
ar
X

iv
:2

11
2.

01
71

0v
1 

 [
cs

.C
C

] 
 3

 D
ec

 2
02

1

Strong Hardness of Approximation for Tree Transversals

Euiwoong Lee

University of Michigan

Pengxiang Wang

University of Michigan

Abstract

Let H be a fixed graph. The H-Transversal problem, given a graph G, asks to remove the
smallest number of vertices from G so that G does not contain H as a subgraph. While a simple
|V (H)|-approximation algorithm exists and is believed to be tight for every 2-vertex-connected
H , the best hardness of approximation for any tree was Ω(log |V (H)|)-inapproximability when
H is a star.

In this paper, we identify a natural parameter ∆ for every tree T and show that T -
Transversal is NP-hard to approximate within a factor (∆ − 1 − ε) for an arbitrarily small
constant ε > 0. As a corollary, we prove that there exists a tree T such that T -Transversal is
NP-hard to approximate within a factor Ω(|V (T )|), exponentially improving the best known
hardness of approximation for tree transversals.

1 Introduction

Let H = (V (H), E(H)) be a fixed pattern graph. The H-Transversal problem is a vertex deletion
problem whose input is a graph G = (V (G), E(G)) and the goal is to compute the smallest set
S ⊆ V (G) such that G \ S does not have H as a subgraph. Note that in this paper, we focus on
the notion of subgraphs instead of induced subgraphs and (topological) minors, both of which have
been actively studied through the lens of approximation and parameterized algorithms. We refer
the reader to recent papers [AKL20, FLP+20, KLT21] and a survey [FKLM20] on these topics.

H-Transversal either captures or is closely related to fundamental optimization problems in-
cluding Vertex Cover, Dominating Set, Feedback Vertex Set, and Clique Transversal; see [GL17]
and references therein. One natural direction is to characterize the complexity and approximability
of H-Transversal for every H . Lund and Yannakakis [LY93] gave the complexity classification,
proving that whenever H has an edge, H-Transversal becomes NP-hard to solve optimally and in
fact APX-hard. However, a complete characterization of approximability for H-Transversal is not
known yet.

WhenH is a single edge,H-Transversal becomes Vertex Cover that has a simple 2-approximation
algorithm, which is optimal assuming the Unique Games Conjecture (UGC) [KR08]. Indeed, for
every H , there is a simple |V (H)|-approximation algorithm for H-Transversal by viewing the prob-
lem as a special case of |V (H)|-Uniform-Hypergraph Vertex Cover; given G, consider a hypergraph
H ′ whose vertex set is V (G) and a set of |V (H)| vertices {v1, . . . , v|V (H)|} forms a hyperedge if and
only if the subgraph induced by them has H as a subgraph. Then S ⊆ V (G) is a H-transversal in G
if and only if it covers every hyperedge of H ′, so a |V (H)|-approximation algorithm for Hypergraph
Vertex Cover for H ′ implies the same approximation factor for H-Transversal.
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When H is 2-vertex-connected, it is know that that this simple approximation algorithm is
likely to be tight; assuming the UGC, for any constant ε > 0, it is NP-hard to approximate
H-Transversal within a factor (|V (H)| − ε) [BEH+21]. (Without the UGC, the factor becomes
(|V (H)| − 1− ε) [GL17].)

Given the strong hardness of any 2-vertex-connectedH , it is natural to study the case when H is
a tree. For trees, most known results are algorithmic. When H is a path or a star (i.e., a tree where
every vertex except one is a leaf), there exists an O(log |V (H)|)-approximation algorithm [Lee17,
GL17]. Very recently, it was proved that there exists a (|V (H)| − 1/2)-approximation algorithm
for every tree H [BEH+21], showing qualitative differences between trees and 2-vertex-connected
graphs. Prior to this work, the largest inapproximability factor for any tree H is Ω(log |V (H)|)
when H is a star. Given stars and paths are two extreme examples of trees (e.g., among trees,
stars have the smallest diameter and paths have the largest) and they both admit O(log |V (H)|)-
approximations, it is natural to suspect that every tree H admits an O(log |V (H)|)-approximation
algorithm.

In this paper, we prove that surprisingly (at least to the authors), it is not the case and there
exists a tree T such that T -Transversal is NP-hard to approximate within a factor Ω(|V (T )|). Given
a tree T , let χ : V (T ) → {0, 1} to be a proper 2-coloring of T , and

∆(T ) := min
i∈{0,1}

max
v∈χ−1(i)

degT (v).

Note that as the 2-coloring of any tree is unique up to switching two colors, so ∆(T ) does not
depend on the choice of χ. Our main theorem is the following hardness for T -Transversal.

