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Abstract

An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1, . . . , k}, to

the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive

distinct colors. The problem of determining whether such a k-coloring exists is called Injective k-
Edge-Coloring. We show that Injective 3-Edge-Coloring is NP-complete, even for triangle-free

cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs

of girth 6. Injective 4-Edge-Coloring remains NP-complete for cubic graphs. For any k ≥ 45,

we show that Injective k-Edge-Coloring remains NP-complete even for graphs of maximum degree

at most 5
√
3k. In contrast with these negative results, we show that Injective k-Edge-Coloring

is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite

subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum

degree at most
√

k/2 is injectively k-edge-colorable.

1 Introduction

We study the algorithmic complexity of the injective edge-coloring problem. Our aim is to determine
restricted graph classes where the problem is NP-hard, while in contrast, designing algorithms for other
graph classes. An injective k-edge-coloring of a graph G = (V (G), E(G)) is an assignment of colors, i.e.
integers in {1, . . . , k}, to the edges of G in such a way that two edges that are each incident with one distinct
endpoint of a third edge, receive distinct colors. In other words, for any 3-edge path of G (possibly forming
a triangle), the first and last edge of the path receive distinct colors. The injective chromatic index of G,
denoted χ′

i(G), is the least integer k for which G admits an injective k-edge-coloring.
This concept was recently introduced in [4], where it is studied for some classes of graphs, and proved

to be NP-complete. Bounds on the injective chromatic index of planar graphs, graphs of given maximum
degree, and other important graph classes, have been recently determined in [1, 3, 7, 14, 16]. In particular, as
mentioned in [7], it follows from [1] that all planar graphs are injectively 30-edge-colorable, while outerplanar
graphs are injectively 9-edge-colorable [7]. It is also proved in [14] that subcubic graphs are injectively
7-edge-colorable, while subcubic bipartite graphs [7] and subcubic planar graphs [14] are injectively 6-edge-
colorable. Moreover all subcubic planar bipartite graphs are injectively 4-edge-colorable [14].

Note that in [1], this notion is studied as the induced star arboricity of a graph, that is, the smallest
number of star forests into which the edges of the graph can be partitioned: this is an equivalent way to
interpret injective edge-coloring (see [7]). The concept of an injective edge-coloring is the natural edge-
version of the notion of an injective vertex-coloring, introduced in [10] and well-studied since then.

Another closely related notion is the one of strong edge-coloring of a graph G, introduced in [8] and
well-studied since then, especially in view of a celebrated conjecture by Erdős and Nešetřil [6]. In this
type of coloring, edges that are the endpoints of a same 3-edge path or 2-edge path must receive distinct
colors. The strong chromatic index χ′

s(G) of a graph G is the least integer k for which G admits a strong
edge-coloring with k colors. It follows from the definitions that for any graph G, χ′

i(G) ≤ χ′
s(G) holds.

The algorithmic complexity of determining the strong chromatic index of a graph is well-studied, see for
example [12] for a classic reference, and [5, 11] for more recent ones. In this paper, we wish to undertake
similar types of studies for the injective chromatic index. The problem at hand is formally defined as follows.
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Injective k-Edge-Coloring

Instance: A graph G.
Question: Does G admit an injective k-edge-coloring?

Injective k-Edge-Coloring was proved NP-complete (for every fixed k ≥ 3) in [4], with no particular
restriction on the inputs. We strengthen this as follows.

Theorem 1 The two following are NP-Complete:

1. Injective 3-Edge-Coloring, even for triangle-free cubic graphs, and

2. Injective 4-Edge-Coloring, even for cubic graphs.

Answering a question from [4] about the complexity of Injective k-Edge-Coloring for planar graphs,
we also study restricted subclasses of planar graphs.

Theorem 2 Let g ≥ 3. Injective 3-Edge-Coloring is NP-Complete even for:

1. planar subcubic graphs with girth at least g,

2. planar bipartite subcubic graphs of girth 6.

The two items in Theorem 2 cannot be combined, because we can prove the following (note that all
planar bipartite subcubic graphs are injectively 4-edge-colorable [14]).

Theorem 3 Every planar bipartite subcubic graph of girth at least 16 is injectively 3-edge-colorable.

We also obtain the following positive result (tw(G) denotes the treewidth of G).

Theorem 4 For every graph G of order n and every positive integer k, there exists a 2O(k·tw(G)2)n-time
algorithm that solves Injective k-Edge-Coloring.

It is proved in [1] that χ′
i(G) ≤ 3

(

tw(G)
2

)

, and so using the above algorithm, one can determine the
injective chromatic index of a graph of order n in time 2O(tw(G)4)n.

Contrasting with our hardness results for planar graphs, Theorem 4 implies that Injective k-Edge-

Coloring can be solved in polynomial-time on subclasses of planar graphs: K4-minor-free graphs (i.e.
graphs of treewidth 2), and thus, on outerplanar graphs.

In [4], Cardoso et al. use a reduction on graphs having their maximum degree linear in the number of
colors. We improve it with the following result.

Theorem 5 For every integer k ≥ 45, Injective k-Edge-Coloring is NP-Complete even for graphs
with maximum degree at most 5

√
3k.

