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Abstract

We study the computational complexity of some explainable cluster-
ing problems in the framework proposed by [Dasgupta et al., ICML 2020],
where explainability is achieved via axis-aligned decision trees. We con-
sider the k-means, k-medians, k-centers and the spacing cost functions.
We prove that the first three are hard to optimize while the latter can be
optimized in polynomial time.

1 Introduction

Machine learning models and algorithms have been used in a number of systems
that take decisions that affect our lives. Thus, explainable methods are desirable
so that people are able to have a better understanding of their behavior, which
allows for comfortable use of these systems or, eventually, the questioning of
their applicability [1].

Recently, there has been some effort to devise explainable methods for un-
supervised learning tasks, in particular, for clustering [2, 3]. We investigate the
framework discussed by [2], where an explainable clustering is given by a parti-
tion, induced by the leaves of an axis-aligned decision tree, that optimizes some
predefined objective function.

Figure 1 shows a decision tree that defines a clustering for the Iris dataset.
The clustering has three groups, each of them corresponding to a leaf. The
explanation of the group associated with the rightmost leaf is Sepal Length

>0.4 AND Petal Width < 0.5.
Following [2], a series of papers [4, 5, 6, 7, 8] provided algorithms, with

provable guarantees, to build decision trees that induce explainable clustering.
Several cost functions to guide the clustering construction were investigated as
the k-means, k-centers, k-medians and maximum-spacing. Despite this active
research, the only work on the field that tackles the computational complexity
of building explainable clustering is [9], where it was proved that optimizing the
k-means and the k-medians cost functions is NP-Complete. Here, we improve
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Figure 1: An explainable clustering with 3 groups for the Iris datasets

these results and also investigate the computational complexity for both the
k-centers and the spacing cost functions.

1.1 Problem definition

Let X be a finite set of points in Rd. We say that a decision tree is standard
if each internal node v is associated with a test (cut), specified by a coordinate
iv ∈ [d] and a real value θv, that partitions the points in X that reach v into two
sets: those having the coordinate iv smaller than or equal to θv and those having
it larger than θv. The leaves of a standard decision tree induce a partition of
Rd into axis-aligned boxes and, naturally, a partition of X into clusters.

Let k ≥ 2 be an integer. The clustering problems considered here consist of
finding a partition of X into k groups, among those that can be induced by a
standard decision tree with k leaves, that optimizes a given objective function.
For the k-means, k-medians and k-centers cost functions, in addition to the
partition, a representative µ(C) ∈ Rd for each group C must also be output.

For the k-means problem the objective (cost function) to be minimized is the
Sum of the Squared Euclidean Distances (SSED) between each point x ∈ X and
the representative of the cluster where x lies. Mathematically, the cost (SSED)
of a partition C = (C1, . . . , Ck) for X is given by

k∑
i=1

∑
x∈Ci

||x− µ(Ci)||22.

For the k-medians problem the cost of a partition C = (C1, . . . , Ck) is given
by

k∑
i=1

∑
x∈Ci

||x− µ(Ci)||1.

The k-centers problem is also a minimization problem; its cost function for
a partition C = (C1, . . . , Ck) is given by

max
i=1,...,k

max
x∈Ci

{||x− µ(Ci)||2}.
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Let dist : X × X 7→ R+ be a distance function. The meximum-spacing
problem consists of finding a partition with at least k groups that has maximum
spacing, where the spacing sp(C) of a partition C is defined as

sp(C) = min{dist(x,y) : x and y lie in distinct groups of C}

In contrast to the other criteria, the spacing is an inter-clustering criterion.
We note that an optimal solution of the unrestricted version of any of these

problems, in which the decision tree constraint is not enforced, might be a
partition that is hard to explain in terms of the input features. Thus, the
motivation for using standard decision trees.

For the sake of simplicity, throughout of this text, by explainable clustering
we mean a clustering that is obtained via decision trees.

1.2 Our contributions

In Section 2, we first show that the problem of building a partition via deci-
sion trees that minimizes the k-means cost function does not admit an (1 + ε)-
approximation in polynomial time, for some ε > 0, unless P = NP . Then,
we show that analogous results hold for both the k-median and k-centers cost
functions. Our results for both the k-means and k-medians are stronger than
the NP-Hardness result established recently by [9] and they formally help to
justify the quest for approximation algorithms and/or heuristics for these cost
functions.

