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We study the Vector Bin Packing and the Vector Bin Covering problems, multidimensional 
generalizations of the Bin Packing and the Bin Covering problems, respectively. In the 
Vector Bin Packing, we are given a set of d-dimensional vectors from [0, 1]d and the aim 
is to partition the set into the minimum number of bins such that for each bin B , each 
component of the sum of the vectors in B is at most 1. Woeginger [17] claimed that the 
problem has no APTAS for dimensions greater than or equal to 2. We note that there 
was a slight oversight in the original proof. In this work, we give a revised proof using 
some additional ideas from [3,8]. In fact, we show that it is NP-hard to get an asymptotic 
approximation ratio better than 600

599 .
An instance of Vector Bin Packing is called δ-skewed if every item has at most one 
dimension greater than δ. As a natural extension of our general d-Dimensional Vector 
Bin Packing result we show that for ε ∈ (0, 1

2500 ) it is NP-hard to obtain a (1 + ε)-
approximation for δ-Skewed Vector Bin Packing if δ > 20

√
ε.

In the Vector Bin Covering problem given a set of d-dimensional vectors from [0, 1]d , the 
aim is to obtain a family of disjoint subsets (called bins) with the maximum cardinality 
such that for each bin B , each component of the sum of the vectors in B is at least 1. 
Using ideas similar to our Vector Bin Packing result, we show that for Vector Bin Covering 
there is no APTAS for dimensions greater than or equal to 2. In fact, we show that it is 
NP-hard to get an asymptotic approximation ratio better than 998

997 .
© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In the d-Dimensional Vector Bin Packing problem, we 
are given a set of d-dimensional vectors (say S), each of 
whose components belongs to [0, 1], i.e., S ⊆ [0, 1]d . The 
aim is to partition S into the minimum number of bins, 
such that for each bin B , each component of the sum of 
the vectors in B is at most 1. Whenever the above condi-
tion holds for a set of vectors B , we say that the vectors 
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0020-0190/© 2023 Elsevier B.V. All rights reserved.
in B fit in a bin. The Vector Bin Packing problem is a nat-
ural generalization of the Bin Packing problem, which can 
be obtained by setting d = 1.

We also study a related problem called the Vector Bin 
Covering problem, a generalization of the Bin Covering 
problem. In the d-Dimensional Vector Bin Covering prob-
lem, we are again given a set of d-dimensional vectors (say 
S), each of whose components belongs to [0, 1]. The aim 
is to obtain a family of disjoint subsets (these subsets are 
called bins) with the maximum cardinality such that for 
each bin B , each component of the sum of the vectors in 
B is at least 1.
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There is a well-known reduction from the Partition 
problem1 to the Bin Packing problem, showing that it is 
NP-hard to obtain a 3/2 absolute approximation for Bin 
Packing. In fact, the same reduction shows that it is NP-
hard to get an absolute approximation ratio of 2 − ε for 
Bin Covering. Hence, we will look at the asymptotic ap-
proximation ratio for both of these problems.

Finally, we also study the Vector Bin Packing prob-
lem restricted to skewed instances, i.e., instances where all 
items are δ-skewed for some constant δ > 0. An item is 
called δ-large if at least two dimensions are larger than δ, 
for some constant δ > 0; otherwise, it is called δ-skewed. 
In fact, the case where all items are skewed forms an im-
portant subcase for many packing problems [4,13,14].

1.1. Related works

For the Vector Bin Packing problem, when d has been 
supplied as part of the input, Fernandez de la Vega and 
Lueker gave (d + ε)-approximate algorithm in [12]. This 
algorithm is almost optimal as there is a well-known re-
duction from the Vertex Coloring problem, which shows a 
d1−ε hardness (see [4]).

