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Abstract. A set D ⊆ V of a graph G = (V,E) is a dominating set of G if
every vertex v ∈ V \ D is adjacent to at least one vertex in D. A set S ⊆ V

is a co-secure dominating set (CSDS) of a graph G if S is a dominating set of
G and for each vertex u ∈ S there exists a vertex v ∈ V \ S such that uv ∈ E
and (S \ {u}) ∪ {v} is a dominating set of G . The minimum cardinality of
a co-secure dominating set of G is the co-secure domination number and it is
denoted by γcs(G). Given a graph G = (V,E), the minimum co-secure domi-
nating set problem (Min Co-secure Dom) is to find a co-secure dominating
set of minimum cardinality. In this paper, we strengthen the inapproximabil-
ity result of Min Co-secure Dom for general graphs by showing that this
problem can not be approximated within a factor of (1 − ϵ) ln |V | for perfect
elimination bipartite graphs and star convex bipartite graphs unless P=NP.
On the positive side, we show that Min Co-secure Dom can be approximated
within a factor of O(ln |V |) for any graph G with δ(G) ≥ 2. For 3-regular and
4-regular graphs, we show that Min Co-secure Dom is approximable within a

factor of
8

3
and

10

3
, respectively. Furthermore, we prove that Min Co-secure

Dom is APX-complete for 3-regular graphs.

Domination, Co-secure domination, Approximation algorithm, Inapproximabil-
ity, APX-complete

1. Introduction

Let G = (V,E) be a finite, simple, and undirected graph with vertex set V and
edge set E. The graph G considered in this paper is without isolated vertices. A
set D ⊆ V is said to be a dominating set of G if every vertex v in V \ D has an
adjacent vertex u in D. The minimum cardinality among all dominating sets of G
is the domination number of G, and it is denoted by γ(G). Given a graph G, in
minimum dominating set problem (Min Dom), it is required to find a dominating
set D of minimum cardinality. Min Dom and its variations are studied extensively
because of their real-life applications and theoretical applications. Detailed survey
and results are available in [7, 8, 9].

A dominating set S ⊆ V of G = (V,E) is called a secure dominating set of G,
if S is a dominating set of G and for every u ∈ V \ S there exists a vertex v ∈ S,
adjacent to u such that (S \ {v}) ∪ {u} is a dominating set of G. This important
variation of domination was introduced by Cockayne et al. [4]. The problem of
finding a minimum cardinality secure dominating set of a graph is known as the
Minimum Secure Domination Problem. This problem and its many variants have
been extensively studied by several researchers [1, 4, 11, 12, 15, 18, 20].

A set S ⊆ V is a co-secure dominating set (CSDS) of a graph G if S is a
dominating set and for each vertex u ∈ S there exists a vertex v ∈ V \ S such that
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uv ∈ E and (S \ {u}) ∪ {v} is a dominating set of G. The minimum cardinality
of a co-secure dominating set of G is the co-secure domination number and it is
denoted by γcs(G). Given a graph G = (V,E), in minimum co-secure dominating set
problem (Min Co-secure Dom), it is required to find a co-secure dominating set
S of minimum cardinality. Min Co-secure Dom was introduced by Arumugam
et al. [2], where they showed that the decision version of Min Co-secure Dom
is NP-complete for bipartite, chordal, and planar graphs. They also determined
the co-secure domination number for some families of the standard graph classes
such as paths, cycles, wheels, and complete t-partite graphs. Some bounds on the
co-secure domination number for certain families of graphs were given by Joseph et
al. [10]. Manjusha et al. [14] characterized the Mycielski graphs with the co-secure
domination number 2 or 3 and gave a sharp upper bound for γcs(µ(G)), where
µ(G) is the Mycielski of a graph G. Later Zou et al.[22] proved that the co-secure
domination number of proper interval graphs can be computed in linear time. In
[13], it is proved that Min Co-secure Dom is NP-hard to approximate within
a factor of (1 − ε) ln |V | for any ε > 0, and it is APX-complete for graphs with
maximum degree 4.

