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A B S T R A C T

The problem of enumerating all connected induced subgraphs of a given order k from a given

graph arises in many practical applications: bioinformatics, information retrieval, processor de-

sign,to name a few. The upper bound on the number of connected induced subgraphs of or-

der k is n ⋅

(eΔ)k

(Δ−1)k
, where Δ is the maximum degree in the input graph G and n is the num-

ber of vertices in G. In this short communication, we first introduce a new neighborhood op-

erator that is the key to design reverse search algorithms for enumerating all connected in-

duced subgraphs of order k. Based on the proposed neighborhood operator, three algorithms

with delay of O(k ⋅ min{(n − k), kΔ} ⋅ (k logΔ + log n)), O(k ⋅ min{(n − k), kΔ} ⋅ n) and

O(k2 ⋅min{(n−k), kΔ} ⋅min{k,Δ}) respectively are proposed. The first two algorithms require

exponential space to improve upon the current best delay bound O(k2Δ)[4] for this problem in

the case k >
n logΔ−log n−Δ+

√
n log n logΔ

logΔ
and k >

n2

n+Δ
respectively.

1. Introduction

The problem of enumerating all connected induced subgraphs of order k is involved in many applications. Such

applications include for example identifying network motifs from biological networks [1], retrieving keyword queries

over RDF graphs [2] and enforcing higher consistency levels in constraint processing [3]. Following is the definition

of the problem that this short communication focuses on.

Problem GEN(G; k) : Given an undirected graph G = (V , E), the problem is to enumerate all subsets X ⊂ V of

vertices such that |X| = k and the subgraph G[X] induced on X is connected.

The upper bound on the number of connected induced subgraphs of order k is n ⋅
(eΔ)k

(Δ−1)k
, where Δ is the maximum

degree in the input graph G [6, 10]. Hence, the problem GEN(G; k) is a computationally difficult problem. An

efficient algorithm is of great importance. In the literature, the algorithms for subgraph enumeration problem are

usually evaluated in terms of delay for worst-case running time analysis. The delay is the maximal time that the

algorithms spend between two successive outputs. In this work, we also use the upper bound on the delay of the

enumeration algorithms as a nontrivial running time bound.

Most previous approaches perform the enumeration procedure by incrementally enlarging the connected subgraphs

until the size of such subgraphs is k [1, 4, 5]. In these approaches, the small subgraphs are expanded by absorbing

neighbor vertices. The algorithm presented in [1] starts by assigning each vertex a number as a unique label. Then, the

subgraphs are gradually expanded by adding neighbor vertex that has larger label and be neighbored to the newly added

vertex but not to a vertex already in the subgraph. In such way, each subgraph is enumerated exactly once. A variant

of this algorithm is introduced in the most recent literature [4]. The variant algorithm (denoted as Simple) introduces

a pruning rule that can avoid unnecessary recursion. With the introduced pruning rule, the algorithm Simple achieves

a delay of O(k2Δ). Furthermore, a so-called k-component rule is applied to speed up the enumeration of connected

induced subgraphs of large cardinality. Another recent approach introduced in [5] tries to expand the connected induced

subgraphs by adding only the validated neighbors. Each neighbor vertex is validated by judging if it has greater distance

to the anchor vertex v (the vertex with the smallest vertex identifier in the current subgraph) than the distance from the

utmost vertex u (the vertex in the current subgraph with the longest shortest path to the anchor vertex) to v or it has

the same distance to v as the distance from u to v but it is lexicographically greater than u.
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Algorithm 1: The IRwD Algorithm

Input: An undirected graph G = (V ,E)
Output:  A set of enumerated subgraphs

1 Queue Q = ∅;

2  = ∅;

