted majority graph with respect to the corre-
sponding scenarios. Let W denote the total weight of the
manipulators, i.e., W =def wk+1 + · · ·+ wn.

Algorithm. The following algorithm (involving two rules
we fix later) contains a schematic description of how to
compute function U :
While computing U , Algorithm 1 maintains the following
invariant (in accordance with the intended second condi-
tion of Theorem 2):

For any successfully manipulating weighted
profile (π◦•, w◦•), we have U(x) > S[ω◦•](x, c)
for all candidates x ∈ X \ {c}.

3The ∞ symbol serves as a placeholder for a sufficiently large
number that acts neutrally in all relevant minimum operations and
exceeds U(x) at all alternative candidates x ∈ X\{c}; it thus behaves
like positive infinity compared to all other values that appear in
presented proofs and algorithms. To be exact, ∞ may denote any
number that strictly exceeds ω◦(x, y) +W for all x, y ∈ X, x 6= y.

Input: Graph (K,ω◦) = (X,E, ω◦), candidate
c ∈ X , total weight W of the manipulators

Output: (finite) function U : X → Z

begin

U(c)←∞3;
foreach x ∈ X \ {c} do

U(x)←
max { ω◦(y, z) | y, z ∈ X, y 6= z }+W ;

while Rule 1 or Rule 2 is applicable to U do

apply the rule;

return U ;

Algorithm 1: Algorithm for computing U

We observe that the initialization of U(x) satisfies the in-
variant, as S[ω◦•](c, x) cannot exceed U(x) for any x ∈ X .
In order to decrease the initial bounds U(x) to a sufficient
degree, we use the following rules maintaining the invari-
ant in Algorithm 1:4

• Rule 1. If there is a candidate x 6= c such that
S[ω′](c, x) < U(x) when using weight function
ω′ : E → Z : (y, z) 7→ min { ω◦(y, z)+W,U(z) }, set
U(x)← S[ω′](c, x).

• Rule 2. If there are candidates x, y ∈ X \ {c} such
that U(y) < U(x) and ω◦(y, x) − W ≥ U(y), set
U(x)← U(y).

Lemma 3. Rule 1 maintains the invariant.

Proof. Suppose that the invariant is violated for
the first time after the rule has been applied, i.e.,
S[ω′](c, x) = U(x) ≤ S[ω◦•](x, c). Since c is the unique
winner for profile (π◦•, w◦•), there exists a (c, x)-path p

such that s[ω◦•](p) > S[ω◦•](x, c). Thus, p must satisfy
s[ω◦](p) +W ≥ s[ω◦•](p) > S[ω′](c, x) ≥ s[ω′](p), so there
must be a candidate y on path p with U(y) ≤ S[ω′](c, x).
Let p′ denote the (y, x)-subpath of p. Then, S[ω◦•](y, c) ≥
min{s[ω◦•](p′), S[ω◦•](x, c)} ≥ S[ω′](c, x) ≥ U(y). But
this would mean that the invariant had already been
violated before the rule had been applied.

Lemma 4. Rule 2 maintains the invariant.

Proof. Suppose the invariant is violated for the first time
after the rule has been applied to candidates x and y, i.e.,
S[ω◦•](x, c) ≥ U(y) (= U(x) after the update). Then,
S[ω◦•](y, c) ≥ min{w◦(y, x) − W,S[ω◦•](x, c)} ≥ U(y).
This is a contradiction, as it implies that the invariant had
already been violated before the rule was even applied.

4Gaspers et al. [5], in their algorithm which has the same struc-
ture as ours, used three rules. The reason that Algorithm 1 runs in
polynomial time lies in the difference between their Rule 2, which
reduces the values of the bounds by 2 per application, and our Rule
1, which is more efficient in respect thereof. Rule 3 of Gaspers et al.
corresponds to our Rule 2.

3



Lemma 5. Algorithm 1 computes a function U : X → Z

in O(m5) time for which it holds that if the manipulators
can vote such that c is the unique Schulze winner, then
U(x) > ω◦(x, c)−W for all x ∈ X \ {c}.

