
Computing the k Densest Subgraphs of a Graph
Riccardo Dondi
Università degli Studi di Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it

Danny Hermelin
Ben-Gurion University of the Negev, Be’er Sheva, Israel
hermelin@bgu.ac.il

Abstract
Computing cohesive subgraphs is a central problem in graph theory. While many formulations of
cohesive subgraphs lead to NP-hard problems, finding a densest subgraph can be done in polynomial-
time. As such, the densest subgraph model has emerged as the most popular notion of cohesiveness.
Recently, the data mining community has started looking into the problem of computing k densest
subgraphs in a given graph, rather than one. In this paper we consider a natural variant of the k

densest subgraphs problem, where overlap between solution subgraphs is allowed with no constraint.
We show that the problem is fixed-parameter tractable with respect to k, and admits a PTAS for
constant k. Both these algorithms complement nicely the previously known O(nk) algorithm for the
problem.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathem-
atics of computing → Graph theory; Networks → Network algorithms

Keywords and phrases Algorithm Design, Network Mining and Analysis, Densest Subgraph, Al-
gorithmic Aspects of Networks.

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Finding cohesive subgraphs is a central problem in the analysis of social networks [20],
graph-mining [26, 28, 29, 27], group dynamics research [8], computational biology [10], and
many other areas. The most basic and natural attempt at modeling cohesiveness is via the
notion of cliques; however, this notion is too strict and rigid for most applications, and is
also known to be computationally hard [15, 32].

While there are several alternative definitions for cohesiveness [18], a notion that has
emerged as arguably the most popular is the densest subgraph model [1, 5, 11, 23, 26, 28, 31].
Here, the density of a graph is simply the edge-to-vertex ratio in the graph, and the densest
subgraph is the (induced) subgraph that maximizes this ratio. As opposed to the maximum
clique, finding a densest subgraph in a graph is polynomial-time solvable [12, 13, 16, 25].
This fact, along with the naturality of the concept, has lead the notion of density to nowadays
be considered at the core of large scale data mining [4].

Recent contributions have shifted the interest from computing a single cohesive subgraph
to computing a set of such subgraphs [5, 11, 23, 30], as this is naturally more desirable in
most applications. The proposed approaches may allow (but not force) the subgraphs to
overlap, as many real-world cohesive groups share common elements. For example, hubs
may belong to more than one community [21, 11]. The way the overlap is restricted, if at all,
varies among the different approaches. For instance, in [5], the notion of overlap is restricted
via a constraint on the pairwise Jaccard coefficient of the subgraphs of the solution, while
in [11] the total overlap is factored into the objective function.

© ;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

00
2.

07
69

5v
4

 [
cs

.D
S]

 2
3

N
ov

 2
02

1

mailto:riccardo.dondi@unibg.it
mailto:hermelin@bgu.ac.il
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Computing the k Densest Subgraphs of a Graph

1.1 A natural variant
In this paper we consider a variant of the problem of computing k densest subgraphs of a
given graph, where subgraphs in the solution must be distinct (i.e. have different vertex
sets). Thus a solution subgraph may be a subgraph, a supergraph, or have almost the same
vertex set as another solution subgraph. The objective function is the maximization of the
total sum of densities of the solution subgraphs.

B Problem 1. k-Densest Subgraphs
Input: A graph G.
Output: A set of k pairwise distinct subgraphs G1, . . . , Gk of G.
Objective: Maximize

∑k
i=1 density(Gi).

While k-Densest Subgraphs is arguably the most basic variant for the problem of computing
the k densest subgraphs of a given graph, very little is known about the problem from a
theoretical perspective. In [7], it is shown that this problem is solvable in nO(k) time. This
is the main yardstick by which we assess the results in this paper.

I Theorem 1 ([7]). k-Densest Subgraphs can be solved in nO(k) time.

Our first result shows that there is a a rather efficient algorithm (for constant values of
k), if one is willing to slightly compromise the quality of the solution. In particular, we show
that the problem admits an efficient PTAS (EPTAS):

I Theorem 2. For any fixed k, ε ≥ 1, there is an algorithm that computes in O(mn log n)
time a (1− 1

ε)-approximate solution for k-Densest Subgraphs.

