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1. INTRODUCTION

Properties of feedforward neural networks with one hidden layer have been studied quite
well. By selecting different activation functions, many authors showed that single hidden
layer neural networks possess the universal approximation property. In recent years, the
theory of neural networks has been developed further in this direction. For example, from
the point of view of practical applications, neural networks with a restricted set of weights
have gained special interest.

A single hidden layer neural network with r units in the hidden layer and input x =
(x1, ..., xd) computes a function of the form

r
∑

i=1

ciσ(w
i·x− θi), (1.1)

where the weights wi are vectors in R
d, the thresholds θi and the coefficients ci are real

numbers and the activation function σ is a real univariate function. For various activation
functions σ, it was shown by many authors that one can approximate arbitrarily well to
any continuous function by functions of the form (1.1) (r is not fixed!) over any compact
subset of Rd. That is, the set

M(σ) = span {σ(w · x− θ) : θ ∈ R, w ∈ R
d}

is dense in the space C(Rd) in the topology of uniform convergence on compact sets (see,
e.g., [5, 6, 9, 15, 23, 38]). The most general and complete result of this type was obtained by
Leshno, Lin, Pinkus and Schocken [29]. They proved that a continuous activation function
has the density property or the universal approximation property if and only if it is not a
polynomial. This result has shown the power of single hidden layer neural networks within
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all possible choices of the continuous activation function σ. For detailed information on
this and other density results see [38].

It was formerly believed and particularly emphasized in many works that for the uni-
versal approximation property, large networks with sufficiently many hidden neurons are
needed. However, the recent papers [12, 13] have shown that there exist neural networks
with very few hidden neurons, which can approximate arbitrarily well any continuous func-
tion on any compact set. Moreover, it was shown that such networks can be constructed
in practice.

A number of authors proved that single hidden layer neural networks with some suitably
restricted set of weights also possess the universal approximation property. For example,
White and Stinchcombe [41] showed that a single layer network with a polygonal, polyno-
mial spline or analytic activation function and a bounded set of weights has the universal
approximation property. Ito [23] investigated this property of networks using a mono-
tone sigmoidal function (any continuous function tending to 0 at minus infinity and 1
at infinity), with weights located only on the unit sphere. Note that sigmoidal functions
play an important role in neural network theory and related application areas (see, e.g.,
[7, 8, 12, 13, 16, 27, 31, 33]). Thus we see that the weights required for the universal
approximation property are not necessarily of an arbitrarily large magnitude. But what
if they are too restricted. Obviously, in this case, the universal approximation property
does not hold, and the problem reduces to the identification of compact subsets in R

d over
which the model preserves its general propensity to approximate arbitrarily well. The first
and most interesting case is, of course, neural networks with a finite set of weights. In [19],
we considered this problem and gave sufficient and necessary conditions for good approx-
imation by networks with finitely many weights and also with weights varying on finitely
many straight lines. For a set W of weights consisting of two vectors or two straight lines,
we showed that there is a geometrically explicit solution to this problem (see [19]).

It should be remarked that the above density results do not tell about the degree
of approximation. They only provide us with the knowledge if and when single hidden
layer neural networks can approximate multivariate functions. The problem of degree of
approximation is related to the problem of complexity, which is the same as the problem
of determining the number of hidden neurons required for approximation within a given
accuracy. This problem was investigated in a number of papers (see, e.g., [2, 14, 30, 31,
32, 36]).

In this paper, we consider the uniform approximation of single hidden layer networks
with two fixed weights in R

d. As noted above these networks are not always dense in the
space of continuous functions. In fact, the possibility of density depends on a compact set,
where all given functions are defined. Characterization of compact sets, for which various
density results hold, was given in [19, 22]. Here we are interested in the approximation
error, the minimal number within which the considered network can approximate a given
multivariate function. We establish an explicit approximation error formula for single hid-
den layer neural networks with two fixed weights. Our formula is valid for many activation
functions. For example, it is valid for all continuous nonconstant activation functions,
which have limits at plus and minus infinities.
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2. THE MAIN RESULT

Assume σ is a continuous function on R. Assume, besides, a and b are two fixed
nonzero vectors in R

d. Consider the set

N (σ) =

{

r
∑

i=1

ciσ(w
i·x− θi) : r ∈ N, ci, θi ∈ R

}

,

where the weights wi = a or wi = b. That is, we consider the set of single hidden layer
neural networks with weights restricted to only two vectors. In particular, these vectors
may coincide, and then we have the set of neural networks with a single fixed weight. Let
Q be a compact subset of Rd and f ∈ C(Q). Consider the approximation of f by neural
networks from N (σ). The approximation error is defined as

E (f,N (σ))
def
= inf

Λ∈N (σ)
‖f − Λ‖ .

