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ON THE COMPLEXITY OF CO-SECURE DOMINATING SET
PROBLEM

B S PANDA, SOUMYASHREE RANA, AND SOUNAKA MISHRA

ABsTRACT. A set D C V of a graph G = (V, E) is a dominating set of G if
every vertex v € V' \ D is adjacent to at least one vertex in D. A set S CV
is a co-secure dominating set (CSDS) of a graph G if S is a dominating set of
G and for each vertex u € S there exists a vertex v € V' \ S such that wv € E
and (S \ {u}) U {v} is a dominating set of G . The minimum cardinality of
a co-secure dominating set of G is the co-secure domination number and it is
denoted by 7cs(G). Given a graph G = (V, E), the minimum co-secure domi-
nating set problem (MiIN Co-secURE Do) is to find a co-secure dominating
set of minimum cardinality. In this paper, we strengthen the inapproximabil-
ity result of MiN Co-secure Dowm for general graphs by showing that this
problem can not be approximated within a factor of (1 — €)In |V for perfect
elimination bipartite graphs and star convex bipartite graphs unless P=NP.
On the positive side, we show that MiN Co-secURE DoMm can be approximated
within a factor of O(In|V|) for any graph G with §(G) > 2. For 3-regular and
4-regular graphs, we show that Min Co-SECURE DowM is approximable within a
factor of — and —0, respectively. Furthermore, we prove that MiNn Co-SECURE

Dowm is APX-complete for 3-regular graphs.

Domination, Co-secure domination, Approximation algorithm, Inapproximabil-
ity, APX-complete

1. INTRODUCTION

Let G = (V, E) be a finite, simple, and undirected graph with vertex set V' and
edge set E. The graph G considered in this paper is without isolated vertices. A
set D C V is said to be a dominating set of G if every vertex v in V \ D has an
adjacent vertex v in D. The minimum cardinality among all dominating sets of G
is the domination number of G, and it is denoted by v(G). Given a graph G, in
minimum dominating set problem (MiN DoM), it is required to find a dominating
set D of minimum cardinality. MIN DoOM and its variations are studied extensively
because of their real-life applications and theoretical applications. Detailed survey
and results are available in [7, 8, 9].

A dominating set S CV of G = (V, E) is called a secure dominating set of G,
if S is a dominating set of G and for every u € V' \ S there exists a vertex v € S,
adjacent to u such that (S\ {v}) U {u} is a dominating set of G. This important
variation of domination was introduced by Cockayne et al. [4]. The problem of
finding a minimum cardinality secure dominating set of a graph is known as the
Minimum Secure Domination Problem. This problem and its many variants have
been extensively studied by several researchers [1, 4, 11, 12, 15, 18, 20].

A set S C V is a co-secure dominating set (CSDS) of a graph G if S is a
dominating set and for each vertex u € S there exists a vertex v € V'\ S such that
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wv € E and (S \ {u}) U {v} is a dominating set of G. The minimum cardinality
of a co-secure dominating set of G is the co-secure domination number and it is
denoted by 7.s(G). Given a graph G = (V, E), in minimum co-secure dominating set
problem (MIN CO-SECURE DOM), it is required to find a co-secure dominating set
S of minimum cardinality. MIN CO-SECURE DOM was introduced by Arumugam
et al. [2], where they showed that the decision version of MIN CO-SECURE DoM
is NP-complete for bipartite, chordal, and planar graphs. They also determined
the co-secure domination number for some families of the standard graph classes
such as paths, cycles, wheels, and complete t-partite graphs. Some bounds on the
co-secure domination number for certain families of graphs were given by Joseph et
al. [10]. Manjusha et al. [14] characterized the Mycielski graphs with the co-secure
domination number 2 or 3 and gave a sharp upper bound for v.s(1(G)), where
1#(G) is the Mycielski of a graph G. Later Zou et al.[22] proved that the co-secure
domination number of proper interval graphs can be computed in linear time. In
[13], it is proved that MIN CoO-SECURE DoM is NP-hard to approximate within
a factor of (1 —&)In|V]| for any € > 0, and it is APX-complete for graphs with
maximum degree 4.