3 for each connected component C in G do

4 S = an initial solution in C ;

5 Q.enqueue(S);
6  =  ∪ {S};

7 while Q ≠ ∅ do

8 S = Q.dequeue();
9 output S;

10 A = ArticulationP oint(S);
11 for each vertex v ∈ S ⧵ A do

12 S′ = S ⧵ {v};

13 for each neighbor vertex w of S′ do

14 S′′ = S′ ∪ {w};

15 if S′′ ∉  then

16 Q.enqueue(S′′);
17  =  ∪ {S′′};

Different from the bottom-up approaches, Elbassioni proposed a reverse search based algorithm for enumerating

all connected induced subgraphs of order k in [7]. We call this algorithm RwD (ReverseSearcℎwitℎDictionary) as

referred to in [4]. Please note that the idea of reverse search method for enumeration was first introduced in [8]. The

reverse search algorithm produces all the solutions by traversing the supergraph . Each node of  corresponds to a

solution of problem GEN(G; k), that is, a connected vertex set of order k. The arcs between nodes X and X′ in 

are defined by a neighbor operator:  (X) = {X′ ∈ (G; k) ∶ |X ∩X′| = k − 1}, where (G; k) denotes the family

of vertex sets of order k in G. In the following, as in [7], we distinguish the vertices of G and  by denoting them

respectively as vertices and nodes.

The RwD algorithm initially generates a solution X0 (G[X0] is a connected induced subgraph of order k). Based

on the initial solution, all the neighbors of X0 in  are visited by exchanging one vertex. In detail, a vertex u in

X0 is deleted, and a common neighbor vertex v of connected components in X0 ⧵ {u} is added to form a connected

vertex set X0 ⧵ {u} ∪ {v}. In order to avoid duplicates, each newly generated solution should be checked if it has

already been visited. Then, each unvisited neighbor is added to a list or a queue as a candidate to be further explored.

This procedure can be carried out in depth-first way or breath-first way until all nodes in  are visited. The pseudo

code of the algorithm can be found in [4]. According to the definition of neighborhood presented in [7], | (X)| ≤
k ⋅min{(n− k), kΔ}, and each solution is generated in time O(k(Δ+ logk) + log n)). Thus, the delay of the algorithm

is O(k ⋅ min{(n − k), kΔ} ⋅ (k(Δ + logk) + log n)).

2. Proposed Approaches

We assume the input undirected graph is a connected graph, if not we can simply deal with each connected com-

ponent separately. In [7], two connected sets X and X′ of order k are neighbors if they have k−1 vertices in common

(the induced subgraph of the k− 1 vertices in common can be disconnected or connected). In this work, we introduce

a different definition of neighborhood of . For a set X ∈ (G; k), the neighbors of X are obtained from X by ex-

changing one vertex:  (X) = {X′ ∈ (G; k) ∶ |X ∩ X′| = k − 1 and G[X ∩ X′] is connected} . In other words,

any pair of two nodes in  are neighbors only if the two nodes have k−1 vertices in common and the induced graph of

their intersection is also connected. An illustrative example of the supergraph method [8] based on the new neighbor-

hood definition and the neighborhood definition proposed in [7] is shown in Fig. 1. If the supergraph  constructed

according to the introduced new definition of neighborhood is strongly connected, we then can explore all the nodes

in  more efficiently starting from any node in it.

Now, we prove that the supergraph  is strongly connected.

Lemma 1. Let X,Y be two distinct elements in (G; k). Then there exists vertex sets X1,X2,⋅ ⋅ ⋅,Xl ∈ (G; k) such

that X1 = X,Xl = Y , l ≤ n − k + 1, and for i = 1, ⋅ ⋅ ⋅, l − 1, Xi+1 ∈  (Xi).
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Figure 1: An illustrative example of constructing the supergraph  (k = 3). (a) a simple graph G with four vertices. (b)
the supergraph  constructed based on the neighborhood operator introduced in [7]. (c) the supergraph  constructed
based on the proposed new neighborhood operator.

Proof. Similarly to the proof of Lemma 1 in [7], we first define the d(Z,Z′) as the shortest distance between the two

vertex sets Z,Z′ in G (Z,Z′ ∈ (G;K)). We consider two cases: d(X, Y ) = 0 and d(X, Y ) > 0.