In this paper, we extend the algorithmic study of Min Co-secure Dom by using
certain properties of minimum double dominating set under some assumptions. The
main contributions of the paper are summarised below.

• We prove that Min Co-secure Dom can not be approximated within
a factor of (1 − ε) ln |V | for perfect elimination bipartite graphs and star
convex bipartite graphs unless P=NP. This improves the result due to
Kusum and Pandey [13].

• We propose an approximation algorithm for Min Co-secure Dom for
general graphs G with δ(G) ≥ 2, within a factor of O(ln |V |). In terms of
maximum degree ∆, it can be approximated within a factor of 2+2(ln∆+2).

• For 3-regular and 4-regular graphs, we show that Min Co-secure Dom is

approximable within a factor of
8

3
and

10

3
, respectively.

• We also prove that Min Co-secure Dom is APX-complete for 3-regular
graphs.

2. Preliminaries

In this section, we give some pertinent definitions and state some preliminary
results. Let G = (V,E) be a finite, simple, and undirected graph with no isolated
vertex. The open neighborhood of a vertex v in G is N(v) = {u ∈ V | uv ∈ E} and
the closed neighborhood is N [v] = {v} ∪ N(v). The degree of a vertex v is |N(v)|
and is denoted by d(v). If d(v) = 1 then v is called a pendant vertex in G. The
minimum degree and maximum degree of G are denoted by δ and ∆, respectively.
For D ⊆ V, G[D] denotes the subgraph induced by D. We use the notation [k] for
{1, 2, · · · , k}. Given S ⊆ V and v ∈ S, a vertex u ∈ V \ S is an S-external private
neighbor (S-epn) of v if N(u) ∩ S = {v}. The set of all S-epn of v is denoted by
EPN(v, S). Some other notations and terminology which are not introduced here
can be found in [21].

A bipartite graph is a graph G = (V,E) whose vertices can be partitioned into two
disjoint sets X and Y such that every edge has one endpoint in X and other in Y. We
denote a bipartite graph with vertex bi-partition X and Y of V as G = (X,Y,E).
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The edge uv ∈ E is a bi-simplicial edge if N(u)∪N(v) induces a complete bipartite
subgraph in G. Let σ = [e1, e2, · · · , ek] be an ordering of pairwise non-adjacent
edges of G. With respect to this ordering σ, we define Pi, i ∈ [k] as the set of end
vertices of the edges {e1, e2, . . . , ei}, and let P0 = ∅. The ordering σ is said to be
a perfect elimination ordering for G if G[(X ∪ Y ) \ Pk] has no edge and each edge
ei is bi-simplicial in G[(X ∪ Y ) \ Pi−1]. A graph G = (V,E) is said to be a perfect
elimination bipartite graph if and only if it admits a perfect elimination ordering
[6]. A bipartite graph G = (X,Y,E) is called a star convex bipartite graph if a star
graph H = (X,EX) can be defined such that for every vertex y ∈ Y, N(y) induces
a connected subgraph in H.

3. Approximation Algorithms

In this section, we propose an approximation algorithm for Min Co-secure
Dom whose approximation ratio is a logarithmic factor of the number of vertices
of the input graph. To obtain the approximation ratio of Min Co-secure Dom,
we require the approximation ratio of the minimum double dominating set problem
(Min Double Dom). Given a graph G = (V,E), in Min Double Dom, the aim
is to find a vertex set D ⊆ V of minimum cardinality such that |N(v) ∩ D| ≥ 2,
for all v ∈ V \D. We shall denote γ2(G) as the cardinality of a minimum double
dominating set in G. We will use the following proposition and a few lemmas to
analyze our approximation algorithms’ performance.

Proposition 3.1. ([2]) Let S be a CSDS of G. A vertex v ∈ V \ S replaces u ∈ S
if and only if v ∈ N(u) and EPN(u, S) ⊆ N [v].

