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Carlos Hidalgo-Toscano†

September 4, 2020

Abstract

A geometric graph is a graph whose vertices are points in general position in the plane and
its edges are straight line segments joining these points. In this paper we give an O(n2 log n)
time algorithm to compute the number of pairs of edges that cross in a geometric graph on n
vertices. For layered graphs and convex geometric graphs the algorithm takes O(n2) time.

1 Introduction

A geometric graph is a graph whose vertices are points in general position in the plane; and its
edges are straight line segments joining these points. A pair of edges of a geometric graph cross
if they intersect in their interior; the number of crossings of a geometric graph is the number of
pairs of its edges that cross. Let G := (V,E) be a geometric graph on n vertices; and let H be
a graph. If G and H are isomorphic as graphs then we say that G is a rectilinear drawing of H.
The rectilinear crossing number of H is the minimum number of crossings that appear in all of its
rectilinear drawings. We abuse notation and use cr(H) and cr(G) to denote the rectilinear crossing
number of H and the number of crossings of G, respectively.

Computing the rectilinear crossing number of the complete graph Kn on n vertices is an im-
portant and well known problem in Combinatorial Geometry. The current best bounds on cr(Kn)
are

0.379972

(
n

4

)
< cr(Kn) < 0.380473

(
n

4

)
+ Θ(n3).

The lower bound is due to Ábrego, Fernández-Merchant, Leaños and Salazar [1]. The upper bound
is due to Fabila-Monroy and López [6]. In an upcoming paper, Aichholzer, Duque, Fabila-Monroy,
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Garćıa-Quintero and Hidalgo-Toscano [2] have further improved the upper bound to

cr(Kn) < 0.3804491

(
n

4

)
+ Θ(n3).

For more information on crossing numbers (rectilinear or other variants) we recommend the survey
by Schaefer [8].

A notable property of the improvements of [6, 2] on the upper bound of cr(Kn) is that they
rely on finding rectilinear drawings of Kn with few crossings, for some specific values of n; this
is done via heuristics that take a rectilinear drawing of Kn and move its vertices in various ways
with the aim of decreasing the number of crossings. In this approach it is instrumental that the
computation of the number of crossings is done as fast as possible. In this paper we present an
algorithm to compute cr(G) in O(n2 log n) time. We hope that our algorithm will pave the way for
finding new upper bounds on the rectilinear crossing number of various classes of graphs.

The current best algorithm for counting the number of intersections among a set of m line
segments in the plane runs in O(m4/3 log1/3m) time; it was given by Chazelle [4]. This provides
an O(|E|4/3 log1/3 |E|) time algorithm for computing cr(G); this running time can be as high as
Θ(n8/3 log1/3 n) when G has a quadratic number of edges. The running time can be improved for
some classes of geometric graphs: when G is a complete geometric graph, Rote, Woeginger, Zhu,
and Wang [7] give an O(n2) time algorithm for computing cr(G); and Waddle and Malhotra [9] give
an O(|E| log |E|) algorithm for computing cr(G) when G is a bilayered graph. For layered graphs
and convex geometric graphs a slight modification of our algorithm runs in O(n2) time.

2 The algorithm

In what follows let G := (V,E) be a geometric graph on n vertices. We make some general position
assumptions: no two vertices of G have the same x-coordinate nor the same y-coordinate; and no
two edges of G are parallel. In [6], the authors give an O(n2) time algorithm for computing cr(G)
when G is a complete geometric graph; the authors define “patterns” on the set of vertices of G;
these patterns can be computed in O(n2) time and cr(G) depends on the number of these patterns.
We follow a similar approach.

Let p and q be two points in the plane. Let −→pq be the ray with apex p and that passes through
q; let ←−pq be the ray with apex p, parallel to −→pq, and with opposite direction to −→pq. Let (u, v, e) be
a triple where u and v are a pair of adjacent vertices of G, and e is an edge of G not incident to u
or v. We say that (u, v, e) is a pattern of

• Type A) if −→uv intersects e; and

• Type B) if ←−uv intersects e.

