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On the Parameterized Complexity of the Maximum Exposure Problem
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A B S T R A C T

We investigate the parameterized complexity of Maximum Exposure Problem (MEP). Given a range
space (R, P ) where R is the set of ranges containing a set P of points, and an integer k, MEP asks for
k ranges which on removal results in the maximum number of exposed points. A point p is said to be
exposed when p is not contained in any of the ranges inR. The problem is known to be NP-hard. In this
letter, we give fixed-parameter tractable results of MEP with respect to different parameterizations.

1. Introduction

Consider n sensors deployed for tracking assets in an
area. The topology of sensing zones and assets can be de-
scribed using a range space (R, P ) where the sensing zones
are represented by ranges in R and assets are represented
by the points in P . We are interested in finding the maxi-
mum number of exposed assets when k number of sensors
are compromised. From the computational geometry point
of view, this problem is the Maximum Exposure Problem
(MEP) [10]. Given a range space (R, P ), MEP asks for a set
of k ranges, which on removal results in a maximum number
of exposed points. A point p is said to be exposed, if it is not
contained in any of the ranges. In Figure 1, the ranges are
axis-aligned rectangles and if k = 2, one of the solutions is
R4 and R5 that exposes 10 points.
MEP is shown to be NP-hard and it is also hard to approxi-
mate even when ranges in R are translates of two fixed rect-
angles [10]. The authors also proposed a polynomial-time
approximation scheme (PTAS) if R only consists of trans-
lates of a single rectangle. For polygons with constant num-
ber of sides and for arbitrary disks, anO(k) bicriteria approx-
imation algorithm is also presented. They also showed that
MEP with convex polygin ranges is equivalent to the dens-
est k-subhypergraph problem on a dual hypergraph H =

(X,E), where the ranges in R corresponds to vertices in X

and the set of points P corresponds to edges in E. Given a
hypergraphH = (X,E), the densest k-subhypergraph prob-
lem finds a set of k vertices with the maximum number of
induced hyperedges.
Parameterized complexity[4, 6, 13] offers a methodology for
solving NP-hard problems by expressing their running time
in terms of one or more parameters, in addition to the input
size. Fixed parameter tractable algorithms have their run-
ning times of the form O(f (k).nc) where n is the size of the
input instance, k is a non-negative integer parameter, f is a
computable function depending only on k, and c is a con-
stant. The problems for which we can find such algorithms
are referred to as fixed parameter tractable (FPT). In addi-
tion, to deal with problems that that do not admit a fixed pa-
rameter tractable algorithm, Downey and Fellows defined a
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fixed parameter reduction and a hierarchy of classes W [1] ⊆

W [2] ⊆ … that includes fixed parameter intractable prob-
lems.

We study parameterizations of MEP with respect to two
different parameters and a combination of two parameters.
We use the greediness of parameterization approach pro-
posed by Bonnet et. al. [2] which is based on branching
algorithms. This approach has recently gained much attrac-
tion in fixed cardinality parameterized problems [12, 14, 15].
We also use the result by Lenstra and Kannan [9, 11], which
shows that ILP optimization is fixed parameter tractable when
parameterized by the number of variables.
The rest of the paper is organized as follows. In section 2,
the problem definitions and a brief overview of the results in
this letter are provided. Section 3 gives the two FPT results
of MEP using greediness of parameterization approach and
integer linear programming approach.

2. Our Results

We consider the following parameterized versions of MEP.

Definition 1 (k-MEP). Given a range space (R, P ) where R

is the set of ranges and P is the set of points, and an integer

parameter k ≥ 1, k-MEP asks for k ranges in R which on

removal results in maximum number of exposed points.

Definition 2 ((l, k)-MEP). Given a range space (R, P ) where

R is the set of ranges and P is the set of points, with each

range overlapping on at most l other ranges and an integer

parameter k ≥ 1, (l, k)-MEP asks for k ranges in R which

on removal results in maximum number of exposed points.

In the following definition, we refer to the polygonal re-
gions formed by the range space as cells, and the set of cells
that contains points as D. In Figure 1, the ranges R1 and R2

alone forms three cells: R1 ⧵ R2, R1 ∪ R2, and R2 ⧵ R1.

Definition 3 (d-MEP). Given a range space (R, P ) where R

is the set of ranges and P is the set of points, and the number

of cells in the range space that contain points |D| = d, d-

MEP asks for k number of ranges in R which on removal

results in maximum number of exposed points.

Our first result presented in Lemma 1 shows that k-MEP is
W[1]-hard, which directly follows from the following obser-
vations:
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Observation 1. [10] MEP for convex polygons is equivalent

to the densest-k- subhypergraph problem for hypergraphs.

Observation 2. [3] Densest k-subgraph problem is not FPT,

i.e., it is W[1]-hard, with respect tok even for regular graphs.

Lemma 1. MEP is W[1]-hard when parameterized with the

solution size k.

For any polygonal ranges withO(1) complexity (with re-
spect to number of sides of the polygon) or circular disks,
we show that the problem is FPT with respect to l and k

where l is the maximum number of overlaps in any range
(using greediness of parameterization). Also the problem is
FPT with respect to d, the number of cells in the range space
which contain points (using integer linear programming).