Lemma 3.1. If G is a connected graph with at least 3 vertices then every minimal
double dominating set D2 of G is a proper subset of V . Moreover, if δ(G) ≥ 2 then
every minimal double dominating set D2 is a co-secure dominating set of G.

Proof. Suppose there exists a minimal double dominating set D2 of G such that
|D2| = |V |. Since |V | ≥ 3 and G is connected, there exists a vertex v ∈ V with
d(v) ≥ 2. Now, D2\{v} is a double dominating set of G contradicting the minimality
of D2.

Let D2 be a minimal double dominating set of G. From the minimality of D2,
it follows that every vertex u ∈ D2 has at least one neighbor in V \ D2. Suppose
there exists a vertex p ∈ D2 such that N(p) ⊆ D2. Then D2 \ {p} is also a double
dominating set (as d(p) ≥ 2.) This contradicts the minimality of D2.

Let u be any vertex in D2 and v be its neighbor not in D2. Next, we show that
S = (D2 \ {u}) ∪ {v} is a dominating set of G. Suppose not, then there exists a
vertex w ∈ V \ S such that no vertex of S dominates w. D2 is a dominating set
of G implies that N(w) ∩D2 = {u}. This contradicts the fact that D2 is a double
dominating set of G.

From the above arguments, it follows that D2 is a co-secure dominating set of
G. □

In the next lemma, we prove bounds on γ2(G) which we will use in designing
approximation algorithms for Min Co-secure Dom.

Lemma 3.2. For every graph G with δ(G) ≥ 2, γcs(G) ≤ γ2(G) ≤ 2γcs(G).
Moreover, these bounds are tight.
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Proof. γcs(G) ≤ γ2(G) holds as every minimal double dominating set of G is also
a CSDS of G (by Lemma 3.1). Next we will prove that γ2(G) ≤ 2γcs(G). Let
D be a γcs set of G. Let D′ = {x ∈ D | EPN(x,D) ̸= ∅}, and D′′ = D \ D′.

Let A =
⋃

x∈D′
EPN(x,D). Then, every vertex v ∈ (V \ {D ∪ A}) has at least two

neighbors in D′′. By Proposition 3.1, for every vertex x ∈ S there exists at least
one vertex x∗ ∈ V \ S and x∗ ∈ EPN(x, S) such that dG(x

∗) ≥ |EPN(x, S)|.
Let A′ ⊆ A such that A′ contains exactly one vertex x∗ of each EPN(x,D) for
every x ∈ D′. Thus, |A′| = |D′|. Note that, every vertex in A \ A′ has at least two
neighbors in D′ ∪A′. Let B′ be the smallest subset of (V \D) \A′ that dominates
D′′. Since every vertex of D′′ has EPN(x,D′′) = ∅, we obtain |B′| ≤ |D′′|. Thus,
D ∪ A′ ∪ B′ is a double dominating set of G. Hence, γ2(G) ≤ |D| + |A′| + |B′| ≤
|D|+ |D′|+ |D′′| = 2|D| = 2γcs(G).

These two inequalities are tight for the graphs K2,2 and Kn (n ≥ 3), respectively.
□

Theorem 3.1. Min Double Dom can be approximated with an approximation
ratio of O(ln |V |), where V is the vertex set of the input graph G. It can also be
approximated within a factor of 1 + ln(△+ 2), where △ is the maximum degree of
G.

