
Quality versus Efficiency in Document Scoring
with Learning-to-Rank Models

Gabriele Capanninia, Claudio Luccheseb, Franco Maria Nardinib, Salvatore Orlandoc, Raffaele Peregob,
Nicola Tonellottob

aIDT, Mälardalens högskola, Väster̊as, Sweden
b“Istituto di Scienza e Tecnologie dell’Informazione” (ISTI) of the National Research Council of Italy (CNR), Pisa, Italy

cUniversity Ca’ Foscari of Venice, Italy

Abstract

Learning-to-Rank (LtR) techniques leverage machine learning algorithms and large amounts of training

data to induce high-quality ranking functions. Given a set of documents and a user query, these functions

are able to precisely predict a score for each of the documents, in turn exploited to effectively rank them.

Although the scoring efficiency of LtR models is critical in several applications – e.g., it directly impacts on

response time and throughput of Web query processing – it has received relatively little attention so far.

The goal of this work is to experimentally investigate the scoring efficiency of LtR models along with

their ranking quality. Specifically, we show that machine-learned ranking models exhibit a quality versus

efficiency trade-off. For example, each family of LtR algorithms has tuning parameters that can influence

both effectiveness and efficiency, where higher ranking quality is generally obtained with more complex and

expensive models. Moreover, LtR algorithms that learn complex models, such as those based on forests of

regression trees, are generally more expensive and more effective than other algorithms that induce simpler

models like linear combination of features.

We extensively analyze the quality versus efficiency trade-off of a wide spectrum of state-of-the-art LtR,

and we propose a sound methodology to devise the most effective ranker given a time budget. To guarantee

reproducibility, we used publicly available datasets and we contribute an open source C++ framework

providing optimized, multi-threaded implementations of the most effective tree-based learners: Gradient

Boosted Regression Trees (GBRT), Lambda-Mart (λ-MART), and the first public-domain implementation

of Oblivious Lambda-Mart (Ωλ-MART), an algorithm that induces forests of oblivious regression trees.

We investigate how the different training parameters impact on the quality versus efficiency trade-off, and

provide a thorough comparison of several algorithms in the quality-cost space. The experiments conducted

show that there is not an overall best algorithm, but the optimal choice depends on the time budget.

Keywords: Efficiency, learning to rank, document scoring

Preprint submitted to Information Processing and Management January 30, 2020

1. Introduction

Ranking is a central task of many information retrieval problems, in particular for document retrieval

where documents must be ranked according to their relevance to a user query. Indeed, ranking is particularly

challenging for large-scale Web Search Engines (WSEs), since it involves effectiveness requirements and

efficiency constraints that are not common to other ranking-based applications.5

From an effectiveness point of view, a number of machine learning algorithms have been proposed to

automatically build high-quality ranking functions able to exploit a multitude of features characterizing

the candidate documents and the user query. These algorithms fall under the Learning-to-Rank (LtR)

framework [1]. The models, or rankers, generated by such methods are generally quite expensive to use for

ranking large sets of documents. For example, methods based on forests of regression trees may generate10

thousands of trees to be evaluated on hundreds of features modeling a single query-document pair, in order

to predict scores used to effectively rank all the candidate documents for a given query [2, 3]. Therefore,

even if LtR models are able to provide high quality results, it is not possible to apply such rankers to all the

documents matching a user query due to the resulting prohibitive ranking cost.

To overcome this issue, WSEs usually exploit multi-stage ranking architectures (Figure 1), where top-K15

retrieval is carried out by a two-step process: (i) candidate retrieval and (ii) candidate re-ranking. The

first step retrieves from the inverted index N possibly relevant documents matching the user query, where

N � K. This phase aims at optimizing the recall of the retrieval system, and is usually achieved by a

simple and fast base ranker, e.g., BM25 combined with some document-level scores [4]. The assumption is

that the base ranker is able to retrieve a large part of the most relevant documents, even it is not able to20

effectively rank them. In the second step, a complex scoring function is used by the top ranker to re-rank

the candidate documents coming from the first step. The top ranker is optimized for high precision, i.e., to

place the most relevant results in the top positions of the first page of results. LtR models are commonly

used in this second step to achieve the desired precision of the top ranker.

Therefore, the top ranker is a crucial component for both effectiveness and efficiency of WSEs. First, the25

top ranker determines the quality of the results presented to the user. Second, it impacts on the response

time of the WSE. We know that both quality and response time largely impact on the click behavior of

users [5], and ultimately on the user satisfaction and WSE revenue. Devising a good trade-off between

efficiency and effectiveness is thus very important.

This paper investigates such effectiveness vs. efficiency trade-offs. We believe that the problem of devising30

the right trade-off between the quality and the computational cost of LtR models at query processing time

has not yet received enough attention from the Machine Learning (ML) and Information Retrieval (IR)

Email addresses: gabriele.capannini@mdh.se (Gabriele Capannini), c.lucchese@isti.cnr.it (Claudio Lucchese),
f.nardini@isti.cnr.it (Franco Maria Nardini), orlando@unive.it (Salvatore Orlando), r.perego@isti.cnr.it
(Raffaele Perego), n.tonellotto@isti.cnr.it (Nicola Tonellotto)

2

Document
Index

Base Ranker Top Ranker

Features
Learning to

Rank Algorithm

Query

First step Second step

N docs K docs
1. …………
2. …………
3. …………

K. …………

…
…

Results Page(s)

Figure 1: The architecture of a generic Machine-Learned Ranking pipeline.

communities. Traditionally, the ML community focused primarily on the accuracy of the learned model,

or the scalability of the training phase, while the efficiency of the application of the learned model was

considered as unimportant or negligible. On the other hand, strongly motivated by budget considerations35

that are very important for commercial WSEs, the IR community has started only recently to investigate

low-level optimizations to reduce the execution time of some families of LtR rankers. The computational

cost of the LtR models must be in fact strictly accounted in the time budget available for processing queries

in the incoming stream, as it can impact to a large extent on the throughput of the system. In addition,

since each family of algorithms has tuning parameters that can influence both effectiveness and efficiency40

(e.g., number of trees in tree-based models), even for a given family of algorithms a change in the setting of

the parameters can have a deep impact on the performance of the learned model.

Contributions and Research Questions

To the best of our knowledge, this is the first work that compares a wide spectrum of LtR approaches

through extensive experiments thus providing a comprehensive perspective on effectiveness vs. efficiency45

trade-offs offered by the different families of rankers. The main contributions of our work are:

• QuickRank1, a public-domain framework for evaluating the efficiency at scoring time of the various LtR

models. It is written in C++ and it allows a fair performance comparison of different ranking models.

• QuickRank includes the C++ multithreaded implementations of the most effective state-of-the-art LtR

algorithms whose learned models are forests of additive regression trees: Gradient Boosted Regression50

Trees (GBRT) [6], Lambda-Mart (λ-MART) [7], and Oblivious Lambda-Mart (Ωλ-MART) [2]. We

remark that no public-domain implementation of the Ωλ-MART solution, which generates forests of

oblivious trees, was previously available;

1The source code of QuickRank is available under Reciprocal Public License 1.5 at http://quickrank.isti.cnr.it/

3

http://quickrank.isti.cnr.it/

• an extensive and reproducible experimental analysis of efficiency/effectiveness trade-offs offered by

nine different LtR approaches, conducted within the QuickRank framework using well-known IR metrics55

(NDCG[8]) and publicly available datasets;

• a new measure, named AuQC, aimed at estimating to which degree a given model can be tuned to

provide high-quality rankers for any given time budget.