If d is kept fixed, i.e., it is not supplied as part of the 
input, then the above lower bound does not hold, and 
in fact, much better approximation factors are known for 
this case. The barrier of d was broken by Chekuri and 
Khanna [6] by obtaining a ln d + 2 + γ approximation, 
where γ ≈ 0.57721 is the Euler-Mascheroni constant. This 
was further improved to ln d + 1 by Bansal, Caprara, and 
Sviridenko [2] and then to ln(d + 1) + 0.807 by Bansal, 
Eliáš, and Khan [4]. Recently, Sandeep [16] showed that the 
best approximation ratio any algorithm which solves Vec-
tor Bin Packing can have, for high enough dimensions, is 
�(ln d). In the d = 2 case, Bansal, Caprara, and Sviridenko 
[2] gave a 1.693 approximation algorithm which was later 
improved to 1.406 by Bansal, Eliáš, and Khan [4]. Recently, 
this was further improved to 4

3 + ε by Kulik, Mnich, and 
Shachnai [15].

Bansal, Eliáš, and Khan [4] also note that skewed in-
stances constitute the hard instances for rounding-based 
algorithms for 2-Dimensional Vector Bin Packing. Gálvez, 
Grandoni, Ameli, Jansen, Khan, and Rau [13] studied the 
Strip Packing problem in this context and gave a ( 3

2 + ε)-
approximation. They also showed an (almost) matching 
( 3

2 − ε) lower bound. Recently, Khan and Sharma [14] gave 
an APTAS for 2-Dimensional Geometric Bin Packing with 
skewed items. They also note that it is possible to solve 
the Maximum Independent Set of Rectangles problem and 
the 2-Dimensional Geometric Knapsack problem exactly in 
polynomial time if all items are δ-large.

For the Vector Bin Covering problem, when d is sup-
plied as part of the input, the algorithm in the work 
by Alon, Azar, Csirik, Epstein, Sevastianov, Vestjens, and 
Woeginger [1] gives an approximation ratio of O (ln d). Fi-
nally, Sandeep [16] also gave a lower bound of �(

log d
log log d )

1 In the Partition problem given a list of positive integers x1, . . . , xn , 
the aim is to determine whether there is a subset S ⊆ {1, . . . , n} such that ∑

i∈S xi = ∑
i /∈S xi .
2

when the run-time is allowed to have a superpolynomial 
dependence on d.

For further information on approximation and online 
algorithms for multidimensional variants of the Bin Pack-
ing and Bin Covering problems, we refer the reader to the 
survey [10] by Christensen, Khan, Pokutta, and Tetali.

1.2. Our results

It was believed that [17] showed that there is no APTAS 
for the d-Dimensional Vector Bin Packing problem with 
d ≥ 2. However, as we show in Section 3, there was a 
minor oversight in the original proof. Unfortunately, this 
oversight is also present in the 391

390 lower bound for Vec-
tor Bin Packing by Chlebík and Chlebiková [9]. Hence, we 
present a revised proof in Section 2. Our proof uses essen-
tially the same construction as the original proof. However, 
the analysis is slightly different and the main ideas for the 
analysis are borrowed from [3,8]. We note that Sandeep’s 
lower bound of �(ln d) does not hold for low dimensions, 
and hence, it does not even rule out the possibility of AP-
TAS in the 2-dimensional case.

Our second result concerns Vector Bin Packing with 
skewed items. Extending the proof of our non-existence 
of APTAS for Vector Bin Packing we show that for ε ∈
(0, 1

2500 ) we need δ ≤ 20
√

ε to obtain a (1 + ε)-appro-
ximation for δ-Skewed d-Dimensional Vector Bin Packing. 
Finally, we also show that there is no APTAS for Vector Bin 
Covering with dimension d ≥ 2.

1.3. Preliminaries

As is the case in [17] and [3], we start with Max-
imum 3-Dimensional Matching (denoted by MAX-3-DM) 
and reduce it to 4-Partition and then reduce it to Vec-
tor Bin Packing. A 3-Dimensional Matching instance has 
three sets X = {x1, x2, . . . , xq}, Y = {y1, y2, . . . , yq}, and 
Z = {z1, z2, . . . , zq} and a set of tuples T ⊆ X × Y × Z . 
In MAX-3-DM given such an instance the aim is to find a 
subset T ′ ⊆ T with the maximum cardinality such that no 
element from X, Y , or Z occurs in more than one tuple. 
For our reduction we consider a restricted variant of this 
problem where there are exactly 2 tuples containing each 
element of the sets X , Y , and Z . This variant is called the 
2-Exact Maximum 3-Dimensional Matching problem (de-
noted by MAX-3-DM-E2). More precisely, we consider the 
gap variant of MAX-3-DM-E B (denoted GAP(α, β)-3-DM-
E2), where given a MAX-3-DM-E2 instance IM the aim is 
to distinguish between the case with OPT(IM) ≥ 	βq
 and 
OPT(IM) ≤ �αq�, where OPT(IM) is the optimal solution 
to the corresponding MAX-3-DM-E2 problem. In the m-
Partition problem given a list of integers x1, . . . , xn with n
being a multiple of m, the aim is to determine whether 
there exists n/m disjoint subsets Si ⊆ {1, . . . , n} of car-
dinality m such that 

