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Abstract. Let P be a set of points in Rd, B a bicoloring of P and
O a family of geometric objects (that is, intervals, boxes, balls, etc). An
object from O is called balanced with respect to B if it contains the same
number of points from each color of B. For a collection B of bicolorings
of P , a geometric system of unbiased representatives (G-SUR) is a subset
O′ ⊆ O such that for any bicoloring B of B there is an object in O′ that
is balanced with respect to B.
We study the problem of finding G-SURs. We obtain general bounds on
the size of G-SURs consisting of intervals, size-restricted intervals, axis-
parallel boxes and Euclidean balls. We show that the G-SUR problem is
NP-hard even in the simple case of points on a line and interval ranges.
Furthermore, we study a related problem on determining the size of the
largest and smallest balanced intervals for points on the real line with a
random distribution and coloring.
Our results are a natural extension to a geometric context of the work
initiated by Balachandran et al. on arbitrary systems of unbiased repre-
sentatives.

1 Introduction

Let P be a set of size n. A bicoloring B of P is a color assignment (red or blue)
of the points in P , that is, B : P → {Red, Blue}, where B contains at least one
red and at least one blue point. For a bicoloring B, a subset of points P ′ ⊆ P is
called balanced with respect to B if P ′ contains the same number of red and blue
points, with respect to B. Given a set P and a set of bicolorings B, a system of
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unbiased representatives (SUR) consists of a collection S of subsets of P such
that for every bicoloring B ∈ B, there is at least one subset in S that is balanced
with respect to B.

Balachandran et al. [2] studied various problems related to finding SURs, with
the motivation that SURs are useful for product testing over a large population.
For example, suppose the effectiveness of a drug on patients is studied with
respect to a large set of binary attributes related to physical characteristics,
such as body weight, height, age. It is desirable to choose few families of test
subjects that help to represent these attributes in a balanced manner.

Now, consider an instance where in addition we are given specific geographic
locations for our test subjects and we are asked to pick them close to each other
to save costs in sampling. In this situation, we cannot choose arbitrary families
of test subjects: we would be required to impose some geometric constrains on
them.

A natural way to model this restriction is to represent the population by a point
set P in Euclidean space of some dimension and to sample using ranges from
some fixed family of geometric objects, that is, intervals, boxes, balls, etc. This
leads to the following definitions.

For a bicoloring B of P , we say that a geometric range is balanced with respect
to B if the subset of points of P that it contains is balanced with respect to B.
Given a set P , a set of bicolorings B and a family of allowed geometric ranges O,
a geometric system of unbiased representatives (G-SUR) consists of a subfamily
O′ ⊆ O such that for every bicoloring B ∈ B, there is at least one object in O′
that is balanced with respect to B.

Problem 1. (G-SUR) Given a set P ⊂ Rd of n points, a set of bicolorings
B of P , and a collection of allowed geometric ranges O, find a G-SUR of
minimal size.

For a specific attribute, it is desirable to understand how big a balanced range
(for this attribute) can be. Assuming attributes are uniformly distributed over
the population, leads to the following problem:

Problem 2. (Balanced Random Covering) Given a set P of n points and
a random bicoloring B of P (chosen uniformly at random from a collection
of bicolorings B of P ), what can be said about the behavior of the size of
the largest/smallest balanced interval as n goes to infinity?
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In addition to the practical motivation, Problem 1 and Problem 2 are related to
the vast literature on colorings of geometric objects in which a balanced property
is desired. This includes classical results as the ham-sandwich theorem and its
algoritmic version by Lo et al. [6]. Other relevant results on balanced coloring
of point sets include the balanced island problem studied by Aichholzer et al.
[1], balanced partitions problem for 3-colored planar sets by Bereg et al. [4], and
balanced 4-holes in bichromatic point set [3].

1.1 Our Results

As an introduction to the subtleties of the geometric context, we study the G-
SUR problem for n points on a line and interval ranges in Section 2. We show,
given a set of n points on a line and a collection of interval ranges, there is
G-SUR of size n − 1. Moreover, this bound is tight, that is, there are a set of
bicolorings for which n − 1 intervals are required to obtain a balanced interval
(Theorem 1). Motivated by statistical significance, we then focus on G-SURs
where the set of ranges are intervals of size 2k. Here, we show that for any set
of bicolorings B, where each bicoloring in B contains more than

⌊
n
2k + 1

⌋
(k− 1)

red and
⌊

n
2k + 1

⌋
(k − 1) blue points such a G-SUR exists (Theorem 2). Next,

for m < n/2, we give bounds on the size of G-SURs for when each bicoloring
of B has at least m red and m blue points. More precisely, we show that n−m
intervals are always sufficient and sometimes necessary (Theorem 3). All these
results extend to higher dimensions to point sets in Rd and G-SURs consisting
of axis-parallel boxes. Section 3 provides the hardness results. We show that the
problem of finding a minimal size G-SUR is NP-hard even in the simple case of
points on the real line and interval ranges (Theorem 4). To do this we provide a
reduction from the Set Cover problem.