The experimental results of this work allow to answer the following research questions which are crucial

in designing a machine-learned ranking pipeline for a large-scale search system:60

• Q1: How does the effectiveness of the top ranker trained with a given LtR model varies with its

computation cost at testing time?

• Q2: Given a time budget, what are the LtR model and the associated tuning parameters providing

the ranker with the best quality at a cost not greater than the budget?

• Q3: How can we characterise the quality versus cost trade-off of a given LtR model?65

The rest of the paper is structured as follows: Section 2 presents the related work. Section 3 details the

experimental methodology to evaluate quality/cost trade-offs of LtR models and introduces the QuickRank

framework. Then, Section 4 discusses the different LtR models and how we model their cost, while Section 5

reports on the results of our comprehensive evaluation. Finally, we conclude our investigation in Section 6.

2. Related Work70

LtR models are usually classified in three broad categories: point-wise, pair-wise and list-wise [1]. Point-

wise methods are regression or classification algorithms aiming at predicting the relevance label associated

to each query-document pair in the training set. Pair-wise methods consider pairs of documents as a training

instances, and they explore scoring functions that are able to discriminate the best document among the

two. The learning process for point-wise models tries to optimize loss functions such as root mean squared75

error (RMSE) with respect to documents relevance labels, while pair-wise methods typically optimise the

number of misclassified pairs. IR quality measures that are a function of the full set of results for a given

query cannot be directly optimised by the above two approaches. To this end, list-wise methods have been

introduced to directly optimise list-based metrics such as NDCG [9].

In this work we analyze trade-off properties of LtR algorithms belonging to all of the above categories.80

The considered algorithms are discussed in some detail in Section 4. However, our comparison does not

aim at finding the algorithm achieving the best quality, or at assessing what is the best class of algorithms.

Our analysis is cost-driven, and thus we classify the discussed algorithms into cost-driven categories: linear

combination of features, artificial neural networks, forests of regression trees, and forests of oblivious trees.

4

Tax et al. propose a comparison of several LtR algorithms [10] by focusing on quality issues and without85

taking into consideration efficiency. A first step toward efficiency analysis is discussed in [11]. Here, the

authors analyse the behaviour of different algorithms when varying the number of documents filtered by the

base ranker of a two-stage ranking architecture. Time-efficiency of the models is not taken into consideration,

but the authors show that a larger set of candidate documents can provide significantly better results. A

straightforward implication of this result is that the top ranker should be sufficiently fast to process a large90

number of candidates. This work investigates the performance of the top ranker, that is assumed to include

as input all relevant documents, i.e., the sample size provided to the second step ranker has maximum recall.

Schenkel et al. [12] discusses the concept of budget-aware learning, discussing an approach that limits

the cost for evaluating a ranking model. They propose to only partially evaluate parts of the ranking model

for the most promising documents by pruning posting lists to generate an execution plan before the actual95

query processing starts. In doing so, they assume that the LtR model is deployed as a base ranker, and that

it needs to directly access posting lists. Instead, our work focuses on the deployment of the LtR algorithm

as a top ranker, with no access to any index, but receiving a limited set of top documents from the base

ranker. To the best of our knowledge, this is the first experimental analysis of LtR algorithms in a two-stage

ranking architecture focused on the efficiency vs. effectiveness trade-off.100

The efficiency of machine-learned ranking pipelines recently attracted increasing interest. Many re-

searchers have examined the impact of several factors on the whole ranking pipeline. For example, Macdon-

ald et al. [11] assessed the impact of the number of candidate documents and the objective metric to use

when training the learning-to-rank model. Asadi et al. [13] and Tonellotto et al. [14] have specifically looked

efficiency/effeciveness tradeoff of the candidate generation between the two phases by exploiting approximate105

techniques and dynamic pruning, respectively. The separation of the scoring process in these two phases

has the advantage of providing better control over cost/quality trade-offs. The second phase of the scoring

process is the fastest part of the ranking process [14]. A state-of-the-art processing in the first phase [15]

employs ∼ 20 ms to rank 10 documents, i.e., ∼ 2 ms per document, while a state-of-the-art processing in

the second phase [16] employs only ∼ 0.05 ms per document. The time savings in the second phase can be110

exploited to retrieve a larger number of document or to compute expensive features such as term proximity

or other bigram features to the candidates selected by the base ranker [17].

Most of the work published so far focused primarily on the optimization techniques that can be adopted

to make the top ranker faster. Cambazoglu et al. [3], propose to use early exits in additive ensemble ranking

pipelines to early terminate the scoring of documents that are unlikely to be ranked within the top-K115

results. Wang et al. [18, 19, 20] deeply investigate different efficiency aspects of the ranking pipeline. In

particular, in [20] authors propose a novel cascade ranking model that, unlike previous approaches, can

simultaneously improve both effectiveness and efficiency. The model constructs a cascade of increasingly

complex scorers that progressively prunes and refines the set of candidate documents to minimize scoring time

5

and maximize result set quality. The authors present a novel boosting algorithm for learning such cascades120

by directly optimizing the trade-off between effectiveness and efficiency. Experimental results show that the

proposed cascades are faster and return higher quality results than comparable ranking models. Asadi et

al. [21, 22] also propose runtime optimizations for tree-based machine learning models. The authors focus

on engineering a ranking pipeline that exploits cache and branch prediction features of modern processor

architectures. The approach is based on training compact and balanced gradient boosted regression trees125

that yield efficient runtime and effective branch prediction. The experimental assessment show significant

performance improvements over standard implementations. Tang et al. [23] discuss a simple cache-conscious

2D block-wise approach for traversing large ensemble of additive scorers achieving better cache utilization.

Both the set of candidate documents and the set of scorers are partitioned so that a subset of documents and

one of scorers can fit in the processor cache. The execution of each set of scorers on each set of candidates130

is orchestrated in a parallelizable nested loop achieving significant speedup without loss of accuracy.

The state-of-the-art algorithm for the evaluation of a forest of regression tree is provided by the QuickScorer

algorithm, proposed by Lucchese et al. [16]. QuickScorer traverses tree-based models with an innovative strat-

egy coupled with a new organization of the data able to reduce cache misses and branch mispredictions,

providing 2x to 6x speed-up over [22].135

The approaches discussed above are orthogonal to our as they address computational cost issues by

plugging efficiency in the learned models or in their run-time behavior. We instead define a general framework

for analyzing the cost-efficiency trade-off of a given ranker, and compare on a fair basis models belonging to

different families of techniques. All the above optimizations can be easily accommodated in our framework.

Moreover, unlike previous works, our study allows the different ranking models to be evaluated under time140

budget constraints.

The results of our investigation can be straightforwardly exploited in any machine-learned ranking

pipeline as the one sketched in Fig. 1, where the time budget for ranking candidate documents is fixed

to fulfill a constraint on the total query response time. However we can imagine even a more advanced two-

stage ranking pipeline where a maximum time budget is still given but: (i) the first stage takes a variable145

amount of time to process a query, depending on the query and collection characteristics [14]; (ii) the time

budget left for the second stage is computed on a per-query basis as the difference between the total budget

and the time actually spent in the first stage. In this scenario, our analysis can be exploited to devise a set of

rankers that behave “optimally” for different time budgets, and the ranker that best fits this query-specific

time budget selected for each query. Similarly, this approach may address also distributed search engines150

where incoming queries are stored in a global queue waiting to be processed, and per-query time budgets

can be dynamically established on the basis of the query scheduling algorithm adopted and the time spent

by the query in the queue [24].

6

3. Evaluation methodology

In this section, we examine the overall evaluation methodology used to quantitatively compare the various155

LtR-based top rankers in the quality vs. cost space, where the cost is the scoring efficiency of a ranker, and

the quality is the effectiveness measured on a test set with a standard IR quality measure.