∑
k∈Si

xk = ∑
k∈S j

xk for each i, j ∈
{1, . . . , n/m}.

Berman and Karpinski [5] showed that it is NP-hard to 
approximate MAX-3-DM-E2 with ratio better than 98

97 . This 
bound was later improved by Chlebík and Chlebíková [7]
to 95

94 . Finally, Chlebík and Chlebíková [8] also note the fol-
lowing corollary of their 95 bound.
94
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Theorem 1.1 ([8]). GAP(α0, β0)-3-DM-E2 is NP-hard, where 
α0 = 0.9690082645 and β0 = 0.979338843.

For the skewed item case we note that the size of the 
items in the reduction from MAX-3-DM to 2-Dimensional 
Vector Bin Packing can be made smaller by going through 
m-Partition instead of 4-Partition. Finally, for our Vector 
Bin Covering result we make a minor modification to the 
Vector Bin Packing reduction.

2. The main result

In this section, we prove our main result, i.e., there is 
no APTAS for Vector Bin Packing. We do so by modify-
ing the construction in the original proof given in [17] by 
adding a set of dummy vectors. The final analysis is based 
on the analysis in [3] for the Geometric Bin Packing lower 
bound.

We start by defining a few integers based on the given 
MAX-3-DM instance IM . Let r = 64q, where q = |X | = |Y | =
|Z | and b = r4 + 15. Define integers x′

i, y
′
i, z

′
i corresponding 

to xi ∈ X, yi ∈ Y , zi ∈ Z to be

x′
i = ir + 1,

y′
i = ir2 + 2,

z′
i = ir3 + 4,

and for each t(i, j,k) = (xi, y j, zk) ∈ T define t′
(i, j,k)

as

t′
(i, j,k) = r4 − kr3 − jr2 − ir + 8.

Let U ′ be the set of integers constructed as above. Also, 
note that for any integer a′ ∈ U ′ we have 0 < a′ < b. These 
integers were constructed so that the following statement 
holds.

Observation 2.1 ([17]). A set of four integers from U ′ add up to 
b if and only if they correspond to some elements xi ∈ X, y j ∈
Y , zk ∈ Z and tuple t(i, j,k) ∈ T where t(i, j,k) = (xi, y j, zk).

To obtain a Vector Bin Packing instance for each integer 
a′ ∈ U ′ constructs a vector

a =
(

1

5
+ a′

5b
,

3

10
− a′

5b

)
.

We also construct additional |T | +3q −4β(IM ) dummy vec-
tors

d =
(

3

5
,

3

5

)
,

where β(·) is a function from instances of 3-Dimensional 
Matching to positive integers. We now note a few proper-
ties of the vectors.

Observation 2.2 ([17,3]). A bin can contain at most 4 vectors. If 
a bin contains a dummy vector it can contain at most one more 
vector. Furthermore, a set of two vectors fits in a bin if and only 
if at least one of them is non-dummy.
3

Observation 2.3 ([17]). A set of four vectors fits in a bin if and 
only if it corresponds to a tuple.

Now we show that the above construction is a gap 
reduction from MAX-3-DM to 2-Dimensional Vector Bin 
Packing (cf. Theorem 2.1 from [3]).

Lemma 2.4. If a MAX-3-DM instance IM has a solution with 
β(IM) tuples then the constructed Vector Bin Packing instance 
has a solution with |T | + 3q − 3β(IM) bins. Otherwise, if all the 
solutions of the MAX-3-DM instance have at most α(IM) tuples 
then the constructed instance needs at least |T | + 3q − α(IM )

3 −
8β(IM )

3 bins where α(·) is any function from instances of MAX-
3-DM to positive integers.