Theorem 1. Let T be a fixed tree with ∆(T ) ≥ 3. For any constant ε > 0, it is NP-hard to
approximate T -Transversal within a factor of (∆(T )− 1− ε).

In particular, if T is a double star (i.e., V (T ) = {u1, . . . , uk, v1, . . . , vk} and E(T ) = {(u1, v1)}∪
(∪k

i=2{(u1, ui), (v1, vi)}) for some integer k), then it is hard to approximte T -Transversal within a
factor (|V (T )|/2− 1− ε) for any ε > 0.

1.1 Techniques

Like the previous strong inapproximability result for 2-vertex-connectedH [GL17], Theorem 1 starts
from the strong hardness of approximation for k-Uniform-Hypergraph Vertex Cover (k-HVC). The
input is a k-uniform hypergraph H = (V (H), E(H)) where each hyperedge e ∈ E(H) contains
exactly k vertices, and the goal is to choose the smallest subset S ⊆ V (H) that covers (intersects)
every hyperedge e ∈ E(H). [DGKR05] proved that it is NP-hard to approximate this problem
within a factor (k − 1− ε) for any ε > 0.

Let T be a fixed 2-vertex-connected graph with k = |V (T )|. [GL17] constructs a reduction
from k-HVC to T -Transversal by directly replacing each hyperedge with a copy of T . Given a
hypergraph H for k-HVC, it constructs an extended hypergraph k-uniform hypergraph H ′ by
letting V (H ′) = V (H) × [B] and replacing each hyperedge (v1, . . . , vk) of H by C hyperedges of
the form ((v1, i1), . . . , (vk, ik)) for randomly chosen i1, . . . , ik ∈ [B] for some parameters B and
C. The final G for T -Transversal is just obtained by letting V (G) = V (H ′) and each replacing
a hyperedge e = (v1, . . . , vk) ∈ E(H ′) by edges of T between v1, . . . , vk. Then one can show the
optimal T -Transversal for G is essentially the same as the optimal vertex cover for H ′, which is
closely related to the optimal vertex cover for H . The proof crucially uses the 2-vertex-connectivity
of T .
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The key difference in this paper is how we construct G from H ′. Instead of directly adding
a copy of T for each hyperedge of H ′, we let G be the vertex-hyperedge incidence graph; V (G) =
V (H ′)∪E(H ′) and for v ∈ V (H ′) and e ∈ E(H ′), the pair (v, e) is an edge in G if and only if v ∈ e.
Then G becomes a bipartite graph where the vertices in one side E(H ′) has degree exactly k.

Suppose k = ∆ = ∆(T ) and S ⊆ V (H ′) that covers every e ∈ E(H ′). Then, in G \ S, every
vertex e ∈ E(H ′) has degree at most ∆ − 1, which implies that G \ S does not contain any copy
of T ; when χ : V (T ) → {0, 1} is a 2-coloring of T , since G \ S is still bipartite, any injective
homomorphism from T to G \ S will map the vertices of T of the same color to one side of the
bipartition of G, but since each color has a vertex with degree at least ∆, the fact that one side of
G\S does not contain any vertex of degree at least ∆ implies that such an injective homomorphism
cannot exist!

To prove the other direction (i.e., a good T -transversal of G implies a good vertex cover of H),
we use the same technique of carefully constructing H ′ from H by letting V (H ′) = V (H)× [B] and
replacing each hyperedge (v1, . . . , vk) of H by many hyperedges of the form ((v1, i1), . . . , (vk, ik)).
Unlike [GL17], we do not have to use randomness here and simply create every possible hyperedge.
The final construction becomes slightly more complicated because we create C copies of the same
hyperedge for technical purposes.

2 Proof of Theorem 1

Fix a tree T with ∆ := ∆(T ) ≥ 3. ∆-Uniform-Hypergraph Vertex Cover is the problem whose
input is a ∆-uniform hypergraph H = (V (H), E(H)) where every hyperedge e ∈ E(H) contains
exactly ∆ vertices, and the goal is to find the smallest vertex cover S ⊆ V (H). A subset S is called
a vertex cover if covers every hyperedge; i.e., every e ∈ E(H) satisfies e∩S 6= ∅. Our starting point
is the following hardness for ∆-Uniform-Hypergraph Vertex Cover [DGKR05].

Theorem 2 ([DGKR05]). For any ∆ ≥ 3 and ε′ > 0, given a ∆-uniform hypergraph H =
(V (H), E(H)), it is NP-hard to distinguish the following two cases:

• Completeness: There exists a vertex cover S ⊆ V (H) with |S| ≤ |V (H)|/(∆− 1− ε′).

• Soundness: For every vertex cover S ⊆ V (H), |S| ≥ (1 − ε′)|V (H)|.