First we discuss the measures devised to explore the behavior of the various scorers with respect to

their quality/cost trade-off, and answer our three research questions. Among the various measures, it is

worth remarking the use of a novel measure, named AuQC, inspired by the area under the ROC curve160

index adopted for comparing binary classifiers. We use AuQC to estimate to which degree a given ranker

R can be tuned to provide good results for any given time budget B. Second, we discuss QuickRank, an

optimized framework implementing the most effective LtR algorithms at the state of the art. In particular

QuickRank provides multithreaded C++ implementations of GBRT, λ-MART, and Ωλ-MART, and allows

to easily generate the scoring code exploiting models learned with these and other LtR algorithms in order165

to fairly measure their computational cost. Third, we present the datasets adopted for training the models

and testing their effectiveness, and discuss the experimental settings.

3.1. Evaluating Quality vs. Cost

Top rankers based on different LtR algorithms may differ significantly in the time taken to score the

same set of candidates retrieved by the base ranker: computing a simple linear combination of features is170

trivially far less expensive than traversing a forest of 10,000 regression trees.

Hereinafter, given a top ranker R, we refer to the cost C(R) as the average time in µs required to score

a candidate document represented by a given set of features. We are interested in analysing rankers having

a cost C(R) smaller than a maximum time budget B. Also, we refer to the quality of R as the average

effectiveness measured on a test set according to standard IR quality measures. Since we focus on WSE175

systems, in this paper we consider NDCG@10 [8] as the metric used to assess the effectiveness of the system.

We denote the quality of R by Q(R), 0 ≤ Q(R) ≤ 1. The following analysis is however completely general

and easily adaptable to different metrics and cut-offs.

Most LtR algorithms have tuning parameters that impact on the complexity of the produced rankers,

and therefore on Q and C. This is for example the case of tree-based algorithms, where the maximum size180

of a tree and the total number of trees can be chosen at training time. We denote by θ ∈ Θ the set of

parameters in the parameter space Θ used during the learning phase of a given LtR algorithm, and by Rθ

the resulting ranker.

We now discuss the methodology to answer the questions Q1, Q2, and Q3, introduced in Section 1.

To answer Q1, i.e., how the effectiveness of the top ranker trained with a given LtR algorithm varies with185

its computation cost at testing time, we comprehensively evaluate different LtR algorithms, by sweeping their

7

parameters in order to build different instances of top rankers Rθ. For each ranker Rθ we measure its quality

Q(Rθ) on a test set in terms of NDCG@10 [8]. We also determine its cost C(Rθ), by measuring the average

time (in µsec) required by our QuickRank-based deployment of the specific ranker to score a candidate

document. In order to fairly compare the different rankers, these are translated by QuickRank into C++190

implementations with the same degree of code-level optimizations. We then provide a scatter plot, named

QC-plot, where each point P (Rθ), corresponding to a specific ranker Rθ, has coordinates (C(Rθ), Q(Rθ)) in

the quality vs. cost space, for every parameter vector θ being tested.

The QC-plot provides a global view of the algorithm behaviour on varying θ, and it helps in answering the

above three questions. However, most of the points in the QC-plot are irrelevant because they are dominated195

both in quality and cost by others. For example, suppose two models Rθ and Rθ′ have been learned by the

same LtR algorithm by varying its parameters. If Rθ has a smaller cost and a better quality than Rθ′ then

we can discard P (Rθ′). We say that Rθ dominates Rθ′ if C(Rθ′) ≥ C(Rθ) and Q(Rθ′) ≤ Q(Rθ).

In order to focus on the dominant points only, we thus introduce the concept of QC-curve, which contains

all the dominant points of the QC-plot of a given LtR algorithm R. The QC-curve of a LtR algorithm R is200

defined by the following function in the Quality-Cost space:

QCR(B) = max
θ∈Θ | C(Rθ)≤B

Q(Rθ) (1)

where B is a time budget. Given a time budget B, the function thus returns the quality of the most effective

ranker the given LtR algorithm can provide. We assume that for every LtR algorithm there exists θ ∈ Θ such

that C(Rθ) = 0 and Q(Rθ) = 0, meaning that quality cannot be achieved without paying a cost. This also

implies that the function is defined for all budgets B. Note that the QC-curve is monotonically increasing.205

By comparing the QC-curve of two different LtR algorithms we can identify which is best for a given

budget B. The QC-curve is thus able to answer question Q2, i.e., given a time budget, what are the LtR

algorithm and the associated tuning parameters providing the top ranker with the best quality at a cost

smaller than the budget.

Finally, we introduce the area under QC-curve, or AuQC, as follows:210

AuQCR(B) =
1

B

∫ B

0

QCR(x) dx (2)

which is computed up to a given time budget B. Note that function QCR(x) ranges in the interval [0,1],

so that the maximum value of the above integral is B, normalized in the equation above by 1
B . Therefore,

0 ≤ AuQCR(B) ≤ 1.

AuQC measures how well a given LtR algorithm R can be tuned by varying the time budget, from 0 to

B. High values of AuQCR(B) imply that we can learn instances of the ranker R (Rθ) with high quality for215

8

any time budget smaller than B. The ideal case, i.e., AuQCR(B) = 1, corresponds to a ranker achieving

NDCG@10 = 1 for any given time budget in [0, B]. We exploit this single measure AuQC to answer the

third question Q3, i.e., how can we characterise the quality versus cost tradeoff of a given LtR algorithm.

Compared to related measures, such as MEET [18], AuQC is better suited to measure the quality of a

LtR algorithm across the set of its training parameters and across the efficiency spectrum of the models it220

can generate.

3.2. Efficient Scorers and QuickRank

To apply the evaluation methodology discussed above, for each learned model corresponding to a top

ranker R, we compile the model and generate an optimized code, whose running time C(R) is finally

collected. Specifically, we measure the average time in µs taken by R to score a document, given its feature-225

based representation. The efficiency analysis is carried out by means of QuickRank, a novel C++ framework

allowing the computational cost of rankers exploiting different learned models to be fairly compared.2

Besides the scoring framework, QuickRank also provides efficient, multithreaded implementations of state-

of-the-art LtR learning algorithms that induce complex tree-based models, namely GBRT [6], λ-MART [7],

and Ωλ-MART [2]. In particular the regression trees produced by Ωλ-MART are oblivious, so that the same230

splitting predicate, i.e., the same test “feature is less than threshold”, is applied by all the nodes at the same

level of each tree, which is also balanced. It is worth mentioning that no implementation of the Ωλ-MART

algorithm was previously publicly available. For all these algorithms, QuickRank accepts training sets in the

SVM-light format (as in [25]) and produces a ranking model in an XML format.3

All the ranking models learned by the algorithms discussed in Section 4 have a C++ plugin within235

the QuickRank framework. These plugin read the input feature vectors of the candidate documents, store

them in dense floating-point arrays, use feature ids as indexes to directly access feature values, while the

learned models are compiled as in-memory data structures that can be accessed very efficiently. Some of

the algorithms discussed in Section 4 generate scorers that are simple linear combinations of input features.

The plugins for these ranking models turn out to be very simple and inexpensive to use at run time. On240

the other hand, QuickRank provides plugins also for ranking models based on forests of regression trees, that

provide state-of-the-art ranking effectiveness but involves computationally expensive scoring functions.