Our second result shows that k-Densest Subgraphs is in fact fixed-parameter tractable
when parameterized by the number k of subgraphs. In particular, our second algorithm
shows that the problem is polynomial-time solvable even for k = Θ(lg n). More precisely, we
prove the following:

I Theorem 3. k-Densest Subgraphs can be solved in O(2kmn3 log n) time.

1.2 Related work
The Densest Subgraph problem, the problem of computing a densest subgraph in a given
graph, is the special case of k-Densest Subgraphs when k = 1. This problem has been
extensively studied in the literature, and we outline here only the main results. The problem
is known to be polynomial-time solvable [13, 25, 12, 16], and it can be approximated within
a factor of 1

2 in linear time [19, 3, 6]. Generalization of the problem to weighted graphs [13],
as well as directed graphs [17], also turn out to be polynomial-time solvable. However, the
Densest Subgraph problem becomes NP-hard when constraints on the number of vertices in
the output graph are added [1, 2, 9, 14, 17, 22].

2 Preliminaries

All graphs considered in this paper are simple, undirected, and without self-loops. Throughout
the paper we let G = (V, E) denote an input graph, and we let n = |V | and m = |E|. For a
vertex v ∈ V , we let deg(v) denote the degree of v in G, i.e. deg(v) = |{u ∈ V : {u, v} ∈ E}|.
The density of G is defined by density(G) = m/n, and in general, the density of a graph is
the ratio between the number of edges and the number of vertices in the graph.

XX:3

Given a subset of vertices V1 ⊆ V , we denote by G[V1] the subgraph of G induced by V1;
formally, G[V1] = (V1, E1) where E1 = {{u, v} ∈ E : u, v ∈ V1}. Thus, a subgraph of G is
determined completely by its subset of vertices. If G[V1] and G[V2] are both subgraphs of G,
then we say that these subgraphs are distinct whenever V1 6= V2. If V1 ∩ V2 = ∅ then the two
subgraphs are disjoint, and if V1 ⊂ V2, then G[V2] is a proper supergraph of G[V1].

2.1 Goldberg’s algorithm
As mentioned above, the Densest Subgraph problem can be solved in polynomial-time [13, 25,
12]. The main idea is to reduce the problem to a series of min-cut computations. Picard
and Queyranne’s algorithm [25] requires O(n) such computations, where n is the number of
vertices in the input graph, while Goldberg’s algorithm [13] improves this to O(log n), thus
giving an overall time complexity of O(mn log n) via Orlin’s algorithm [24]. Recently, the
time complexity of Goldberg’s algorithm for unweighted graphs has been improved to O(n3)
[16]. Goldberg also showed that one can compute in O(mn log n) time a densest subgraph in
a vertex-weighted graph; here, the density of a vertex-weight graph H on n vertices of total
weight w and m edges is given by density(H) = (m + w)/n.

3 An EPTAS for k-Densest Subgraphs

In the following section we describe our EPTAS for k-Densest Subgraphs. Let (G, k) denote
a given instance of k-Densest Subgraphs, and let ε > 0 be a given constant. Our goal is to
compute in O(mn log n) time k distinct subgraphs G1, . . . , Gk of G with densities d1, . . . , dk

such that
∑

i di ≥ (1 − 1
ε) · OPT , where OPT is the value of an solution of k-Densest

Subgraphs, that is the total sum of densities of the k densest subgraphs in G. Recall that
k = O(1).

Below we first provide a description of our algorithm, followed by an analysis of its running
time, and an analysis of its approximation ratio guarantee. Since the function (n−2k

n)k tends
to 1 as n grows to infinity, we will henceforth assume that n is sufficiently large so that the
following inequality holds (otherwise we can solve the problem optimally via brute force in
O(1) time):(

n− 2k

n

)k

≥
(

1− 1
ε

)
. (1)

3.1 The algorithm
We say that a subgraph Gi = (Vi, Ei) of G is small if |Vi| ≤ ε− 1. Our algorithm proceeds
in a certain way so long that all subgraphs computed so far are small; once a subgraph which
is not small is computed, the algorithm proceeds in a different manner. The first subgraph
G1 = (V1, E1) is computed using Goldberg’s algorithm, so G1 is a densest subgraph in G.