In this paper, we extend the algorithmic study of MIN CO-SECURE DOM by using
certain properties of minimum double dominating set under some assumptions. The
main contributions of the paper are summarised below.

e We prove that MIN CO-SECURE DOM can not be approximated within
a factor of (1 — ¢)In|V| for perfect elimination bipartite graphs and star
convex bipartite graphs unless P=NP. This improves the result due to
Kusum and Pandey [13].

e We propose an approximation algorithm for MiN CoO-SECURE Dowm for
general graphs G with §(G) > 2, within a factor of O(In|V]). In terms of
maximum degree A, it can be approximated within a factor of 2+2(In A+2).

e For 3-regular and 4-regular graphs, we show that MIN CO-SECURE DOM is

0
approximable within a factor of — and —, respectively.

e We also prove that MIN CO-SECURE DoM is APX-complete for 3-regular
graphs.

2. PRELIMINARIES

In this section, we give some pertinent definitions and state some preliminary
results. Let G = (V, E) be a finite, simple, and undirected graph with no isolated
vertex. The open neighborhood of a vertex v in G is N(v) ={u € V |uv € E} and
the closed neighborhood is N[v] = {v} U N(v). The degree of a vertex v is |[N(v)]
and is denoted by d(v). If d(v) = 1 then v is called a pendant vertex in G. The
minimum degree and maximum degree of G are denoted by § and A, respectively.
For D C V, G[D] denotes the subgraph induced by D. We use the notation [k] for
{1,2,--- ,k}. Given S CV and v € S, a vertex u € V' \ S is an S-external private
neighbor (S-epn) of v if N(u) NS = {v}. The set of all S-epn of v is denoted by
EPN (v, S). Some other notations and terminology which are not introduced here
can be found in [21].

A bipartite graph is a graph G = (V, E) whose vertices can be partitioned into two
disjoint sets X and Y such that every edge has one endpoint in X and other in Y. We
denote a bipartite graph with vertex bi-partition X and Y of V as G = (X,Y, E).
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The edge uv € E is a bi-simplicial edge if N(u)UN (v) induces a complete bipartite
subgraph in G. Let o0 = [e1,eq, - ,ex] be an ordering of pairwise non-adjacent
edges of G. With respect to this ordering o, we define P;, i € [k] as the set of end
vertices of the edges {e1,€ea,...,¢;}, and let Py = (). The ordering o is said to be
a perfect elimination ordering for G if G[(X UY') \ Pg] has no edge and each edge
e; is bi-simplicial in G[(X UY) \ P,_1]. A graph G = (V, E) is said to be a perfect
elimination bipartite graph if and only if it admits a perfect elimination ordering
[6]. A bipartite graph G = (X, Y, E) is called a star convex bipartite graph if a star
graph H = (X, Ex) can be defined such that for every vertex y € Y, N(y) induces
a connected subgraph in H.

3. APPROXIMATION ALGORITHMS

In this section, we propose an approximation algorithm for MIN CO-SECURE
DoM whose approximation ratio is a logarithmic factor of the number of vertices
of the input graph. To obtain the approximation ratio of MIN CO-SECURE DoM,
we require the approximation ratio of the minimum double dominating set problem
(MIN DouBLE DoM). Given a graph G = (V, E), in MIN DOUBLE DoM, the aim
is to find a vertex set D C V of minimum cardinality such that |[N(v) N D| > 2,
for all v € V'\ D. We shall denote v2(G) as the cardinality of a minimum double
dominating set in G. We will use the following proposition and a few lemmas to
analyze our approximation algorithms’ performance.

Proposition 3.1. ([2]) Let S be a CSDS of G. A vertexv € V' \ S replaces u € S
if and only if v € N(u) and EPN(u,S) C Nv].

Lemma 3.1. If G is a connected graph with at least 3 vertices then every minimal
double dominating set Do of G is a proper subset of V.. Moreover, if §(G) > 2 then
every minimal double dominating set Ds is a co-secure dominating set of G.

Proof. Suppose there exists a minimal double dominating set Do of G such that
|Dz| = |V|. Since |V| > 3 and G is connected, there exists a vertex v € V with
d(v) > 2. Now, D2\{v} is a double dominating set of G contradicting the minimality
of DQ.

Let Dy be a minimal double dominating set of G. From the minimality of Do,
it follows that every vertex u € Do has at least one neighbor in V' \ Dj. Suppose
there exists a vertex p € Dy such that N(p) C Dy. Then D5 \ {p} is also a double
dominating set (as d(p) > 2.) This contradicts the minimality of Ds.

