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Abstract

Jha, Pradhan, and Banerjee devised a linear algorithm to compute the se-

cure domination number of a cograph. Here it is shown that their Lemma 2,

which is crucial for the computational complexity of the algorithm, is incom-

plete. An accordingly modified lemma is proved and it is demonstrated that

the complexity of the modified algorithm remains linear.
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1 Introduction and preliminaries

Cographs have been independently introduced in many different contexts and un-
der many different names (including D*-graphs, hereditary Dacey graphs, 2-parity
graphs), clearly indicating the intrinsic role of this class of graphs in graph theory
and elsewhere. Cographs can be characterized in several different ways, see [10].
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Moreover, their research is still very active, the list [1, 5, 11, 12, 13, 17] presents just
a sample of recent studies and applications of cographs.

Numerous problems, including the independence number, the clique number, and
the existence of a Hamiltonian cycle, that are difficult in general, are polynomial (in
most cases linear) on cographs. In this direction of research, two linear algorithms
have been independently designed that compute the secure domination number of
a cograph [3, 14].

The secure domination problem was introduced in [8], see also [9], motivated with
a problem of assigning guards at various locations corresponding to a dominating set.
Computing the secure domination number is NP-complete in general, and remains
NP complete when restricted to bipartite and split graphs [4], star convex bipartite
graphs and doubly chordal graphs [18], and chordal bipartite graphs [16]. On the
positive side, the problem is linear on trees [7] (cf. also [15]) and more generally on
block graphs [16], as well as on proper interval graphs [2]. We also point to [6], where
the secure domination problem is approached via a binary programming formulation
of the problem.

We proceed as follows. In the rest of this section definitions needed are listed. In
Section 2 we present the necessary set up for the algorithm from [14], and construct
an infinite family of cographs which demonstrate that [14, Lemma 2] does not hold
in general. The latter lemma is a key ingredient for the linearity of the designed
algorithm. In Section 3 we then propose a modified lemma, prove it, and argue that
the algorithm remains linear also when the new lemma is applied.

We now proceed with definitions, for other basic graph theory concepts not
defined here we follow [19]. Let G = (V (G), E(G)) be a graph. A clique of G in a
complete sugraph of G. By abuse of language we will also say that the set of vertices
which induces a complete graph is a clique. The open neighbourhood of v in G is the
set NG(v) = {u : uv ∈ E(G)}, the closed neighbourhood of v is NG[v] = NG(v)∪{v}.
The complement G of G has V (G) = V (G) and E(G) = {(u, v) : (u, v) /∈ E(G)}.
If G1 and G2 are disjoint graphs, then their union is the graph with the vertex set
V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2). The join G1 + G2 of G1 and G2

has V (G1+G2) = V (G1)∪V (G2) and E(G1+G2) = E(G1)∪E(G2)∪{(u, v) : u ∈

V (G1), v ∈ V (G2)}. Note that G1 +G2 = G1 ∪G2.
D ⊆ V (G) is a dominating set of a graph G if each vertex x ∈ V (G) \ D is

adjacent to a vertex from D. The domination number γ(G) of G is the cardinality
of a smallest dominating set ofG. A dominating set S ⊆ V (G) is a secure dominating
set of G if for each vertex x ∈ V (G) \ S there exists its neighbour y ∈ S such that
(S ∪ {x}) \ {y} is a dominating set. The secure domination number γs(G) of G is
the minimum cardinality of a secure dominating set of G.

Cographs are defined resursively as follows: (i) K1 is cograph, (ii) if G is a
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cograph, then G is a cograph, and (iii) if G1, . . . , Gk, k ≥ 2, are cographs, then
G1 ∪ · · · ∪ Gk is a cograph. A cograph G can be represented as a rooted tree
TG called a cotree of G [10]. In this representation, leaves of TG are vertices of
the original cograph G. Inner vertices of TG are labeled by ∪ or by +, depending,
respectively, whether the cotree rooted in the inner vertex corresponds to a cograph,
obtained by the union or the join of the cographs associated with its children. (See
Fig. 2 for the cotree of the cograph from Fig. 1.) Finally, if v ∈ TG, then we denote
by TG(v) the subgraph of G induced by the leaves of the subtree of TG rooted at the
vertex v.

2 Original lemma and counterexamples

Let TG be the cotree of a cograph G and let c be an inner vertex of TG. If c has label
∪, then each children of c is either a leaf or a vertex with label +, and the cograph
TG(c) is disconnected. If c has label +, then each children of c is either a leaf or a
vertex with label ∪.