Suppose that we have computed subgraphs G1, . . . , Gi for some 1 ≤ i ≤ k − 1, and all
these subgraphs are small. The subgraph Gi+1 is taken to be a densest graph out of all of
the following possible candidates:

A densest subgraph in G[V \ {v1, . . . , vi}] for some v1 ∈ V1, . . . , vi ∈ Vi.
A densest strict supergraph of Gj in G for some j ∈ {1, . . . , i}.

Note that some of the candidates of the second type above can be graphs in {G1, . . . , Gi};
such graphs are naturally excluded from being candidates for the subgraph Gi+1.

Suppose that we have computed subgraphs G1, . . . , Gi for some 1 ≤ i ≤ k − 1, and
Gi = (Vi, Ei) is not small. Then in this case Gi can either be big or huge. We say that

XX:4 Computing the k Densest Subgraphs of a Graph

Gi is big if |Vi| ≤ n − k − i, and otherwise it is huge. If Gi is big, we choose arbitrary
distinct vertices vi+1, . . . , vk ∈ V \ Vi and set Gj to be the graph induced by Vi ∪ {vj} for
j ∈ {i + 1, . . . , k}. Note that since Vi is not huge, there are enough distinct vertices in V \ Vi.
Also note that as Gi is the only big subgraph in G1, . . . , Gi, it is not a proper subgraph of
any of these graphs and so all subgraphs Gj are distinct from all subgraphs computed so far.

If Gi is huge, then the graphs Gi+1, . . . , Gk are computed by iteratively removing minimal
degree vertices in Gi. Since Gi is huge and all graphs G1, . . . , Gi−1 are small, we are
guaranteed that subgraphs computed in this way are distinct from those we have computed.

3.2 Run-time analysis
Before analyzing the run-time of our algorithm, we begin with the following lemma:

I Lemma 4. Let H0 be a strict subgraph of G, and let H be a densest strict supergraph of H0
in G. If density(H) ≤ density(H0), then there is an algorithm that computes in O(mn log n)
time a strict supergraph of H0 in G with density equal to density(H), given H0 as input.

Proof. Given H0 = (V0, E0) as input, the algorithm uses Goldberg’s algorithm to compute a
densest subgraph H1 = (V1, E1) in the vertex-weighted graph G∗ = G[V \ V0], with vertex
weights defined by w(v) = |NG(v) ∩ V0| for each vertex v of G∗. It then returns the graph
H = H0 ∪ H1 = G[V0 ∪ V1] as a solution. Clearly, this can be done in O(mn log n) time,
and H is a strict supergraph of H0 in G. We claim that H is indeed a densest among all
supergraphs of H0.

Let H ′ = (V ′, E′) be any strict supergraph of H0 (V0 ⊂ V ′), and let H2 = (V2, E2) be
the subgraph of G induced by V2 = V ′ \ V0. Our goal is to show that H is at least as
dense as H ′ in G. Let ni = |Vi| and mi = |Ei| +

∑
v∈Hi

w(v) for i ∈ {1, 2}. Then the
density of H1 and H2 in the vertex weighted graph G∗ is d1 = m1/n1 and d2 = m2/n2
respectively. Also, by letting n0 = |V0| and m0 = |E0|, the density of H0 in G is given by
density(H0) = d0 = m0/n0. Furthermore, observe that by the definition of the vertex weight
function in G∗, we have

density(H) = |E0|+ |E1|+ |E(V0, V1)|
|V0|+ |V1|

=
|E0|+ |E1|+

∑
v∈V1

|N(v) ∩ V0|
|V0|+ |V1|

=

=
|E0|+ |E1|+

∑
v∈V1

w(v)
|V0|+ |V1|

= m0 + m1

n0 + n1
,

and similarly, density(H ′) = (m0 + m2)/(n0 + n2). Below we argue that density(H) is at
least as large as density(H ′).

By standard algebra, we have

density(H) ≥ density(H ′) ⇐⇒
m0 + m1

n0 + n1
≥ m0 + m2

n0 + n2
⇐⇒

m0n2 + m1(n0 + n2) ≥ m0n1 + m2(n0 + n1) ⇐⇒
m1n2 + m0(n2 − n1) ≥ m2n1 + n0(m2 −m1).

Thus, to complete the proof it suffices to prove the following two inequalities: m1n2 ≥ m2n1
and m0(n2 − n1) ≥ n0(m2 −m1).