In Section 3 we propose a polynomial time algorithm that produces an ex-
plainable clustering of maximum spacing. As far as we know, this is the first
efficient method that produces optimal explainable clustering with respect to
some well studied metric.

1.3 Related work

Our research is inspired by the recent work of [2], where the problem of building
explainable clusterings, via standard decision trees, for both the k-means and
the k-medians cost functions are studied. This paper proposes algorithms with
provable approximation bounds for building explainable clusterings. In addition,
it investigates the price of explainability for these cost functions, which is the
unavoidable gap between the cost of the optimal explainable and the optimal
unconstrained clustering. Among their results, they showed that the price of
explainability for the k-means and k-median are respectively O(k2) and O(k).

Their results were refined/improved by a series of recent papers [4, 5, 7, 8, 6].
Currently, the best upper bound for the k-medians is O(log k log log k) [5, 7]
while for the k-means is O(k log k) [7]. The study of bounds that depend on
the dimension d was initiated in [4], where the authors present an O(d log k)
upper bound for the k-medians and an O(dk log k) upper bound for the k-
means. These bounds were improved to O(d log2 d) for the k-medians [7] and
O(k1−2/dpoly(d, log k)) [6] for the k-means.
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The price of explainability was also investigated for other cost functions.
In [4], Laber and Murtinho considered the k-centers and maximum-spacing
cost functions. In [5], Makarychev and Shan considered the k-medoids prob-
lem (k-median with `2 objective). Finally, in [8], Gamlath et. al addressed `pp
objectives.

The aforementioned papers, except [4] which also presents experiments, are
mainly theoretical. However, there are also a number of papers that propose
algorithms (without theoretical guarantees) for building explainable clustering,
among them we cite [10, 11, 3].

The computational complexity of building explainable clustering via decision
trees for both the k-means and the k-medians problems is studied in [9]. It is
shown that both problems admit polynomial time algorithms when either k or
d is constant and they are NP-Complete for arbitrary k and d. In addition, they
show that an optimal explainable clustering cannot be found in f(k)·|X |o(k) time
for any computable function f(), unless Exponential Time Hypothesis (ETH)
fails.

When we turn to standard (non-explainable) clustering, the problems of
optimizing the k-means, k-medians and k-centers cost functions are APX-Hard
[12, 13, 14] and all of them admit polynomial time algorithms with constant
approximation [15, 16, 17]. With regards to the spacing cost function, the
single-link algorithm, a very popular algorithm to build hierarchical clustering,
produces a partition with maximum spacing [18, Chapter 4].

2 Hardness of k-means, k-medians and k-centers
cost function

2.1 Background

We start by recalling some basic definitions and facts that are useful for studying
the hardness of optimization problems (see, e.g., [19, chapter 29]).

Given a minimization problem A and a parameter ε > 0 we define the ε-Gap-
A problem as the problem of deciding for an instance I of A and a parameter
k whether: (i) I admits a solution of value at most k; or (ii) every solution of I
have value at least (1 + ε)k. In such a gap decision problem it is tacitly assumed
that the instances are either of type (i) or of type (ii).

Fact 1. If for a minimization problem A there exists ε > 0 such that the ε-Gap-
A problem is NP -hard, then no polynomial time (1+ε)-approximation algorithm
exists for A unless P = NP.

We will use the following definition of a gap-preserving reduction.

Definition 1. Let A,B be minimization problems. A gap-preserving reduction
from A to B is a polynomial time algorithm that, given an instance x of A and a
value k, produces an instance y of B and a value κ such that there exist constants
ε, η > 0 for which
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1. if OPT (x) ≤ k then OPT (y) ≤ κ;

2. if OPT (x) > (1 + ε)k then OPT (y) > (1 + η)κ;

Fact 2. Fix minimization problems A,B. If there exists ε such that the ε-Gap-
A problem is NP -hard and there exists a gap-preserving reduction from A to B
then there exists η such that the η-Gap-B problem is NP -hard

We will now specialize the above definitions for restricted variants of the
problem of finding a minimum vertex cover in a graph and for our clustering
problems.

Definition 2. For every ε > 0, the ε-Gap-MinVC-B-TF (gap) decision prob-
lem is defined as follows: given a triangle-free graph G = (V,E), with bounded
degree, and an integer k, decide whether G has a vertex cover of size k or all
vertex covers of G have size at least k(1 + ε).

The ε-Gap-MinVC-3B-TF (gap) decision problem has a similar definition,
the only differences is that, in addition of being triangle-free, the graphs are
required to be 3-bounded, that is, all of its vertexes have degree at most 3.