The bound of Theorem 5 is tight up to a constant factor: by a standard maximum degree argument of
a conflict graph, every graph with maximum degree at most

√

k/2 is injectively k-edge-colorable. (Indeed,
for every edge e of a graph G, there are at most 2(∆(G) − 1)2 edges which cannot have the same color as
e, where ∆(G) is the maximum degree of G.)

2 Proof of Theorem 1

For these two problems, we reduce from 3-Edge-Coloring, which is NP-Complete even for cubic
graphs [12]. (Recall that a proper edge-coloring is an edge-coloring for which edges that are incident
to a same vertex receive different colors.)

3-Edge-Coloring

Instance: A cubic graph G.
Question: Does G admit a proper 3-edge-coloring?

2



2.1 Proof of Theorem 1.1

Proof. Let G be the input cubic graph. We will proceed in two steps: first, we create a triangle-free
subcubic graph G′ which has an injective 3-edge-coloring if and only if G is properly 3-edge-colorable. Then
we describe how to make the graph cubic.

We create the graph G′ from G by removing all the edges of G. For each edge uv of G, we create a copy
of a gadget Euv (see Figure 1(a) for an illustration) and connect it to u and v as follows. We add eight
new vertices wuv , zuv, auv, buv, cuv, duv, euv and fuv. We create the following edges uwuv, vwuv, wuvzuv,
zuvauv, zuvbuv, auvcuv, buvcuv, auvduv, buveuv, cuvfuv, duvfuv and euvfuv.

Claim 6 Euv is injectively 3-edge-colorable, and for every valid edge-coloring γ of Euv, γ(uwuv) =
γ(vwuv) = γ(wuvzuv). Moreover, for any choice of the same color for these three edges, we can extend
the coloring to an injective 3-edge-coloring of Euv.

Proof. Let us injectively 3-edge-color Euv. W.l.o.g., we can assume that duvfuv is colored 1, buvcuv is
colored 2 and auvzuv is colored 3. We deduce that buveuv is colored 2, cuvfuv is colored 1, auvduv and
auvcuv are colored 3, buvzuv is colored 2 and euvfuv is colored 1. Hence uwuv, vwuv and wuvzuv must all
be colored 1.

Now, given one same color for these three edges, one can color the rest of the gadget, for example using
the previously constructed coloring. �

If G has a proper 3-edge-coloring γ, we injectively 3-edge-color G′ by assigning to uwuv, vwuv and wuvzuv
in G′ the color γ(uv); then we extend the coloring to each Euv using Claim 6.

Conversely, if G′ has an injective 3-edge-coloring, then we color an edge uv of G with the color of the
edge uwuv (or vwuv) of G′. This coloring is proper since Claim 6 insures that uwuv and vwuv have the same
color. Indeed if ux is an edge adjacent to uv, then uwuv and xwux have different colors.

We now show how to make the construction cubic. We create the cubic graph G′′ as follows. First, take
three disjoint copies G1, G2 and G3 of G′. To differentiate the vertices of each copy, we add an exponent
to the name of the vertex corresponding to the number of the copy. For example, vertex wuv of G1 will
be noted w1

uv . For each edge uv of G, connect G1, G2 and G3 via K1,3 with vertex classes {ruv} and
{suv, puv, quv} as follows. The vertex suv (resp. puv, resp. quv) is adjacent to d3uv (resp. d1uv, resp. d2uv), e

2
uv

(resp. e3uv, resp. e1uv) and ruv (see Figure 1(b)). The graph G′′ is simply the graph where the edge gadget
is represented in Figure 1 and for each u ∈ V (G), the three copies of ui for i ∈ {1, 2, 3} are identified.

As G is cubic, G′′ is triangle-free and cubic. Note that if G′′ admits an injective 3-edge-coloring, then
in particular G′ also admits an injective 3-edge-coloring and thus by our previous arguments, G is properly
3-edge-colorable.

If G is properly 3-edge-colorable, then we fix such a coloring γ : E(G) → {1, 2, 3}. For i ∈ {1, 2, 3},
we color the edges incident with wi

uv with the color γ(uv) + i, where the colors are considered to be taken
modulo 3 (considering 0 = 3). Then it suffices to extend the obtained coloring to each edge gadget (see
Figure 1). �

2.2 Proof of Theorem 1.2

Proof. Let G be the input graph. For each vertex u of G, we replace it by the following vertex gadget Su

(see Figure 2). The gadget Su is made of a 9-cycle xu
0x

u
1 . . . x

u
8 and three other vertices yui (i ∈ {0, 3, 6})

that will be connected to the rest of the graph. We add the edges xu
1x

u
8 , xu

2x
u
4 , xu

5x
u
7 , xu

0y
u
0 , xu

3y
u
3 and xu

6y
u
6 .

For any edge-coloring γ of Su, we note Cu
i (γ) =

{

γ(xu
i x

u
i+1), γ(x

u
i x

u
i−1)

}

where i ∈ {0, 3, 6} and where the
indices are taken modulo 9.