For the first inequality, observe that d1 = m1/n1 ≥ d2 = m2/n2 as H1 is a densest
subgraph in G∗; this directly implies m1n2 ≥ m2n1. For second inequality, by the assumption

XX:5

that density(H0) ≥ density(H), we have:

density(H0) ≥ density(H) ⇐⇒
m0

n0
≥ m0 + m1

n0 + n1
⇐⇒

m0n1 ≥ m1n0 ⇐⇒
m0

n0
≥ m1

n1
⇐⇒

density(H0) ≥ d1,

Thus,
m0

n0
= density(H0) ≥ d1 = d1(n2 − n1)

n2 − n1
≥ d2n2 − d1n1

n2 − n1
= m2 −m1

n2 − n1
,

and so the second inequality also holds. J

Now, first observe that G1 is computed in O(mn log n) time (or O(n3) time if m log n > n2)
with Goldberg’s algorithm given in [13, 16]. Next, note that if some subgraph Gi is big
or huge, then the remaining graphs Gi+1, . . . , Gk can easily be computed in O(m + n)
time. Consider then a small subgraph Gi for some i ≤ k − 1. Then, by construction, all
subgraphs G1, . . . , Gi are small, and so we have |V1| · · · |Vi| ≤ εk = O(1). The subgraph
Gi+1 is computed by first computing candidates of two different types. For the first type
we need to invoke Goldberg’s algorithm on a graph |V1| · · · |Vi| ≤ εk = O(1) times, so this
requires O(mn log n) time (or O(n3) time if m log n > n2). For the second type, we need to
invoke Goldberg’s algorithm on a weighted graph, as described in Lemma 4 above, i = O(1)
times, and so this also requires O(mn log n) time. In total, we compute each subgraph Gi in
O(mn log n) time, which gives a the same run-time for the entire algorithm since k = O(1).

3.3 Approximation-ratio analysis
Let G∗1, . . . , G∗k be an optimal solution of Densest Subgraph on instance G, with densities
d∗1 ≥ d∗2 ≥ · · · ≥ d∗k. We analyze the approximation ratio guaranteed by our algorithm by
comparing the density of each subgraph Gi = (Vi, Ei) computed by the algorithm with d∗i .
For G1 this is easy. Since G∗1 is a densest subgraph in G, and G1 is the graph computed by
Goldberg’s algorithm, we have:

I Lemma 5. density(G1) = d∗1.

For the remaining graphs, our analysis splits into three cases depending on the type of
graph previously computed by the algorithm.

I Lemma 6. If Gi is small, for i < k, then density(Gi+1) = d∗i+1.

Proof. The optimal subgraph G∗i+1 = (V ∗i+1, E∗i+1) is either a supergraph of some graph in
G1, . . . , Gi, or Vj \ V ∗i+1 6= ∅ for each j ∈ {1, . . . , i}. Since the candidates for Gi+1 considered
by our algorithm in case Gi is small cover both these cases, the lemma follows. J

Note that Lemma 5 and Lemma 6 together imply that if all subgraphs computed by
the algorithm are small, then density(Gi) = d∗i for each i ∈ {1, . . . , k}, and our algorithm
computes an optimal solution. Furthermore, the first big or huge subgraph it computes also
has optimal densities. The next two lemmas deal with the remaining subgraphs that are
computed after computing a big or huge subgraph.

XX:6 Computing the k Densest Subgraphs of a Graph

I Lemma 7. Suppose Gi, for i < k, is the first big subgraph computed by the algorithm.
Then density(Gj) ≥ (1− 1

ε) · d∗j for each j ∈ {i + 1, . . . , k}.

Proof. Let ni = |Vi| and mi = |Ei|. By Lemma 5 and Lemma 6 we know that mi/ni = d∗i .
Furthermore, as Gi is big, we have ni > ε− 1, or written differently ni/(ε− 1) > 1. Now, as
each Gj has ni + 1 vertices and at least mi edges, we have

density(Gj) ≥ mi

ni + 1 >
mi

ni + ni/(ε− 1) = ε− 1
ε
· mi

ni
= (1− 1

ε
) · d∗i ≥ (1− 1

ε
) · d∗j .