The NP-Hardness of ε-Gap-MinVC-B-TF and ε-Gap-MinVC-3B-TF were
established in [13] and [20], respectively.

Definition 3. For every η > 0, the η-Gap-Explainable-kmeans (gap) deci-
sion problem is defined as follows: given a set of points X , an integer k, and a
value κ, decide whether there exists an explainable k-clustering C = (C1, . . . Ck)
of the points in X such that the k-means cost of C is at most κ or for each
explainable k-clustering C of X it holds that the k-means cost of C is at least
(1 + η)κ.

The η-Gap-Explainable-kmedians and η-Gap-Explainable-kcenters
decision problems are analogously defined.

To prove the hardness for the k-means we use a gap-preserving reduction
from the ε-Gap-MinVC-B-TF decision problem. To handle both the k-centers
and k-medians, we use the ε-Gap-MinVC-3B-TF decision problem.

Our reductions have some common ingredients that we explain here. For all
of them, given a graph G = (V,E), where V = {1, . . . , n}, we build an instance
of the clustering problem under consideration by mapping every edge e in E
onto a point ve = (ve1, . . . , v

e
n) in {0, 1}n where vei = 1 if vertex i is incident on e

and vei = 0 otherwise. This is exactly the mapping proposed in [13] to establish
that the (standard) k-means problem is APX-Hard. We use XG := {ve|e ∈ E}
to denote the input of the resulting clustering instance.

Let S = {i1, i2, . . . , ik} be a cover of size k for G, where each ij is an
integer in [n] and ij < ij+1. We define CS = (E1, . . . , Ek) as the k-clustering
induced by S on the points in XG, where the group Ej includes all points v that
simultaneously satisfy: its component ij is 1 and its component ij′ , for j′ < j,
is 0.

Proposition 1. The clustering CS is explainable.
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Proof. CS is the clustering induced by a decision tree with k− 1 internal nodes,
with exactly one internal node per level. The internal node of level j is associated
with cut (ij , 1/2).

2.2 Hardness of k-means cost function

We prove that the problem of finding an explainable clustering with minimum
k-means cost function is hard to approximate. The reduction employed here is
the one used by [13] to show that it is hard to find an (1 + ε)-approximation for
the k-means cost function. The extra ingredient in our proof is the construction
of an explainable clustering CS from a vertex cover S that was described in the
previous section.

Theorem 1. The problem of building an explainable clustering, via decision
trees, that minimizes the k−means cost function does not admit an (1 + ε)-
approximation, for some ε > 0, in polynomial time unless P = NP .

Proof. Let G be a triangle-free graph that satisfies one of the following cases: (i)
G has a vertex cover of size k or (ii) all vertex covers of G have size > k(1 + ε).

First, we consider the case where G has a vertex cover S = {i1, i2, . . . , ik}
of size k. We show that, in this case, the cost of CS = (E1, . . . , Ek) is at most
|E| − k. Let us consider the mean of the points in Ej as the representative of
Ej , that is, a point that has 1 at coordinate ij and 1/|Ej | in the remaining |Ej |
coordinates with non-zero values. The squared distance of each point in Ej to
its representative is given by(

1− 1

|Ej |

)2

+ (|Ej | − 1)×
(

1

|Ej |

)2

= 1− 1

|Ej |
(1)

Thus, Ej contributes to the total cost with |Ej |−1. The cost of the clustering
CS is, then, given by

k∑
j=1

|Ej | − 1 = |E| − k

Now, it remains to argue that if the minimum vertex cover for G has size at
least (1 + ε)k then every explainable clustering for the corresponding instance
has cost at least |E| − (1 − Ω(ε))k. This follows from [13], as in this case
every clustering (and, in particular, every explainable one) has cost at least
|E| − (1− Ω(ε))k.

We have concluded a gap preserving reduction from ε-Gap-MinVC-B-TF
to η-Gap-Explainable-kmeans.

2.3 Hardness of k-medians cost function

We prove that the problem of finding an explainable clustering with minimum
k-medians cost function is hard to approximate. We show a gap preserving re-
duction from the ε-Gap-MinVC-3B-TF problem to the η-Gap-Explainable-
kmedians problem.

6



The following well-known fact will be useful.