Proof. Given an instance G = (V,E) of Min Double Dom, we construct a multiset
multicover problem [19] as follows. We take V as the universe and for each vertex
v ∈ V we construct a multiset Sv = N [v] ∪ {v}. In Sv, v is appearing twice
whereas other elements appear exactly once. We set the requirement of each vertex
v ∈ V as 2. Minimum Multiset Multicover problem can be approximated within a
factor of O(ln |V |) (also 1 + ln(△+ 2)) [19]. Therefore, Min Double Dom can be
approximated within a factor of O(ln |V |) (also 1 + ln(△+ 2)). □

Next, we propose an algorithm (described in Algorithm 1) to compute an ap-
proximate solution of Min Co-secure Dom. This algorithm computes a minimal
double dominating set D2 of the input graph G (with δ(G) ≥ 2) using the approx-
imation algorithm described in Theorem 3.1 and returns it as a CSDS of G. By
Lemma 3.1, D2 is also a CSDS of G. It is easy to observe that Algorithm 1 runs
in polynomial time.
Algorithm 1: Approx-CSD

Input: A graph G = (V,E).
Output: A minimum CSDS of G.
begin

Compute a double dominating set D2 of G (as described in Theorem
3.1);
S = D2;
return S;

end

Theorem 3.2. Min Co-secure Dom can be approximated within a factor of
O(ln |V |), for graphs with δ(G) ≥ 2. It can also be approximated within a factor of
2 + 2 ln(△+ 2), where △ is the maximum degree of G.
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Proof. Let S be the CSDS of G computed by the Algorithm 1. By Theorem 3.1,
we have |S| ≤ O(ln |V |)γ2(G). Also, by Lemma 3.2 we have

|S| ≤ O(ln |V |)γ2(G) ≤ 2O(ln |V |)γcs(G) = O(ln |V |)γcs(G).

Similarly, it can be observed that |S| ≤ [2 + 2 ln(△+ 2)]γcs(G). □

4. Lower bound on approximation ratio

In this section, we obtain a lower bound on the approximation ratio of Min
Co-secure Dom for some subclasses of bipartite graphs. To obtain our lower
bound, we establish an approximation preserving reduction from Min Dom to Min
Co-secure Dom. We need the following lower bound result on Min Dom.

Theorem 4.1. ([3, 5]) Unless P=NP, Min Dom can not be approximated within
a factor of (1 − ε) ln |V |, for any ε > 0. Such a result holds for Min Dom even
when restricted to bipartite graphs.

By using this theorem, we will prove similar lower bound results for Min Co-
secure Dom for two subclasses of bipartite graphs, namely perfect elimination
bipartite graphs and star convex bipartite graphs.

Theorem 4.2. Unless P=NP, Min Co-secure Dom for a perfect elimination
bipartite graph G = (V,E) can not be approximated within (1 − ε) ln |V |, for any
ε > 0.

Proof. Given a graph G = (V,E), an instance of Min Dom, we construct a graph
G′ = (V ′, E′), an instance of Min Co-secure Dom, as follows. Here we assume
that V = {v1, v2, . . . , vn}. After making a copy of G, we introduce n new vertices
a1, a2, . . . , an and n edges viai, for i ∈ [n].Then we introduce 6 vertices s, t, x, y, w, z
and the edges st, xy, wz. Finally, we introduce the edge set {aivi, vis, aix, aiz | i ∈
[n]}. It is easy to observe that V ′ = V ∪{ai|i ∈ [n]}∪{x, y, z, w, s, t} and E′ = E ∪
{aivi, vis, aix, aiz | i ∈ [n]} ∪ {xy, zw, st} and it is a polynomial time construction
as |V ′| = 2|V | + 6 and |E′| = |E| + 4|V | + 3. G′ is a perfect elimination bipartite
graph with the perfect elimination ordering {st, xy, zw, v1a1, v2a2, · · · , vnan}. For
an illustration of this construction, we refer to Figure 1.

Claim 4.1. The graph G has a dominating set of cardinality at most k if and only
if G′ has a CSDS of cardinality at most k′ = k + 3.

Proof. Let D be a minimal dominating set of G. It is easy to check that S =
D ∪ {x, z, s} is a CSDS of G′. Thus, |S| = |D|+ 3.