J

I Lemma 8. Suppose Gi, for i < k, is the first huge subgraph computed by the algorithm.
Then density(Gj) ≥ (1− 1

ε) · d∗j for each j ∈ {i + 1, . . . , k}.

Proof. Let ni = |Vi| and mi = |Ei|. Since Gi is huge we know that ni > n− k, and again
by Lemmas 5 and 6 we know that mi/ni = d∗i . Let v ∈ Vi be a vertex of minimum degree
in Gi. Consider the subgraph Gi+1, constructed from Gi by removing the vertex v ∈ Vi

with minimum degree. Then the degree of v cannot exceed the average degree in Gi, and so
deg(v) ≤ 2mi/ni. Thus, the density of Gi can be bounded by:

density(Gi+1) = mi − deg(v)
ni − 1 ≥ mi − 2mi/ni

ni − 1 = ni − 2
ni − 1 · d

∗
i >

n− k − 2
n

· d∗i .

Extending this argument, it can be seen that the density of Gi+j , for any j ∈ {1, . . . , k −

i}, is bounded from below by
(

n−k−j−1
n

)j

· d∗i . The lemma then directly follows from
Equation 1. J

Summarizing, due to Lemmas 5, 6, 7, and 8, we know that density(Gi) ≥ (1− 1
ε)·d∗i for all

i ∈ {1, . . . , k}, and so in total we have:
∑k

i=1 density(Gi) ≥
∑k

i=1(1− 1
ε) ·d∗i = (1− 1

ε) ·OPT.

This completes the proof of Theorem 2.

4 k-Densest Subgraphs in FPT Time

We next show that k-Densest Subgraphs is solvable in O(2kmn3 log n) time, i.e. that it is
fixed-parameter tractable in k. Recall that our goal is to compute k subgraphs G1, . . . , Gk of
G = (V, E) whose total density is maximal, and our only constraint is that these subgraphs
need to be distinct.

Similarly to Section 3, our approach here is to iteratively compute G1, then G2, and so
forth, where we start from a densest subgraph G1 of G. In what follows, we assume we have
already computed the subgraphs G1 = (V1, E1), . . . , G` = (V`, E`), for ` ∈ {1, . . . , k − 1},
and our goal is to compute a densest subgraph G`+1 = (V`+1, E`+1) among all subgraphs in
G distinct from G1, . . . , G`. Let V ∗ =

⋃`
i=1 Vi. We consider the following two cases:

1. There is some vertex v ∈ V`+1 that is not in V ∗, i.e. V`+1 * V ∗.
2. V`+1 is contained completely in V ∗, i.e. V`+1 ⊆ V ∗.
We compute a densest subgraph in each one of these cases, and then take the densest of the
two to be G`+1.

XX:7

4.1 First case
The first case where V`+1 * V ∗ is easy: we iterate through all vertices v ∈ V \ V ∗ and
compute a densest subgraph of G that includes v, and then take the densest of all these
subgraphs (each of them being distinct from G1, . . . , G`).

I Lemma 9. Let v ∈ V . A densest subgraph of G that includes v can be computed in
O(mn log n) time.

Proof. Let wv : V → N be the weight function defined by wv(v) = n2, and wv(u) = 1 for
all vertices u 6= v. Then any subgraph of G that does not include v has weighted density
less than n, and any subgraph that includes v has weight density at least n. It follows that
computing a densest subgraph of G that includes v can be done by a single application of
Goldberg’s algorithm in O(mn log n) time on G weighted by wv. J

I Lemma 10. If V`+1 * V ∗ then G`+1 can be computed in O(mn2 log n) time.

Proof. Iterate on all O(n) vertices v ∈ V \ V ∗, and run the algorithm in Lemma 9 for each
such vertex v. In total, by Lemma 9 this takes O(n) ·O(mn log n) = O(mn2 log n) time. J

4.2 Second case
The second case where V`+1 ⊆ V ∗ requires more details. We say that a non-empty subset
C ⊆ {V1, . . . , V`} covers V`+1 if V`+1 ⊆ VC =

⋃
Vi∈C Vi, and it is a minimal cover if V`+1 * VC′

for any proper subset C′ ⊂ C. Our approach is to compute for each non-empty subset
C ⊆ {V1, . . . , V`}, a densest subgraph of G for which C is a minimal cover.