The QuickRank C++ plugin that scores tree-based models implements a state-of-the-art strategy, namely

QuickScorer4, proposed by Lucchese et al. [16]. Given a query-document pair, represented by a feature vector

x, a LtR model based on an additive ensemble of regression trees predicts a relevance score s(x) used for245

ranking a set of documents. Typically, a tree ensemble encompasses several binary decision trees, denoted

2Publicly available at http://quickrank.isti.cnr.it
3To allow repeatability of experiments, we made all the learned model in XML format publicly available at

http://quickrank.isti.cnr.it/ipm-submission/ipm-ltr-submission.tar.gz
4Publicly available at https://github.com/hpclab/quickscorer

9

http://quickrank.isti.cnr.it
http://quickrank.isti.cnr.it/ipm-submission/ipm-ltr-submission.tar.gz
https://github.com/hpclab/quickscorer

Algorithm 1: The QuickScorer Algorithm

QuickScorer(x,T):
1 foreach Th ∈ T do
2 leafindexes[h]← 11 . . . 11

3 foreach fφ ∈ F do
4 foreach (γ, h, n) ∈ Nφ in ascending order do
5 if x[φ] > γ then
6 leafindexes[h]←leafindexes[h]∧nodemasks[n]

else
break

7 score← 0
8 foreach Th ∈ T do
9 j ← index of leftmost bit set to 1 of leafindexes[h]

10 l← h · Λ + j
11 score← score+ leafvalues[l]

12 return score

by T = {T0, T1, . . .}. Each interal (or branching) node n ∈ Th is associated with a Boolean test over a

specific feature fφ ∈ F , and a constant threshold γ ∈ R. Tests are of the form x[φ] ≤ γ, and, during the

visit, the left branch is taken iff the test succeeds. Each leaf node stores the tree prediction, representing

the potential contribution of the tree to the final document score. The scoring of x requires the traversal of250

all the ensemble’s trees and it is computed as a weighted sum of tree predictions.

QuickScorer scores tree-based models with an innovative strategy coupled with a new organization of

the data to reduce the cache misses and the branch misprediction. Algorithm 1 illustrates QuickScorer.

One important result of QuickScorer is that to compute s(x) it needs to identify only the branching nodes

whose tests evaluate to false, called false nodes. To do so, QuickScorer maintains for each tree Th ∈ T a255

bitvector leafindexes[h], made of Λ bits, one per leaf. Initially, every bit in leafindexes[h] is set to

1. Moreover, each branching node n is associated with a binary mask nodemasks[n] idendifying the set of

unreachable leaves in case the corresponding test evaluates to false. Whenever a false node is visited, the set

of unreachable leaves leafindexes[h] is updated through a logical and with nodemasks[n]. Eventually,

the leftmost bit set in leafindexes[h] identifies the leaf corresponding to the score contribution of Th,260

stored in the lookup table leafvalues.

To efficiently identify all the false nodes in the ensemble, QuickScorer processes the branching nodes of all

the trees feature by feature and in ascending order of their predicate thresholds. Specifically, for each feature

fφ, QuickScorer builds a list Nφ of tuples (γ, h, n), where γ is the predicate threshold of node n occurring

in tree Th. When processing Nφ in ascending order by γ, as soon as a test evaluates to true, i.e., x[φ] ≤ γ,265

the remaining occurrences surely evaluate to true as well, and their evaluation is thus safely skipped.

10

3.3. Datasets and Experimental Settings

Experiments are conducted by using publicly available LtR datasets: the MSN Learning to Rank5 and

the Yahoo! Learn to Rank Challenge version 2.06.

The first one consists of vectors of 136 features extracted from query-url pairs, while the second one270

consists of two distinct datasets (Y!S1 and Y!S2), made up of vectors of 700 features. Query-url pairs of all

the three datasets are labeled with relevance judgments ranging from 0 (irrelevant) to 4 (perfectly relevant).

Each dataset is split in training validation and test sets. The MSN dataset consists of 6,000, 2,000, and

2,000 queries for training, validation and testing respectively. In addition, the Y!S1 dataset consists of 19,944

training queries, 2,994 validation queries and 6,983 test queries while Y!S2 is of a smaller size: it contains275

1,266 training queries, 1,266 validation queries and 3,798 test queries.

Without loss of generality, the quality of a ranker Q(Rθ) is measured by computing its NDCG@10. Note

that LtR algorithms either optimize the root mean squared error w.r.t. documents’ relevance labels (e.g.,

GBRT), or they optimize a proxy function of NDCG@10 (e.g., λ-MART). we highlight that the proposed

framework could be used to evaluate a different measure of interest.280

Finally, to measure the costs C(Rθ) of each top ranker analyzed, we run 3 times the scorers produced

on the test sets of the three datasets. We then compute the average per-document scoring cost. The tests

were performed on a machine equipped with an Intel Xeon CPU E5-2630 v3 clocked at 2.40GHz with 20

MB of cache L3 and 64GB RAM. We use the GCC 5.3.0 compiler with the highest optimization settings.

4. Modeling LtR Rankers285

We now introduce a cost-based categorization of LtR algorithms, corresponding to the following four

broad families: linear combinations, artificial neural networks, forests of regression trees, and forests of

oblivious trees. For example, SVM-rank falls in the linear combination family as the computational cost

of a SVM-rank ranker is that of computing a scalar product between two vectors: the set of feature values

used to represent a query-document pair, and the set of weights representing the learned model. On the290

other hand, since λ-MART belongs to the forest of regression trees family, the cost of a λ-MART ranker is

proportional to the number of trees and corresponding levels traversed.

We present a general description of each family of LtR algorithms, and, for each family, we analyze in

detail some of the most relevant members. We then derive a cost model based on the tuning parameters

characterizing each family, and the actual computation time measured experimentally with our framework.295

Table 1 summarizes, for each LtR family and algorithms, the tuning parameters exploited. In particular,

whereas all the parameters impacts on the quality of learned models, the table also identifies which of these

5http://research.microsoft.com/en-us/projects/mslr/
6http://webscope.sandbox.yahoo.com/catalog.php?datatype=c

11

http://research.microsoft.com/en-us/projects/mslr/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=c

Table 1: Roles of the training parameters used to tune each LtR algorithm.

Algorithm Parameters Role Impact on model complexity and cost

Linear Combinations

CA – – –

Ridge θα Shrinking parameter for
reducing overfitting

No

SVM-rank θc Soft margin parameter,
for weighing the regular-
ization term

No

Artificial Neural Networks

ListNet θs Learning rate No

θh Number of hidden nodes Yes: each hidden node applies the activation
function to a weighted sum of the input features.

θe Number of learning iter-
ations

No

Forests of Regression Trees

RankBoost θt Number of one-level
decision trees (decision
stumps)

Yes: linear cost in the number of trees.

RF θt Number of trees Yes: as for the previous θt.

θl Number of tree leaves Yes: it impacts on the number of internal nodes,
and thus on the number of per-tree tests.

GBRT θt Number of trees Yes,: as for the previous θt.

θl Number of tree leaves Yes: as for the previous θl.

θs Learning rate No

iGBRT θt, θl, θs The same as GBRT Analogously to GBRT.

λ-MART θt, θl, θs The same as GBRT Analogously to GBRT.

Forests of Oblivious Trees

Ωλ-MART θt, θl, θs The same as GBRT Analogously to GBRT. Specifically, since
branching nodes at the same level of each (bal-
anced) tree perform the same test, the number
of per-tree tests is exactly log(θl).

12

Table 2: Best quality results of each LtR algorithm.