Conversely, let S be a minimal CSDS of G′. S ∩ {x, y} = {x} as y is the only
degree 1 vertex adjacent to x. Similarly, S ∩{s, t} = {s} and S ∩{w, z} = {z}. We
will assume that S does not contain any ai vertex. This is because, each ai vertex
is dominated by at least two vertices x and z, and if ai ∈ S then we will replace
the vertex ai with vi in S. Now, we define D = S ∩ V . If D is a dominating set of
G then we are done. Otherwise, there exists a vertex vk which is not dominated by
any vertex of D. Now, vk is dominated only by s ∈ S and (S \ {s}) ∪ {v} is not a
dominating set, for every v ∈ (NG′(s) \ S). This is a contradiction. Hence, D is a
dominating set of G with |S| = |D|+ 3. □

Let us assume that there exists some (fixed) ε > 0 such that Min Co-secure
Dom for perfect elimination bipartite graphs with |V ′| vertices can be approximated
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Figure 1. An illustration of the construction of G′ from G in the
proof of Theorem 4.2

within a ratio of α = (1− ε) ln |V ′| by a polynomial time algorithm A. Let l > 0 be

a fixed integer with l >
1

ε
. By using algorithm A, we construct a polynomial time

algorithm for Min Dom as described in Algorithm 2.
Initially, if there is a minimum dominating set D of G with |D| < l, then it can

be computed in polynomial time. Since the algorithm A runs in polynomial time,
the Algorithm 2 also runs in polynomial time. If the returned set D satisfies |D| < l
then D is a minimum dominating set of G and we are done.

Next, we will analyze the case when Algorithm 2 returned the set D with |D| ≥ l.
By Claim 4.1 we have |So| = |Do|+ 3, where Do and So are minimum dominating
set of G and minimum CSDS of G′, respectively. Here |Do| ≥ l.
Algorithm 2: Approx-DOM1

Input: A graph G = (V,E).
Output: A minimum dominating set D of G.
begin

if there is a minimum dominating set D of G with |D| < l then
return D;

else
Construct the graph G′ as described above;
Compute a CSDS S in G′ using A;
D = S ∩ V ;
return D;

end
end

Now, |D| ≤ |S|−3 < |S| ≤ α|So| = α(|Do|+3) = α(1+ 3
|Do| )|Do| ≤ α(1+ 3

l )|Do|.
This implies that Algorithm 2 approximates Min Dom within a ratio of α(1 + 3

l ).

Since 1
l < ε

α

(
1 +

3

l

)
≤ (1− ε)(1 + 3ε) ln |V ′| = (1− ε′) ln |V |,
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where ε′ = 3ε2 + 2ε as ln |V ′| = ln(2|V |+ 6) ≈ ln |V | for sufficiently large value of
|V |.

Therefore, Algorithm 2 approximates Min Dom within a ratio of (1 − ε) ln |V |
for some ε > 0. This contradicts the lower bound result in Theorem 4.1. □

Next, we prove the inapproximability of Min Co-secure Dom in star convex
bipartite graphs by using the Theorem 4.1.

Theorem 4.3. Min Co-secure Dom for a star convex bipartite graph G = (V,E)
can not be approximated within (1− ε) ln |V | for any ε > 0, unless P=NP.

Proof. Given a bipartite graph G = (X,Y,E), as an instance of Min Dom, we
obtain a star convex bipartite graph G′ = (X ′, Y ′, E′) such that G has a dominating
set of cardinality at most k if and only if G′ has a CSDS of cardinality at most
k′ = k+2. Now the construction of G′ from G is as follows. After making a copy of
G, we introduce four vertices x0, x, y0, y. Finally, we make every vertex of X∪{x, x0}
adjacent to y and every vertex of Y ∪{y, y0} adjacent to x. Now, X ′ = {X}∪{x, x0},
Y ′ = {Y }∪{y, y0} and E′ = {E}∪{xiy | xi ∈ X}∪{yix | yi ∈ Y }∪{x0y, xy, xy0}.
The new graph G′ = (V ′, E′) formed from G = (V,E) has |V ′| = |V | + 4 and
|E′| = |E|+n+3, which can be constructed in polynomial time. It can be observed
that G′ is a star convex bipartite graph with the associated star graph which is
shown in Figure 2.
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Figure 2. An illustration of the construction of G′ from G in the
proof of Theorem 4.3

Claim 4.2. G has a dominating set of cardinality at most k if and only if the graph
G′ has a CSDS of cardinality at most k′ = k + 2.