Let u be any vertex in D and v be its neighbor not in Ds. Next, we show that
S = (D3 \ {u}) U{v} is a dominating set of G. Suppose not, then there exists a
vertex w € V' \ S such that no vertex of S dominates w. Dy is a dominating set
of G implies that N(w) N Dy = {u}. This contradicts the fact that D5 is a double
dominating set of G.

From the above arguments, it follows that D, is a co-secure dominating set of
G. O

In the next lemma, we prove bounds on 72(G) which we will use in designing
approximation algorithms for MIN CO-SECURE DOM.

Lemma 3.2. For every graph G with §(G) > 2, 7.5(G) < 12(G) < 27.(G).
Moreover, these bounds are tight.
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Proof. 7.5(G) < 72(G) holds as every minimal double dominating set of G is also

a CSDS of G (by Lemma 3.1). Next we will prove that v2(G) < 27.5(G). Let

D be a 7.5 set of G. Let D' = {&# € D | EPN(x,D) # 0}, and D" = D\ D"

Let A= |J EPN(z,D). Then, every vertex v € (V \ {D U A}) has at least two
rzeD’

neighbors in D”. By Proposition 3.1, for every vertex = € S there exists at least

one vertex z* € V' \ S and 2* € EPN(z,S) such that dg(z*) > |[EPN(z,S5)|.
Let A" C A such that A’ contains exactly one vertex z* of each EPN(x, D) for
every x € D'. Thus, |A’| = |D’|. Note that, every vertex in A\ A’ has at least two
neighbors in D’ U A’. Let B’ be the smallest subset of (V' \ D)\ A’ that dominates
D". Since every vertex of D" has EPN(x,D") = {}, we obtain |B’| < |D”|. Thus,
DU A’ U B’ is a double dominating set of G. Hence, 72(G) < |D| + |A'| + |B’| <
ID|+ D] + D] = 21D = 27,4(G).
These two inequalities are tight for the graphs K5 o and K,, (n > 3), respectively.
O

Theorem 3.1. MIN DOUBLE DoM can be approximated with an approximation
ratio of O(In|V|), where V is the vertex set of the input graph G. It can also be
approzimated within a factor of 1+ In(A + 2), where A\ is the mazimum degree of
G.

Proof. Given an instance G = (V, E') of MIN DOUBLE DoOM, we construct a multiset
multicover problem [19] as follows. We take V' as the universe and for each vertex
v € V we construct a multiset S, = N[v] U {v}. In S,, v is appearing twice
whereas other elements appear exactly once. We set the requirement of each vertex
v € V as 2. Minimum Multiset Multicover problem can be approximated within a
factor of O(In|V|) (also 1+ In(A +2)) [19]. Therefore, MIN DOUBLE DOM can be
approximated within a factor of O(In |V]) (also 1 + In(A + 2)). O

Next, we propose an algorithm (described in Algorithm 1) to compute an ap-
proximate solution of MIN CO-SECURE DoOM. This algorithm computes a minimal
double dominating set D of the input graph G (with §(G) > 2) using the approx-
imation algorithm described in Theorem 3.1 and returns it as a CSDS of G. By
Lemma 3.1, D5 is also a CSDS of G. It is easy to observe that Algorithm 1 runs
in polynomial time.

Algorithm 1: ApPROX-CSD

Input: A graph G = (V| E).

Output: A minimum CSDS of G.

begin

Compute a double dominating set Dy of G (as described in Theorem
3.1);
S = Do;
return S,
end

Theorem 3.2. MIN CO-SECURE DOM can be approximated within a factor of
O(ln|V)), for graphs with 6(G) > 2. It can also be approximated within a factor of
24 21In(A + 2), where A is the mazimum degree of G.
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Proof. Let S be the CSDS of G computed by the Algorithm 1. By Theorem 3.1,
we have |S| < O(Iln |V])y2(G). Also, by Lemma 3.2 we have

5] < O(In [V])72(G) < 20(In|V])7es(G) = O(In [V])7es (G).
Similarly, it can be observed that |S| < [2 4+ 2In(A + 2)]7.5(G). O

4. LOWER BOUND ON APPROXIMATION RATIO

In this section, we obtain a lower bound on the approximation ratio of MIN
Co-SECURE DoM for some subclasses of bipartite graphs. To obtain our lower
bound, we establish an approximation preserving reduction from MIN DoM to MIN
Co-SECURE DOM. We need the following lower bound result on MIN DoM.