Proof. The runtime bound follows from two observations:

• We can check if and where a rule can be applied and
apply it in O(m2) time.

• Whenever a rule is applied at a candidate x, U(x)
must strictly decrease. As U(x) can only assume
values from the set { ω◦(y, z)+W | y, z ∈ X }, such
a decrease can only happen at most O(m2) times
at one specific candidate, and thus at most O(m3)
times in total.

The claimed inequality is a consequence of the invariant,
since S[ω◦•](x, c) ≥ S[ω◦](x, c)−W ≥ ω◦(x, c) −W .

3.2. Computing the votes of the manipulators

Algorithm. We have seen by now that we can use func-
tion U computed by Algorithm 1 to formulate a neces-
sary condition for when the manipulators can be success-
ful. We will see now that this necessary condition is also
sufficient, as we can also utilize function U from Algo-
rithm 1 to construct votes for the manipulators that make
c the unique Schulze winner. Algorithm 2 shows how to
construct these votes in O(m2) time.

Input: Graph (K,ω◦) = (X,E, ω◦), candidate
c ∈ X , total weight W of the manipulators,
function U computed by Algorithm 1

Output: A vote ζ : X → {1, . . . ,m} that can be
voted by all the manipulators to achieve a
successful manipulation, if the election
can be manipulated

begin
Construct directed graph G = (X,E′) such that,
for x 6= y, (x, y) ∈ E′ ⇐⇒

min { U(x), ω◦(x, y) +W } ≥ U(y);
Compute a spanning arborescence T ⊆ G with
root c;
Compute vote ζ : X → {1, . . . ,m} by
topologically sorting T such that
(x, y) ∈ E(T ) ∨ U(x) > U(y) =⇒ ζ(x) > ζ(y)
for all x, y ∈ X ;
return ζ;

Algorithm 2: Computation of the votes of the manip-
ulators

Lemma 6. For all candidates x ∈ X, there exists a (c, x)-
path in the graph G as defined in Algorithm 2.

Proof. Suppose the claim does not hold, and choose x

without a (c, x)-path in G such that U(x) is maximum
among all candidates without such a path. Since Rule 1

is inapplicable to U at x, there exists a (c, x)-path p =
(y1, . . . , yℓ) inK with min{ω◦(yi−1, yi)+W,U(yi)} ≥ U(x)
for all i ∈ {2, . . . , ℓ} (as follows from the definition of ω′

in Rule 1). Since ∞ = U(c) > U(x), there is a candidate
yi with maximal index i such that U(yi) > U(x). Let p′

be the (yi, x)-subpath of p. This (yi, x)-path p′ also exists
in G, since U(yi+1) = · · · = U(yℓ) = U(x), and there is
also a (c, yi)-path in G because U(x) is maximum among
the candidates not reachable from c in G. Hence, there
exists a (c, x)-path in G. This is a contradiction.

Thus, there exists a spanning arborescence T of G

rooted at c, i.e., a directed spanning tree of G with root c
such that there is a unique directed path from the root c to
any other candidate in the tree. From this arborescence,
we obtain a vote ζ such that (x, y) ∈ E(T ) or U(x) > U(y)
implies ζ(x) > ζ(y). Since G and thus T do not contain
any edge (x, y) ∈ E′ with U(x) < U(y) as a direct con-
sequence of G’s definition, such a vote exists and can be
constructed through topological sorting. We choose all
manipulators to vote ζ, so we set π• =def (ζ, . . . , ζ) and
(π◦•, w◦•) =def (π1, . . . , πk, ζ, . . . , ζ;w1, . . . , wn).

5

Lemma 7. S[ω◦•](c, x) ≥ U(x) for all candidates x ∈
X \ {c}.

Proof. Let p denote a (c, x)-path p = (y1, . . . , yℓ)
in T . All edges in T are also edges in G, so we
have that min{U(yi−1), ω

◦(yi−1, yi) + W} ≥ U(yi) for
all i ∈ {2, . . . , ℓ}. By a simple inductive argument and
since the vote ζ is consistent with all edges in T , we
obtain ω◦•(yi−1, yi) = ω◦(yi−1, yi) + W ≥ U(x) for
all i ∈ {2, . . . , ℓ}. We conclude that S[ω◦•](c, x) ≥
s[ω◦•](p) ≥ U(x), which proves the claim.