Fact 3. Let C be a set of points in Rd and let µ(C) ∈ Rd be the point for which∑
x∈C
||x− µ(C)||1

is minimum.
Then, for each i ∈ [d], the value of coordinate i of point µ(C) is the median

of the values of the points in C on coordinate i.

The following lemma will be also useful.

Lemma 1. Let G be a 3-bounded triangle free graph and let let C ⊆ XG be a
group of points corresponding to p edges of G. We have that: (i) if C is a star
then its k-medians cost is p and (ii) if C is not a star then its k-medians cost
is at least (4/3)p.

Proof. From the previous fact, the representative of C that yields to the min-
imum k-medians cost is a point in {0, 1}n, where the coordinate i has value 1
if and only if the number of edges that touch vertex i is larger than p/2. Thus,
the cost of a cluster C is given by

n∑
i=1

min{p− dC(i), dC(i)},

where dC(i) is the number of edges that touch vertex i in C.
If C is a star centred on vertex j then min{p − dC(j), dC(j)} = 0 and

min{p− dC(i), dC(i)} = 1 for the other vertexes i in the star. Thus,

n∑
i=1

min{p− dC(i), dC(i)} =
∑
i 6=j

1 = p

If C is not a star then we have some cases:

Case 1) dC(i) ≤ p/2 for all i. We have

n∑
i=1

min{p− dC(i), dC(i)} =

n∑
i=1

dC(i) = 2p

Note that the above case covers the case p ≥ 6 since the maximum degree
in G is at most 3.

Case 2) p = 5 and dC(j) = 3 for exactly one j. We have

n∑
i=1

min{p− dC(i), dC(i)} = dC(j)− 1 +
∑
i 6=j

dC(i) = 2p− 1 = 9 = 1.8p
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Case 3) p = 5 and dC(j) = dC(j′) = 3 for exactly two values j and j′. We
have

n∑
i=1

min{p− dC(i), dC(i)} = 4 +
∑

i/∈{j,j′}

dC(i) = 2p− 2 = 8 = 1.6p

Note that we cannot have 3 vertexes with degree 3 and p = 5.

Case 4) p = 4 and dC(j) = 3 for some j. We must have exactly one j with
dC(j) = 3, otherwise we would have more than 4 edges. Thus,

n∑
i=1

min{p− dC(i), dC(i)} = dC(j)− 2 +
∑
i 6=j

dC(i) = 2p− 2 = 6 = 1.5p

Case 5) p = 3 and dC(j) = 2 for some j. We have two possible non-
isomorphic graphs. One of them consists of a path with 2 edges and an addi-
tional edge while the other is a path with 3 edges. For both cases we have

n∑
i=1

min{p− dC(i), dC(i)} ≥ 4 = (4/3)p

Theorem 2. The problem of building an explainable clustering, via decision
trees, that minimizes the k−medians cost function does not admit an (1 + ε)-
approximation, for some ε > 0, in polynomial time unless P = NP .

Proof. Let G be a triangle-free graph with maximum degree not larger than 3
that satisfies one of the following cases: (i) G has a vertex cover of size k or (ii)
all vertex covers of G have size at least k(1 + ε).

First, consider the case where G has a vertex cover S of size k. Since the
clustering CS consists of stars, it follows from the previous lemma that its cost
is |E|.

Now, assume that all vertex covers for G have size at least k(1 + ε). Let C
be a clustering with k groups for the corresponding k-medians instance.

Let t be the number of groups in C that are stars and let p be the total
number of edges in the remaining clusters. Since there is no vertex cover for G
of size smaller than k(1 + ε) we must have

t+ p ≥ k(1 + ε),

otherwise we could obtain a cover for G with size smaller than k(1 + ε) by using
one vertex per star and one additional vertex for each of the p edges. Since
t ≤ k it follows that p ≥ kε. Moreover, we must have k ≥ |E|/3 because the
degree of every vertex in G is at most 3. Thus, from the previous lemma, the
cost of clustering C is at least

4p

3
+ (|E| − p) = |E|+ p

3
≥ |E|+ kε

3
≥ |E|+ |E|ε

9
= |E|

(
1 +

ε

9

)
.
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We have concluded a gap preserving reduction from ε-Gap-MinVC-3B-TF
to η-Gap-Explainable-kmedians.

2.4 Hardness of k-centers cost function

In this section we discuss the computational complexity of minimizing the k-
centers cost function. We show a gap preserving reduction from the ε-Gap-
MinVC-3B-TF problem to the η-Gap-Explainable-kcenters problem.