See Figure 1.
Consider a pair of non-incident edges of G. This pair of edges provides patterns of type A and

type B according to the following three cases. If the pair of edges is crossing then they provide
exactly four patterns of type A and zero patterns of type B; if the pair of edges is non-crossing and
the line containing one of them intersects the interior of the other edge, then they provide exactly
one pattern of type A and one pattern of type B; and if the pair of edges is non-crossing and the
intersection point of the two supporting lines of these edges lies outside the union of these edges,
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Figure 1: (u, v, e1), (v, u, e1), and (u, v, e2) are of type A; (v, u, e2) is of type B; and neither the
endpoints of e1 and the edge e2, nor the endpoints of e2 and the edge e1 produce patterns of type
A or type B.

then they do not provide patterns of type A nor patterns of type B. See Figure 1. Let A(G) and
B(G) be the number of patterns of type A and type B defined by G, respectively; we have the
following.

Proposition 1.

cr(G) =
A(G)−B(G)

4
.

Before proceeding we give some definitions. Let u and v be vertices of G. Let B(u, v) and
A(u, v) be the number of edges of G that intersect −→uv and ←−uv, respectively. Note that

A(G) =
∑
u∈V

∑
v∈N(u)

A(u, v) and B(G) =
∑
u∈V

∑
v∈N(u)

B(u, v).

Let NLeft(v, uv) be set of neighbors of v to the left of the directed line from u to v; and let
NRight(v, uv) be set of neighbors of v to the right of the directed line from u to v. See Figure 2.
Let ←−u and −→u be the open horizontal rays with apex u that go left and right, respectively. Finally,
let E(u) be the set of edges of G that are incident to u. Thus, |←−u ∩ E| and |−→u ∩ E| are equal to
the number of edges of G that cross ←−u and −→u , respectively; and |←−u ∩ E(v)| and |−→u ∩ E(v)| are
equal to the number of edges of G incident to v that cross ←−u and −→u , respectively.

Figure 2: An illustration of NLeft(v, uv) = 5 and NRight(v, uv) = 4

Consider the following well known duality transform. Let p := (m, b) be a point; the dual of p is
the line p∗ : y = mx− b. Let ` : y = mx+ b be a line; the dual of ` is the point `∗ := (m,−b). This
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duality transform preserves various geometric relationships between points and lines. In particular,
it preserves point-line incidences. It also preserves above-below relationships between lines and
points: if point p is above (resp. below) line `, then point `∗ is above (resp. below) line p∗. We
compute the line arrangement L of the dual lines of the points in V . This can be done in O(n2)
time; see for example Chapter 8 of [5]. Afterwards, we compute A(G) and B(G) in the following
four steps.

Lemma 2 (Step 1). In O(n2) time we can compute, for all u ∈ V , the counterclockwise order of
the vertices in V \ {u} by angle around u.

Proof. Let u be a vertex of G and let v1, . . . , vn−1 be the vertices V \ {u}. For 1 ≤ i ≤ n− 1 be `i
be the line through u and vi. Since all the lines `i pass through u, all the points `∗i are contained
in the line u∗. Moreover, the order by slope of the lines `1, . . . , `n−1 coincides with the order of
the points `∗1, . . . , `

∗
n−1 from left to right along the line u∗. This order can be obtained from L in

O(n) time. From the slope order of the lines `i it is straightforward to compute in O(n) time the
counterclockwise order of the vertices in V \ {u} by angle around u.

Lemma 3 (Step 2). In O(n2) time we can compute, for all pairs of vertices u, v ∈ G, |NLeft(v, uv)|
and |NRight(v, uv)|.

Proof. Let u be a vertex of G. Let v1, . . . , vn−1 be the vertices of V \{u} ordered so that the points
v∗1 ∩ u∗, v∗2 ∩ u∗, . . . , v∗n−1 ∩ u∗ are encountered in this order when traversing the line u∗ from left
to right. If the x-coordinate of u is less than the x-coordinate of vi, then the set NLeft(vi, uvi)
(resp. NRight(vi, uvi)) corresponds to the neighbors vj of vi such that the lines v∗j are below (resp.
above) the point v∗i ∩u∗. If the x-coordinate of u is greater than the x-coordinate of vi, then the set
NLeft(vi, uvi) (resp. NRight(vi, uvi)) corresponds to the neighbors vj of vi such that the lines v∗j are
above (resp. below) the point v∗i ∩u∗. We compute NLeft(v1, uv1) and NRight(v1, uv1) in linear time.
Afterwards, iteratively for j = 2, . . . , n − 1 from NLeft(vj−1, uvj−1) and NRight(vj−1, uvj−1) we
compute NLeft(vj , uvj) and NRight(vj , uvj) in constant time, respectively. We store the cardinality
of these sets. Thus, in O(n) time we compute |NLeft(vj , uvj)| and |NRight(vj , uvj)| for all vj . By
iterating over all vertices u ∈ G the result follows.