Claim 7 For every injective 4-edge-coloring γ of Su and for every i ∈ {0, 3, 6}, the color γ(xu
i y

u
i ) belongs

to the set Cu
i (γ). Moreover, Cu

0 (γ) ∪ Cu
3 (γ) ∪ Cu

6 (γ) = {1, 2, 3, 4} and there exists a color a ∈ {1, 2, 3, 4}
such that for all i ∈ {0, 3, 6}, a ∈ Cu

i (γ).
Furthermore, for any choice of color for xu

0y
u
0 , xu

3y
u
3 , xu

6y
u
6 and sets of colors Cu

i (γ), i ∈ {0, 3, 6} verifying
the previous necessary conditions, there exists an injective 4-edge-coloring γ of Su matching those choices.

Proof. Let us try to construct an injective 4-edge-coloring γ of Su. Up to permuting the colors, we assume
that γ(xu

0x
u
1 ) = 1, γ(xu

0x
u
8 ) = 2 and γ(xu

8x
u
1 ) = 3. Note that xu

2x
u
4 and xu

5x
u
7 cannot both be colored 4,

w.l.o.g. assume that γ(xu
2x

u
4 ) 6= 4. Hence γ(xu

2x
u
4 ) = 2 and γ(xu

2x
u
3 ) = 4. Remark that γ(xu

5x
u
6 ) 6= 2.

Moreover xu
5x

u
7 and xu

6x
u
7 can only receive colors 1 or 4 and they must receive different colors. Hence
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(a) Edge gadget Euv with an injective 3-edge-coloring. (b) Connecting three copies of Euv in the construction
of G′′, along with an injective 3-edge-coloring.
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Figure 1: Edge gadgets used in the proof of Theorem 1.1.

γ(xu
5x

u
6 ) = 3, γ(xu

3x
u
4 ) = 1, γ(xu

5x
u
7 ) = 4 and γ(xu

6x
u
7 ) = 1. Now there are two ways to complete the coloring

of Su, either γ(xu
1x

u
2 ) = 4, γ(xu

4x
u
5 ) = 3 and γ(xu

7x
u
8 ) = 2 or, γ(xu

1x
u
2 ) = 3, γ(xu

4x
u
5 ) = 2 and γ(xu

7x
u
8 ) = 4.

In both cases all properties of the first part of the claim hold (with a = 1).
Finally, note that the second of the two previous coloring options allows us to color xu

i y
u
i , i ∈ {0, 3, 6}

with any color among those of xu
i x

u
i+1 and xu

i x
u
i−1, and to complete the coloring. �

For every edge uv of G, we construct the following edge gadget Euv (see Figure 2). First, choose yui
(resp. yvj ) of degree 1 among the vertices of Su (resp. Sv). Create two new adjacent vertices wuv and zuv
such that yui wuvy

v
j zuv is a 4-cycle.

Claim 8 For every injective 4-edge-coloring γ of G and every edge gadget Euv connecting yui and yvj (i, j ∈
{0, 3, 6}), we have Cu

i (γ) = Cv
j (γ).

Furthermore, any injective 4-edge-coloring γ of Su and Sv such that Cu
i (γ) = Cv

j (γ) and γ(xu
i y

u
i ) =

γ(xv
j y

v
j ) can be extended to an injective 4-edge-coloring of Su ∪Euv ∪ Sv.

Proof. Suppose, w.l.o.g. by Claim 7, that xu
i x

u
i+1 is colored 1, xu

i x
u
i−1 is colored 2 and xu

i y
u
i is colored 1.

Now w.l.o.g., yui wuv is colored 3 and yui zuv is colored 4. This implies that wuvzuv is colored 2, yvjwuv is
colored 3, yvj zuv is colored 4, yvj x

v
j is colored 1 and Cv

j (γ) = {1, 2}.
The second part of the claim is proved by taking the previous coloring and extending it using the second

part of Claim 7. �

Let G′ be the cubic graph constructed from G by the above process. By Claim 8, if uv is an edge
connecting yui and yvj then for any injective coloring γ of G′, Cu

i (γ) = Cv
j (γ) = {a, b} for some a and b.

Hence this set somehow characterizes the edge gadget Euv, we say that Euv is colored by {a, b}.
Suppose that there exists an injective 4-edge-coloring γ of G′. For each edge uv of G, we color uv

depending on the coloring of Euv. When Euv is colored {1, 2} or {3, 4} (resp. {1, 3} or {2, 4}, resp. {1, 4} or
{2, 3}) then we color uv by color 1 (resp. 2, resp. 3). We argue that this edge-coloring, noted γ, is proper.
Indeed suppose it is not, then for some vertex u, w.l.o.g., uv and uw are both colored 1. This means that
the coloring of G′ is such that Cu

i (γ) = Cu
j (γ) or Cu

i (γ) ∩ Cu
j (γ) = ∅ for i 6= j and i, j ∈ {0, 3, 6}. This

contradicts Claim 7. Hence we get a proper 3-edge-coloring of G.
Conversely, suppose that there exists a proper 3-edge-coloring of G. In G′, we color each edge of the

form xu
i y

u
i by 1. If an edge uv of G is colored 1 (resp. 2, resp. 3) then we assign the color {1, 2} (resp.