3. Fixed Parameter Tractable Algorithms

We restrict ourselves to polygon ranges of O(1) com-
plexity and circular disks, since the maximum number of
cells that can be formed by an arrangement of n such poly-
gons/disks is O(n2) (Any arrangement of n line segments/
circles have O(n2) cells[5, 1]). As an initial preprocessing
step, we delete all the points which are contained in more
than k ranges. These points are not going to be exposed by
removing any of the subset of k ranges. In the algorithms
proposed, we consider only the set D of cells in the range
space with points, as the other cells does not affect the opti-
mal solution.
We define the subset of ranges in R that forms a cell in D

as a cluster. After the preprocessing step, maximum size of
a cluster is k. Based on the cardinality of the subset of the
ranges, we classify the clusters into different cluster types:
1-cluster, 2-cluster, …, k-cluster. In Figure 1, R1, R2 and
R3 forms a 3-cluster, and R4 and R5 forms a 2-cluster. Any
range in the range space that forms a cell that contains points
and is not an overlap region is a 1-cluster. Also, we define
OL(Ri) as the set of ranges that overlaps with Ri. In Figure
1, OL(R4) is {R3, R5}.

In the following two sections, we explain the fixed pa-
rameter tractable results of MEP in O(1) complexity poly-
gon ranges and circular disks with respect to two different
parameterizations.

3.1. An FPT algorithm for (l, k)-MEP
In this section, we use the greediness of parameteriza-

tion approach proposed by Bonnet et al.[2] which is based on
branching algorithms. At each level of the branching tree, a
partial solution is extended. At the leaves, the optimum so-
lution among all the solution is returned. The crux of the ap-
proach is to branch on a greedy extension of the partial solu-
tion and also on the neighbourhood of the greedy extension.
We present a branching algorithm RecMEP (T , k) which
maintains a set T of ranges which is initially empty. At each
level of branching, T is added with at most k ranges until no
more ranges can be added i.e. until k = 0. The basic idea be-
hind our algorithm is the following. At each level of branch-
ing tree, we branch on different i-clusters where 1 ≤ i ≤ k,

R1

R2

R3

R4

R5

Figure 1: An Input MEP instance with 5 rectangular ranges.

For k= 2, one of the solutions to MEP is R4 and R5 exposing

10 points.

which on removal maximizes the number of exposed points.
If there are multiple clusters of type i exposing the maximum
number of points at that level, one among them can be cho-
sen randomly. We also branch on the neighborhood of these
clusters, which are those ranges overlapping with the ranges
in the i-cluster considered. A greedy criterion may not be
always optimal. However, if at each step either the greedily
chosen i-cluster, or some of its overlapping ranges is part of
an optimal solution, then the branching tree has at least one
leaf which is an optimal solution. Overall description of our
algorithmRecMEP (T , k) is given in Algorithm 1. Initially
T is set to ∅. Also, for a given T = {R1, R2,… , Ri}, we cal-
culateOL(T ) asOL(T ) = OL(R1)∪OL(R2)∪…∪OL(Ri).

Algorithm 1: RecMEP (T , k)

• if k > 0, then

– for each i varying from 1 to k pick a greedy clus-
ter Ci ∈R ⧵ {T ∪OL(T )} that exposes the max-
imum number of points and call RecMEP (T ∪

Ci, k − |Ci|)
– for each range Rj ∈ OL(T ) ⧵ T , call RecMEP

(T ∪ Rj , k − 1).

• If k = 0, store T as a feasible solution.

• Return a T with maximum number of exposed points
as the optimal solution.

Figure 2 shows the branching tree of RecMEP (T , k)

for the input range space given in Figure 1. We start with
branching on greedy clusters of type one and two as the value
of k is two. We cannot further branch from the 2-cluster
{R4, R5} as our budget k is finished at the first level itself.
From the 1-cluster {R4}, we branch on the next greedy 1-
cluster and add R1 to T , and also on the two overlaps of the
range R4. If in the same input instance the value of k =
3, we would have started with three greedy clusters of type
1, 2 and 3. In the next level, a greedy 1-cluster and a 2-
cluster is also considered along with the overlapping ranges
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(T,m) = (φ, 0)

({R4}, 7) ({R4, R5}, 10)

({R4, R1}, 10) ({R4, R3}, 9) ({R4, R5}, 10)

Figure 2: The branching tree obtained for Figure 1 with k =

2 and l = 3. In each of the nodes, the set T and the number

of exposed points m when T is removed are shown. Here the

solution is {R4, R1} or {R4, R5} that exposes 10 points

of R4. Additionally, we would have branched on the chosen
2-cluster {R4, R5} also.