Case 1. If d(X, Y ) = 0, then there exists at least a vertex z ∈ X ∩ Y . We first contract the connected component

containing z in X ∩ Y as a single vertex v in G[X] and denote the new graph by G′. As G′ is connected, it has a

spanning tree T . T has a leaf u ≠ v. Furthermore, there exists at least a vertex w ∈ Y , w ∉ X and w is the neighbor of

v. We delete u from X and add w to X, we then have X2 = X ∪ {w} ⧵ {u}. We can iteratively perform this procedure

to construct X3, ...Xi until Xi = Y , where i ≤ k − 11.

Case 2. If d(X, Y ) > 0, then X ∩ Y = ∅. Let v0, v1, ⋅ ⋅ ⋅, vj be the ordered sequence of vertices on the shortest

path between X and Y in G, where v0 ∈ X and vj ∈ Y . Let T be a spanning tree of G[X]. Then T has at least a

leaf u ≠ v0. We delete u and add v1, then we have X2 = X1 ∪ {v1} ⧵ {u} (G[X2] is a connected subgraph). We can

continue this procedure to construct X3, ..., Xi until d(Xi, Y ) = 0. As d(X, Y ) ≤ n− 2k, we will arrive at case 1 after

at most n − 2k + 1 such iterations.

Since the supergraph  is strongly connected, we can traverse all the solutions (nodes) in  starting from any

node in . The pseudo code of our proposed algorithm is shown in Algorithm 1. This algorithm, called IRwD

(ImprovedReverseSearcℎwitℎDictionary) differs from RwD [7] in two points. First, as the induced subgraph of

the common part of two neighbors should be connected, only the vertex that is not an articulation point of S can be

deleted (the articulation points of S can be quickly found in O(k ⋅min{k,Δ}) time by calling the algorithm proposed

by Tarjan[9], i.e., line 10 of Algorithm 1). Second, as the approach of [7] deletes a vertex in S in each iteration, S′

may not be connected. Hence, finding common neighbors of connected components of S′ is required to ensure the

connectivity of the generated solution, and it is one of most time-consuming procedure inside each call. The searching

of the common neighborhood of connected components of S′ takes O(k(Δ + logk)) time [7]. This time-consuming

job can be avoided in our approach.

The delay of IRwD algorithm is given and proven as follows.

Lemma 2. The delay of the proposed algorithm IRwD is O(k ⋅ min{(n− k), kΔ} ⋅ (k logΔ + log n)), where Δ is the

maximum degree of G.

Proof. It is clear that the first solution can be found in O(kΔ) by traversing G in depth-first search (DFS) starting

from an arbitrary vertex. Now, we show that in O(k ⋅ min{(n − k), kΔ} ⋅ (k logΔ + log n)) time we either find a

new node (subgraph) or terminate the enumeration. We compute the set of all the articulation points (A) in S by

calling Tarjan’s algorithm before the nested for loop (line 10, Algorithm 1). The running time of Tarjan’s algorithm is

O(k ⋅min{k,Δ}). Given a node S, the nested for loop (lines 11-17, Algorithm 1) requires at most N(T 1 + T 2) time,

whereN is the maximum number of the neighbors ofS, T 1 is the time to generate a neighbor andT 2 is the time to check

if the neighbor has already been generated before. Based on the introduced new definition of neighborhood, we have

N ≤ k ⋅min{(n− k), kΔ}, and by the introduced neighborhood operator, T 1 = O(1). By maintaining a priority queue

 on the set of generated solutions (the subgraphs that are already discovered and processed), we can ensure that T 2 =

log |S| using a balanced binary search tree on the solutions generated, where |S| is the maximum number of generated

subgraphs. The currently known bound on |S| is O(n ⋅
(eΔ)k

(Δ−1)k
), which implies that T 2 is O(k logΔ+ log n). Thus, the

1There are at most k − 1 vertices that are in X and not in Y . Thus, it is required to remove at most k − 1 vertices from X to get Y .
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Figure 2: The binary search tree corresponds to the set of discovered solutions {{1, 2, 3}, {1, 2, 4}, {2, 3, 4}}

time for executing the nested for loop is at most O(k⋅min{(n−k), kΔ} ⋅(k logΔ+logn)). After executing the nested for

loop, we have two cases: If the queueQ is empty, the algorithm terminates; If the queueQ is not empty, we pick the first

node from the queue and output it. Therefore, the overall delay of IRwD isO(k⋅min{(n−k), kΔ}⋅(k logΔ+log n)).