The following objects, called paths, were exploited in many papers. We will use these
objects in the further analysis.

Definition 2.1. A finite or infinite ordered set (p1,p2, ...) ⊂ Q with pi 6= pi+1 and
either a ·p1 = a ·p2,b ·p2 = b ·p3, a ·p3 = a ·p4, ... or b ·p1 = b ·p2, a ·p2 = a ·p3,b ·p3 =
b · p4, ..., is called a path with respect to the directions a and b.

It should be remarked that paths with respect to two directions in R
2 were first consid-

ered by Braess and Pinkus [3]. They proved a theorem, which yields that the idea of paths
are essential for deciding if a set of points {xi}

m

i=1 ⊂ R
2 has the interpolation property

for so-called ridge functions. Ismailov and Pinkus [21] exploited paths to solve the inter-
polation problem on straight lines by ridge functions with fixed directions. In the special
case, when a and b are the coordinate vectors in R

2, paths represent bolts of lightning (see,
e.g., [1, 4, 35]). Note that bolts, first introduced by Diliberto and Straus [10] under the
name of permissible lines, played an essential role in various problems of approximation of
multivariate functions by sums of univariate functions (see, e.g., [10, 11, 25, 34, 35]). Note
that the name “bolt of lightning” is due to Arnold [1]. There is a useful generalization of
closed paths with respect to two directions to those with respect to finitely many functions.
This generalization is effective in solutions of some representation problems arising in the
theory of linear superpositions (see [17]).

In the following, we consider paths with respect to two directions a and b in R
d. A

path (p1,p2, ...,p2n) is said to be closed if (p1,p2, ...,p2n,p1) is also a path. The length of
a path is the number of its points.
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We associate each closed path p = (p1,p2, ...,p2n) with the functional

Gp(f) =
1

2n

2n
∑

k=1

(−1)k+1f(pk).

In the sequel, we will assume that the considered compact set Q ⊂ R
d contains a

closed path. This assumption is not too restrictive. Sufficiently many sets in R
d have this

property. For example, any compact set with at least one interior point contains closed
paths. Note that if Q does not contain closed paths, then in almost all cases we have
E (f,N (σ)) = 0 for any f ∈ C(Q) (see [19]). We say “in almost all cases” because there is
a highly nontrivial example of such Q and continuous f : Q→ R, for which E (f,N (σ)) > 0
(see [19]).

We also need the concept of extremal paths.

Definition 2.2 (see [18]). A finite or infinite path (p1,p2, ...) is said to be extremal for
a function u ∈ C(Q) if u(pi) = (−1)i ‖u‖ , i = 1, 2, ... or u(pi) = (−1)i+1 ‖u‖ , i = 1, 2, ... .

The following definition belongs to Schwartz [40].

Definition 2.3 (see [40]). A function ρ ∈ C(R) is called mean periodic if the set
span{ρ(x − θ) : θ ∈ R} is not dense in C(R) in the topology of uniform convergence on
compacta.

Properties of mean periodic functions were studied in several papers (see, e.g., [24, 26,
28, 40]). It was proven that the condition in Definition 2.3 is equivalent to each of the
following conditions:

a) there exists a non-zero measure µ of compact support such that

∫

ρ(x− y)µ(y) = 0,

for all x ∈ R;
b) ρ is the limit in C(R) of a sequence of exponential polynomials P (x)eiλx, which are

orthogonal to a measure µ with compact support, that is,

∫

P (y)e−iλyµ(y) = 0.

For equivalence of the above conditions and for detailed information on mean periodic
functions see Kahane [24].

In our main result (see Theorem 2.1 below), we assume that the considered function f
has a best approximation in the set

R(a,b) = {g(a · x) + h(b · x) : g, h ∈ C(R)} ,

that is, there exists v0 ∈ R(a,b) such that
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‖f − v0‖ = inf
v∈R(a,b)

‖f − v‖ .

Some results on existence of a best approximation from R(a,b) was obtained in our paper
[20].

The following lower bound error estimate holds in approximation with elements from
N (σ).

Lemma 2.1. Assume σ is an arbitrary continuous activation function. Then

sup
p⊂Q

|Gp(f)| ≤ E (f,N (σ)) , (2.1)

for any f ∈ C(Q). Here the sup is taken over all closed paths.