Theorem 3. The problem of building an explainable clustering, via decision
trees, that minimizes the k−centers cost function does not admit an (1 + ε)-
approximation, for some ε > 0, in polynomial time unless P = NP .

Proof. Let G = (V,E) be a triangle-free graph with maximum degree not larger
than 3 that satisfies one of the following cases: (i) G has a vertex cover of size
k or (ii) all vertex covers of G have size at least k(1 + ε).

First, consider the case where G has a vertex cover S of size k. In this case,
the clustering CS = (E1, . . . , Ek) consists of stars with at most 3 edges. For
the representative of Ej , as in the proof of Theorem 1, we use the mean of the
points that lie in Ej .

Thus, the distance of each point in Ei to its representative is the square
root of the rightmost term of (1), which is at most

√
1/3 since G has maximum

degree 3.
Now, we assume that G does not have a vertex cover with k vertex. Let C

be a clustering with k groups for the edges of E. One of the groups, say A,
does not have a vertex that touches all the edges in A. Pick the vertex, say v,
that touches the largest number of edges in A. Consider an edge e = yz in A
that does not touch v. We show that there is another edge in A, say e′, that
does not have intersection with e. In fact, pick an edge f = vw. If f does not
intersect e (w is not an endpoint of e) we set e′ = f . Otherwise, we assume
w.l.o.g. that f intersects e at point y, that is, w = y. We know that vz is not an
edge for otherwise we would have a triangle vwz in G. Since v is the vertex that
touches the largest number of edges in A then v must touch an edge f ′ = vz′,
with z′ 6= y and z′ 6= z. We set e′ = f ′.

We can argue that the distance of the representative µ(A) of A to either e
or e′ is at least 1. For that, we consider the values of µ(A) at the components
of the vertexes that define the edges e′ and e. Let µ1, µ2, µ3 and µ4 be these
values. We have that

||e− µ(A)||2 + ||e′ − µ(A)||2 ≥
4∑
i=1

(1− µi)2 + µ2
i =

4− 2(µ1 + µ2 + µ4 + µ4) + 2(µ2
1 + µ2

2 + µ2
3 + µ2

4) ≥ 2

Thus, either e or e′ is at distance at least 1 from the representative of A

9



3 A polynomial time algorithm for the maximum-
spacing cost function

We describe MaxSpacing, a simple greedy algorithm that finds an explainable
partition of maximum spacing in polynomial time.

To simplify its description we introduce some notation. For a set of leaves
L in a decision tree, we use sp(L) to refer to the spacing of the partition of
the points in X induced by the leaves in L. Given a set of leaves L, a leaf
` ∈ L and an axis-aligned cut γ = (i, θ), we use Lγ,` to denote the set of leaves
obtained when γ is applied to split the points that reach `. More precisely, Lγ,`
is obtained from L by removing ` and adding the two leaves that are created by
using γ to split the points that reach `.

A pseudo-code for MaxSpacing is presented in Algorithm 1. The algorithm
adopts a natural greedy strategy that at each step chooses the cut that yields
to the partition of maximum spacing. We note that it runs in polynomial time
because in Step 1 we just need to test at most (|X | − 1)d axis-aligned cuts:
for each ` ∈ L and each dimension i ∈ [d] we sort the |`| points that reach `
according to their coordinate i and consider the cuts (i, θj), for j = 1, . . . , |`|,
where θj is the midpoint between the values of the i-th coordinate of the jth
and (j + 1)th points in the sorted list.

Algorithm 1 MaxSpacing(X : set of points; k: integer)

Initialize a decision tree with only one leaf ` and associate it with X
L← {`}
Repeat k − 1 times:

1. Find a cut γ and a leaf ` ∈ L that simultaneously satisfy:

(i) γ splits the points that reach ` into 2 non-empty groups

(ii) sp(Lγ,`) ≥ sp(Lγ′,`′) for every `′ ∈ L and every axis-aligned cut γ′

that splits the points that reach `′ into two non-empty sets.

2. Split leaf ` using cut γ

3. L← Lγ,`

In what follows, we show that MaxSpacing produces an explainable partition
with maximum possible (optimal) spacing. The following simple fact will be
useful.

Fact 4. Let d∗i be the spacing of an optimal explainable partition with i + 1
groups. Then, d∗i ≥ d∗i+1, for i = 1, . . . , k − 1.