Algorithm θ Dataset Cost (µs.) NDCG@10

Linear Combinations

CA

– MSN 0.15 0.4102

– Y!S1∗ 0.67 0.7049

– Y!S2 0.67 0.7208

Ridge
(θc)

(0.9) MSN 0.15 0.3677

(0.8) Y!S1 0.67 0.7294

(1.0) Y!S2 0.67 0.7397

SVM-rank
(θc)

(50) MSN 0.15 0.4012

(200) Y!S1 0.67 0.7238

(10) Y!S2 0.67 0.7306

Artificial Neural Networks

ListNet
(θl, θh, θe)

(0.05, 50, 75) MSN 7.10 0.4381

(0.005, 50, 75) Y!S1 32.27 0.7477

(0.01, 10, 50) Y!S2 6.76 0.7340

Forests of Regression Trees

RankBoost
(θt)

(500) MSN 1.60 0.3435

(500) Y!S1∗ 2.11 0.7146

(500) Y!S2 2.27 0.7316

RF
(θt, θl)

(100, 100) MSN 4.15 0.4163

(100, 100) Y!S1 4.95 0.7296

(700, 100) Y!S2 26.26 0.7548

GBRT
(θt, θl, θs)

(1500, 50, 0.05) MSN 24.07 0.4602

(1000, 50, 0.05) Y!S1 17.00 0.7555

(100, 50, 0.05) Y!S2 5.40 0.7620

iGBRT
(θt, θl, θs)

(1500, 8, 0.1) MSN 6.07 0.4405

(1500, 32, 0.1) Y!S1 21.84 0.7452

(800, 32, 0.1) Y!S2 14.12 0.7525

λ-MART
(θt, θl, θs)

(1500, 50, 0.05) MSN 13.63 0.4618

(1000, 50, 0.05) Y!S1 15.94 0.7529

(800, 25, 0.05) Y!S2 10.01 0.7531

Forests of Oblivious Trees

Ωλ-MART
(θt, θl, θs)

(1500, 32, 0.1) MSN 8.66 0.4644

(1500, 32, 0.1) Y!S1 8.55 0.7467

(1500, 64, 0.1) Y!S2 8.21 0.7504
∗Due to size of the training set, we trained these models using a 10% random sample of the original dataset.

13

parameters also affects the scoring performance. With the exception of the parameters reported in the table,

we used the default parameters of the different tools without any further modification.

In the following, according to the notation introduced in Sec. 3, we refer to a top ranker with Rθ, the300

latter denoting a ranker that depends on the specific values of the parameters used to train it. Moreover,

C(Rθ) denotes the cost of the top ranker Rθ, i.e., the average time in µs required to score a candidate

document represented by a given set of features.

4.1. Linear Combinations

This class includes the LtR algorithms producing a ranking model based on a linear combination of305

features.

Coordinate Ascent (CA) is an (sub)optimization technique for unconstrained optimization. Given

a multivariate function to optimize, it performs a univariate optimization on each parameter, keeping fixed

all the other parameters. This technique can be applied to learn a linear combination of the features of310

query-document pairs [26]. The derived linear feature-based model (sub)optimizes directly an effectiveness

function on a training set, such as MAP or NDCG. The cost of the learned model is not explicitely tunable

at learning time. Some experimental tuning, such as shuffling and random restart, is required during the

learning in order to avoid being trapped in local optima. In our tests we perform 5 restarts from random

initial weights with 25 iterations to perform line search optimization for every parameter and restart. In all315

tests, the tolerance was set to 0.001 with no parameters regularization. We evaluated every model obtained

due to restarting, and we kept the one having highest effectiveness. The cost of the model is then just a

single scalar product between the features vector and the learned weights vector. In this work, we employ the

Coordinate Ascent implementation provided by RankLib [27] to learn the models. Results are reported in

Table 2. The quality achieved by the CA rankers is not high. In terms of NDCG@10 it achieves 0.4102 on the320

MSN dataset. The same behaviour is confirmed on the Y!S1 and Y!S2 datasets where CA achieves 0.7049

and 0.7208, respectively. As shown in the following sections, more complex models can bring significant

improvement. On the other hand, being CA rankers very simple, they are very fast in scoring candidate

documents. Their average per-document scoring cost is one order of magnitude lower than the one shown

by the fastest algorithms belonging to the other families of rankers considered in this work.325

Ridge Regression (Ridge), also known as Tikhonov regularization [28], solves a regression model

where the loss function is defined as the linear least squares function plus a regularization term. The regu-

larization term imposes a penalty on the size of coefficients of the ordinary least squares. As a consequence,

Ridge regression regularized a penalized residual sum of squares,330

14

minw||Xw − y||22 + θc||w||22

The regularization term of the loss function allows Ridge to be more robust. Specifically, θc ≥

0 is the shrinking parameter: the larger the value of θc, the greater the regularization term thus al-

lowing the coefficients to become more robust to collinearity. In this paper, we trained Ridge mod-

els by using the scikit-learn7 Python library. We trained several models by varying the value of

θc ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. Note that the variation of θc does not impact the cost335

of applying the learned ranker.

The best results are reported in Table 2. The Ridge regressor achieves the best performance among

linear models on both Y!S1 and Y!S2 datasets, i.e., the dataset with the largest number of features. Here,

Ridge achieves its best results of NDCG@10 of 0.7294 and 0.7397 by using θc = 0.8 and θc = 1.0 for Y!S1

and Y!S2 datasets, respectively. This is not true for the MSN dataset, where Ridge is the worst performing340

method among linear models. Here, the regressor achieves 0.3677 in terms of NDCG@10 by using θc = 0.9.

SVM-rank [25] is a learning to rank algorithm that adopts a Support Vector Machine (SVM) approach

for learning top rankers. The method aims at learning a retrieval function maximizing the expected Kendall’s

τ . SVM-rank directly addresses the maximization problem by taking an regularized risk minimization345

approach. It means that, given a training sample, the learner will select a ranking function f from a family

of ranking functions F that minimizes a linear combination of the empirical error over the training pairs and

the regularization term, weighted by the soft margin parameter θc. In this paper, we learn the SVM-rank

models by means of an efficient implementation for training linear SVMs in linear time [29] described by

Joachims in [30]. We learn several linear models by varying the value of θc. In particular, in our test350

we tested the values of θc ∈ {0.1, 0.5, 1, 5, 20, 50, 100, 200, 500}. Note that the variation of the soft margin

parameter does not impact on the cost of applying the learned ranker.

Table 2 reports the results corresponding to the largest quality achieved. As expected, the soft margin

parameter plays an important role in learning an effective model. SVM-rank shows a better performance

in terms of NDCG@10 corresponding to different values of θc in the three datasets. On the MSN dataset, the355

method achieves 0.4012 in terms of NDCG@10 with θc = 50. Here, CA outperforms SVM-rank of about

2%. The same is not true for Y!S1 and Y!S2 where SVM-rank achieves 0.7238 and 0.7306 respectively.

Here, it shows good performance as it outperforms CA of about 2% on Y!S1 and 1% on Y!S2. As for

CA, SVM-rank (employing a linear kernel) is very simple, thus very fast in scoring candidate documents.

Results in terms of average per-document scoring cost are similar to the ones of CA.360

7http://scikit-learn.org/stable/modules/linear_model

15

http://scikit-learn.org/stable/modules/linear_model

Cost Model. All rankers based on a linear combination of feature values are extremely simple and fast.

Their efficiency does not depend on any learning algorithm parameter, and the scalar product of two vectors

is highly optimized on any modern CPU architecture. The per document cost of the ranker depends only on

the number φR of features present in the input data, with no additional tuning parameters in the training

phase. In order to estimate the scoring cost of linear combination rankers as a funtion of φR, we run a linear365

regression on our training data, i.e., all the training experiments across the three datasets, with both CA

and SVM-rank on varying its parameter θc, for a total of 30 scoring time measurements. The following

estimate was obtained:

C(Rθ) = 0.92·10−3 · φR + 26.6·10−3

with coefficient of determination R2 = 0.99.