Figure 3: The information stored on T at line 1 of HorizontalRayCrossings for i = 2

Lemma 4 (Step 3). In O(n2 log n) time, we can compute the sets of values

{|←−v ∩ E| : v ∈ V } and {|−→v ∩ E| : v ∈ V }.
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Proof. We show how to compute {|−→v ∩ E| : v ∈ V }; the computation of {|←−v ∩ E| : v ∈ V } is
analogous. We begin by sorting the vertices of G by decreasing y-coordinate. For every vertex
u ∈ V we compute the set of values

{|−→v ∩ E(u)| : v ∈ V and v is below u} ,

as follows.
Let v1, . . . vm be the vertices of G that lie below u in decreasing order of their y-coordinate. In

O(n) time we construct a binary tree, T , of minimum height and whose leaves are v1, . . . , vm. The
left to right order of v1, . . . , vm in T coincides with their counterclockwise order around u starting
from the first vertex encountered when rotating ←−u counterclockwise around u. We mark all the vi
that are adjacent to u. At each interior node w of T we store in two fields MarkedLeft(w) and
MarkedRight(w), the number of marked leaves in the left and right subtrees of w, respectively.
By proceeding by increasing height, these values can be computed in O(n) time for every vertex of
T .

We execute the procedure HorizontalRayCrossings(u) whose pseudocode is described be-
low. Suppose that we are at the i-th execution of the for of line 1. We have that: a vertex vj is
marked if and only if j ≥ i and vj is adjacent to u; and for every node w ∈ T , MarkedLeft(w)
and MarkedRight(w), store the number of currently marked leaves in the left and right subtrees
of w, respectively. Lines 4, 11 and 15 ensure that these invariants are kept at every execution of
line 1. In this iteration we compute (and store) the value of |−→vi ∩ E(u)|. Note that an edge uvj
intersects −→vi if and only if vj comes after vi in the counterclockwise order around u and j > i. The
first condition is equivalent to vj being to the right of vi in T ; this happens if and only if there
exists a common ancestor w in T of vi and vj , for which vi is in the left subtree of w and vj is
in the right subtree of w; see Figure 3. The condition of j being greater than i is equivalent to
vj being marked. We count the number of nodes vj that satisfy both conditions by traversing the
path from vi to the root. We begin by unmarking vi; at each node w in this path we update the
fields MarkedLeft(w) and MarkedRight(w); if vi is in the left subtree of w we also update our
counting. Having reached the root we store the value of |−→vi ∩ E(u)| in line 20. Since T has height
O(log n) the execution of HorizontalRayCrossings(u) takes O(n log n) time. Since

|−→v ∩ E| =
∑

u is above v

|−→v ∩ E(u)|,

the result follows.

Lemma 5 (Step 3). In O(n2) time we can compute A(u, v) and B(u, v) for all pairs of vertices
u, v ∈ V .

Proof. For every u ∈ V we proceed as follows. Let v1, . . . , vn−1 be the vertices of V \ {u}, in the
order as they are encountered by rotating a horizontal line counterclockwise around u. This order
can be obtained from L in O(n) time. Suppose that the angle from −→u to −→uv1 is less than π. Then
the only vertex of V \ {u} in the closed wedge bounded by the rays −→u and −→uv1 is v1; and there are
no vertices of V \ {u} in the closed wedge bounded by the rays ←−u and ←−uv1. This implies that

A(u, v1) = |−→u ∩ E| − |NRight(v1, uv1)| and B(u, v1) = |←−u ∩ E|.
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Procedure HorizontalRayCrossings(u)

1 for i← 1 to m do
2 cr ← 0 ;
3 if vi is a neighbor of u then
4 Unmark vi;
5 end
6 w ← vi;
7 while w 6= T.root do
8 if w is the left child of wparent then
9 cr ← cr + MarkedRight(wparent);