Following [14], we assign a label R to a vertex u of TG if (i) u has label ∪,
(ii) u has exactly two children in TG, say x and y, (iii) γ(TG(x)) = 1, and (iv)
γs(TG(y)) = 1. The following lemma gives a simple characterization of the vertices
of TG to which label R is assigned.

Lemma 2.1 [14, Lemma 1] Let TG be the cotree of a cograph G. Then u ∈ V (TG)
has label R if and only if TG(u) is disconnected and there exists a vertex w ∈
V (TG(u)) such that V (TG(u)) \NTG(u)[w] is a clique.

We next recall when a cograph has property P which is a key for a fast com-
putation of the secure domination number of a cograph. Let G be a cograph that
is the join of cographs G1, . . . , Gℓ, ℓ ≥ 2. Then we say that G satisfies property P
if there exist two distinct vertices x, y ∈ V (G) such that {x, y} is a dominating set
of G and each of V (G) \ NG[x] and V (G) \ NG[y] is either empty or a clique. The
following characterization of the cographs with property P was claimed.

Lemma 2.2 [14, Lemma 2] Let TG be the cotree of a cograph G and let c be a vertex
of TG with label +. Then the cograph TG(c) satisfies property P if and only if there
exist at least two children of c in TG such that each of them is either a leaf or a
vertex with label R.

We now provide an infinite family of cographs which demonstrate that Lemma 2.2
is not true as stated. Let k ∈ N, and let Kk be a complete graph with V (Kk) =
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Figure 1: Graphs Gk. The dotted area represents the complete graph Kk, thicker
edges indicate the join between Kk and the independent set {c, d, e}.

+

∪ ∪

c d e + b

a1 . . . ak

Figure 2: The cotree TGk
. The gray vertex is labeled by R.

{a1, . . . , ak}. Define Gk to be the cograph with the vertex set V (Gk) = V (Kk) ∪
{b, c, d, e} and the edge set

E(Gk) = E(Kk) ∪ {bc, bd, be} ∪ {cai, dai, eai : i ∈ [k]} .

The graphs Gk, k ∈ N, are schematically shown in Fig. 1, while their cotrees TGk

are drawn in Fig. 2.
Let x be the root of TGk

, its label is thus +. We first claim that TGk
(x) = Gk

satisfies property P. To see it observe that {a1, b} is a dominating set, and that
V (G) \ NG[a1] = {b} and V (G) \ NG[b] = V (Kk) are both cliques. We next claim
that Gk does not fulfill the condition of Lemma 2.2. The vertex x has in TGk

two
children labelled with ∪. It is easy to check that the right child (the gray vertex in
Fig. 2) is labelled with R, but the left child (the one that is a parent of the leaves c,
d and e) is obviously not labelled with R due to the number of its children. Hence
the left children of x is neither a leaf nor a vertex with label R, and therefore the
condition of Lemma 2.2 is not fulfilled.
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3 Corrected lemma

In order to correct Lemma 2.2, we give the following characterization of cographs
which fulfill property P.

Lemma 3.1 Let TG be the cotree of a cograph G and let c be a vertex of TG with
label +. Then the cograph TG(c) satisfies property P if and only if there exist at
least two children of c in TG such that

(i) each of them is either a leaf or a vertex with label R, or

(ii) one of them is a vertex u with label R and TG(u) is a union of two complete
graphs.

Proof. (⇒) Assume that TG(c) has property P. Then there exist two distinct
vertices x, y ∈ V (TG(c)) such that {x, y} is a dominating set and each of V (TG(c)) \
NTG(c)[x] and V (TG(c)) \ NTG(c)[y] is either empty or a clique. By definition of P,
the cograph TG(c) is the join of at least two cographs, hence at least two children of
c are guaranteed.

If V (TG(c)) \NTG(c)[x] = ∅, then x is adjacent to each vertex of V (TG(c)) \ {x}.
As c has label +, the vertex x must be a leaf adjacent to c, for otherwise there would
exist some vertex of TG(c) not adjacent to x.