We design a reduction from ∆-Uniform-Hypergraph Vertex Cover to T -Transversal. Let H =
(V (H), E(H)) be an instance of ∆-Uniform-Hypergraph Vertex Cover. Let B and C be positive
integers that will be fixed later. Given H , the reduction outputs a graph G = (V (G), E(G)) as an
instance of T -Transversal as follows.

• We first construct an extended ∆-uniform hypergraphH ′ = (V (H ′), E(H ′)), where we replace
each vertex of H by a cloud of B vertices and replace each hyperedge (v1, . . . , v∆) of H by
B∆ hyperedges of the form ((v1, i1), . . . , (v∆, i∆)) for i1, . . . , i∆ ∈ [B], and further duplicate
each hyperedge C times; the final hyperedges are of the form ((v1, i1), . . . , (v∆, i∆))j where
i1, . . . , i∆ ∈ [B] and j ∈ [C]. Formally,

– V (H ′) = V (H)× [B].

– E(H ′) = {((v1, i1), . . . , (v∆, i∆))j : (v1, . . . , vk) ∈ E(H) and i1, . . . , i∆ ∈ [B], j ∈ [C]}.
Note that |E(H ′)| = |E(H)| · B∆ · C.
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• Let G = (V (G), E(G)) be the vertex-hyperedge incidence graph of H ′. Formally,

– V (G) = V (H ′) ∪E(H ′).

– E(G) = {(v, e) : v ∈ V (H ′), e ∈ E(H ′) and v ∈ e}.

Note that G is a bipartite graph.

Completeness. Suppose that there exists S ⊆ V (H) such that |S| ≤ |V (H)|/(∆ − 1 − ε′) and
it covers every hyperedge of H ; i.e., for every e ∈ E(H), S ∩ e 6= ∅. Let S′ = S × [B] ⊆ V (H ′)
such that |S′| ≤ B|V (H)|/(∆− 1− ε′). It is simple to verify that S′ covers every hyperedge of H ′

as well; for every hyperedge e′ = ((v1, i1), . . . , (v∆, i∆))ℓ of H ′, (v1, . . . , v∆) is a hyperedge of H ,
which implies that S contains some vj for j ∈ [∆] and S′ contains (vj , ij).

We would like to prove that S′, as a subset of V (G), is a valid T -transversal; it covers every
copy of T in G. This follows from the fact that after deleting S′ from G, every vertex e ∈ E(H ′)
has a degree at most ∆ − 1 in G \ S′; it has degree exactly ∆ in G, but since S′ is a vertex cover
for H ′, there exists v ∈ S′ such that (e, v) ∈ E(G). Then G \ S′ is a bipartite graph where the
maximum degree on one side is at most ∆− 1. Since T is a bipartite graph where both sides have
a vertex of degree at least ∆, T cannot be a subgraph of G \ S′.

Soundness. Suppose that for every vertex cover S ⊆ V (H), |S| ≥ (1− ε′)|V (H)|. Let R ⊆ V (G)
be an optimal T -transversal of G. Our choice of B and C will satisfy

C > 2|V (H ′)| = 2|V (H)| · B. (1)

Given this choice, we can prove that R only contains vertices from V (H ′), not E(H ′).

Claim 1. R ⊆ V (H ′).

Proof. If there exists ((v1, i1), . . . , (v∆, i∆)) ∈ (V (H)×[B])∆ such that |R∩{((v1, i1), . . . , (v∆, i∆))j :
j ∈ [C]}| > |V (H ′)|, it violates the optimality of R; just taking all vertices in V (H ′) is a
cheaper T -transversal. Therefore, we assume that for any ((v1, i1), . . . , (v∆, i∆)), we have |R ∩
{((v1, i1), . . . , (v∆, i∆))j : j ∈ [C]}| ≤ |V (H ′)| < C/2.

We now claim that R ∩ V (H ′) is a T -transversal. Consider any set of |V (T )| vertices I =
{v1, . . . , vp}∪{(e1)j1 , . . . , (eq)jq} of G whose induced subgraph GI contains T as a subgraph, where
{v1, . . . , vp} ⊆ V (H ′) and {(e1)j1 , . . . , (eq)jq} ⊆ E(H ′) (e.g., for each ℓ ∈ [q], eℓ ∈ (V (H) × [B])∆

and jℓ ∈ [C]). For each eℓ, among C identical copies from {(eℓ)jℓ}jℓ∈[C], R contains at less than
C/2 copies. Therefore, one can find j′1, . . . , j

′
q such that none of (e1)j′

1
, . . . , (eq)j′q is contained in

R. For every ℓ ∈ [q], (eℓ)jℓ and (eℓ)j′
ℓ
have the exactly the same of neighbors, so one can conclude

that I ′ = {v1, . . . , vp} ∪ {(e1)j′
1
, . . . , (eq)j′q} also contains T in its induced subgraph. However, by

construction R contains none of (e1)j′
1
, . . . , (eq)j′q , which means that R contains at least one vertex

from {v1, . . . , vp}. This implies that R ∩ V (H ′) also contains at least one vertex from {v1, . . . , vp},
which implies that R ∩ V (H ′) is a T -transversal.