10 if vi is a neighbor of v then
11 MarkedLeft(wparent)←MarkedLeft(wparent)− 1;
12 end

13 else
14 if vi is a neighbor of u then
15 MarkedRight(wparent)←MarkedRight(wparent)− 1;
16 end

17 end
18 w ← wparent;

19 end
20 |−→vi ∩ E(u)| ← cr

21 end

Suppose that the angle from −→u to −→uv1 is greater than π. Then there are no vertices V \ {u} in the
closed wedge bounded by the rays −→u and ←−uv1 ; and the only vertex of V \ {u} in the closed wedge
bounded by the rays ←−u and −→uv1 is v1. This implies that

A(u, v1) = |←−u ∩ E| − |NRight(v1, uv1)| and B(u, v1) = |−→u ∩ E|;

In general, for i = 2, . . . , n − 1, we have the following. Suppose that the angle from −−−→uvi−1 to
−→uvi is less than π. Then the only vertices of V \ {u} in the closed wedge bounded by the rays −−−→uvi−1
and −→uvi are vi−1 and vi; and there are no vertices of V \ {u} in the closed wedge bounded by the
rays ←−−−uvi−1 and ←−uvi . This implies that

A(u, vi) = A(u, vi−1) + |NLeft(vi−1, uvi−1)| − |NRight(vi, uvi)|

and
B(u, vi) = B(u, vi−1).

Suppose that the angle from −−−→uvi−1 to −→uvi is greater than π. Then the only vertex of V \ {u} in
the closed wedge bounded by the rays −−−→uvi−1 and ←−uvi is vi−1; and the only vertex of V \ {u} in the
closed wedge bounded by the rays ←−−−uvi−1 and −→uvi is vi−1. This implies that

A(u, vi) = B(u, vi−1)− |NRight(vi, uvi)|

and
B(u, vi) = A(u, vi−1) + |NLeft(vi−1, uvi−1).
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See Figure 4. Thus, having computed A(u, vi−1) and B(u, vi−1) we can compute A(u, vi) and
B(u, vi) in constant time. The result follows.

Figure 4: The two cases in computing A(u, vi) and B(u, vi) in Step 4

Summarizing, we have the following result.

Theorem 6. cr(G) can be computed O(n2 log n) time.

3 Faster algorithms for special classes of graphs

Of the four steps of our algorithm, only Step 3 takes superquadratic time. Moreover, the numbers
|−→u ∩E| and |←−u ∩E| are only used as a starting point for computing A(u, v) and B(u, v) in Lemma 5.
If we can compute in O(n) time, for each vertex u of G, the number of edges of G that cross two
open rays with apex u and in parallel but opposite directions then we can compute cr(G) in O(n2)
time. We pose the following conjecture.

Conjecture 1. For every geometric graph G on n vertices, cr(G) can be computed in O(n2) time.

To finalize the paper we mention two instances for which is the case.

• Convex Geometric Graphs
A convex geometric graph is a convex geometric graph whose vertices are in convex position.
Let G = (V,E) be a convex geometric graph on n vertices. For every u in V , let −→u and ←−u
be two parallel open rays with apex u, in opposite directions and that do not intersect the
convex hull of V . These rays can be found in constant time by first computing the convex
hull of V (which takes O(n log n) time). We have that |−→u ∩ E| and |←−u ∩ E| are both equal
to zero in this case and cr(G) can be computed in O(n2) time.

• Layered Graphs
A layered graph is a geometric graph whose vertex set is partitioned into sets L1, . . . , Lr called
layers such that the following holds.
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– The vertices in layer Li have the same y-coordinate yi
1 ;

– y1 < y2 < · · · < yr;

– vertices in layer Li are only adjacent to vertices in layers Li−1 and Li+1.

Suppose that G is a layered graph with layers L1, . . . , Lr. Let Gi be the subgraph of G
induced by Li and Li+1. Note that Gi can be regarded as a convex geometric graph. Since
cr(G) =

∑r−1
i=1 cr(Gi), cr(G) can be computed in O(n2) time. Problem 33 of [3] asks whether

the number of crossings of layered graphs can be computed in time o(|E| log |V |). For layered
graphs with ω(n2/ log n) edges we provide an affirmative answer to the question posed in [3].
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