Theorem 4.1. ([3, 5]) Unless P=NP, MIN DOM can not be approximated within
a factor of (1 —¢e)In|V|, for any £ > 0. Such a result holds for MIN DoM even
when restricted to bipartite graphs.

By using this theorem, we will prove similar lower bound results for MiN Co-
SECURE DoM for two subclasses of bipartite graphs, namely perfect elimination
bipartite graphs and star convex bipartite graphs.

Theorem 4.2. Unless P=NP, MIN CO-SECURE DoOM for a perfect elimination
bipartite graph G = (V, E) can not be approzimated within (1 — &) 1n|V|, for any
e > 0.

Proof. Given a graph G = (V, E), an instance of MIN DoM, we construct a graph
G' = (V',E'), an instance of MIN CO-SECURE DoM, as follows. Here we assume
that V = {v1,vs,...,v,}. After making a copy of G, we introduce n new vertices
a1,asg,...,a, and n edges v;a;, for ¢ € [n].Then we introduce 6 vertices s, t, x, y, w, z
and the edges st, xy, wz. Finally, we introduce the edge set {a;v;,v;s,a;x,a;z | i €
[n]}. It is easy to observe that V' =V U{a;|i € [n]}U{z,y,z,w,s,t} and E' = EU
{a;vi, vis,a;2,0;2 | i € [n]} U{zy, zw, st} and it is a polynomial time construction
as |V’/| =2|V| 46 and |E’| = |E| 4+ 4]V| + 3. G’ is a perfect elimination bipartite
graph with the perfect elimination ordering {st,zy, zw, v1a1,v2as2, - ,vpan}. For
an illustration of this construction, we refer to Figure 1.

Claim 4.1. The graph G has a dominating set of cardinality at most k if and only
if G' has a CSDS of cardinality at most k' =k + 3.

Proof. Let D be a minimal dominating set of G. It is easy to check that S =
DU{z,z,s}is a CSDS of G'. Thus, |S| = |D| + 3.

Conversely, let S be a minimal CSDS of G'. SN {z,y} = {x} as y is the only
degree 1 vertex adjacent to x. Similarly, SN{s,t} = {s} and SN{w,z} = {z}. We
will assume that S does not contain any a; vertex. This is because, each a; vertex
is dominated by at least two vertices x and z, and if a; € S then we will replace
the vertex a; with v; in S. Now, we define D = SN V. If D is a dominating set of
G then we are done. Otherwise, there exists a vertex v; which is not dominated by
any vertex of D. Now, v, is dominated only by s € S and (S \ {s}) U {v} is not a
dominating set, for every v € (Ng/(s) \ S). This is a contradiction. Hence, D is a
dominating set of G with |S| = |D| + 3. O

Let us assume that there exists some (fixed) € > 0 such that MIN CO-SECURE
Do for perfect elimination bipartite graphs with |V’| vertices can be approximated
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FIGURE 1. An illustration of the construction of G’ from G in the
proof of Theorem 4.2

within a ratio of a = (1 —¢)In|V’| by a polynomial time algorithm A. Let [ > 0 be

a fixed integer with [ > —. By using algorithm A, we construct a polynomial time

algorithm for MIN Dowm as described in Algorithm 2.

Initially, if there is a minimum dominating set D of G with |D| < [, then it can
be computed in polynomial time. Since the algorithm A runs in polynomial time,
the Algorithm 2 also runs in polynomial time. If the returned set D satisfies |D| < [
then D is a minimum dominating set of G and we are done.

Next, we will analyze the case when Algorithm 2 returned the set D with |[D| > [.
By Claim 4.1 we have |S,| = |D,| + 3, where D, and S, are minimum dominating
set of G and minimum CSDS of G, respectively. Here |D,| > .

Algorithm 2: ApPROX-DOM1

Input: A graph G = (V| E).

Output: A minimum dominating set D of G.

begin
if there is a minimum dominating set D of G with |D| < [ then

| return D;
else
Construct the graph G’ as described above;
Compute a CSDS S in G’ using A;

D=SnNnV;
return D;
end

end

Now, |D| < [S|=3 < [S| < alSe] = a(|Do|+3) = a1+ ) Dol < a(1+2)[Dy|.
This implies that Algorithm 2 approximates MIN DoOM within a ratio of «(1 + %)
Since % <e

a(1+?) <(1=g)1+3e) |V =(1-&)n|V],
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where ¢/ = 3¢? 4+ 2¢ as In|V’| = In(2|V| + 6) ~ In|V]| for sufficiently large value of
V.