I Lemma 11. Let C ⊆ {V1, . . . , V`}, and suppose that C is a minimal cover of V`+1. If
V`+1 6= VC, then there are two vertices vin, vout ∈ VC such that vin ∈ V`+1 and vout /∈ V`+1,
and there is no subset Vi ∈ C with vin ∈ Vi and vout /∈ Vi.

Proof. Suppose that V`+1 6= VC, and so V`+1 ⊂ VC. It follows that there exists a vertex
vout ∈ VC \ V`+1. Consider the subset C′ ⊂ C which includes all vertex subsets in C that do
not include the vertex vout, i.e. C′ = {Vi ∈ C : vout /∈ Vi}. Note that C′ is indeed a proper
subset of C, as vout belongs to some graph in C. If C′ = ∅, then vout belongs to every subset
Vi ∈ C, and the lemma holds. If C′ 6= ∅, there must be some vertex vin ∈ V`+1 \ VC′ by the
minimality of C, since otherwise C′ would cover V`+1. J

I Lemma 12. If V`+1 ⊆ V ∗ then G` can be computed in O(2kmn3 log n) time.

Proof. We iterate over all possible 2` − 1 non-empty subsets C ⊆ {V1, . . . , V`}. For each
subset C, we iterate over all O(n2) vertices vin, vout ∈ VC and compute a densest subgraph in
G[VC \{vout}] that includes vin (using the algorithm in Lemma 9). This requires O(mn3 log n)
time in total. Out of all subgraphs computed this way, along with all subgraphs of the form
G[VC], we choose the densest subgraph which is distinct from {G1, . . . , G`}. As G`+1 is a
densest subgraph in G[VC \ {vout}] that includes vin, for the minimal cover C of V`+1 and
some vin, vout ∈ VC (according to Lemma 11), this algorithm is indeed guaranteed to find a
subgraph of G with density at least density(G`+1). J

4.3 Summary
Thus, taking the densest of the subgraph given by Lemma 10 and the subgraph given
by Lemma 12 gives us a densest subgraph in G which is distinct from {G1, . . . , G`} in
O(2kmn3 log n) time. In this way, we can compute k densest distinct subgraphs of G in
O(2kkmn3 log n) time, completing the proof of Theorem 3.

XX:8 Computing the k Densest Subgraphs of a Graph

5 Conclusion

This paper studies a natural variant for computing k densest subgraphs of a given graph, a
central problem in graph data mining. We show that the problem is fixed-parameter tractable
with respect to k, and admits a PTAS for k = O(1).

From a theoretical perspective, the most interesting problem that is left open by our
paper is whether k-Densest Subgraphs is NP-hard for unbounded k. However, we feel that for
most practical settings, the number k of solution subgraphs should be significantly smaller
than the size n of the network. Thus, we feel that examining the problem on specific social
network models might be more interesting from a practical point of view. Finally, we have
considered unweighted graphs, a natural direction is whether it is possible to extend the
results to edge-weighted graphs.

Acknowledgements

We thank an anonymous reviewer for pointing out an error in an algorithm included in a
previous version of the paper.

References
1 Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In

Konstantin Avrachenkov, Debora Donato, and Nelly Litvak, editors, Algorithms and Models
for the Web-Graph, 6th International Workshop, WAW 2009, Barcelona, Spain, February
12-13, 2009. Proceedings, volume 5427 of Lecture Notes in Computer Science, pages 25–37.
Springer, 2009. doi:10.1007/978-3-540-95995-3_3.

2 Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. Complexity of finding dense subgraphs.
Discrete Applied Mathematics, 121(1-3):15–26, 2002. doi:10.1016/S0166-218X(01)00243-8.

3 Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily finding a
dense subgraph. In Rolf G. Karlsson and Andrzej Lingas, editors, Algorithm Theory - SWAT
’96, 5th Scandinavian Workshop on Algorithm Theory, Reykjavík, Iceland, July 3-5, 1996,
Proceedings, volume 1097 of Lecture Notes in Computer Science, pages 136–148. Springer,
1996. doi:10.1007/3-540-61422-2_127.

4 Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and
mapreduce. PVLDB, 5(5):454–465, 2012. doi:10.14778/2140436.2140442.