Proof. Suppose D is a minimal dominating set of G and let S = D∪{x, y}. Clearly,
S is a CSDS of G′ with |S| = |D| + 2 ≤ k + 2. Conversely, let S be a minimal
dominating set of G′. Note that, |S ∩ {x, y0}| = 1, and similarly |S ∩ {x0, y}| = 1.
If x0, y0 ∈ S, observe that EPN(x0, S) = y and EPN(y0, S) = x. So, without loss
of generality, assume {x, y} ⊆ S. Now, let D = S \ {x, y}. Now we show that D is
a dominating set of G. If D is dominating set of G, then we are done. Otherwise,
suppose D is not a dominating set of G. Then there exists at least one vertex
vk ∈ V (G) which is not dominated by any vertex of D. Without loss of generality,
assume vk ∈ X, then vk can only be dominated by y ∈ Y ′. Since S is a CSDS of
G′, (S \{y})∪{vk} is a dominating set of G′, which is a contradiction. Thus, D is a
dominating set of G of cardinality |D| = |S|−2 ≤ k. Therefore, G has a dominating
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set D of cardinality at most k if and only if G′ has a CSDS of cardinality at most
k′ = k + 2. This completes the proof of this claim. □

Presume that there exists some (fixed) ε > 0 such that Min Co-secure Dom
for star convex bipartite graphs having |V ′| vertices can be approximated within a
ratio of α = (1 − ε) ln |V ′| by using an algorithm A that runs in polynomial time.
Let l > 0 be an integer. By using algorithm A, we construct a polynomial time
algorithm Algorithm 3 for Min Dom.
Algorithm 3: Approx-DOM2

Input: A bipartite graph G = (X,Y,E).
Output: A minimum dominating set D of G.
begin

if there is a minimum dominating set D of G with |D| < l then
return D;

else
Construct the graph G′ as described above;
Compute a CSDS S in G′ using the algorithm A;
D = S ∩ (X ∪ Y );
return D;

end
end

Firstly, if there is a minimum dominating set D of G with |D| < l, then it can be
computed in polynomial time. Moreover, Algorithm 3 runs in polynomial time as
A runs in polynomial time. Note that, if the returned set D satisfies |D| < l then
it is a minimum dominating set of G and we are done. Now, let us assume that the
returned set D satisfies |D| ≥ l.

Let Do and So be a minimum dominating set of G and a minimum CSDS of G′,
respectively. Then |Do| ≥ l, and |So| = |Do|+ 2 by the above Claim 4.2. Now,

|D| ≤ |S| − 2 < |S| ≤ α|So| = α(|Do|+ 2) = α

(
1 +

2

|Do|

)
|Do| ≤ α

(
1 +

2

l

)
|Do|.

Hence, Algorithm 3 approximates Min Dom for given bipartite graph G = (X,Y,E)
within the ratio α(1 + 2

l ). Let l be the positive integer such that 1
l < ε. Then

α

(
1 +

2

l

)
≤ (1− ε)(1 + 2ε) ln |X ′ ∪ Y ′| = (1− ε′) ln |X ∪ Y |,

where ε′ = 2ε2 − ε as ln |X ′ ∪ Y ′| = ln(|X ∪ Y | + 4) ≈ ln |X ∪ Y | for sufficiently
large value of |X ∪ Y |.