Lemma 8. If U(x) > ω◦(x, c) −W for all x ∈ X \ {c},
then U(x) > S[ω◦•](x, c) for all x ∈ X \ {c}.

Proof. Let p denote any (x, c)-path. We consider two
cases:

• Assume that there is a candidate y 6= c on p

with U(y) > U(x). Then, choose the y clos-
est to x on p among these candidates, and let z

be the candidate immediately preceding y on p.
Because U(y) > U(x) ≥ U(z), the manipula-
tors vote ζ(y) > ζ(z) and thus the vote count is
ω◦•(z, y) = ω◦(z, y)−W . As Rule 2 is not applicable
to U , we have ω◦(z, y)−W < U(z), and hence obtain
s[ω◦•](p) ≤ ω◦•(z, y) = ω◦(z, y)−W < U(z) ≤ U(x).

• Otherwise, it holds for all candidates y 6= c on p

that U(y) ≤ U(x). Let z be the candidate pre-
ceding c on p. Since ∞ = U(c) > U(z), the
manipulators vote ζ(c) > ζ(z) and votes count

5This construction implies that whenever the manipulators can
make their preferred candidate the unique winner, then all of them
can vote the same way to achieve this result.

4



to ω◦•(z, c) = ω◦(z, c) − W . We conclude that
s[ω◦•](p) ≤ ω◦•(z, c) = ω◦(z, c)−W < U(z) ≤ U(x)
due to the premise of Lemma 8.

The claim follows.

Corollary 9. If U(x) > ω◦(x, c) − W for all x ∈ X \
{c}, then c is a unique Schulze winner for weighted voting
profile (π1, . . . , πk, ζ, . . . , ζ;w1, . . . , wn).

Proof. We conclude from the two preceding lemmas that
S[ω◦•](c, x) ≥ U(x) > S[ω◦•](x, c) for all x ∈ X \ {c}.
Hence, c is a unique Schulze winner by Proposition 1.

4. Nonunique-Winner Constructive Weighted

Coalitional Manipulation

We briefly discuss the nonunique-winner variant of the
constructive weighted coalitional manipulation problem,
i.e., checking whether candidate c can be made a Schulze
winner (but not necessarily the only one) with respect to
the same voting profile.

Problem: Nonunique-Winner WCM

Instance: A candidate set X , weighted voting profile
(π1, . . . , πk;w1, . . . , wk) of non-manipulators,
weights (wk+1, . . . , wn) of manipulators, and
a preferred candidate c ∈ X

Task: Find votes πk+1, . . . , πn such that c is a
Schulze winner for the weighted voting pro-
file (π1, . . . , πn;w1, . . . , wn), or indicate non-
existence

Following the arguments in Sect. 3 literally, the algo-
rithms for Unique-Winner WCM can be easily adapted
to solve Nonunique-Winner WCM. A modification is
only required for Algorithm 1 computing U . In contrast to
the unique winner problem, we allow the bounds in the in-
variant to be non-strict, i.e., we allow the relaxed inequal-
ity U(x) ≥ S[ω◦•](x, c). This leads to the replacement of
Rule 2 by a slightly modified rule:

• Rule 2’. If there are candidates x, y ∈ X \ {c} such
that U(x) > U(y) and ω◦(y, x) − W > U(y), set
U(x)← U(y).

With everything else unchanged, we can easily re-prove a
slightly different second condition for a successful manip-
ulation (in the spirit of Theorem 2):

Theorem 10. Let (X, (π1, . . . , πk;w1, . . . , wk),
(wk+1, . . . , wn), c) be a Nonunique-Winner WCM

instance. There exists a (finite) function U : X → Z

which can be computed in polynomial time such that the
following two statements are equivalent:

1. There exist votes (πk+1, . . . , πn) such that c is
a Schulze winner for the weighted voting profile
(π1, . . . , πn;w1, . . . , wn).