Proof. First, we show that if a MAX-3-DM instance has a 
matching consisting of β(IM ) tuples, then the Vector Bin 
Packing instance has a solution of |T | + 3q − 3β(IM) bins. 
Using Observation 2.3, the 4β(IM) vectors corresponding 
to the β(IM) tuples and their elements can be packed into 
β(IM) bins. Each of the remaining |T | + 3q − 4β(IM) non-
dummy vectors can be packed along with a dummy vector 
into |T | + 3q − 4β(IM) bins by Observation 2.2.

Now, suppose that for a given instance all the solutions 
have at most α(IM) tuples. Let ng be the number of bins 
with 4 vectors, nd be the number of bins with dummy 
vectors, and nr be the rest of the bins. Since any solution 
to the Vector Bin Packing instance must pack all the non-
dummy vectors we have

(a) any bin containing four vectors consists of only non-
dummy vectors by Observation 2.3;

(b) any bin containing a dummy vector contains at most 
one non-dummy vector, by Observation 2.2;

(c) any other bin can contain at most 3 vectors by Obser-
vation 2.2.

Therefore, we have

4ng + 3nr + nd ≥ 3q + |T |.
Now, by Observation 2.2 we have nd = |T | + 3q − 4β(IM). 
Hence, the above inequality simplifies to

4ng + 3nr ≥ 4β(IM)

⇒ ng + nr ≥ 4

3
β(IM) − ng

3

⇒ ng + nr + nd ≥ |T | + 3q − ng

3
− 8

3
β(IM)

where the last inequality follows from nd = |T | + 3q −
4β(IM).

Since there are at most α(IM) tuples in the MAX-3-DM 
instance, by Observation 2.3 we have ng ≤ α(IM). There-
fore, the number of bins needed is at least |T | + 3q −
α(IM )

3 − 8β(IM )
3 . �

The following inapproximability for Vector Bin Packing 
directly follows from Lemma 2.4.
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Theorem 2.5. There is no APTAS for the d-Dimensional Vector 
Bin Packing problem with d ≥ 2 unless P=NP. Furthermore, for 
the d = 2 case there is no algorithm with asymptotic approxi-
mation ratio better than 600

599 .

Proof. Suppose that there is an algorithm with approx-
imation ratio 1 + β0−α0

15−9β0
. Then we can distinguish be-

tween MAX-3-DM-E2 instances (i) having a solution of 
	β0q
 tuples and (ii) having no solutions with more than 
�α0q� tuples using Lemma 2.4 with α(IM) = �α0q� and 
β(IM) = 	β0q
, hence solving GAP(α0, β0)-3-DM-E2. By 
Theorem 1.1, GAP(α0, β0)-3-DM-E2 is NP-hard, where β0 =
0.979338843, and α0 = 0.9690082645. Hence, we obtain 
the bound of 1 + β0−α0

15−9β0
. Simple calculations will show this 

is at least 1 + 1
599 . �

3. The original proof

The original proof uses essentially the same reduction 
as ours, i.e., there we had r = 32q, b = r4 +15 and then for 
each xi ∈ X, yi ∈ Y , zi ∈ Z we had

x′
i = ir + 1,

y′
i = ir2 + 2,

z′
i = ir3 + 4,

and for tl ∈ T was t′
l defined by

t′
l = r4 − kr3 − jr2 − ir + 8.

And finally, to obtain a Vector Bin Packing instance for 
each integer a′ constructed above construct the vector

a =
(

1

5
+ a′

5b
,

3

10
− a′

5b

)
.

The above set of vectors forms a 2-Dimensional Vector Bin 
Packing instance U. A noticeable difference from our reduc-
tion being the absence of dummy vectors. Also note that 
r = 32q and tuples are denoted by tl . In [17], Woeginger 
claimed that

Claim (Observation 4 in [17]). Any set of 3 vectors in U can be 
packed in a bin. No set of 5 vectors in U can be packed into a bin.

We show that this claim does not hold in general. In 
particular, all sets of 3 vectors can not be packed into a 
bin.