Proof. Consider an element of N (σ). This is a sum of the functions fi(x) = ciσ(w
i·x−θi),

i = 1, ..., r. Note that for each ci, θi ∈ R, fi(x) is a function of the form g(wi ·x). Since the
weight wi = a or wi = b, we have g(wi · x) = g(a · x) or g(wi · x) = g(b · x). Thus, any
neural network

∑r

i=1 ciσ(w
i·x− θi) in N (σ) is an element of R(a,b).

Assume p is a closed path in Q and Λ is an arbitrary network from N (σ). Since
Λ(x) = g(a · x) + h(b · x), it is not difficult to verify that Gp(Λ) = 0. On the other hand,
from the definition of Gp, it follows that ‖Gp‖ ≤ 1. Thus we obtain that

|Gp(f)| = |Gp(f − Λ)| ≤ ‖f − Λ‖ .

Since the left-hand side and the right-hand side of this inequality do not depend on Λ and
p, respectively, it follows that

sup
p⊂Q

|Gp(f)| ≤ inf
Λ∈N (σ)

‖f − Λ‖ = E(f,N (σ)).

The following theorem is valid.

Theorem 2.1. Assume Q ⊂ R
d is a compact set and f ∈ C(Q). Suppose the following

conditions hold.
1) f has a best approximation in R(a,b);
2) There exists a positive integer N such that any path (p1, ...,pn) ⊂ Q, n > N, or a

subpath of it can be made closed by adding not more than N points of Q.
Then for any activation function σ, which is not mean periodic, the approximation error

of the class of single hidden layer networks N (σ) can be computed by the formula

E (f,N (σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.

5



Proof. By assumption, f has a best approximation in R(a,b). Denote this function by
v0(x) = g0(a · x) + h0(b · x). Let us concentrate on extremal paths for the function
f1 = f − v0. The main result of [18] says that regarding such paths there may be only two
cases.

Case 1. There exists a closed path p0 = (p1, ...,p2n) extremal for the function f1.
In this case, based on Definition 2.2, we can write that

|Gp0(f)| = |Gp0(f − v0)| = ‖f − v0‖ . (2.2)

Since σ is not mean periodic, the span{σ(x − θ) : θ ∈ R} is dense in C(R) in the
topology of uniform convergence on compacta. It follows that for any ε > 0 there exist
natural numbers m1, m2 and real numbers cij , θij , i = 1, 2, j = 1, ..., mi, for which

∣

∣

∣

∣

∣

g0(t)−
m1
∑

j=1

c1jσ(t− θ1j)

∣

∣

∣

∣

∣

<
ε

2
(2.3)

and

∣

∣

∣

∣

∣

h0(t)−
m2
∑

j=1

c2jσ(t− θ2j)

∣

∣

∣

∣

∣

<
ε

2
(2.4)

for all t ∈ [a, b]. Here [a, b] is a sufficiently large interval which contains both the sets
{a · x : x ∈ Q} and {b · x : x ∈ Q}.

Taking t = a · x in (2.3) and t = b · x in (2.4) we obtain that

∣

∣

∣

∣

∣

g0(a · x) + h0(b · x)−
m
∑

i=1

ciσ
(

wi · x− θi
)

∣

∣

∣

∣

∣

< ε, (2.5)

for all x ∈ Q and some ci, θi ∈ R and wi = a or wi = b. Clearly,

∥

∥

∥

∥

∥

f −
m
∑

i=1

ciσ
(

wi · x− θi
)

∥

∥

∥

∥

∥

≤ ‖f − g0 − h0‖+

∥

∥

∥

∥

∥

g0 + h0 −
m
∑

i=1

ciσ
(

wi · x− θi
)

∥

∥

∥

∥

∥

. (2.6)

It follows from (2.6) that

E (f,N (σ)) ≤ ‖f − g0 − h0‖+

∥

∥

∥

∥

∥

g0 + h0 −
m
∑

i=1

ciσ
(

wi · x− θi
)

∥

∥

∥

∥

∥

. (2.7)

The last inequality together with (2.2) and (2.5) yield

E (f,N (σ)) ≤ |Gp0(f)|+ ε.
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Now since ε is arbitrarily small, we obtain that

E (f,N (σ)) ≤ |Gp0(f)| .