4
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Figure 2: Two vertex gadgets Su and Sv, corresponding to the vertices u and v of a graph G, connected by
an edge gadget corresponding to the edge uv of G.

{1, 3}, resp. {1, 4}) to Euv. By Claim 7, this coloring can be extended to an injective 4-edge-coloring of
each Su, u ∈ V (G). By Claim 8, this injective 4-edge-coloring can be extended to each edge gadget to color
the whole graph. �

3 Proof of Theorem 2

We will reduce from the following problem:

Planar 3-Vertex-Coloring

Instance: A planar graph G with maximum degree 4.
Question: Does G admit a proper 3-vertex-coloring?

This problem was proven to be NP-Complete in [9]. Let G be a planar graph with maximum degree 4.

3.1 Proof of Theorem 2.1

Proof. Recall that we want to construct a graph G′ with girth at least g.
For each vertex u ∈ V (G), we construct a vertex gadget Su as follows (see Figure 3). First create a

cycle xu
1x

u
2 . . . x

u
ℓ where ℓ ≥ g and ℓ is an odd multiple of 3. To each xu

i add a single pendant neighbor yui of
degree 1. To the vertex yu1 , add two non-adjacent neighbors wu and zu. Create four more vertices au1 , bu1 ,
cu1 and du1 . The vertex wu is adjacent to au1 and bu1 while zu is adjacent to cu1 and du1 . Now construct a path
au1a

u
2 . . . a

u
g of length g and add to each aui for i ≤ g− 1 a pendant vertex of degree 1 called a′ui . Similarly we

create the vertices bu1 . . . b
u
g , b

′u
1 . . . b′ug−1, c

u
1 . . . c

u
g , c

′u
1 . . . c′ug−1 and du1 . . . d

u
g , d

′u
1 . . . d′ug−1. Finally add a vertex

αu (resp. βu, resp. γu, resp. δu) adjacent to aug (resp. bug , resp. cug , resp. dug ).

Claim 9 For any injective 3-edge-coloring ρ of Su, ρ(a
u
gα

u) = ρ(bugβ
u) = ρ(cugγ

u) = ρ(dugδ
u). We call this

color ρ(Su). Moreover, for any choice of a color ρ(Su), there exists an injective 3-edge-coloring ρ with these
properties.

Proof. Suppose that there exists i ∈ {1, . . . , ℓ} such that the property P(i) := “ρ(xu
i x

u
i+1) = ρ(xu

i y
u
i ) 6=

ρ(xu
i x

u
i−1)” holds (the indices are taken modulo ℓ, considering 0 = ℓ). Then P(i) holds for all i ∈ {1, . . . , ℓ}.

Indeed, take such an i, then ρ(xu
i+1x

u
i+2) = ρ(xu

i+1y
u
i+1) is the color {1, 2, 3} \

{

ρ(xu
i y

u
i ), ρ(x

u
i x

u
i−1)

}

. Hence
the property holds for i + 1, by induction it holds for every i. Note that the same can be said for the
property P ′(i) = “ρ(xu

i x
u
i−1) = ρ(xu

i y
u
i ) 6= ρ(xu

i x
u
i+1)”. Also note that if ρ(xu

i x
u
i−1) = ρ(xu

i x
u
i+1) 6= ρ(xu

i y
u
i )

then we have P(i+ 1) which is a contradiction because we do not have P(i).
Suppose now that for all i, neither P(i) nor P ′(i) holds. This means that the edges incident to a vertex

xu
i are either of the same color, or of three distinct colors. If they have the same color, then the edges

incident with xu
i+1 have three distinct colors, the ones incident to xu

i+2 have the same color, and so on. This
would imply that the cycle xu

1 . . . x
u
ℓ is even, which is a contradiction. Moreover, if the edges incident to

xu
i have three distinct colors, then the edges incident to xu

i+1 (or xu
i−1) would all have the same color, and

therefore no injective 3-edge-coloring would be possible.
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Figure 3: Vertex gadget Su for planar subcubic graphs with girth at least g (in this example g = 4 and
ℓ = 9).

Thus, w.l.o.g. we can suppose that ρ(xu
1x

u
2 ) = ρ(xu

1y
u
1 ) = 1 and ρ(xu

1x
u
ℓ ) = 3. By extending the coloring

to the rest of Su, we can infer that ρ(yu1w
u) = ρ(yu1 z

u) = 2, ρ(wuau1 ) = ρ(wubu1 ) = 3 and ρ(zucu1 ) =
ρ(zudu1 ) = 3. By the same reasoning, we can see that all the edges of Su (ignoring the edges involving one
of the vertices xu

i ) have only one possible color which depends only on their distance to yu1 and in particular
ρ(augα

u) = ρ(bugβ
u) = ρ(cugγ

u) = ρ(dug δ
u).

Conversely, Su admits a coloring (see Figure 3 for an example). To choose a coloring of Su having the
desired color ρ(Su), it suffices to permute the colors in the previous coloring. �

To finish the construction, for any edge uv ∈ E(G), we add an edge euv to G′ between a vertex among
{αu, βu, γu, δu} and a vertex among {αv, βv, γv, δv} such that the planarity of G′ is preserved. This can
be done by cyclically ordering the vertices of {αu, βu, γu, δu} according to a planar embedding of G, and
adding the edge euv between the right pair of vertices.