Therefore, Algorithm 2 approximates MIN DoM within a ratio of (1 —¢)In |V
for some ¢ > 0. This contradicts the lower bound result in Theorem 4.1. (]

Next, we prove the inapproximability of MIN CO-SECURE DOM in star convex
bipartite graphs by using the Theorem 4.1.

Theorem 4.3. MIN CO-SECURE DOM for a star convex bipartite graph G = (V, E)
can not be approxzimated within (1 — &) In|V| for any € > 0, unless P=NP.

Proof. Given a bipartite graph G = (X,Y, E), as an instance of MIN DoM, we
obtain a star convex bipartite graph G’ = (X', Y”’, E’) such that G has a dominating
set of cardinality at most k if and only if G’ has a CSDS of cardinality at most
k' = k+2. Now the construction of G’ from G is as follows. After making a copy of
G, we introduce four vertices xg, z, Yo, y. Finally, we make every vertex of XU{x, 2o}
adjacent to y and every vertex of YU{y, yo} adjacent to z. Now, X' = {X }U{z, o},
Y' ={Y}U{y,y} and E' = {E}U{z;y | z; € X} U{ysx | y; € Y}U{zoy, zy, xy0}.
The new graph G' = (V' E’) formed from G = (V,FE) has |[V'| = |V| + 4 and
|E'| = |E|4+n+3, which can be constructed in polynomial time. It can be observed
that G’ is a star convex bipartite graph with the associated star graph which is
shown in Figure 2.

X’ Y’
71 Y1
T2 Y2
T3 Ys
T4 ® Y4
5 Ys

xo Yy
X Yo

& =" E S

FIGURE 2. An illustration of the construction of G’ from G in the
proof of Theorem 4.3

Claim 4.2. G has a dominating set of cardinality at most k if and only if the graph
G’ has a CSDS of cardinality at most k' =k + 2.

Proof. Suppose D is a minimal dominating set of G and let S = DU{z,y}. Clearly,
S is a CSDS of G’ with |S| = |D| 4+ 2 < k + 2. Conversely, let S be a minimal
dominating set of G'. Note that, |S N {z,yo}| = 1, and similarly |S N {zg,y}| = 1.
If 2o, yo € S, observe that EPN (x9,S) =y and EPN (yo,S) = x. So, without loss
of generality, assume {z,y} C S. Now, let D = S\ {z,y}. Now we show that D is
a dominating set of G. If D is dominating set of GG, then we are done. Otherwise,
suppose D is not a dominating set of G. Then there exists at least one vertex
v € V(G) which is not dominated by any vertex of D. Without loss of generality,
assume v, € X, then vy can only be dominated by y € Y’. Since S is a CSDS of
G’, (S\{y})U{v} is a dominating set of G’, which is a contradiction. Thus, D is a
dominating set of G of cardinality |D| = |S|—2 < k. Therefore, G has a dominating
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set D of cardinality at most k if and only if G’ has a CSDS of cardinality at most
k' = k + 2. This completes the proof of this claim. ([

Presume that there exists some (fixed) € > 0 such that MIN CO-SECURE Dom
for star convex bipartite graphs having |V’| vertices can be approximated within a
ratio of & = (1 — ) In|V’| by using an algorithm A that runs in polynomial time.
Let I > 0 be an integer. By using algorithm A, we construct a polynomial time
algorithm Algorithm 3 for MIN Dowm.

Algorithm 3: ApPPROX-DOM2

Input: A bipartite graph G = (X,Y, E).

Output: A minimum dominating set D of G.

begin
if there is a minimum dominating set D of G with |D| < [ then

| return D;
else
Construct the graph G’ as described above;
Compute a CSDS S in G’ using the algorithm A;
D=SN(XUY);
return D;
end

end

Firstly, if there is a minimum dominating set D of G with |D| < [, then it can be
computed in polynomial time. Moreover, Algorithm 3 runs in polynomial time as
A runs in polynomial time. Note that, if the returned set D satisfies |D| < [ then
it is a minimum dominating set of G and we are done. Now, let us assume that the
returned set D satisfies |D| > .