Therefore, Algorithm 3 approximates Min Dom within a ratio of (1−ε) ln |X∪Y |
for some ε > 0. This contradicts the lower bound result in Theorem 4.1. □

5. Complexity on bounded degree graphs

In this section, we show that Min Co-secure Dom is APX-complete for 3-
regular graphs. Note that the class APX is the set of all optimization problems
which admit a c-approximation algorithm, where c is a constant. From Theorem
3.2 it follows that Min Co-secure Dom can be approximated within a factor of
5.583 for graphs with maximum degree at most 4. We improve this approximation

factor to
10

3
.
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We first show that Min Co-secure Dom for 3-regular graphs is approximable

within a factor of
8

3
.

Algorithm 4: Approx-CSD-3RG

Input: A 3-regular graph G = (V,E).
Output: A CSDS S of G = (V,E).
begin

W ′ = ∅;
while ∃ an edge uv ∈ E do

W ′ = W ′ ∪ {u, v};
Delete N [u] ∪N [v] from G;

end
Let T be the remaining vertices;
W = W ′ ∪ T ;
S = V \W ;
return S;

end

Lemma 5.1. Min Co-secure Dom is approximable within a factor of
8

3
for 3-

regular graphs.

Proof. Let So be a minimum CSDS of a 3-regular graph G = (V,E). A vertex
x ∈ So can co-securely dominate at most 3 vertices of V \So. Therefore, |V \So| ≤
3|So|. This implies that

(1) |So| ≥
n

4
.

The set S of vertices returned by Algorithm 4 is a minimal double dominating set
in G because each vertex in W ′ has exactly two neighbors in S. By Lemma 3.1, S
is a CSDS of G.

Thus, W = W ′ ∪ T. Let |W ′ ∪ S| = n1 = n − |T |. Now |W ′| ≥ n1

3
, since in the

while loop, the algorithm has picked two vertices and simultaneously removed at
most six vertices from the graph. Now,

|W | = |W ′|+ |T | ≥ n1

3
+ n− n1 ≥ n− 2n

3
=

n

3
.

Thus,

(2) |S| = |V | − |W | ≤ n− n

3
=

2n

3

This yields the upper bound on the size of the CSDS returned. Combining equation

(1) and equation (2), we obtain
|S|
|S0|

≤ 8

3
, thereby proving the lemma. □

Next, we design a constant factor approximation algorithm for Min Co-secure
Dom when the input graph is 4-regular.
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Algorithm 5: Approx-CSD-4RG
Input: A 4-regular graph G = (V,E).
Output: A CSDS S of G = (V,E).
begin

W ′ = ∅;
while ∃ a maximal induced path P (u1, uk) = (u1, u2, . . . , uk) or an
induced cycle C = (u1, u2, . . . , uk, u1) do

W ′ = W ′ ∪ {u1, u2, . . . , uk};
Delete the vertex set {u1, u2, . . . , uk} and their neighbors from G;

end
Let T be the remaining vertices;
W = W ′ ∪ T ;
S = V \W ;
return S;

end

Lemma 5.2. Min Co-secure Dom for 4-regular graphs can be approximated

within a factor of
10

3
.

Proof. Given a 4-regular graph G, in polynomial time Algorithm 5 computes a
vertex set W such that the degree of each vertex in G[W ] is at most 2.

Claim 5.1. S is a CSDS of G.

Proof. By Lemma 3.1, it is enough to show that S is a minimal double dominating
set of G.

S is a double dominating set of G as each vertex in W has at least two neighbors
in S. Suppose S is not a minimal double dominating set of G. Then there must
be a vertex v ∈ S such that S \ {v} is a double dominating set of G. This implies
that v must have at least two neighbors in S. If v ∈ S is adjacent to a vertex of
degree two in G[W ] then S \ {v} is not a double dominating set of G (because G
is 4-regular). This implies that v must be adjacent to at least one end-vertex of an
induced path P in G[W ′]. This contradicts the maximality of P . □

Following the proof of Lemma 5.1, it can be proved that |So| ≥
n

5
. Let W ′ be the

set of vertices of degree 2 in G[W ] and Q = W \W ′. By setting n1 = n− |Q| and
following the proof of Lemma 5.1, it can be proved that |W ′| ≥ n1

3
. This implies

that |W | ≥ n

3
and |S| ≤ 2n

3
. Therefore,

|S|
|So|

≤ 10

3
. □

Before we prove that Min Co-secure Dom is APX-complete for 3-regular
graphs, we need some terminology and results regarding the partial monopoly set.