5 Oana Denisa Balalau, Francesco Bonchi, T.-H. Hubert Chan, Francesco Gullo, and Mauro Sozio.
Finding subgraphs with maximum total density and limited overlap. In Xueqi Cheng, Hang
Li, Evgeniy Gabrilovich, and Jie Tang, editors, Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, WSDM 2015, pages 379–388. ACM, 2015.
doi:10.1145/2684822.2685298.

6 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph. In
Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial Optim-
ization, Third International Workshop, APPROX 2000, Proceedings, volume 1913 of Lecture
Notes in Computer Science, pages 84–95. Springer, 2000. doi:10.1007/3-540-44436-X.

7 Riccardo Dondi, Mohammad Mehdi Hosseinzadeh, Giancarlo Mauri, and Italo Zoppis. Top-k
overlapping densest subgraphs: approximation algorithms and computational complexity. J.
Comb. Optim., 41(1):80–104, 2021. doi:10.1007/s10878-020-00664-3.

8 Lata Dyaram and T. J. Kamalanabhan. Unearthed: The other side of group cohesiveness.
Journal of Social Sciences, 10(3):185–190, 2005.

9 Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001. doi:10.1007/s004530010050.

http://dx.doi.org/10.1007/978-3-540-95995-3_3
http://dx.doi.org/10.1016/S0166-218X(01)00243-8
http://dx.doi.org/10.1007/3-540-61422-2_127
http://dx.doi.org/10.14778/2140436.2140442
http://dx.doi.org/10.1145/2684822.2685298
http://dx.doi.org/10.1007/3-540-44436-X
http://dx.doi.org/10.1007/s10878-020-00664-3
http://dx.doi.org/10.1007/s004530010050

XX:9

10 Eugene Fratkin, Brian T. Naughton, Douglas L. Brutlag, and Serafim Batzoglou. Motifcut:
regulatory motifs finding with maximum density subgraphs. Bioinformatics, 22(14):156–157,
2006. doi:10.1093/bioinformatics/btl243.

11 Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Top-k overlapping densest subgraphs.
Data Min. Knowl. Discov., 30(5):1134–1165, 2016. doi:10.1007/s10618-016-0464-z.

12 Giorgio Gallo, Michael D. Grigoriadis, and Robert Endre Tarjan. A fast parametric maximum
flow algorithm and applications. SIAM Journal on Computing, 18(1):30–55, 1989. doi:
10.1137/0218003.

13 Andrew V. Goldberg. Finding a maximum density subgraph. Technical report, Berkeley, CA,
USA, 1984.

14 Doron Goldstein and Michael Langberg. The dense k subgraph problem. CoRR, abs/0912.5327,
2009. arXiv:0912.5327.

15 Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller and
James W. Thatcher, editors, Proceedings of a symposium on the Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Plenum Press, New York,
1972.

16 Yasushi Kawase and Atsushi Miyauchi. The densest subgraph problem with a convex/concave
size function. Algorithmica, 80(12):3461–3480, 2018. doi:10.1007/s00453-017-0400-7.

17 Samir Khuller and Barna Saha. On finding dense subgraphs. In Susanne Albers, Alberto
Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors,
Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes,
Greece, July 5-12, 2009, Proceedings, Part I, volume 5555 of Lecture Notes in Computer
Science, pages 597–608. Springer, 2009. doi:10.1007/978-3-642-02927-1_50.

18 Christian Komusiewicz. Multivariate algorithmics for finding cohesive subnetworks. Algorithms,
9(1):21, 2016.

19 Guy Kortsarz and David Peleg. Generating sparse 2-spanners. J. Algorithms, 17(2):222–236,
1994. doi:10.1006/jagm.1994.1032.

20 Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. Trawling
the web for emerging cyber-communities. Computer Networks, 31(11-16):1481–1493, 1999.
doi:10.1016/S1389-1286(99)00040-7.

21 Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics, 6(1):29–123, 2009. doi:10.1080/15427951.2009.10129177.

22 Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest k-subgraph.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 954–961. ACM, 2017. doi:10.1145/3055399.3055412.