Note that G′ is planar, subcubic with girth at least g.

Suppose that G′ admits an injective 3-edge-coloring ρ. Assign to the vertex u of G the color ρ(Su).
Take two adjacent vertices u and v of G. The edge euv in G′ is an edge between two vertices, one of Su

and one of Sv: w.l.o.g. say euv = αuαv. This implies that augα
u and avgα

v receive different colors and thus
ρ(Su) 6= ρ(Sv). Hence this coloring of G is a proper 3-vertex-coloring.

Conversely, suppose that G admits a proper 3-vertex-coloring. Let ρ be a partial edge-coloring of G′

with no colored edges. We choose the color ρ(Su) to be the color of u in G (and we color the appropriate
edges of G′). By Claim 9, we can extend ρ to each gadget Su. Note that by the choice of ρ(Su), there is
no conflict between edges of Su and Sv when u and v are adjacent in G. It is left to color the edges of the
form euv. By construction, there are only two edges at distance 2 of euv (and this edge does not belong to
a triangle). Hence there is at least one remaining color for euv. After coloring theses edges, ρ is an injective
3-edge-coloring of G′. �

3.2 Proof of Theorem 2.2

Proof. In order to prove this result, we will modify the previous construction to make it bipartite (the
girth condition will be lost).

First we modify Su (see Figure 4). Create the following gadget H . Start with a complete graph on four
vertices x1, . . . , x4. For each edge xixj , create a vertex xij adjacent to both xi and xj and remove the edge
xixj . To each of these vertices of degree 2, add a pendant edge, with yij the vertex of degree 1 adjacent to
xij .
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Figure 4: Vertex gadget for planar bipartite subcubic graphs with girth at least 6.

We claim that in every injective 3-edge-coloring γ of H , for any i 6= j, the vertex xij is incident to only
one color. Suppose it is not the case, then there must exist an injective 3-edge-coloring γ for which we
have one of x12x2 and x12x1 colored differently from x12y12, say w.l.o.g. γ(x12x1) = 1 and γ(x12y12) = 2.
We deduce that γ(x2x23) = γ(x2x24) = 3, γ(x14x4) = γ(x3x13) = 2, γ(x3x34) = 1, and there is no color
available for x23y23, a contradiction.

Now, take two disjoint copies of H named Hu
1 and Hu

2 . Add an edge between the two vertices yu12,1 and
yu12,2 and add the edge yu12,1y

u
1 where yu1 is a new vertex. Now repeat the construction process of Su, for

g = 6 for example, as described in the previous section by starting at the step where the vertices wu and zu

are added. As we observed, the edges incident to vertex xu
12,1 of Hu

1 (resp. xu
12,2 of Hu

2 ) have the same color
in any injective 3-edge-coloring ρ. Hence, ρ(yu12,1y

u
12,2) = ρ(yu12,1y

u
1 ) 6= ρ(xu

12,1y
u
12,1). Note that this graph

also admits an injective 3-edge-coloring (see Figure 4). We are in the same configuration as in the proof of
Theorem 2.1. Thus Claim 9 also holds for this gadget Su. Note that this gadget is bipartite.

The edge gadget does not change, it is still the edge euv. We need to be careful with the bipartiteness
of the constructed graph. To ensure that the constructed graph is bipartite, it suffices that all vertices yu1 ,
u ∈ V (G), belong to the same part of the bipartition. To that end, if there is a path of odd length between
yu1 and yv1 , then w.l.o.g. this path is yu1a

u
1 . . . a

u
gα

uαvavg . . . a
v
1y

v
1 . If we increase the length of a sequence

au1 . . . a
u
g in Su by 3 (and also adding a′ug , a′ug+1 and a′ug+2), then this path now has even length. With this

trick, we can ensure the bipartiteness of the constructed graph G′ as well as keeping Claim 9 true in this
new setting.

Hence, as before, G admits a proper vertex-3-coloring if and only if G′ admits an injective 3-edge-coloring.
�

4 Proof of Theorem 3

Proof. Let G be a planar bipartite subcubic graph with girth at least 16. Let A and B be the two parts
of the bipartition of G. We construct the graph GA as follows: for each u ∈ A, we create a vertex u in GA.
For each pair of vertices u, v of A which are at distance 2, we add an edge between u and v in GA. As G is
subcubic, a planar embedding of G also serves as a planar embedding of GA, where the edges of GA follow
their corresponding path of length 2 in G. Hence, GA is a planar graph with maximum degree at most 6.
Note that, by the girth condition on G, GA does not have any k-cycle, for all k with 4 ≤ k ≤ 7. Then, by
the main result from [2], the graph GA admits a vertex-3-coloring γ.