In Section 4, we study the problem for points in Rd and G-SURs consisting of
Euclidean balls. Once more, we show n − 1 balls are sometimes necessary and
always sufficient to give a G-SUR (Theorem 5).

Finally, in Section 5, we study the Balanced Random Covering problem, where
we compute the asymptotic size of the largest/smallest balanced interval for
uniformly random bicolorings of points on a line in a discrete model (Theorem
6) and a continuous one (Theorem 7).

2 Points on a Line and Interval G-SURs

Let P = {p1. . . . , pn} be a set of points on the real line R. Throughout this
section we assume that {p1. . . . , pn} is sorted from left to right on the real line.
Here our goal is to find a minimum size G-SUR consisting of interval ranges for
a given family of bicolorings B of P .
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2.1 Lower and Upper Bounds

In this section we show that n− 1 intervals are always sufficient and sometimes
necessary.

Theorem 1. Let P = {p1, . . . , pn} be a set of n points on a line. Then, the
following hold:

(a) There exists a set of n− 1 bicolorings B, for which any G-SUR consisting of
intervals has size at least n− 1 and

(b) There exists a set I of n − 1 intervals such that for any bicoloring B of P
there is at least one balanced interval in I with respect to B.

Fig. 1: An illustration of the case where n− 1 intervals are necessary.

Proof. We prove the first part of the theorem by constructing an example where
n − 1 intervals are necessary. Without loss of generality, we can assume P =
{1, 2, . . . , n}. We consider the set of bicolorings B = {B1, . . . , Bn−1} where the
bicoloring Bi colors the first i-points red and the remaining (n− i) points blue
(see Figure 1).

A balanced interval with respect to Bi may be shortened until its endpoints are
integers. Thus, we may choose a minimal G-SUR that consists only of intervals
with integral endpoints. In such a system, an interval that is balanced for Bi

must be symmetric around 2i+1
2 . Different bicolorings need intervals symmetric

around different points, so a G-SUR for B requires at least n− 1 intervals.

For the second part of the theorem consider

I = {[p1, p2], [p2, p3], . . . , [pn−1, pn]}.

Let B be any bicoloring of P . We claim that there exists an interval in I which
is balanced with respect to B. Indeed, if this is not the case then all the intervals
in I are monochromatic, so

B(p1) = B(p2) = . . . = B(pn),
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which is a contradics the fact that B contains at least one red and one blue
point. This concludes the proof of (b).

Theorem 1 is already evidence of the contrast between the geometric and the
abstract setting. While Balachandran et al. proved that n− 1 arbitrary sets are
sometimes necessary, their example consists of all 2n − 2 possible bicolorings.
The theorem above shows that only taking (n − 1) bicolorings are enough for
the necessity, in the geometric context. Theorem 1 says that this is still the case
even if we further restrict the allowed ranges to be intervals.

An analogous proof shows that the n− 1 bound carries to point sets in Rd and
G-SURs consisting of axis-parallel boxes.

2.2 G-SURs Consisting of Intervals of Size 2k

In this section we fix a positive integer k and consider the case where the G-SUR
consists of intervals of length exactly 2k. Certainly, with this restriction it is not
possible to have a G-SUR for every possible set of bicolorings. For example,
consider any bicoloring B that contains exactly one red point. No interval of
size greater than 2 is balanced with respect to B. In the following lemma we
show that if each color is large enough, then there exists a G-SUR consisting of
intervals of length 2k.

Theorem 2. Given n ≥ 2k, a set P = {p1, . . . , pn} of points on the real
line and a set of bicolorings B, where each bicoloring in B contains more than⌊

n
2k + 1

⌋
(k− 1) red and

⌊
n
2k + 1

⌋
(k− 1) blue points, there exist a G-SUR for B

consisting of intervals of size 2k.

Proof. Let B be a bicoloring of P containing more than
⌊

n
2k + 1

⌋
(k−1) red and⌊

n
2k + 1

⌋
(k − 1) blue points.

Consider now the set of consecutive disjoint intervals of size 2k. More formally,

I = {Ij |Ij = [pj , pj+2k−1] where 1 ≤ j ≤ n− 2k + 1}.