From this and Lemma 2.1 it follows that

E (f,N (σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.
Case 2. There exists an infinite path extremal for f1. Assume a path p = (p1,p2, ...)

is infinite and extremal for f1. Then by the assumption of the theorem, the finite extremal
paths (p1,p2, ...,pn) ⊂ p, n = N+1, N+2, ..., or subpaths of them must be made closed by
adding not more than N points. Without loss of generality we may assume that these paths
themselves can be made closed. That is, for each finite extremal path pn = (p1,p2, ...,pn),
n > N , there exists a closed path ln = (p1,p2, ...,pn,qn+1, ...,qn+mn

), where mn ≤ N . The
functional Gln obeys the inequalities

|Gln(f)| = |Gln(f − v0)| ≤
n ‖f − v0‖+mn ‖f − v0‖

n+mn

= ‖f − v0‖ (2.8)

and

|Gln(f)| ≥
n ‖f − v0‖ −mn ‖f − v0‖

n+mn

=
n−mn

n+mn

‖f − v0‖ . (2.9)

We obtain from (2.8) and (2.9) that

sup
ln

|Gln(f)| = ‖f − v0‖ . (2.10)

Using the above sum
∑m

i=1 ciσ (w
i · x− θi) and the inequalities (2.5) with (2.7) here,

we obtain from (2.10) that

E (f,N (σ)) ≤ sup
ln

|Gln(f)| . (2.11)

The inequality (2.11) together with (2.1) yield that

E (f,N (σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths. The theorem has been proved.

Corollary 2.1. Let Q ⊂ R
d be a compact set, f ∈ C(Q) and the space R (a,b) be prox-

iminal in C(Q) (that is, for any u ∈ C(Q) there exists a best approximation in R (a,b)).
Let σ be any activation function, which is not mean periodic. Then the approximation
error of the class of single hidden layer networks N (σ) can be computed by the formula

E (f,N (σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.
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Proof. Since R (a,b) is proximinal in C(Q), the lengths of irreducible paths are uniformly
bounded by some positive integer N (see [20]). Note that a path (q1, ...,qm) is irreducible
if there is not a path connecting q1 and qm with the length less than m. Take any path
p = (p1,p2, ...,pn) with the length n > N. Since n > N , the path p is not irreducible. Thus
we can join the points p1 and pn by an irreducible path q = (q1,q2...,qm), where q1 = p1

and qm = pn. Note that by the proximinality assumption, m ≤ N . Then the ordered
set (p1,p2, ...,pn,qm−1, ...q2) (or some subset (pi,pi+1, ...,pk,qj , ...qs) of it) is a closed
path, where the number of added points is less than N . We see that all the conditions of
Theorem 2.1 are satisfied; hence the assertion of Corollary 2.1 is valid.

Many activation functions exploited in neural network theory and applications are not
mean periodic. For example, this is true for a number of popular activation functions (such
as sigmoid, hyperbolic tangent, Gaussian, etc). The following corollary specifies one class
of such functions.

Corollary 2.2. Assume all the conditions of Theorem 2.1 hold. Let σ ∈ C(R)∩Lp(R),
where 1 ≤ p <∞, or σ be a continuous, bounded, nonconstant function, which has a limit
at infinity (or minus infinity). Then the approximation error of the class of single hidden
layer networks N (σ) can be computed by the formula

E (f,N (σ)) = sup
p⊂Q

|Gp(f)| ,

where the sup is taken over all closed paths.

The proof can be easily obtained from Theorem 2.1 and the following result of Schwartz
[40]: Any continuous and p-th degree Lebesgue integrable univariate function or continuous,
bounded, nonconstant function having a limit at infinity (or minus infinity) is not mean
periodic (see also [38]).

As an example we show that the sup |Gp(f)| in Theorem 2.1 can be easily computed
for some class of functions f . For the sake of simplicity let the space dimension d = 2.
Assume we are given linearly independent vectors a = (a1, a2) and b = (b1, b2), and the
domain

Q =
{

x ∈ R
2 : c1 ≤ a · x ≤ d1, c2 ≤ b · x ≤ d2

}

,

where c1 < d1 and c2 < d2.
Consider the class M(Q) of continuous functions f on Q, which have the continuous

partial derivatives ∂2f

∂x2

1

, ∂2f

∂x1∂x2

, ∂
2f

∂x2

2

, and for any x = (x1, x2) ∈ Q,

∂2f

∂x1∂x2
(a1b2 + a2b1)−

∂2f

∂x21
a2b2 −

∂2f

∂x22
a1b1 ≥ 0. (2.12)

Using Theorem 2.1 we want to compute the error in approximating f ∈ M(Q) by
elements of the set

8



N (σ) = span {σ(w · x− θ) : θ ∈ R, w = a or w = b} .