In [4], an algorithm called Simple with a delay of O(k2Δ) is presented. This delay is the current best delay in the

literature. Compared with the best delay proven in [4], it can be seen that, for small values of k the delay of Simple

is better than the delay of IRwD and for large k (e.g., k close to n) the delay of IRwD is better. More precisely,

the IRwD algorithm has a better delay than the Simple algorithm in the case k >
n logΔ−log n−Δ+

√
n log n logΔ

logΔ
. In

the proposed IRwD algorithm, similar to RwD[7], we also maintain a balanced binary search tree on the solutions

generated. Each time a solution is generated, we check whether the solution has already been stored in the balanced

binary search tree. In this work, we propose another method to check whether a solution has been already visited.

Instead of using a balanced binary search tree to store the solutions visited, we maintain a binary search tree on the

sequences of visited vertices. The height of the binary search tree is n, where n is the number of vertices in G. In the

binary search tree, each node corresponds to a vertex in G. 1- and 0-branches at node i represents the addition or not

of the vertex i of G respectively. Fig.2 shows an example of the binary search tree constructed for the set of discovered

solutions {{1, 2, 3}, {1, 2, 4}, {2, 3, 4}}. With this method, we have a variant algorithm of IRwD, and we arrive at the

following.

Corollary 1. The variant algorithm of IRwD solvesGEN(G; k) for any graphG with delayO(k⋅min{(n−k), kΔ}⋅n),

where Δ is the maximum degree of G.

Proof. The only difference between the variant algorithm and IRwD is the time spent on checking if the neighbor

has already been generated before. With the binary search tree on the visited sequences of vertices, we can check

whether a neighbor has already been visited in O(n) time, which implies the overall delay of the variant algorithm is

O(k ⋅ min{(n − k), kΔ} ⋅ n).

Comparing the aforementioned delayO(k⋅min{(n−k), kΔ} ⋅n)with the current best delayO(k2Δ) in the literature,

it can be seen that the variant algorithm achieves a better delay in the case k >
n2

n+Δ
. If k >

n−log n

logΔ
, then n <

k logΔ + log n. Thus, the check if the neighbor has already been generated using proposed binary search tree is faster

than the check using balanced binary tree [7] in this case.

Furthermore, it should be noted that both the proposed algorithm and the algorithm presented in [7] use a dictionary

to store all previously detected solutions. Hence, the algorithms requires exponential space (O(n + m + k|(G, k)|))
(the variant algorithm of IRwD has a slightly improved space bound ofO(n+m+|(G, k)|) ). However, the algorithm

Simple of [4] requires only linear space. In order to avoid the use of exponential space, the author of [7] also proposed

another algorithm called RwP that has slightly worse delay (O((k ⋅min{(n−k), kΔ})2 ⋅ (Δ+ logk))) but requires only

linear space. The RwP algorithm also used the reverse search method. The main difference between RwD and RwP

is that RwP applies a parent function to ensure every neighbor is enumerated exactly once instead of storing all the

discovered subgraphs. In RwP , all solutions are sorted lexicographically and each solution has a unique parent. A

modified version of the algorithm is presented in [4]. The modified algorithm has a delay of O(k3 ⋅Δ⋅min{(n−k), kΔ})

by using a slightly different predecessor check method.

As the supergraph  constructed by the new neighbor operator is strongly connected, according to the definition of

predecessor function in [4] and the definition of parent node in [7], the methods of finding the predecessor or the parent
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Algorithm 2: The IRwP Algorithm

Input: An undirected graph G = (V ,E)
Output: A set of enumerated subgraphs

1 Queue Q = ∅;

2 for each connected component C in G do

3 S = lexicograpℎically largest solution in C ;

4 Q.enqueue(S);
5 while Q ≠ ∅ do

6 S = Q.dequeue();
7 output S;

8 A = ArticulationP oint(S);
9 for each vertex v ∈ S ⧵ A do

10 S′ = S ⧵ {v};

11 N = neigℎbor vertices of S′ ;

12 for vertex w ∈ N do

13 S′′ = S′ ∪ {w};

14 A′ = ArticulationP oint(S′′);
15 if w is the vertex with lowest index in S′′ ⧵ A′ and v is the vertex with highest index in N then