Let rj (resp. bj) be the number of red (resp. blue) points in the interval Ij . We
say that an interval in I is red (resp. blue) if rj > bj (resp. bj > rj).

We claim that I is a G-SUR. For the sake of contradiction, we suppose that
every interval from I is either red or blue. We may assume I1 is red.

Claim. Every interval Ij ∈ I is red.

Proof. We prove this by induction on j. By assumption, I1 is red. Now, suppose
that Ij is red, that is, rj > bj , so rj ≥ k + 1. As we shift from Ij to Ij+1 we lose
or gain at most one red point, so rj+1 ≥ rj − 1 ≥ k. It is then impossible for
Ij+1 to be blue. Since each interval is either red or blue, Ij+1 must be red.
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Consider now the set of disjoint intervals

I ′ = {Ij |j ≡ 1 mod 2k, 1 ≤ j ≤ n− 2k + 1}.

The intervals from I ′ and the interval In−2k+1 cover the entire set P . Since every
interval from I is red, it has at most k − 1 blue points. Therefore, the coloring
has at most ⌊ n

2k
+ 1
⌋

(k − 1)

blue points. This yields a contradiction to the number of blue points of B given
by the hypothesis, so I must have a balanced interval with respect to B.

The result in Theorem 2 is tight, in the sense that if we have fewer points of
either color we cannot guarantee the existence of a G-SUR of size 2k. This can
be witnessed by an example on n = 3k−1 points on the real line and the coloring
B whose first k− 1 and last k− 1 points are blue, and the middle k + 1 ones are
red.

An analogous proof shows that Theorem 2 extends to point sets in Rd and G-
SURs consisting of axis-parallel boxes of size 2k.

2.3 G-SURs for m-restricted Bicolorings

For m ≤ n/2, a bicoloring B of P is m-restricted if it contains at least m points of
each color. In this section we study the size of G-SURs for m-restricted colorings.

If n is even and m = n/2, then there is a G-SUR of size 1: the one consisting of
the interval [p1, pn]. Otherwise, we have the following result.

Theorem 3. Let P = {p1, . . . , pn} be a set of n points on the real line and
m < n/2 a positive integer. Then,

(a) There exists a set of n −m bicolorings B, for which any G-SUR consisting
of intervals has size at least n−m.

(b) There exists a set I of n−m intervals such that for any bicoloring B of P
there is at least one balanced interval in I with respect to B.

Proof. To prove the second part of the theorem consider the set of points

P ′ = {p1, . . . , pn−m+1},

and let I be the G-SUR given in Theorem 1 for P ′, which is of size n−m. Let
B be any m-restricted bicoloring of P . Note that P \ P ′ is of size m− 1, so by
definition it is impossible that all the red or blue points are completely contained
in P \P ′. Then P ′ contains both blue and red points, so the restriction B′ of B
to P ′ is also a valid coloring for P ′. We may then take a balanced interval I ∈ I
with respect to B′. This interval is also balanced with respect to B, so I is a
G-SUR for all the m-restricted bicolorings of P .
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Now we prove that n−m intervals are sometimes necessary. We may assume P =
{1, 2, . . . , n}. We consider the set of m-restricted bicolorings B = {B1, . . . , Bn−m}
defined as follows. For i = 1, 2, . . . , n−2m+1, the bicoloring Bi has the leftmost
m + i − 1 points colored red and the rest blue. For i = n − 2m + 2, . . . , n −m,
the bicoloring Bi has the points in the interval

{i− n + 2m, . . . , i + m− 1}

colored red and the remaining m points colored blue. See Figure 2 for an example.

Fig. 2: An example of the construction in which n−m intervals are needed in Theorem 3
for n = 9 and m = 3. Vertical dashed segments indicate where the symmetries must
hold.

As in the proof of Theorem 1, we may assume that a G-SUR consists of intervals
with integral endpoints. For i = 1, 2, . . . , n− 2m + 1, an interval balanced with
respect to Bi must be symmetric around 2m+2i−1

2 .

For i ≥ n − 2m + 2, an interval balanced with respect to Bi cannot have blue
points from both the left and right sides, as otherwise it would have n −m >
n/2 > m red points, but at most m blue points. So it has to be symmetric either
around the 2i−2n+4m−1

2 or around 2i+2m−1
2 .

Regardless of these final choices, we obtain intervals symmetric around n −m
different points, so they must all be different. This finishes the proof.

3 Hardness Results

In this section we study the computational aspect of finding minimal size G-
SURs for points on the real line using interval ranges. We receive as input a set
of n points P = {p1, . . . , pn} and a family of bicolorings B = {B1, . . . , Bm} of
P . We expect as output the size of the minimal G-SUR consisting of interval
ranges. We denote this problem as Minimal Interval G-SUR.