4.2. Artificial Neural Networks370

This class includes all the LtR algorithms producing a ranking model based on artificial neural networks

having an input for each one of the features.

ListNet. Artificial Neural Networks were exploited by RankNet [31], one of the first LtR algorithms.

The new cost function exploited by RankNet depends on the number of document pairs being correctly375

ordered. Unlike IR quality measures, this cost function is continuous and differentiable. Unfortunately, a

scoring function that minimizes the number of mis-ordered pairs does not necessary optimises IR quality

measures. For this reason, the RankNet-based rankers do not obtain a high effectiveness. To overcome

this limitation, ListNet [32] addresses a different optimisation problem. A results permutation probability

distribution is devised on the basis of the learned score and the relevance labels. By doing so, it is possible380

to estimate the error via the Kullback—Leibler divergence between the two. Then, such error is minimised

with an artificial neural network. Note that ListNet does not optimise directly an IR measure. Unlike

RankNet, it optimises the ordering of the full result list according to its own defined cost function. ListNet

is thus a list-wise method.

The implementation8 used in this paper uses a neural network with one hidden layer. We extended385

the library with some functionalities allowing to save a learned model in XML format as discussed in

Section 3.2. We tested several parameter combinations θ = (θs, θh, θe), which include the learning rate

θs ∈ {0.005, 0.01, 0.05, 0.1}, the number of hidden nodes θh ∈ {10, 25, 50, 100}, and the number of learning

iterations θe ∈ {25, 50, . . . , 200}.

The best results are reported in Table 2, while the results on varying θ are shown in Figure 2. Unex-390

pectedly, the best results are achieved with a small number of hidden nodes. Note that only the number

8http://www.dmi.usherb.ca/~larocheh/mlpython/

16

http://www.dmi.usherb.ca/~larocheh/mlpython/

of hidden nodes impacts on the cost of the learned ranker, while the other two parameters only impact on

the quality. The four groups of points in Figure 2 with the same cost correspond to the four hidden nodes

settings. The resulting ranker is more time consuming than previous solutions. We observe that ListNet

provides better performance than linear models with the only exception of the Ridge algorithm on the395

Y!S2 dataset. The improved performance is due to the capability of neural networks to model non-linear

functions and also to the list-wise cost function being optimised. On the other hand, ListNet is at least

one order of magnitude more expensive than previous methods based on linear models.

Cost Model. The cost of a ranker based on an artificial neural network depends on the number of input

nodes and hidden nodes. The number of input nodes equals to the number of features in the data, while the400

number of hidden nodes is a learning parameter. The per-document scoring cost in µs of a neural network

can thus be easily estimated as follows:

C(Rθ) = 11·10−3 · θh + 0.9·10−3 · θw + 0.1

where θh is the number of hidden nodes and θw is the total number of weights. The coefficients of the

linear combination were found through linear regression on the experimental data of ListNet on all the

three dataset used on varying the training parameters, for a total of 384 scoring time measurements. Note405

that the number of input nodes is not considered as it is implicitly encompassed by θw. This model is very

accurate as the coefficient of determination of the regression is R2 = 0.99.

4.3. Forests of Regression Trees

This class includes all the LtR algorithms producing a ranking model based on an additive ensemble of

regression trees.410

RankBoost [33] is an algorithm for combining preferences based on the boosting approach. Boosting

is a method of producing highly accurate prediction rules by combining many “weak” rules which may be

only moderately accurate. RankBoost, like all boosting algorithms, operates in rounds. At each round, a

weak learner is trained and it is combined with already trained weak rankers through a weight, with the idea415

that each weak learner is able to discriminate effectively on a subset of the input sample space, while their

weighted combination is able to discriminate effectively on the whole input sample space. The weak rankers

typically used are one-level decision trees (decision stumps). Specifically, the root of each tree encompasses

a Boolean comparison between a feature fi of a given instance x and a learned threshold τ . RankBoost

is a pair-wise algorithm.420

The quality and cost of the learned model are tunable at learning time by selecting the number θt of

weak learners to train. We selected θt = {100, 200, 300, 400, 500}.

17

10-1 100 101 102

Document Scoring Time µs.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

N
D

C
G

@
1

0

ListNet Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

ListNet Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

N
D

C
G

@
1

0

ListNet Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

N
D

C
G

@
1

0

RF Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

RF Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

N
D

C
G

@
1

0

RF Quality vs. Cost

MSN Y!S1 Y!S2

Figure 2: Effectiveness in terms of NDCG@10 of ListNet, and RF top rankers as a function of average per-document scoring
cost.

The results reported in Table 2 show that RankBoost is never a good choice compared with linear

algorithms such as Ridge: it is both more expensive and less accurate on each dataset considered.

425

Random Forests (RF) [34] are defined as a collection of tree-based regressors where each of them

casts a prediction for a given input instance, and the final prediction is the arithmetic mean of the scores

produced by the regressors in the forest. Each regression tree is trained on a random subset of the feature set

so as to reduce overfitting. Random forests can optimise several information retrieval measures, depending

on the tree regressor wrapped. In our experiments we used a λ-MART tree, which is described below.430

The cost and quality of the learned model depends on a few parameters θ = (θt, θl). The number of

trees θt and the number of leaves θl per tree determine the number of steps needed to traverse the forest at

scoring time. Larger and more complex trees produce better results, as long as overfitting is avoided, e.g.,

by using a validation set. For evaluation purposes, θt = {100, 200, . . . , 1000} and θl = {10, 50, 100}.

In this work, we employ the implementation provided by RankLib [27] to learn the RF models. We435

extend the library with some functionalities allowing to save a learned model in XML format as discussed

in Section 3.2. Points in Figure 2 on the same horizontal line correspond to random forests with varying

number of trees, while the different number of leaves impacts on the quality of the ranker. As reported in

Table 2, RF can achieve good quality but with a non trivial cost. On both the MSN and Y!S1 datasets, it is

18

between 7 and 27 times less efficient than linear models, but the achieved quality is only marginally larger.440

On the same datasets, ListNet provides larger quality figures at a comparable cost. On the Y!S2 dataset,

RF exhibits the best quality observed so far, still being 4 times slower than ListNet.

Gradient-Boosted Regression Trees (GBRT) [6] is a general function approximation technique

aiming at finding the best function f minimising a given loss function L(f). f is defined as a weighted sum445

of weak-learners functions, i.e., f =
∑
i wifi. The basic assumption is that if we can compute the gradient

∂L(f)/∂f , then we can solve the minimisation problem of finding the best fi via gradient descent. In fact, if

the gradient is computed for a set of data points x, it is enough to find a function fi able to approximate the

gradient value at the given x. This is a regression problem which is solved with a regression tree. Therefore,

the ranking function produced by GBRT is indeed a forest of (weighted) trees. Usually, and in this work,450

the loss function adopted is the root mean squared error (RMSE), meaning that GBRT tries to predict the

relevance labels of the document in the training set. This loss function makes GBRT a point-wise algorithm.

We learn the GBRT models assessed in this paper by exploiting our QuickRank framework.

In terms of cost at scoring time, GBRT is equivalent to RF since they are both forests of trees of

tunable size. For GBRT we evaluated different parameter sets θ = (θt, θl, θs) by varying the number of455

trees θt = {100, 200, . . . , 1500}, the number of leaves per tree θl = {5, 10, 25, 50} and the shrinkage (or

learning rate) θs = {0.05, 0.1, 0.5, 1.0}.