We now color G as follows: each edge uv of G, where u ∈ A and v ∈ B, is colored by the color γ(u) in
GA. We claim that this is an injective 3-edge-coloring of G. Indeed, take any path uvwz of G. W.l.o.g.,
assume u,w ∈ A and v, z ∈ B. By construction, uw ∈ E(GA) and thus uv and wz receive different colors.
�
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5 Proof of Theorem 4

Proof. We give an fixed-parameter tractable (FPT) algorithm parameterized by the treewidth tw(G) of our
input graph G. We use a nice tree decomposition (see [13]) of the input graph for our dynamic programming
algorithm. Nice tree decompositions are a well-known tool for designing algorithms on graphs of bounded
treewidth using dynamic programming. In our notation, the set of vertices of the graph associated to a
node v of the tree, its bag, is denoted Xv.

A nice tree decomposition of a graph is a tree decomposition, rooted at a node Root, with the following
types of nodes. A join node has exactly two children, with the same bags as their parent join node. An
introduce node has a unique child and contains exactly one more vertex in its bag than its child’s bag. A
forget node also has a unique child, but the forget node’s bag has exactly one less vertex than its child’s
bag. A leaf node is a leaf of the tree and contains no vertices. We call G≤v the subgraph of G induced by
the subtree of the decomposition rooted at v and Gv the subgraph of G induced by Xv. We note NH(u) for
the neighborhood of a vertex u in a subgraph H of G.

We define the following set associated with a node v:

Tv =
{

t1 : Xv → P({1, 2, . . . , k})2
}

× {t2 : E(Gv) → {1, 2, . . . , k}} ,

where P(X) is the power set of X . For T ∈ Tv with T = (t1, t2), to simplify notation, we note T [u] for t1(u)
when u ∈ Xv and T [e] = t2(e) when e ∈ E(Gv). For a vertex u ∈ Xv, we also note Au and Bu the two sets
such that T [u] = t1(u) = (Au, Bu).

The set Val(v) is the subset of Tv such that T ∈ Val(v) if and only if there exists an injective k-edge-
coloring γ of G≤v such that:

1. for all u ∈ Xv, Au = {γ(uw), w ∈ V (G≤v) \Xv}, i.e. Au is the set of colors of the edges of G≤v (not
in Gv) incident with u,

2. for all u ∈ Xv, Bu =
{

γ(zw), zw ∈ E(G≤v) \ E(Gv) and z ∈ NG≤v
(u)

}

, i.e. Bu is the set of colors of
the edges of G≤v (not in Gv) at distance 2 of u (or contained in a triangle containing u),

3. for all e ∈ E(Gv), T [e] is the color γ(e).

In this case we say that γ is associated with T . Note that for each injective k-edge-coloring of G≤v, there
exists an associated T ∈ Tv and hence, T ∈ Val(v). The set Val(v) is thus the set of T ∈ Tv associated with
an injective k-edge-coloring of G≤v.

Note that Val(Root) 6= ∅ if and only if there exists an injective k-edge-coloring of G. We will compute
Val(Root) with a dynamic programing algorithm. Also note that |Tv| ≤ 2O(k·tw(G)2).

First suppose that v is a leaf node. Then Val(v) = Tv = {(∅, ∅)}.
Suppose that v is a forget node where v′ is its child node such that Xv ∪ {a} = Xv′ . Let T ∈ Tv,

T ∈ Val(v) if and only if there exists an associated coloring γ of G≤v. This coloring γ is also a coloring of
G≤v′ and thus is associated to a T ′ ∈ Val(v

′). In this case, since T and T ′ share the same coloring γ, we
have the following constraints on T and T ′:

• for all e ∈ E(Gv), T [e] = T ′[e] = γ(e),

• for all u ∈ Xv such that au ∈ E(Gv′), Au = A′
u ∪ {T [au]} and Bu = B′

u ∪
{T [aw], w ∈ Xv ∩NG(a), w 6= u} where T [u] = (Au, Bu) and T ′[u] = (A′

u, B
′
u),

• for all u ∈ Xv such that au /∈ E(Gv′ ), Au = A′
u and Bu = B′

u ∪ {T [aw], w ∈ Xv ∩NG(u) ∩NG(a)}
where T [u] = (Au, Bu) and T ′[u] = (A′

u, B
′
u).

The last two constraints reflect the fact that Au and Bu must be updated after the removal of a. The only
new colors that can be added to these sets come from edges incident with a. There are multiple cases,
depending on whether u and a are adjacent or not, determining which colors of edges need to be added to
these sets.

Hence, for all T ∈ Val(v), it suffices to check whether there exists a T ′ ∈ Val(v
′) for which the previous

conditions are verified. This can be done in time 2O(k·tw(G)2), as T is uniquely determined by T ′ in the
above constraints.

8



Suppose that v is an introduce node where v′ is its child node such that Xv = Xv′ ∪ {a}. Let T ∈ Tv,
T ∈ Val(v) if and only if there exists an associated coloring γ of G≤v. This coloring γ is also a coloring of
G≤v′ and thus is associated to a T ′ ∈ Val(v

′). In other words T is associated to a coloring γ obtained by
extending a coloring γ′ associated to some T ′ ∈ Val(v

′). Thus T ′ ∈ Val(v
′), we have the following constraints

on T and T ′, in order to ensure that γ is the extension of γ′:

• for all e ∈ E(Gv′ ), T [e] = T ′[e],

• for all u ∈ Xv′ , T [u] = T ′[u],

• for T [a] = (Aa, Ba), Aa = ∅ and Ba =
⋃

u∈Xv ,ua∈E(Gv)
Au,

• the coloring of Xv is an injective k-edge-coloring,

• for all ua ∈ E(Gv), T [ua] /∈ Bu ∪⋃

u′∈Xv ,u′ 6=u,u′a∈E(Gv)
Au′ .