Theorem 4. The Minimal Interval G-SUR problem is NP-hard.
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B1

B2

B3

B4

B5

p1 p′1 p2 p′2 p3 p′3

S1 S2 S3 S4

p4 p
′
4

Fig. 3: An illustration of the construction used in Theorem 4. In each bicoloring Bi, the
blue points between two consecutive pairs {pi, p′i} and {pi+1, p

′
i+1} are dummy points.

Proof. We give a reduction from the Set Cover problem. In the Set Cover
problem, we are given a set of elements X = {x1, . . . , xn} (called the uni-
verse), and a collection S = {S1, . . . , Sm} of m subsets, where each Si ⊆ X,
and

⋃
1≤i≤m Si = X. The goal is to identify the smallest sub-collection of S

whose union equals the universe.

From an instance (X,S) of the Set Cover problem we create an instance
(B, P ) of the Minimal Interval G-SUR problem in the following manner. For
every set Si, we create a pair of consecutive points {pi, p′i}. The points are in
the following order {{p1, p′1}, {p2, p′2}, . . . , {pm, p′m}} on the line. Besides for any
two consecutive pair of points {pi, p′i} and {pi+1, p

′
i+1}, we introduce two dummy

points between them. For every xj ∈ X we construct a bicoloring Bj as follows:
the points pi and p′i are colored red and blue, respectively, if xj ∈ Si. Otherwise,
the points pi and p′i are colored blue. Furthermore, we color all the dummy
points blue in any bicoloring. This completes the construction. We illustrate
an instance (B, P ) that is reduced from the set system S1 = {x1, x2, x3}, S2 =
{x1, x2, x4}, S3 = {x3, x4, x5}, S4 = {x1, x3, x4} (see Figure 3).

In the forward direction, we show that if there is a solution of the Set Cover
problem of size k then there is a solution of Minimal Interval G-SUR problem
of size k. Assume that the Set Cover problem has a solution S∗ where |S∗| ≤ k.
We construct a set I∗ of intervals cardinality k as follows. I∗ = {(pi, p′i)|Si ∈ S∗}.
The claim is I∗ is a solution of Minimal Interval G-SUR problem. Otherwise,
there exists a bicoloring Bi ∈ B such that there is no balanced interval in I∗
with respect to Bi. However we know there exists a set Sj ∈ S∗ that contains
xi. Thus the interval (pj , p

′
j) is already taken in I∗, and by construction it is

balanced with respect to Bi. Hence the claim holds.

Conversely, suppose I∗ is a solution of the Minimal Interval G-SUR of car-
dinality at most k. Observe that, due to the construction of (B, P ), any interval
that is not either of the form (pi, p

′
i) or (d, pi) (where d is a dummy point)

is not balanced with respect to any Bi. Hence we may assume that any in-
terval in I∗ has one of these two forms. Next, we construct the following set
S∗ = {Sj |(pj , p′j) ∈ I∗ or (d, pj) ∈ I∗}. Observe that |S∗| ≤ k. We claim S∗
is a set cover for the set system (X,S). If not, there exists an element xi ∈ X
that is not covered. Consider the corresponding bicoloring Bi. We know there is
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a balanced interval I ∈ I∗ with respect to Bi. By construction, I can be either
(pj , p

′
j) or (d, pj). Hence we know Sj ∈ S∗, and xi ∈ Sj . This contradicts our

assumption and the claim holds.

4 Points in Rd and Ball G-SURs

Let P = {p1. . . . , pn} be a set of points in Rd. Given a family of bicolorings
B, here the goal is to find a G-SUR O∗ consisting of Euclidean balls. We show
general bounds for the size of O∗.
To give a lower bound, we embed the one-dimensional example from Lemma 1 in
a line ` of Rd and note that a ball is balanced if and only if the interval resulting
from intersecting the ball with ` is balanced. Any ball creates at most one such
interval on `, so a G-SUR must have size at least n− 1.

We now show that n − 1 balls always suffice. For this we consider the Gabriel
graph G(P ) whose vertex set is P and there is an edge (x, y) when the closed
ball with diameter on the line segment xy contains no other point of P .

Lemma 1. The Gabriel graph is connected.

This result is well-known on the plane (see e.g. [5]). For completeness, here we
provide a proof which works in higher dimensions.

Proof. It is enough to show that for any partition P = Q ∪ R of the vertices of
G(P ) there is an edge between a vertex of Q and a vertex of R. Let (q, r) be a
pair of closest points q ∈ Q and r ∈ R, that is, that minimize d(q, r).