This branching process continues until the k value be-
comes zero in all branches. From the leaves of the branching
tree, the node with maximum number of exposed points is
returned as the solution.
Let us now establish the time complexity of the algorithm.
The number of children of a node of the branching tree is at
most lk−l. This happens when we branch on a (k−1)-cluster
and each range in the cluster has l neighbors. At each step,
we add either a cluster or a neighbor, in either case depth
of the branching tree is at most k, and the branching tree
has size O((lk − l)k). On an internal node of the branching
tree, algorithm only does polynomial computations and the
running time is O∗(lk − l)k) 1 or if l < k, O∗(l2k)-time (as
cluster size is min(l, k)) , i.e., it is fixed parameter tractable
with respect to l and k.

Theorem 1. MEP is fixed parameter tractable with respect

to k and l, where l is the maximum number of overlaps, a

range creates with another one.

Proof. Our proof of correctness is based on the hybridiza-
tion method used in [2]. Let T0 be a solution that exposes
the maximum number of points. Recall that each node of
the branching tree has at most k greedy clusters adding 1 to
k ranges to the solution and up to lk − l neighbours each
adding one range to the solution.
Let B be the set of ranges in a maximal branch in the branch-
ing tree from the root to a node v such that all the ranges in
B are present in T0. By the maximality of the branch, the
range(s) in v deviates from T0. From T0 ⧵B, find the largest
i-cluster. None of the ranges in that i-cluster is a neighbour
of v, as B is the set of ranges in the maximal branch. So, we
can substitute the i-cluster in T0 ⧵ B by the greedy i-cluster
from v as it will expose at least as many points as the other
cluster. From v, we consider a maximal branch B

′
again in

accordance with T0, and we iterate the same hybridization
method at most k times until we reach a leaf.

1We use O* notation to hide polynomial factors with respect to n

3.2. An FPT algorithm for d-MEP
In this section, we solve d-MEP by formulating the prob-

lem as an integer linear program.
Given a range space (R, P ) with |D| = d being the num-

ber of cells with points. For any cell ci inD, we use cluster(ci)
to denote the set of ranges that forms the cell ci and points(ci)
for all the points that are contained in the cluster(ci). Let S
be a solution of MEP that on removal results in the maxi-
mum number of exposed points. In our algorithm we try to
guess a set C = {c1, c2,… , ci} (for 1 ≤ i ≤ d) which is a sub-
set of D, such that the ranges in {cluster(c1) ∪ cluster(c2)

∪ … ∪ cluster(ci)} have a non-empty intersection to the set
S. There are 2d such subsets possible for this guess.
We then reduce the problem of finding a set S of k ranges
which on removal maximizes the number of exposed points
to integer linear programming (ILP) optimizations with at
most d variables in each ILP optimization. The ILP opti-
mization problem can be parameterized by the number of
variables [7] and, here we parameterize d-MEP by the num-
ber of cells d. Our idea in ILP is to maximize the num-
ber of points in the clusters of the subset guessed, subject to
the condition that the number of ranges in the clusters is k.
Given a set of cells C ⊆ {c1, c2,… , cd}, we present the ILP
formulation of d-MEP problem as follows:

ILP Formulation:
For each ci, we associate two variables; xi that indicates
|S ∩ cluster(ci)| = xi and yi with |S ∩ points(ci)| = yi. The
possibility of same ranges containing in different clusters is
eliminated by using a Boolean variable val(ci). val(ci) is as-
signed to 0 when cluster(ci) is a subset of cluster(cj), where
ci, cj ∈ C and i ≠ j, and 1, otherwise.

maximize
∑

ci∈C

val(ci)yi

subject to∑
xi = k

xi ∈ {1, 2,… , |cluster(ci)|} for all ci ∈ C

Solving the ILP: It is shown that the feasibility version of
a p variable ILP is fixed parameter tractable with running
time doubly exponential in p by Lenstra [11] and Kannan
[9]. Frank and Tardos [8] improved the algorithm to run in
polynomial space. In our case we use the optimization ver-
sion of p-ILP defined by Fellows et.al. [7]. They showed
that the optimization version can be solved in O∗(p2.5p +

o(p).L.log(MN)) time and space polynomial in L. Here,
L is the number of bits in the input, N is the maximum of
the absolute values any variable can take, and M is an upper
bound on the absolute value of the minimum taken by the
objective function.
In the formulation for d-MEP, we have at most d variables,
and 2d such formulations. The value of objective function is
bounded by m which is the maximum number of points that
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can be exposed. The value of any variable in the integer lin-
ear programming is also bounded by max(m, n). There are at
most 2d choices for C , and the ILP formulation for a guess
can be solved in FPT time. Therefore, the total runtime is
O∗(2dd2.5d). Thus, the following theorem holds.

Theorem 2. MEP is Fixed parameter tractable with respect

to the number of cells d in the range space that contain

points.

4. Conclusion

We show that the maximum exposure problem (MEP) is
W[1]-hard with respect to the solution size k and FPT with
respect to the parameters (l, k) and d where l is the maximum
number of overlaps in any range and d is the number of cells
in the range space which contain points. It will be interesting
to investigate further variants of the problem to see which
all restricted range spaces gives polynomial time solutions
or FPT solutions. It would also be interesting to see if other
multiparameterizations are possible for the general case.
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