Definition 5.1 ([17]). (Min Partial Monopoly Problem) Given a graph G =
(V,E), partial monopoly problem is to find a set M ⊆ V of minimum cardinality

such that for each v ∈ V \M, |M ∩N [v]| ≥ 1

2
|N [v]|.

It is known that for 3-regular graphs Min Partial Monopoly Problem is
APX-complete [16]. It is easy to observe the following lemma:
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Lemma 5.3. Let G be a 3-regular graph. A partial monopoly set M of G is a
double dominating set of G and vice versa.

Lemma 5.4. Let G be a 3-regular graph and S ⊆ V be a minimal CSDS of G. In
polynomial time one can construct a double dominating set S′ ⊆ V with |S′| ≤ 2|S|.

Proof. Let S be a minimal CSDS of G. Define S1 be the set of vertices v ∈ S such
that EPN(v, S) ̸= ∅, and S2 = S\S1. Now let A =

⋃
v∈S

EPN(v, S). Note that every

vertex in A has exactly one neighbor in S1 and every vertex in (V \ S) \ A has at
least two neighbors in S2. By Proposition 3.1, for every vertex x ∈ S there exists at
least one vertex x∗ ∈ V \S and x∗ ∈ EPN(x, S) such that dG(x∗) ≥ |EPN(x, S)|.
Let us define a new set A′ ⊆ A, such that A′ contains that one vertex x∗ of each
EPN(x, S) for every x ∈ S1. Thus, |A′| = |S1|. Let S′ = S ∪A′. Now every vertex
in V \ S′ has at least two neighbors in S′. Hence S′ is a double dominating set of
G with cardinality |S|+ |A′| = |S|+ |S1| ≤ 2|S|. □

Now, we will prove that Min Co-secure Dom is APX-complete for 3-regular
graphs by establishing a reduction from Min Partial Monopoly Problem for
3-regular graphs.

Theorem 5.1. Min Co-secure Dom is APX-complete for 3-regular graphs.

Proof. Because of Lemma 5.1, it is enough to establish a polynomial time approx-
imation ratio preserving reduction from Min Partial Monopoly Problem for
3-regular graphs to Min Co-secure Dom for 3-regular graphs.

Given a 3-regular graph G = (V,E), an instance of Min Partial Monopoly
Problem, we take the same graph G as an instance of Min Co-secure Dom.
Let Mo be a minimum partial monopoly set of G and So be a minimum CSDS of
G. Then |Mo| = γ2(G) (by Lemma 5.3). Also, we have |So| ≤ |Mo|, by Lemma 3.2.
Given a minimal CSDS S of G, we can construct a partial monopoly set M ⊆ V

with |M | ≤ 2|S| (from Lemma 5.4 and 5.3) Therefore,
|M |
|Mo|

≤ 2
|S|
|So|

. Hence, Min

Co-secure Dom is APX-complete for 3-regular graphs. □

6. Conclusion

In this paper, we prove that Min Co-secure Dom is hard to approximate
within a factor smaller than ln |V | for perfect elimination bipartite graphs and
star convex bipartite graphs. On the positive side, we have proposed a O(ln |V |)
approximation algorithm for Min Co-secure Dom for any graph. Apart from
these, we have shown that for 3-regular graphs and 4-regular graphs Min Co-

secure Dom admits a
8

3
and

10

3
factor approximation algorithms, respectively.

It would be interesting to design a better approximation algorithm for 3-regular
graphs. We prove that it is APX-complete for 3-regular graphs. We conjecture
that it is APX-hard for 3-regular bipartite graphs.
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