If the ball with diameter qr contains another point r′ from, say, R, then d(q, r′) <
d(q, r), a contradiction. Similarly, this ball cannot contain another point from
Q. So qr is an edge of G(P ), and the proof is complete.

Lemma 2. For any set P of n points in Rd and any family B of bicolorings of
P , there exists a G-SUR consisting of n− 1 Euclidean balls.

Proof. Consider the set of n − 1 edges E of a spanning tree T of the Gabriel
graph G(P ). For every edge e = (p, q) ∈ E, let Oe be the ball with diameter pq.
Let O = {Oe|e ∈ E}. We claim that O is a G-SUR.

For any bicoloring B of P there is at least a red point r and a blue point b. Since
T is connected, there is a path on T that connects r to b, and thus there is an
edge in this path with endpoints of opposite colors with respect to B. The ball
corresponding to this particular edge is balanced, as it only contains r and b.

Thereby we conclude the following theorem.

Theorem 5. Let d ≥ 1 and n ≥ 2 be positive integers. Then the following hold:
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(a) There exists a set P of n points in Rd and a family of n − 1 bicolorings B
for P , for which any G-SUR consisting of Euclidean balls has size at least
n− 1.

(b) For any set of n points P in Rd there exists a set O of n− 1 Euclidean balls
such that for any bicoloring B of P there is at least one balanced ball in O
with respect to B.

5 Balanced Covering on Random Points on a Line

In this section we study the properties of balanced intervals for random bicol-
orings of points on a line. Consider a set P = {p1, p2, . . . , pn+m} on a line, pick
a subset of P of size m uniformly at random, color these points red. Color the
remaining n points blue. Define the random variables:

– Tm,n = the size of the smallest balanced interval.
– Sm,n = the size of the largest balanced interval,

We are interested on the asymptotic behaviour of Tm,n and Sm,n as m and n
become large. Due to space constraints, here we focus only in the case in which
m is much smaller compared to n. In this situation we have the following result.

Theorem 6. For m = o(
√
n),

Sm,n = Tm,n = 2,

with high probability.5

Proof. The equality Tm,n = 2 is direct because there are always two consecutive
points of different color.

Next, we consider Sm,n. Without loss of generality, we may assume that n >
3(m + 2). Let E be the event that are at least three blue points between each
pair of red points, before the first red point and after the last red point. Note
that the event Sm,n ≥ 4 is impossible if E happens.

We can calculate the probability of E happening using the following argument.
Consider blocks of colors of type bbbrbbb, rbbb and b. Each situation in which E
happens corresponds to placing a bbbrbbb block, then m − 1 blocks rbbb to its
right, and then distributing the remaining b’s in between these blocks. Therefore,
the number of situations in which the event happens is(

m + n− 3(m− 1)− 6

m

)
=

(
n− 2m− 3

m

)
The probability space has size

(
m+n
m

)
. Therefore, by Bernoulli’s inequality,

5 Here we use the usual convention that Xn = x with high probability if
limn→∞ P(Xn = x) = 1.
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P(E) =

(
n−2m−3

m

)(
m+n
m

) =
(n− 2m− 3)!n!

(n− 3m− 3)!(m + n)!

=

m−1∏
j=0

(
1− 3m + 3

m + n− j

)

≥
(

1− 3m + 3

n + 1

)m

≥ 1−m

(
3m + 3

n + 1

)
.

Since m = o(
√
n), the right hand side converges to 1 as n goes to infinity. This

means that with high probability the event E happens, and therefore, with high
probability Sm,n = 2.

In the discrete model presented above the points are equally spaced. In practical
applications this is not always the case. Thus we can also study an analogous
problem in the following continuous model which takes into consideration the
distance between random samples.

We independently and uniformly sample m points from the interval [0, 1] and
color them red, and, similarly, sample n independent and uniform points and
color them blue. By symmetry, any of the red/blue discrete orderings are equally
probable, and thus they distribute as in the discrete model above. Therefore, as
before, Sm,n = Tm,n = 2, with high probability. Furthermore, in this case, we
can also consider the length of the balanced intervals. More precisely,

– Mm,n = the length of the shortest balanced interval,
– Lm,n = the length of the longest balanced interval.

Once more, suppose that m = o(
√
n). Since Sm,n = 2 with high probability,

the largest balanced interval must have as endpoints two consecutive points
with high probability. Moreover, as n increases, the maximum spacing between
consecutive blue points converges to 0 almost surely. These two remarks give a
sketch of the proof for the following theorem.

Theorem 7. For m = o(
√
n),Mm,n and Lm,n converge to 0 almost surely.
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