If V (TG(c)) \ NTG(c)[x] is a clique, then with a parallel reasoning we conclude
that x is not a child of c. Let wx ∈ V (TG(c)) be a child of c, such that TG(wx)
contains x. By the observations from the first paragraph of Section 2 we know that
wx is labeled by ∪ and that TG(wx) is disconnected. Since x ∈ V (TG(wx)) and c has
label +, the vertex x is adjacent to each vertex of V (TG(c)) \V (TG(wx)). Moreover,
because V (TG(c))\NTG(c)[x] is a clique, also V (TG(wx))\NTG(wx)[x] is a clique. Now
we have a disconnected graph TG(wx) containing x, such that V (TG(wx))\NTG(wx)[x]
is a clique. By Lemma 2.1, wx has label R.

Similarly, if V (TG(c)) \ NTG(c)[y] = ∅, then y is a child of c such that y is a
leaf. Otherwise there exists a child of c, say wy, such that y ∈ V (TG(wy)) and wy

has label R. In case that both of V (TG(c)) \NTG(c)[x] and V (TG(c)) \NTG(c)[y] are
cliques, we have two vertices wx and wy such that they are children of c and have
label R. If wx 6= wy, vertex c has at least two children, both labeled with R.

In the cases discussed so far, the vertex c has at least two children and each
of them is either a leaf or a vertex with label R, hence (i) holds. It can happen,
however, that wx = wy = w holds. In this case x, y ∈ TG(w). Since w has label
R, the graph TG(w) is disconnected and has two components, H1 and H2. The
assumption that {x, y} is a dominating set implies that, without loss of generality,
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x ∈ H1 and y ∈ H2. Since V (TG(c)) \NTG(c)[x] = V (H2), the subgraph H2 must be
a clique. Similarly, since V (TG(c)) \NTG(c)[y] = V (H1), also H1 is a clique. In this
final case we thus see that (ii) holds.

(⇐) Suppose first that there exist at least two children of c in TG such that
each of them is either a leaf or a vertex with label R: Let u, v be such children of
c. First assume u is a leaf. Since u ∈ TG(c) and u is adjacent to each vertex of
TG(c) \ {u}, we infer that V (TG(c)) \ NTG(c)[u] = ∅. If v is also a leaf, then also
V (TG(c)) \NTG(c)[v] = ∅. Hence TG(c) satisfies property P.

In case v is not a leaf, it has label R. By Lemma 2.1, TG(v) is disconnected
and there exists a vertex w ∈ TG(v) such that V (TG(v)) \NTG(v)(w) is clique. Since
c has label +, the vertex w is adjacent to each vertex in TG(c) \ TG(v). Since
TG(v) \NTG(v)(w) is a clique, TG(c) \NTG(v)(w) is also a clique. Since u is a leaf, the
set {u, v} is dominating, hence TG(c) satisfies property P.

Now assume that both u and v have label R. As discussed above, there exist
w1 ∈ V (TG(u)) and w2 ∈ V (TG(v)) such that V (TG(c)) \NTG(c)[w1] and V (TG(c)) \
NTG(c)[w2] are cliques. To satisfy property P we need to see that {w1, w2} is dom-
inating set. This is indeed the case since c has label +, and therefore w1 is adja-
cent to each vertex of V (TG(c)) \ V (TG(u)), and w2 is adjacent to each vertex of
V (TG(c)) \ V (TG(v)).

Suppose second that there exist at least two children of c in TG, and one of them
is a vertex u with label R and TG(u) is a union of two complete graphs. Let x and y
be arbitrary vertices from each of the components of TG(u). Since c is labeled by +,
x and y are adjacent to each vertex in G \ TG(u). Since both components of TG(u)
are cliques, both V (G) \NTG(c)[x] = NTG(u)[y] and V (G) \NTG(c)[y] = NTG(u)[x] are
cliques. Also notice that NTG(c)[x] ∪NTG(c)[y] = V (TG(c)), so {x, y} is a dominating
set. Hence TG(c) satisfies property P. �

As we have already mentioned, an efficient testing whether a given cograph has
property P is crucial for the linearity of the algorithm from [14] which computes
the secure domination number of cographs. More precisely, on each iteration of the
algorithm, in case the current vertex of the cotree TG is labeled by +, a checking of
property P is required. Authors in [14] provided an implementation with an array,
tracking labels R for each vertex of the cotree, and showed that it can be updated in
O(|NTG

(ci)|) time. The new Lemma 3.1 requires not only the data about the label
R of vertices, but also completeness of subgraphs, hence a verification of property P
needs to include values of γs for descendants of the current vertex. Since the values
γs on each iteration of the algorithm are noted, algorithm remains linear also after
changing verification of property P by means of Lemma 3.1.
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