Let D, and S, be a minimum dominating set of G and a minimum CSDS of G,
respectively. Then |D,| > [, and |S,| = |D,| + 2 by the above Claim 4.2. Now,

2 2
|ID| < |S|—2 < |S] < a|S,| = a(|Do| + 2) = a(1+ |D|>|DO| < a<1—|— l>|Do|.

Hence, Algorithm 3 approximates MIN DoM for given bipartite graph G = (X, Y, E)
within the ratio (1 + ). Let [ be the positive integer such that ; < . Then

2
a<1—|— l) <(1-8)(1+2)In|X'UY'|=(1-¢&)In|XUY],
where ¢/ = 2e2 —cas In|X'UY'| = In(|X UY| +4) ~ In|X UY] for sufficiently
large value of | X UY|.

Therefore, Algorithm 3 approximates MIN DoM within a ratio of (1—¢) In | XUY|
for some £ > 0. This contradicts the lower bound result in Theorem 4.1. O

5. COMPLEXITY ON BOUNDED DEGREE GRAPHS

In this section, we show that MIN CO-SECURE DoM is APX-complete for 3-
regular graphs. Note that the class APX is the set of all optimization problems
which admit a c-approximation algorithm, where c is a constant. From Theorem
3.2 it follows that MIN CO-SECURE DOM can be approximated within a factor of
5.583 for graphs with maximum degree at most 4. We improve this approximation

10
factor to —.
3
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We first show that MIN CO-SECURE DoM for 3-regular graphs is approximable

within a factor of g

Algorithm 4: ApPROX-CSD-3RG
Input: A 3-regular graph G = (V, E).
Output: A CSDS S of G = (V, E).
begin

W' =0,

while 3 an edge wv € F do

W' =W'U{u,v};
Delete N[u] U N[v] from G;
end

Let T be the remaining vertices;

W=W"UuT;

S =V\W;

return S;

end

8
Lemma 5.1. MIN CO-SECURE DoOM is approxzimable within a factor of 3 for 3-

regular graphs.

Proof. Let S, be a minimum CSDS of a 3-regular graph G = (V, E). A vertex
x € S, can co-securely dominate at most 3 vertices of V'\ S,. Therefore, |[V'\ S,| <
3|S,|. This implies that

n
> —.
(1) ‘SO| — 4

The set S of vertices returned by Algorithm 4 is a minimal double dominating set
in G because each vertex in W’ has exactly two neighbors in S. By Lemma 3.1, S
is a CSDS of G. n

Thus, W = W/ UT. Let [W/ US| =n; =n—|T|. Now |W'| > 31, since in the
while loop, the algorithm has picked two vertices and simultaneously removed at
most six vertices from the graph. Now,

W= W4 17> 2 b 20— 2 =T
Thus,
n  2n
©) SI=V] - W <n- =2
This yields the upper bound on the size of the CSDS returned. Combining equation
(1) and equation (2), we obtain ||SS;|| < 2, thereby proving the lemma. a

Next, we design a constant factor approximation algorithm for MIN CO-SECURE
Dowm when the input graph is 4-regular.
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Algorithm 5: Approx-CSD-4RG
Input: A 4-regular graph G = (V, E).
Output: A CSDS S of G = (V. E).
begin
W' =0,
while 3 a maximal induced path P(uy,ug) = (uy,us,...,ux) or an
induced cycle C = (ug,ug, ..., ug,u) do
wW'=w'u {ul,uQ,. - ,uk};
Delete the vertex set {uj,us,...,ur} and their neighbors from G;
end
Let T be the remaining vertices;
W=WuT;
S =V\W;
return S;
end

Lemma 5.2. MIN CO-SECURE DoOM for 4-regular graphs can be approximated

1
within a factor of g()

Proof. Given a 4-regular graph G, in polynomial time Algorithm 5 computes a
vertex set W such that the degree of each vertex in G[W] is at most 2.

Claim 5.1. S is a CSDS of G.

Proof. By Lemma 3.1, it is enough to show that S is a minimal double dominating
set of G.