The rankers generated by GBRT largely outperform all of the previous on every dataset tested. This

quality comes at a cost. On the MSN dataset, GBRT generates the third most expensive model observed in

the full set of experiments. This is because the best rankers employ more than 1,000 trees with 50 leaves each460

on both MSN and Y!S1. Finally, note that the smallest learning rate and the largest number of leaves were

the optimal setting on all datasets. Nevertheless, as shown in Figure 3, by varying the parameter set a large

number of models can be produced, and many of them have a smaller cost and comparable quality. One

exception is Y!S2, where the best model encompasses 100 trees only. In this case, a larger number of trees

leads to overfitting, thus producing expensive models with poor performance. This overfitting behaviour is465

visible in the GBRT plots of Figure 3 (top row) where the most costly rankers decrease their effectiveness.

As usual, the use of a validation set is mandatory to avoid such situations.

Initialized Gradient-Boosted Regression Trees.

The GBRT algorithm is an iterative process aiming at finding a weighted sum of weak learners functions470

miniming a given loss function, e.g., RMSE. GBRT is traditionally initialized with the all-zero function,

meaning that the initial prediction of each document is zero. Mohan et al. [35] propose to initialize GBRT

with the predictions produced by a previously learned RF ranker. They call this approach Initialized

Gradient-Boosted Regression Trees (iGBRT). The proposal constitutes an enhancement of the GBRT

19

10-1 100 101 102

Document Scoring Time µs.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

N
D

C
G

@
1

0

GBRT Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

GBRT Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

N
D

C
G

@
1

0

GBRT Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

N
D

C
G

@
1

0

λ-MART Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

λ-MART Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

N
D

C
G

@
1

0

λ-MART Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

N
D

C
G

@
1

0

iGBRT Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

iGBRT Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

N
D

C
G

@
1

0

iGBRT Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

N
D

C
G

@
1

0

Ωλ -MART Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

Ωλ -MART Quality vs. Cost

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

N
D

C
G

@
1

0

Ωλ -MART Quality vs. Cost

MSN Y!S1 Y!S2

Figure 3: Effectiveness in terms of NDCG@10 of GBRT, λ-MART, iGBRT, and Ωλ-MART top rankers as a function of
average per-document scoring cost.

20

algorithm as RF is a good initialization point. The reasons of that are: i) RF is known to be robust to475

overfitting as it is the result of a bagging process, ii) it is insensitive to parameter settings. Moreover, the

training overhead coming from determining the initialization scores is not big as the training step of RF is

embarrassingly parallel.

In terms of cost at scoring time, iGBRT is equivalent to other algorithms belonging to the forests of

regression trees family. We evaluate different parameter sets θ = (θt, θl, θs) by varying the number of trees480

θt = {100, 200, . . . , 1500}, the number of leaves per tree θl = {4, 8, 16, 32, 64} and the shrinkage (or learning

rate) θs = {0.05, 0.1}. In addition, we perform the initialization step by learning on the training queries of

each dataset a RF model consisting of 1000 bags and by following the common rule of thumb of setting to

10% the number of features to sample in each bag [35].

We learn the iGBRT models by exploiting the RT-rank library (v1.5-alpha2) [36]. We extend the library485

with some functionalities allowing to save a learned model in XML format as discussed in Section 3.2.

Note that this implementation generates balanced trees only. This is why we experimented a number of

leaves different from other algorithms.

Results in Table 2 show that iGBRT does not improve over GBRT on any dataset. The maximum

difference in terms of NDCG@10 is observed on the MSN dataset where GBRT outperforms iGBRT by 4%.490

However, iGBRT is able to produce fast rankers with sufficient quality. We believe that this behaviour

is due to the RF-based initialization, which allows the algorithm to start from an initial solution of good

quality. This strategy avoids overfitting: Figure 3 shows that quality keeps increasing with the complexity

of the model. But, we must conclude that iGBRT is not able to reach the most promising regions of the

search space.495

The LambdaMART (λ-MART) algorithm [7] is an improvement over GBRT. The main issues in

machine-learned document scoring functions that optimise information retrieval measures is that such mea-

sures involve a sorting of documents, and sorting is not a differentiable function. The λ-MART approach

exploits the fact that GBRT only requires the gradient to be computed at the given set of data points x. The500

gradient at a given data point describes how much the score of a document should be increased/decreased to

improve the loss function. Given two documents, this quantity is estimated by computing the loss function

variation when swapping their current score. Every document is compared with any other document, and

the loss function variation is accumulated. The resulting value is named λ, and it can be considered as

the gradient of the loss function computed at the given document. Indeed, the λ values are slightly more505

complex, since they include a factor related to the RankNet [31] cost. This gradient estimation is plugged

into a GBRT algorithm, thus obtaining λ-MART. λ-MART can optimise several information retrieval

measures, e.g., NDCG, and for this reason it can be considered a list-wise algorithm. Note that in optimising

the cost function, the score produced by λ-MART can be distant from the training relevance labels, as

21

the algorithms aims at finding whatever score generates a good ordering of documents. We trained the510

λ-MART models assessed in this paper by using the implementation included in our QuickRank framework.

In terms of cost at scoring time, there is no difference among RF, λ-MART and GBRT, since they

are all forests of trees of tunable size. For λ-MART we evaluated the same parameter sets as for GBRT.

The rankers generated by λ-MART are comparable to that of GBRT, with λ-MART performing better

on MSN and worse on Y!S1 and Y!S2. Similarly to GBRT and as shown in Figure 3, several rankers can be515

learned with smaller cost and high quality. Also in λ-MART, a large number of leaves and trees coupled

with a small learning rate provide the best results.

The Ωλ-MART [2] algorithm can be seen as a variation of λ-MART, where oblivious regression trees

[37] are used instead of standard regression trees. In oblivious regression trees, the same splitting criterion is520

used across an entire level of a tree. As a consequence, the resulting trees are balanced. The goal of reducing

the degrees of freedom of the algorithm at training time is to minimize the risk of overfitting. Indeed, λ-

MART and Ωλ-MART resulted to be the most effective LtR algorithms among the ones participating in

the Yahoo! Learning to Rank Challenge [38].

We trained Ωλ-MART models by exploiting our QuickRank framework that includes the first public-525

domain implementation of this interesting LtR algorithm. Our implmentation acccepts input dataset in

the SVM format and store the learned model in XML format as discussed in Section 3.2. Specifically, we

experimented with models obtained with different parameter sets θ = (θt, θl, θs) by varying the number

of trees θt = {100, 200, . . . , 1500}, the number of leaves per tree θl = {8, 16, 32, 64} and the shrinkage

θs = {0.05, 0.1, 0.5, 1.0}.530

According to the results reported in Table 2, Ωλ-MART performs similarly to the other algorithms in

the same family. Note that it is the best performing algorithm on the MSN dataset. As shown in Figure 3,

Ωλ-MART is able to generate rankers of good quality and small cost. This is due to the balanced trees

used. Recall that the cost of scoring a tree is proportional to its depth θd. Even if also iGBRT generates

balanced trees, Ωλ-MART produces better models, thanks to the optimization of the list-wise cost function535

employed by λ-MART.

Cost Model. All the rankers in this class are based on forests of regression trees, even if we have simple

decision stumps for RankBoost. The cost of such rankers is mainly affected by the number of trees θt and

the number of leaves θl. In addition, it results to be useful to consider also the maximum depth of each tree

in the forest, averaged across all the trees, denoted with θd. This is because trees are not balanced, and540

even if parameter θl limits the number of nodes, the length of the longest path varies from tree to tree.