The first two constraints correspond to the fact that γ is an extension of γ′. As a is a new vertex, Aa = ∅
and the only colors in Ba can be obtained by edges incident with some vertex u ∈ Xv itself adjacent to
a, hence the third constraint. The last two constraints correspond to the fact that the coloring of the new
edges around a cannot be in conflict with edges already colored. The fourth constraint checks that no such
conflict arises in Xv and the fifth constraint ensures that for each new edge ua the color T [ua] does not
appear around an edge at distance 2 from a or u. For each T ′, there are at most 2tw(G) possible candidates
to be added to Val(v). Hence 2O(k·tw(G)2) time is sufficient to compute Val(v) from Val(v

′).

Suppose that v is a join node where v1 and v2 are its children nodes such that Xv = Xv1 = Xv2 . Let
T ∈ Tv, T ∈ Val(v) if and only if there exists an associated coloring γ of G≤v. As both G≤v1 and G≤v2 are
subgraphs of G≤v, γ is also a coloring of G≤vi (i ∈ {1, 2}) and thus is associated to a Ti ∈ Val(vi). In this
case, since T , T1 and T2 share the same coloring γ, we have the following constraints on T , T1 and T2:

• for all e ∈ E(Gv), T [e] = T1[e] = T2[e],

• for all u ∈ Xv, Au = A1
u ∪A2

u and Bu = B1
u ∪B2

u where Ti[u] = (Ai
u, B

i
u) for i ∈ {1, 2},

• for all uw ∈ E(Gv), Au ∩ Aw = ∅.

The last constraint corresponds to the fact that the coloring is an injective k-edge-coloring (i.e. with no
conflicts between the two subtrees). Given T1 ∈ Val(v1) and T2 ∈ Val(v2), T is uniquely determined by the
above constraints. Hence it suffices to try all the pairs of T1, T2 and when the obtained set T verifies all
conditions, we can add it to Val(v). This can be done in time (2O(k·tw(G)2))2 = 2O(k·tw(G)2). �

6 Proof of Theorem 5

Proof. We reduce from k-Edge-Coloring, proven to be NP-Complete even for k-regular graphs in [15].

k-Edge-Coloring

Instance: A k-regular graph G.
Question: Does G admit a proper k-edge-coloring?

We choose p to be the largest integer such that k =
(

p
2

)

+ r (and thus r < p) and recall that k ≥ 45.
Moreover we set ℓ = 2p.

Let G be the input k-regular graph. For uv ∈ E(G), we define the edge gadget Euv as follows (see
Figure 5). First create the following vertices auv, buv, xuv

1 , . . . , xuv
p−3, cuv, duv, euv, yuv1 , . . . , yuvr , suv1 ,

. . . , suv2ℓ . The vertices suvi have degree 1 in Euv and will be connected to the rest of the graph. The
vertices

{

xuv
1 , . . . , xuv

p−3, a
uv, buv, cuv

}

form a clique; this is also the case for
{

xuv
1 , . . . , xuv

p−3, a
uv, buv, duv

}

and {yuv1 , . . . , yuvr , duv}. The vertex euv is adjacent to cuv, duv, xuv
1 , . . . , xuv

p−3, s
uv
1 , . . . , suv2ℓ . In the case

where r = 0, i.e. k =
(

p
2

)

, we delete duv.
Let u be a vertex of G with v1, . . . , vk its neighbors. We construct the vertex gadget Su from k × ℓ

vertices v1,1, . . . , v1,ℓ, v2,1, . . . , vk,ℓ and successively consider pairs vi, vj of neighbors. For each pair, we add
an edge between one of vi,1, . . . , vi,ℓ of minimum degree and one of vj,1, . . . , vj,ℓ with minimum degree. By
adding edges one by one in this way, we ensure that the maximum degree of the vertices of Su is at most
k
ℓ
+ 1.
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euv
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1 xuv

2 · · · xuv
p−3

auv buv

cuvduv

yuv1

yuv2

...

yuvr

suv1

suv2
· · · suvℓ

· · ·

suv2ℓ

1

1
1

1

1

Figure 5: The edge gadget Euv when r > 0. The vertices inside each of the two rectangle form a clique.
The vertex cuv is adjacent to every vertex inside the largest rectangle. The vertex duv is adjacent to every
vertex inside the two rectangles.

Finally, for each edge uv of G, we identify the 2ℓ vertices suv1 , . . . , suv2ℓ with the ℓ vertices of Su

corresponding to v (since v is a neighbour of u, by the construction of Su in the previous paragraph, there
are ℓ such vertices in Su) and with the ℓ vertices of Sv corresponding to u. This creates the graph G′. Note
that its maximum degree is max(2ℓ+ p− 1, k

ℓ
+ 2) ≤ 5p ≤ 5

√
3k.