16 Q.enqueue(S′′);

can also be used in our proposed algorithm in order to have a linear space bound. The pseudo code of our algorithm that

adopts the predecessor check to avoid multiple enumerations can be found in Algorithm 2 (the algorithm is denoted

as IRwP ). The predecessor of a connected induced subgraph S is defined as follows: let S be a connected induced

subgraph of order k, S ⧵ {u} ∪ {v} is the predecessor of S if S ⧵ {u} ∪ {v} and S ⧵ {u} are connected, where the

vertex u ∈ S with lowest index and the vertex v ∉ S with highest index. The algorithm works as follows: We first

assign each vertex in G a number based on depth-first search rather than an arbitrary order. The depth-first search

implies a lexicographical ordering of the solutions. Each solution has a unique predecessor according to the defined

lexicographic order. We then start from a lexicographically largest solution (the lexicographically largest solution can

be found in time O(kΔ) by traversing the DFS tree that defines the lexicographic order on the vertex sets.), and traverse

the neighbors of each node S in  with DFS or breath-first search (BFS). If a neighbor S′ of S is considered, we only

output S′ (or put it into the queue) if S is the predecessor of S′.

The original algorithm proposed in [7] adopts DFS to find all the connected induced subgraphs of order k. Ko-

musiewicz, et al. implemented the algorithm (RwP ) with BFS. It worthy noted that the implementation with BFS has

a space bound of O(n + m + k|(G, k)|). However, the claimed delay and a linear space can be ensured if we imple-

ment it with DFS and distinguish between nodes of odd and even depth in the search tree [4, 7]. For a straightforward

comparison with the most recent work in [4], we also provide the BFS version of IRwP in this letter.

Lemma 3. The delay of the proposed algorithm IRwP is O(k2 ⋅ min{(n − k), kΔ} ⋅ min{k,Δ}), where Δ is the

maximum degree of G.

Proof. We first show the time spent on checking if S is the predecessor of S′′ (lines 14-16, Algorithm 2). The

predecessor check is executed as follows: We find the articulation points of S′′, this can be done in O(k ⋅min{k,Δ})

time. Then, we check if the vertex w is the vertex lowest index in S′′ ⧵ A′ and the vertex v is the vertex with highest

index in N . This check takes O(1) time 2. Moreover, the predecessor check is called at most k ⋅ min{(n − k), kΔ}

times. Therefore, the overall delay is O(k2 ⋅ min{(n − k), kΔ} ⋅ min{k,Δ}). Compared with the delay of Simple,

The bottleneck for the delay ofRwP is the time spent on the predecessor check. The originalRwP algoithm[7] and

the modifiedRwP algorithm[4] requireO(k(Δ+logk)min{(n−k), kΔ}) andO(k2Δ) time for executing the predecessor

check respectively. However, the predecessor check (lines 14-16) proposed in this work takes only O(k ⋅ min{k,Δ})

time. Hence, our proposed IRwP algorithm has a better delay than both the originalRwP algorithm and the modified

RwP algorithm. Both the IRwP algorithm and the Simple algorithm [4] require linear space. Comparing the delay

of IRwP and the delay of Simple, it can be seen that Simple has a better delay in case of 1 < k < n − 1.

2To achieve the claimed O(1) time, we can pick the vertex with lowest index from S′′ and A′ respectively when we generate S′′ and A′ (line

13 and 14, Algorithm 2). This operation should not increase the overall delay. For picking the vertex with highest index from N , we can perform

the selection in a similar way.
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3. Conclusion

In this work, we proposed a new neighborhood operator for constructing the supergraph  of the connected in-

duced subgraphs of order k, and proved that the supergraph  constructed by the neighborhood operator is strongly

connected. From a theoretical point of view, we improved upon the current best delay bound of algorithms for enu-

merating connected induced subgraphs in the case of large cardinality.
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