By optimailty of R, we have R ∩ V (H ′) = R, which implies that R ⊆ V (H ′).

Let k = |V (T )| and w be a constant that will be fixed later only depending on k, and for each
v ∈ V (H), say v is occupied if |R∩ ({v}× [B])| ≥ B−w, and free otherwise. For e = (v1, . . . , v∆) ∈
V (H), call e free if all v1, . . . , v∆ are free.
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Claim 2. No e ∈ V (H) is free.

Proof. Assume towards contradiction that e = (v1, . . . , v∆) ∈ V (H) is free; all v1, . . . , v∆ are free.
We will show that R is not a T -transversal.

Without loss of generality, after suitable permutations of vertices, assume that for each ℓ ∈ [∆],
none of (vℓ, 1), . . . , (vℓ, w) is in R. We will find a large tree T ′ in the subgraph of G induced by
V ′ ∪ E′ where V ′ = (∪ℓ∈[∆]({vℓ} × [w])) and E′ = {((v1, i1), . . . , (v∆, i∆))1 : i1, . . . , i∆ ∈ [w]}. The
tree T ′ has height is 2k − 1 and it has 2k levels from 0 to 2k − 1. Each even level contains a node
from E′ and each odd level contains a node from V ′; furthermore, each odd-level node has type ℓ
when it contains a node from (vℓ × [w]). Each even-level node of T ′ will have degree ∆ and each
odd-level internal node (i.e., at level 1, 3, . . . , 2k− 3) of T ′ will have degree k. Let the root node be
((v1, 1), . . . , (v∆, 1))1 and its ∆ children be (v1, 1), . . . , (v∆, 1). The rest of T ′ is constructed by the
following procedure run for each odd-level node.

• For each odd-level node (vℓ, iℓ) of type ℓ:

• If the current level is already 2k − 1, return.

• Otherwise, for each ℓ′ ∈ [∆] \ ℓ, choose k− 1 new vertices from {vℓ′}× [w] that have not been
chosen during the construction of T ′. Call them (vℓ′ , i

′
ℓ′,1), . . . , (vℓ′ , i

′
ℓ′,k−1).

– Since T ′ has at most (k∆)k internal nodes, by ensuring

w > k3k ≥ (k∆)k+1, (2)

one can ensure that this process can be done for every odd-level internal node.

• For each r = 1, . . . , k − 1,

– Create a (even-level) child ((v1, i
′
1,r), . . . , (vℓ−1, i

′
ℓ−1,r), (vℓ, iℓ), (vℓ+1, i

′
ℓ+1,r), . . . , (v∆, i

′
∆,r))1.

∗ Its ∆−1 (odd-level) children will be (v1, i
′
1,r), . . . , (vℓ−1, i

′
ℓ−1,r), (vℓ+1, i

′
ℓ+1,r), . . . , (v∆, i′∆,r).

Therefore, one can conclude that a desired T ′ can be found from V ′ ∪ E′. Since T ′ has height
2k− 1 and every even-level node has degree exactly ∆ and every odd-level internal node has degree
exactly k, we claim that T ′ contains a copy of T . If χ : V (T ) → {0, 1} is a 2-coloring of T such that
maxV ∈χ−1(0) degT (v) = ∆, mapping any fixed node v ∈ χ−1(0) to the root of T ′ and arbitrarily
extending the mapping along the edges of T will give a injective homomorphism from T to T ′;
every node in χ−1(0) will be mapped to even-level nodes of T ′ and every node in χ−1(1) will be
mapped to odd-level nodes of T ′, both of which have enough degrees (i.e., ∆ for even levels, k for
odd levels) for further extension.

Finally, note that since R ∩ (V ′ ∪E′) = ∅, R does not intersect T ′. Since T ′ contains a copy of
T , it contradicts that R′ is a T -transversal and finishes the proof.

Since no e ∈ V (H) is free, it implies that the set of occupied verties is a valid hypergraph
transversal in H , which implies that |R| ≥ (1 − ε′)|V (H)|(B − w). By setting w be a constant
greater than k3k, B = ω(w), and C > 2|V (H)|B satisfies all the previous conditions ((1) and (2))
while ensuring that |R| ≥ (1− ε′ − o(1))|V (H)|B. The multiplicative gap between the sizes of the
optimal T -transversal between the completeness case and the soundness case is at least (∆− 1)(1−
O(ε′)− o(1)).
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