Here σ is any non-mean periodic activation function (for example, any continuous noncon-
stant function having limits at plus and minus infinities). Note that all the assumptions
of Theorem 2.1 hold, moreover the set R(a,b) is proximinal in C(Q) (see [20]).

Consider the following linear transformation

y1 = a1x1 + a2x2, y2 = b1x1 + b2x2. (2.13)

Let
K = [c1, d1]× [c2, d2].

Since the vectors (a1, a2) and (b1, b2) are linearly independent, for any (y1, y2) ∈ K there
exists only one solution (x1, x2) ∈ Q of the system (2.13). This solution is given by the
formulas

x1 =
y1b2 − y2a2

a1b2 − a2b1
, x2 =

y2a1 − y1b1

a1b2 − a2b1
. (2.14)

The linear transformation (2.14) transforms the function f(x1, x2) to the function
g(y1, y2). Besides, this transformation maps paths with respect to the directions (a1, a2)
and (b1, b2) to paths with respect to the coordinate directions (1, 0) and (0, 1). As we have
already known the latter type of paths are called lightning bolts (see Definition 2.1 and
the subsequent discussions). Hence,

sup
p⊂Q

|Gp(f)| = sup
q⊂K

|Gq(g)| , (2.15)

where the sup in the left hand side of (2.15) is taken over closed paths with respect to the
directions (a1, a2) and (b1, b2), while the sup in the right hand side of (2.15) is taken over
closed bolts.

Note that
∂2g

∂y1∂y2
≥ 0, (2.16)

for any (y1, y2) ∈ K, which easily follows from (2.12).
The sup in the right hand side of (2.15) can be computed by applying theorems of

Ofman [37], and Rivlin and Sibner [39]. By Ofman’s theorem

sup
q⊂K

|Gq(g)| = inf
g1+g2

‖g(y1, y2)− g1(y1)− g2(y2)‖C(K) . (2.17)

By a result of Rivlin and Sibner (see [39]), Eq. (2.16) yields that

inf
g1+g2

‖g(y1, y2)− g1(y1)− g2(y2)‖C(K) =
1

4

∫∫

K

∂2g

∂y1∂y2
dy1dy2. (2.18)

It follows from Corollary 2.1 and equations (2.15), (2.17) and (2.18) that
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E (f,N (σ)) =
1

4

∫∫

K

∂2g

∂y1∂y2
dy1dy2. (2.19)

The above integral can be computed easily, using values of g at the vertices of K.

Example. Let a = (a1, a2) and b = (b1, b2) be the coordinate vectors (1, 0) and (0, 1),
respectively. Assume Q is the unit square [0, 1]2 and σ is a sigmoidal function. Assume
we are given the function f(x1, x2) = x1x2. Note that (2.12) holds, hence f ∈ M(Q). The
approximating set of networks N (σ) has members of the form

n1
∑

i=1

ciσ(x1 − θi) +

n2
∑

j=1

djσ(x2 − λj),

where ci, dj, θi, λj are arbitrary real numbers and n1, n2 are positive integers. Since linear
transformation (2.13) does not change the coordinates in our case, we have g = f and
K = Q. Thus, by formula (2.19),

E (f,N (σ)) =
1

4

∫∫

Q

∂2f

∂x1∂x2
dx1dx2 =

1

4
.

Remark. The question on computing the approximation error of neural nets with
more than two fixed weights is fair, but its solution seems to be beyond the scope of the
methods discussed herein. A path with respect to two directions a and b is constructed as
an ordered set of points (p1,p2, ...,pn) in R

d with edges pipi+1 in alternating hyperplanes
so that the first, third, fifth and so on hyperplanes (also the second, fourth, sixth and so
on hyperplanes) are parallel. If not differentiate between parallel hyperplanes, the path
(p1,p2, ...,pn) can be considered as a trace of some point traveling in two alternating
hyperplanes. In this case, the path functional

F (f) =
1

n

n
∑

i=1

(−1)i+1f(pi),

has some important properties, which lead to a geometric criterion for a best approximation
from R(a,b) (see [18]). Note that our Theorem 2.1 is mainly based on this criterion. The
problem becomes complicated when the number of directions is more than two. The simple
generalization of paths demands a point traveling in three or more alternating hyperplanes.
But in this case the appropriate generalization of the above functional F looses its original
useful properties. Some difficulties with a generalization of paths and path functionals
were delineated in [17] and [18].
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