Consider the tuple vectors for the tuples t1 = (x1, y1, z1), 
t2 = (x2, y1, z1), and t3 = (x3, y1, z1). According to the 
claim, the vectors t1, t2, t3 corresponding to the above tu-
ples can be packed in a bin. Suppose t1, t2, t3 can indeed 
be packed in a bin. This implies that the first components 
of the vectors do not exceed 1, i.e.,

3

5
+ t′

1 + t′
2 + t′

3

5b
≤ 1,

which simplifies to

t′
1 + t′ + t′ ≤ 2b.
2 3

4

Finally, using

t′
1 = r4 − r3 − r2 − r + 8,

t′
2 = r4 − r3 − r2 − 2r + 8,

t′
3 = r4 − r3 − r2 − 3r + 8,

and

b = r4 + 15,

along with further simplification we get

r4 ≤ 3r3 + 3r2 + 6r + 6.

But this inequality does not even hold for r ≥ 32 whereas 
32 is the smallest value for r = 32q. Thus, the claim is in-
correct.

4. Vector bin packing with skewed items

In this section, we adapt the reduction presented 
in Section 2 to show that any algorithm for δ-Skewed 
d-Dimensional Vector Bin Packing cannot have an approxi-
mation ratio better than 1 +ε if δ > 20

√
ε for small values 

of ε.
Again, we start by defining a few integers based on 

the given MAX-3-DM instance IM . Let m = 	 2
δ

 − 1, for 

some δ ∈ (0, 25 ). Choose n > m2m and set r = nq and 
b = rm + 2m+1 − 1. Define integers x′

i, y
′
i, z

′
i corresponding 

to xi ∈ X, yi ∈ Y , zi ∈ Z to be

x′
i = ir + 1,

y′
i = ir2 + 2,

z′
i = ir3 + 4,

and for each t(i, j,k) = (xi, y j, zk) ∈ T define t′
(i, j,k)

as

t′
(i, j,k) = rm −

m−1∑
l=4

rl − kr3 − jr2 − ir + 2m.

Finally, we add additional |T | integers for each l ∈ {4, . . . ,
m − 1},

c′
l = rl + 2l.

Let U ′ be the set of integers constructed as above. As 
before, for any integer a′ ∈ U ′ we have 0 < a′ < b and the 
following statement holds.

Observation 4.1. A subset of integers S ⊆ U ′ with |S| = m
adds up to b if and only if there are x′

i, y
′
j, z

′
k, t

′
(i, j,k)

∈ S cor-
responding to some elements xi ∈ X, y j ∈ Y , zk ∈ Z and tu-
ple t(i, j,k) ∈ T where t(i, j,k) = (xi, y j, zk) and c′

l ∈ S for each 
l ∈ {4, . . . , m − 1}.

To obtain a Vector Bin Packing instance for each integer 
a′ ∈ U ′ , construct the vector

a =
(

1 + a′
,

m + 2 − a′ )
.

m + 1 (m + 1)b m(m + 1) (m + 1)b
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We also construct additional (m − 3)|T | + 3q − mβ(IM)

dummy vectors

d =
(

m − 1

m + 1
,0

)
,

where β(·) is again a function from instances of MAX-3-
DM to positive integers which will be fixed later. Notice 
that each of these vectors has a dimension whose size is 
less than 2

m+1 ≤ δ. Again, we note a few properties of the 
vectors.

Observation 4.2. A bin can contain at most m vectors. If a bin 
contains a dummy vector it can contain at most one more vector. 
Furthermore, a set of two vectors fits in a bin if and only if at 
least one of them is non-dummy.

Observation 4.3. A set S of m vectors fits in a bin if and only if 
there are xi, y j, zk, t(i, j,k) ∈ S corresponding to some elements 
xi ∈ X, y j ∈ Y , zk ∈ Z and tuple t(i, j,k) ∈ T where t(i, j,k) =
(xi, y j, zk) and cl ∈ S for each l ∈ {4, . . . , m − 1}.

Now we show that the above construction is also a gap 
reduction from MAX-3-DM to 2-Dimensional Vector Bin 
Packing.