2. U(x) ≥ ω(π1,...,πk;w1,...,wk)(x, c) − (wk+1 + · · · + wn)
for all x ∈ X \ {c}.

Nonunique-Winner WCM is therefore solvable in
polynomial time, too.

5. Conclusion

We studied weighted coalitional manipulation under
the Schulze voting rule, and showed that constructive
coalitional manipulation is polynomial-time solvable and
a successfully manipulating voting profile for the manipu-
lators is polynomial-time constructible in the unique and
nonunique-winner models. Together with an adaption of
the algorithm by Parkes and Xia for destructive manipu-
lation [10] to weighted voting, this resolves the open ques-
tions in [7] on the complexity of weighted coalitional ma-
nipulation for Schulze voting.

Acknowledgement

We thank the anonymous reviewers for their valuable
comments that helped improve the presentation of this
article.

References

[1] J. J. Bartholdi III, C. A. Tovey, M. A. Trick. The computa-
tional difficulty of manipulating an election. Social Choice and
Welfare, 6(3):227–241, 1989.

[2] V. Conitzer, T. Sandholm, J. Lang. When are elections with few
candidates hard to manipulate? Journal of the ACM, 54(3):14,
2007.

[3] V. Conitzer, T. Walsh. Barriers to manipulation in voting. In:
F. Brandt, V. Conitzer, U. Endriss, J. Lang, A. D. Procac-
cia (eds.), Handbook of Computational Social Choice, Ch. 6,
pp. 127–145. Cambridge University Press, Cambridge, 2016.

[4] J. Duggan, T. Schwartz. Strategic manipulability without res-
oluteness or shared beliefs: Gibbard-Satterthwaite generalized.
Social Choice and Welfare, 17(1):85–93, 2000.

[5] S. Gaspers, T. Kalinowski, N. Narodytska, T. Walsh. Coali-
tional manipulation for Schulze’s rule. In: Proceedings of
the 12th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS’13), pp. 431–438. IFAAMAS,
2013.

[6] A. Gibbard. Manipulating of voting schemes: A general result.
Econometrica, 41(4):587–601, 1973.

[7] L. A. Hemaspaandra, R. Lavaee, C. G. Menton. Schulze and
ranked-pairs voting are fixed-parameter tractable to bribe, ma-
nipulate, and control. Annals of Mathematics and Artificial
Intelligence, 77(3–4):191–223, 2016.

[8] J. Müller. The complexity of manipulating Schulze voting.
Bachelor’s thesis, Department of Computer & Information Sci-
ence, University of Konstanz, Konstanz, 2013.

[9] C. G. Menton, P. Singh. Control complexity of Schulze voting.
In: Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI’13), pp. 286–292. AAAI Press,
Palo Alto, CA, 2013.

[10] D. C. Parkes, L. Xia. A complexity-of-strategic-behavior com-
parison between Schulze’s rule and ranked pairs. In: Proceed-
ings of the 26th AAAI Conference on Artificial Intelligence
(AAAI’12), pp. 1429–1435. AAAI Press, Palo Alto, CA, 2012.

5



[11] Y. Reisch, J. Rothe, L. Schend. The margin of victory in
Schulze, cup, and Copeland elections: Complexity of the reg-
ular and exact variants. In: Proceedings of the 7th European
Starting AI Researcher Symposium (STAIRS’14), pp. 250–259.
IOS Press, Amsterdam, 2014.

[12] M. A. Satterthwaite. Strategy-proofness and Arrow’s condi-
tions: Existence and correspondence theorems for voting proce-
dures and social welfare functions. Journal of Economic Theory,
10(2):187–217, 1975.

[13] M. Schulze. A new monotonic, clone-independent, reversal sym-
metric, and condorcet-consistent single-winner election method.
Social Choice and Welfare, 36(2):267–303, 2011.

6


	1 Introduction
	2 The Schulze voting rule
	3 Unique-Winner Constructive Weighted Coalitional Manipulation
	3.1 Computing function U
	3.2 Computing the votes of the manipulators

	4 Nonunique-Winner Constructive Weighted Coalitional Manipulation
	5 Conclusion