Claim 10 For any injective k-edge-coloring γ of Euv, we have γ(euvsuv1 ) = γ(euvsuv2 ) = · · · = γ(euvsuv2ℓ ).
Moreover if γ is a partial injective k-edge-coloring of Euv where γ(euvsuv1 ) = γ(euvsuv2 ) = · · · = γ(euvsuv2ℓ )
and there are no other colored edges, we can extend γ to Euv.

Proof. First note that the clique
{

xuv
1 , . . . , xuv

p−3, a
uv, buv, cuv

}

needs exactly
(

p
2

)

distinct colors. W.l.o.g.
auvbuv is colored 1 and the colors used for this clique are 1, 2, . . . ,

(

p
2

)

. None of these colors can be used to
color the r edges of the form duvyuvi hence they must be colored with

(

p
2

)

+1, . . . ,
(

p
2

)

+ r. One can observe
that an edge euvsuvi cannot have a color among

(

p
2

)

+ 1, . . . ,
(

p
2

)

+ r as it is at distance 2 from the edges
of the form duvyuvj (j ∈ {1, . . . , r}). Moreover this edge cannot receive the same color as one of the edges
of the clique

{

xuv
1 , . . . , xuv

p−3, a
uv, buv, cuv

}

except for the color 1 on the edge auvbuv. Hence all edges of the
form euvsuvi have the same color.

Now suppose we have a coloring γ such that theses edges euvsuvi (i ∈ {1, . . . , 2ℓ}) are all colored with
the same color, say 1. We color auvbuv with color 1 and use the

(

p
2

)

+ r − 1 other colors to color the rest of
the edges of the clique

{

xuv
1 , . . . , xuv

p−3, a
uv, buv, cuv

}

and the edges of the form duvyuvj (j ∈ {1, . . . , r}). We
color euvz for z ∈

{

xuv
1 , . . . , xuv

p−3, c
uv
}

with the color of auvz.
If r = 0, then Euv is colored and γ is an injective k-edge-coloring.
If r > 0, we color duveuv and duvauv with the color of duvyuv1 . We color duvz for z ∈

{

xuv
1 , . . . , xuv

p−3, b
uv
}

with the color of cuvz. It is left to color the edges of the clique {yuv1 , . . . , yuvr }, for which we have available
the

(

p−1
2

)

colors used to color the clique
{

xuv
1 , . . . , xuv

p−3, a
uv, buv

}

, which is enough as r ≤ p− 1. This is an
injective k-edge coloring of Euv. �

Suppose there is an injective k-edge-coloring γ of G′. For an edge uv of G, we color it with the color
γ(euvsuv1 ). Take two adjacent edges of G: uv1 and uv2. In Su, there is an edge between v1,i and v2,j for
some indices i and j. Thus the edges euv1v1,i and euv2v2,j receive different colors. By Claim 10, uv1 and
uv2 receive different colors. Hence G admits a k-edge-coloring.

Suppose there is a k-edge coloring γ of G. For each edge uv, we color euvsuvi with the color γ(uv). By
Claim 10, we can extend this coloring to all Euv. At this point there is no conflict between the colored
edges. Indeed the only pairs of edges which are at distance 2 and not in the same edge gadget are of
the form euwsuwi , and since γ is proper, there is no conflict here. It is left to color the edges inside the
vertex gadget. Let e = vi,jvi′,j′ be an uncolored edge. As the maximum degree of the vertices of Su is
at most k

ℓ
+ 2, there are at most (k

ℓ
+ 2)2 edges incident to a vertex of Su that can be in conflict with

e. We must also consider the edges incident with euvi and euvj . For each of the two vertices there is
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one forbidden color γ(uvi) which is common to 2ℓ edges incident to euvi to which we need to add p − 1
colors for the other edges of euvi . In the end, there are at most 2p + (k

ℓ
+ 2)2 forbidden colors for e. As

2p + (k
ℓ
+ 2)2 ≤ 2p + (p−1

4 + 2)2 = (p−1
4 )2 + 3p + 3 ≤ k when k ≥ 45 and p ≥ 10, G′ admits an injective

k-edge-coloring. �

7 Conclusion

We proved that Injective 3-Edge-Coloring and Injective 4-Edge-Coloring are NP-complete on
some restricted classes of subcubic graphs. One can ask whether Injective 5-Edge-Coloring is NP-
complete on subcubic graphs. A conjecture proposed by Ferdjallah et al. [7] states that every subcubic
graph admits an injective 6-edge-coloring (it is proved for planar graphs in [14]). In fact, we only know
of two connected subcubic graphs which require six colors: K4 and the prism. Perhaps these are the only
examples that are not 5-colorable, in which case Injective 5-Edge-Coloring would be polynomial-time
solvable for this class.

We have also proved that for planar bipartite subcubic graphs, Injective 3-Edge-Coloring is
polynomial-time solvable when the girth is at least 16 (because the answer is always YES), but NP-Complete
when the girth is 6. It would be interesting to determine the values of the girth of planar bipartite subcubic
graphs for which Injective 3-Edge-Coloring stays NP-Complete, becomes polynomial-time solvable,
and always has YES as an answer.

We also do not know whether Injective 4-Edge-Coloring is NP-Complete for bipartite subcubic
graphs.
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