23 Muhammad Anis Uddin Nasir, Aristides Gionis, Gianmarco De Francisci Morales, and Sarunas
Girdzijauskas. Fully dynamic algorithm for top-k densest subgraphs. In Ee-Peng Lim,
Marianne Winslett, Mark Sanderson, Ada Wai-Chee Fu, Jimeng Sun, J. Shane Culpepper,
Eric Lo, Joyce C. Ho, Debora Donato, Rakesh Agrawal, Yu Zheng, Carlos Castillo, Aixin Sun,
Vincent S. Tseng, and Chenliang Li, editors, Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM 2017, pages 1817–1826. ACM, 2017.
doi:10.1145/3132847.3132966.

24 James B. Orlin. Max flows in o(nm) time, or better. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 765–774. ACM, 2013. URL: https://doi.org/10.
1145/2488608.2488705, doi:10.1145/2488608.2488705.

25 Jean-Claude Picard and Maurice Queyranne. A network flow solution to some nonlinear 0-1
programming problems, with applications to graph theory. Networks, 12(2):141–159, 1982.
URL: https://doi.org/10.1002/net.3230120206, doi:10.1002/net.3230120206.

http://dx.doi.org/10.1093/bioinformatics/btl243
http://dx.doi.org/10.1007/s10618-016-0464-z
http://dx.doi.org/10.1137/0218003
http://dx.doi.org/10.1137/0218003
http://arxiv.org/abs/0912.5327
http://dx.doi.org/10.1007/s00453-017-0400-7
http://dx.doi.org/10.1007/978-3-642-02927-1_50
http://dx.doi.org/10.1006/jagm.1994.1032
http://dx.doi.org/10.1016/S1389-1286(99)00040-7
http://dx.doi.org/10.1080/15427951.2009.10129177
http://dx.doi.org/10.1145/3055399.3055412
http://dx.doi.org/10.1145/3132847.3132966
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
http://dx.doi.org/10.1145/2488608.2488705
https://doi.org/10.1002/net.3230120206
http://dx.doi.org/10.1002/net.3230120206

XX:10 Computing the k Densest Subgraphs of a Graph

26 Mauro Sozio and Aristides Gionis. The community-search problem and how to plan a
successful cocktail party. In Bharat Rao, Balaji Krishnapuram, Andrew Tomkins, and Qiang
Yang, editors, Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Washington, DC, USA, July 25-28, 2010, pages 939–948. ACM,
2010. doi:10.1145/1835804.1835923.

27 Nikolaj Tatti. Density-friendly graph decomposition. ACM Trans. Knowl. Discov. Data,
13(5):54:1–54:29, 2019. doi:10.1145/3344210.

28 Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In Aldo Gangemi,
Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages
1089–1099. ACM, 2015. doi:10.1145/2736277.2741119.

29 Charalampos E. Tsourakakis. The k-clique densest subgraph problem. In Aldo Gangemi,
Stefano Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages
1122–1132. ACM, 2015. doi:10.1145/2736277.2741098.

30 Elena Valari, Maria Kontaki, and Apostolos N. Papadopoulos. Discovery of top-k dense
subgraphs in dynamic graph collections. In Anastasia Ailamaki and Shawn Bowers, editors,
Scientific and Statistical Database Management - 24th International Conference, SSDBM
2012, Chania, Crete, Greece, June 25-27, 2012. Proceedings, volume 7338 of Lecture Notes in
Computer Science, pages 213–230. Springer, 2012.

31 Zhaonian Zou. Polynomial-time algorithm for finding densest subgraphs in uncertain graphs.
In Proceedings of Internation Workshop on Mining and Learning with Graphs, 2013.

32 David Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. Theory of Computing, 3(1):103–128, 2007. doi:10.4086/toc.2007.v003a006.

http://dx.doi.org/10.1145/1835804.1835923
http://dx.doi.org/10.1145/3344210
http://dx.doi.org/10.1145/2736277.2741119
http://dx.doi.org/10.1145/2736277.2741098
http://dx.doi.org/10.4086/toc.2007.v003a006

	1 Introduction
	1.1 A natural variant
	1.2 Related work

	2 Preliminaries
	2.1 Goldberg's algorithm

	3 An EPTAS for k-Densest Subgraphs
	3.1 The algorithm
	3.2 Run-time analysis
	3.3 Approximation-ratio analysis

	4 k-Densest Subgraphs in FPT Time
	4.1 First case
	4.2 Second case
	4.3 Summary

	5 Conclusion