Lemma 4.4. If a MAX-3-DM instance IM has a solution with 
β(IM) tuples then the constructed Vector Bin Packing instance 
has a solution with (m − 3)|T | + 3q − (m − 1)β(IM) bins. Oth-
erwise, if all the solutions of the MAX-3-DM instance have at 
most α(IM) tuples then the constructed instance needs at least 
(m − 3)|T | + 3q − α(IM )

m−1 − m(m−2)β(IM )
m−1 bins where α(·) is a 

function from MAX-3-DM instances to positive integers.

Proof. First, we show that if a MAX-3-DM instance has a 
matching consisting of β(IM ) tuples, then the Vector Bin 
Packing instance has a solution of (m − 3)|T | + 3q − (m −
1)β(IM) bins. Using Observation 4.3, the mβ(IM) vectors 
corresponding to the β(IM) tuples and their elements and 
one vector cl for each l ∈ {4, . . . , m − 1} can be packed into 
β(IM) bins. As in Lemma 2.4, by Observation 4.2 we can 
pack the remaining vectors in (m − 3)|T | + 3q − mβ(IM)

bins.
Now, suppose that for a given instance, all the solu-

tions have at most α(IM) tuples. Let ng be the number 
of bins with m vectors, nd be the number of bins with 
dummy vectors, and nr be the rest of the bins. Now, since 
any solution to the bin packing instance must cover all the 
non-dummy vectors we have

(a) any bin containing m vectors consists of only non-
dummy vectors by Observation 4.3;

(b) any bin containing a dummy vector contains at most 
one non-dummy vector, by Observation 4.2;

(c) any other bin can contain at most m − 1 vectors by 
Observation 4.2.

Therefore, we have

mng + (m − 1)nr + nd ≥ 3q + (m − 3)|T |.
5

Again, as in Lemma 2.4, we can simplify the above in-
equality using the facts: nd = (m − 3)|T | + 3q −mβ(IM) (by 
Observation 4.2); ng ≤ α(IM) (by Observation 4.3). Hence, 
we can conclude that the number of bins needed is at least

(m − 3)|T | + 3q − α(IM)

m − 1
− m(m − 2)β(IM)

m − 1
. �

Theorem 4.5. For any ε ∈ (0, 1
2500 ) there is no 1 + ε-approxi-

mation algorithm for the δ-Skewed d-Dimensional Vector Bin 
Packing problem with d ≥ 2, δ > 20

√
ε unless P=NP.

Proof. Using Theorem 1.1 and Lemma 4.4 along with ar-
guments used in the proof of Theorem 2.5, we obtain the 
bound of 1 + β0−α0

m(2m−3)−(m−1)2β0
, where α0, β0 are the pa-

rameters from Theorem 1.1. Simple calculations will show 
that this is strictly greater than 1 + δ2

400 . Using δ = 20
√

ε
we get the desired result. �
5. Vector bin covering has no APTAS

In this section, we prove that Vector Bin Covering has 
no APTAS unless P=NP by adapting the proof presented in 
Section 2. The analysis is slightly more complicated and 
bears some resemblance to the analysis of the reduction 
to the Geometric Bin Covering problem presented in [8]. 
Again, we obtain a gap preserving reduction from MAX-3-
DM to 2-Dimensional Vector Bin Covering. We start with 
the same set of integers U ′ we had in Section 2. To obtain 
a Vector Bin Covering instance for each integer a′ in U ′ , 
construct the vector

a =
(

1

5
+ a′

5b
,

3

10
− a′

5b

)
.

We also construct additional |T | +3q −4β(IM ) dummy vec-
tors

d =
(

9

10
,

9

10

)
,

where β(·) is a function from instances of 3-Dimensional 
Matching to positive integers (note that the size of dummy 
vectors is different from Section 2). If a bin has at least one 
dummy vector then we call it a D-bin. Otherwise, if a bin 
has no dummy vectors then we call it a non-D-bin. Again, 
we note a few properties of the constructed vectors.

Observation 5.1. Any set of 5 vectors can cover a bin. Any vector 
along with a dummy vector can cover a bin. At least 2 vectors are 
needed to form a bin.

Observation 5.2. A set of four vectors covers a non-D-bin if and 
only if it corresponds to a tuple.

Now we are ready to prove our main lemma showing 
our reduction is indeed a gap preserving reduction.