S is a double dominating set of G as each vertex in W has at least two neighbors
in S. Suppose S is not a minimal double dominating set of G. Then there must
be a vertex v € S such that S\ {v} is a double dominating set of G. This implies
that v must have at least two neighbors in S. If v € S is adjacent to a vertex of
degree two in G[W] then S\ {v} is not a double dominating set of G (because G
is 4-regular). This implies that v must be adjacent to at least one end-vertex of an
induced path P in G[W’]. This contradicts the maximality of P. O

Following the proof of Lemma 5.1, it can be proved that |S,| > % Let W' be the
set of vertices of degree 2 in G[W] and Q@ = W \ W’. By setting n; = n — |Q| and
following the proof of Lemma 5.1, it can be proved that |W'| > % This implies
S| 10

— < —. (]
1So| = 3

2
that |W| > g and |S| < gn Therefore,

Before we prove that MIN Co-SECURE Dowm is APX-complete for 3-regular
graphs, we need some terminology and results regarding the partial monopoly set.

Definition 5.1 ([17]). (MIN PARTIAL MONOPOLY PROBLEM) Given a graph G =
(V, E), partial monopoly problem is to find a set M C 'V of minimum cardinality

1
such that for each v € V\ M, |M N N[v]| > §|N[v}|

It is known that for 3-regular graphs MIN PARTIAL MONOPOLY PROBLEM is
APX-complete [16]. It is easy to observe the following lemma:
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Lemma 5.3. Let G be a 3-regular graph. A partial monopoly set M of G is a
double dominating set of G and vice versa.

Lemma 5.4. Let G be a 3-regular graph and S CV be a minimal CSDS of G. In
polynomial time one can construct a double dominating set 8" C'V with |S’| < 2|S|.

Proof. Let S be a minimal CSDS of G. Define S; be the set of vertices v € S such

that EPN (v, S) # 0, and So = S\ S1. Now let A= |J EPN(v,S). Note that every
veES
vertex in A has exactly one neighbor in S; and every vertex in (V' '\ S) \ A has at

least two neighbors in Sy. By Proposition 3.1, for every vertex x € S there exists at
least one vertex z* € V'\ S and «* € EPN(z,S) such that dg(z*) > |[EPN(z,.5)|.
Let us define a new set A’ C A, such that A’ contains that one vertex z* of each
EPN(z,S) for every x € S7. Thus, |A’| = |S1|. Let S = S U A’. Now every vertex
in V'\ S has at least two neighbors in S’. Hence S’ is a double dominating set of
G with cardinality |S| + [A"] = |S] 4+ |S1] < 2]S]. O

Now, we will prove that MIN CO-SECURE DoOM is APX-complete for 3-regular
graphs by establishing a reduction from MIN PARTIAL MONOPOLY PROBLEM for
3-regular graphs.

Theorem 5.1. MIN CO-SECURE DoM is APX-complete for 3-reqular graphs.

Proof. Because of Lemma 5.1, it is enough to establish a polynomial time approx-
imation ratio preserving reduction from MIN PARTIAL MoONOPOLY PROBLEM for
3-regular graphs to MiN CO-SECURE DoM for 3-regular graphs.

Given a 3-regular graph G = (V, E), an instance of MIN PARTIAL MONOPOLY
PROBLEM, we take the same graph G as an instance of MIN CO-SECURE DoOM.
Let M, be a minimum partial monopoly set of G and S, be a minimum CSDS of
G. Then |M,| = v2(G) (by Lemma 5.3). Also, we have |S,| < |M,|, by Lemma 3.2.
Given a minimal CSDS S of GG, we can construct a partial monopoly set M C V
with |M|] < 2|S| (from Lemma 5.4 and 5.3) Therefore, ||]]\\;[ < 2||5|| Hence, MIN
Co-SECURE DoM is APX-complete for 3-regular graphs. ’ ’

6. CONCLUSION

In this paper, we prove that MIN CO-SECURE DoOM is hard to approximate
within a factor smaller than In|V| for perfect elimination bipartite graphs and
star convex bipartite graphs. On the positive side, we have proposed a O(ln|V])
approximation algorithm for MIN CO-SECURE DoM for any graph. Apart from
these, we have shown that for 3-regular graphs and 4-regular graphs MIN Co-

8
SECURE DOM admits a — and — factor approximation algorithms, respectively.

It would be interesting to design a better approximation algorithm for 3-regular
graphs. We prove that it is APX-complete for 3-regular graphs. We conjecture
that it is APX-hard for 3-regular bipartite graphs.
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