Proof. Let D∗ be a decision tree that induces a partition with i+ 2 groups that
has spacing d∗i+1. Let D be a decision tree obtained by removing two leaves
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that are siblings in D∗ and turning their parent into a leaf. Let x and y be two
closest points among those that reach different leaves in D. Since these points
also reach distinct leaves in D∗ we have that the spacing of the leaves in D is not
smaller than that of the leaves in D∗. Thus, d∗i ≥ sp(Leaves of D) ≥ d∗i+1.

Theorem 4. For every 1 ≤ i ≤ k − 1, the partition induced by the leaves
of MaxSpacing algorithm by the end of iteration i has the maximum spacing,
among the explainable partitions with i+ 1 groups for X .

Proof. Let C∗i be an optimal explainable partition with i+ 1 groups and let d∗i
be its spacing. Moreover, let Li, with i < k − 1, be the set of leaves by the end
of iteration i of MaxSpacing algorithm. By the greedy choice sp(L1) = d∗1. We
assume by induction that the spacing of Li is d∗i and show that the spacing of
Li+1 is d∗i+1.

For a node ν in a decision tree, let P (ν) be the set of points that reach ν.
Let ν∗ be a node in the decision tree D∗ for C∗i+1 that satisfies the following: (i)
for each ` ∈ Li either P (`) ⊆ P (ν∗) or P (`) ∩ P (ν∗) = ∅ and (ii) some child of
ν∗ does not satisfy (i). We will use the cut associated with ν∗ in D∗ to argue
that we can properly split Li.

To prove the existence of a node ν∗ with such properties, it suffices to show
that the root r∗ of D∗ satisfies (i) and some leaf `∗ from D∗ does not satisfy
(i) since, in this case, we can set ν∗ as the last node in the path from r∗ to
`∗ that satisfies (i). Clearly, r∗ satisfies (i). It remains to argue that some leaf
`∗ ∈ D∗ does not satisfy (i). Since the number of leaves in Li is smaller than the
number of leaves in D∗, by the pigeonhole principle, there are two leaves, say
`∗1 and `∗2, in D∗ that contain points from the same leaf ` in Li. Thus, neither
P (`) ∩ P (`∗1) 6= ∅ nor P (`) ⊆ P (`∗1). We set `∗ to `∗1 and ν∗ as the last node in
the path from r∗ to `∗1 that satisfies (i).

Let ν∗ch be a child of ν∗ in D∗ that does not satisfy (i). Moreover, let γ be
the cut associated with ν∗ and let ` be a leaf in Li such that P (`) ⊆ P (ν∗),
P (`) ∩ P (ν∗ch) 6= ∅ and P (`) 6⊂ P (ν∗ch). We show that the spacing of the set of
leaves L′i obtained from Li by applying cut γ to ` is at least d∗i+1. Let `1 and
`2 be the two new leaves that are created by applying γ to ` and let x and y
be the two closest points (according to dist) among those that reach different
leaves in L′i. If x reaches `1 (resp. `2) and y reaches `2 (resp. `1) then

sp(L′i) = dist(x,y) ≥ sp(C∗i+1) = d∗i+1

because, due to the application of cut γ on ν∗, x and y lies in different groups
in C∗i+1. If some of them, say x, does not reach ` then x and y reach different
leaves in Li and, thus,

sp(L′i) = dist(x,y) ≥ sp(Li) = d∗i ≥ d∗i+1,

where the last inequality follows from Fact 4.
We have shown that there exists a leaf ` in Li and a cut γ such that the

application of γ to ` yields to a partition of spacing d∗i+1. Thus, due to the
greedy choice, MaxSpacing obtains a partition of spacing d∗i+1 by the end of
iteration i+ 1.
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4 Conclusions

We have showed that the problems of finding explainable clustering (via decision
trees) that optimize the classical k-means, k-medians and k-centers cost func-
tions do not admit polynomial time (1 + ε)-approximations. These results help
to formally justify the quest for heuristics and/or approximation algorithms.

The algorithms recently proposed in the literature for building explainable
clustering compare their costs with the costs of optimal unrestricted clustering
[2, 4, 5, 6, 7, 8]. A major open question in this line of research is whether
better bounds can be obtained when the comparison is made against the optimal
explainable clustering.

For the spacing cost function we provided a simple polynomial time algo-
rithm that computes the explainable partition with maximum spacing. An
interesting note is that we have not used the fact that the cuts are axis-aligned
in the proof of Theorem 4 and, thus, our result holds for any family of cuts.
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