Lemma 5.3. If a MAX-3-DM instance IM has a solution with 
β(IM) tuples then there is a solution to the Vector Bin Covering 
instance with |T | + 3q − 3β(IM) tuples. Otherwise, if all the 
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solutions of IM have at most α(IM) tuples then the constructed 
instance can cover at most |T | + 3q − 16

5 β(IM) + α(IM )
5 bins, 

where α(·) is a function from MAX-3-DM instances to positive 
integers.

Proof. Suppose that OPT(IM) ≥ β(IM). As in Lemma 2.4, 
we use the optimal solution and Observation 5.2 to cover 
β(IM) bins using 4β(IM) non-dummy vectors while |T | +
3q − 4β(IM) bins are covered with the remaining vectors 
using Observation 5.1.

Now, suppose that every solution of the MAX-3-DM 
instance has value at most α(IM ). Consider an optimal so-
lution to the constructed Vector Bin Covering instance. We 
can normalize an optimal solution without any loss in the 
number of bins covered as follows.

(a) Number of dummy vectors equals the number of D-bins.
To that end, observe that there are |T | + 3q − 4β(IM)

dummy vectors and |T | + 3q non-dummy vectors. 
Therefore, by Observation 5.1 there is a solution with 
|T | + 3q − 4β(IM) bins. Hence, an optimal solution 
must have at least |T | + 3q − 4β(IM) bins. Suppose 
there is a bin (say B1) with at least two dummy 
vectors, i.e., number of dummy vectors > number of 
D-bins. Then we can show there is another optimal so-
lution with a larger number of D-bins. As there are at 
least |T | + 3q − 4β(Im) − 1 bins which still need to 
be covered and |T | + 3q − 4β(Im) − 2 dummy vectors 
remaining, there must be at least one non-D-bin (say 
B2). Now, note that by Observation 5.1 B2 must con-
tain at least 2 vectors. Again by Observation 5.1, we 
can now exchange one vector from B2 with a dummy 
vector in B1 to obtain a another solution with same 
number of bins while increasing the number of D-bins.

(b) No subset of a bin can cover a bin. To that end, some 
non-dummy vectors can be left out, i.e., they may be 
designated as not covering any bin. For non-D-bin we 
just choose any minimal subset of the vectors that can 
cover the bin. Now, if the solution satisfies condition 
(a) then by Observation 5.1 each D-bin contains one 
dummy vector and at least one non-dummy vectors; 
hence, we can keep the dummy vector and one non-
dummy vector.

Let nd be the number of D-bins, ng be the number of non-
D-bins covered by 4 vectors and nr be the number of non-
D-bin covered by 5 vectors. Again, as in Lemma 2.4, we use 
the facts: nd = |T | + 3q − 4β(IM) (due to our normaliza-
tion); there are 3q + |T | non-dummy vectors; ng ≤ α(IM)

(by Observation 5.2) to get

nd + ng + nr ≤ |T | + 3q − 16

5
β(IM) + α(IM)

5
.

In other words, the number of bins covered is at most

|T | + 3q − 16

5
β(IM) + α(IM)

5
. �

Theorem 5.4. There is no APTAS for d-Dimensional Vector 
Bin Covering with d ≥ 2 unless P=NP. Furthermore, for the 2-
Dimensional Vector Bin Covering there is no algorithm with 
asymptotic approximation ratio better than 998 .
997

6

Proof. Using Theorem 1.1 and Lemma 5.3 along with ar-
guments used in the proof of Theorem 2.5, we obtain the 
bound of 1 + β0−α0

25−16β0+α0
, where α0, β0 are the parameters 

from Theorem 1.1. Simple calculations will show this is at 
least 1 + 1

997 . �

Concluding remarks

1. The definition of the class APX-hard is quite technical 
(see [11]) and our reduction does not show Vector Bin 
Packing is in APX-hard (despite ruling out an asymptotic 
PTAS). The same is also true for the Vector Bin Covering 
reduction.

2. There is still a considerable gap between the best-
known approximation ratio of 4

3 +ε for the 2-Dimensio-
nal Vector Bin Packing problem and our lower bound 
for it. Similarly, there is a large gap in case of the 2-
Dimensional Vector Bin Covering problem.
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