We estimated the per-document scoring cost of a regression tree model by fitting a linear regression of

all the scoring time measurements taken across the three datasets for each of the aforementioned methods

22

by varying their training parameters (for a total of 2715 samples), with the following result:

C(Rθ) = 0.341 · θt + 0.005 · θl + 0.22 · θd − 1.8

This cost model is sufficiently accurate with a coefficient of determination of the regression R2 = 0.90.545

We observe that θt has a significant impact as trees are increased by hundreds. Also the average maximum

depth θd as a strong impact. Note that θd is expected to increase logarithmically with the number of leaves

(i.e., nodes) in the tree, but this may not hold for unbalanced trees. By restricting to the MSN dataset

and fixing θt = 1000, we observed that the scoring time varies between 3.0µs (θd = 4.9, θl = 5) and 17.2µs

(θd = 39, θl = 50) for GBRT, while the variance is much smaller, between 2.7µs (θd = 3.4, θl = 8) and 6.3µs550

(θd = 5, θl = 64) for Ωλ-MART, as also shown in Figure 3 (recall that Ωλ-MART may create less than

2θd−1 leaves if a good splitting criterion is not found). We conclude that GBRT grows quite unbalanced

trees having average depth close to the number of leaves, while Ωλ-MART grows balanced and thus less

expensive trees.

5. Quality vs. Cost Tradoffs555

After reviewing the results of each algorithm independently, we now compare different methods on the

basis of their QC-curve. We then present a budget-based analysis where we discuss, for a set of time budgets,

which are the best rankers to be adopted. Finally, we evaluate the capability of the rankers to provide high

quality results for any given budget threshold on the basis of AuQC, i.e., their area under the QC-curve.

5.1. Comparison through Dominant Curve560

Figure 4 compares the different LtR approaches on the basis of the QC-curve derived from their respective

rankers. Since each curve includes the dominant points in terms of ranking effectiveness of each learned

model, it is actually used to answer our research question Q1, i.e., how the effectiveness of the top ranker

trained with a given LtR algorithm varies with its computation cost at testing time.

The first observation is that the LtR approaches do not show the same behavior on all datasets. For565

instance, iGBRT provides interesting results on Y!S2 dataset, comparable to that of λ-MART, but its

performance is unsatisfactory on the other two datasets. Another interesting observation, is that tree-based

models can be less expensive than linear models when the dataset at hand has a large number of features,

as with Y!S1 and Y!S2. In these two cases, it is possible to build cheap regression forests with almost the

same performance. This is because 700 multiply-add operations required by linear models may have a cost570

larger than that of a simple forest with 100 trees having 4 leaves each, for a total of 400 nodes.

As highlighted before, λ-MART is often outperformed by GBRT. Even if λ-MART is a list-wise ap-

proach, it may not improve over the point-wise algorithm GBRT. This might be due to the fact that

23

10-1 100 101 102

Document Scoring Time µs.

0.36

0.38

0.40

0.42

0.44

0.46

0.48

N
D

C
G

@
1

0

QC-curve Comparison

λ-MART

GBRT
RF
RankBoost
SVM-rank
ListNet
iGBRT
Ωλ -MART

CA
Ridge

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

N
D

C
G

@
1

0

QC-curve Comparison

λ-MART

GBRT
RF
RankBoost
SVM-rank
ListNet
iGBRT
Ωλ -MART

CA
Ridge

10-1 100 101 102

Document Scoring Time µs.

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

N
D

C
G

@
1

0

QC-curve Comparison

λ-MART

GBRT
RF
RankBoost
SVM-rank
ListNet
iGBRT
Ωλ -MART

CA
Ridge

MSN Y!S1 Y!S2

Figure 4: QC-curves of the various LtR algorithms on the MSN, Y!S1, Y!S2 datasets.

λ-MART encompasses the cost function of RankNet, which is known to perform poorly. The Ωλ-MART

algorithm shows good performance especially on MSN, where it provides the best quality for any scoring575

time larger than 0.25 µs.

Finally, on each dataset, the choice of the best ranker depends on the desired cost. For instance, on

the MSN dataset, CA is the best algorithm for scoring times smaller that 0.2 µs. On the Y!S1 dataset,

Ωλ-MART is the best performing for budgets up to 4 µs, while GBRT provides best quality for large time

budgets. Finally, GBRT is the best algorithm on Y!S2 for scoring times larger than 1 µs, while Ridge and580

iGBRT are the best choices for smaller time budgets.

This supports the claim of this work: quality and cost should be analysed all together in order to draw

significant conclusions.

We highlight that the proposed evaluation methodology can be applied to any quality measure of interest.

In this work, we limit our analysis to NDCG@10, which is one of the most widely adopted. We also conducted585

experiments with the ERR@10 measure and achieved similar results. It is beyond the scope of this work to

understand which algorithm is best suited to optimize a given quality measure. Nevertheless, we found that

the parameter settings that best optimized NDCG, were also the best in optimizing ERR, i.e., large number

of leaves and small learning rate. This might suggest a rule of thumb for parameter tuning when a large

number of trees is an acceptable solution.590

5.2. Comparison under Budget Constraints

In the following, we answer the research question Q2, i.e., given a time budget, what are the LtR algorithm

and the associated tuning parameters providing the top ranker with the best quality at a cost smaller than

the budget, by analysing the performance of the LtR algorithms on varying the given cost budget B. We

perform the analysis by assuming different values of the average per-document cost. We test the following595

values (in µs) of B: {0.5, 0.75, 1, 2, 4, 8, 16, 32, 64}. Table 3 confirms that there is not a best (LtR) algorithm

for any given time budget.

24

Results highlight that GBRT and Ωλ-MART are the best performing algorithms in most experiments,

with the former being superior on the Y!S2 dataset and the latter on MSN. The MSN dataset has a smaller

number of features (136 vs. 700), suggesting the Ωλ-MART strategy of exploiting oblivious tree may prevent600

the algorithm to explore complex features interaction in Y!S1 and Y!S2.

Dealing with small time budgets is more challenging, and in this case different algorithms may provide

the desired quality. With the smallest time budget B = 0.5µs, each dataset suggests a different best

performing algorithm. When B increases to B = 0.75µs, also Ridge is able to provide a good model on the

Y!S2 dataset. Finally, on the Y!S1 and Y!S2 datasets, three different algorithms are shown to be the best605

performing depending on the time budget.

The experiments conducted show that the choice of the best algorithm across different time budgets

is not unique, and this opens to novel load-sensitive strategies for processing queries. We highlight that

different queries may take advantage of a different amount of time to be spent for the second ranking stage.

This is the case for queries with a different cost during the first stage [39]. For instance, in both Y!S1 and610

Y!S2, our analysis proposed three different models depending on the given time budget, which can be even

decided dynamically at run time for every single query. Therefore, the proposed analysis may lead to the

choice of multiple rankers corresponding to multiple time budgets.

The global behavior of any given algorithm on varying the time budget B is captured by the AuQC

measure, whose results are discussed below.615

Table 3: Best quality results by varying the time budget B.

B MSN Y!S1 Y!S2

µs Algorithm NDCG@10 Algorithm NDCG@10 Algorithm NDCG@10

0.5 Ωλ-MART 0.4470 λ-MART 0.7175 iGBRT 0.7213

0.75 Ωλ-MART 0.4521 Ωλ-MART 0.7347 Ridge 0.7397

1 Ωλ-MART 0.4521 Ωλ-MART 0.7359 GBRT 0.7450

2 Ωλ-MART 0.4542 Ωλ-MART 0.7439 GBRT 0.7541

4 Ωλ-MART 0.4585 Ωλ-MART 0.7458 GBRT 0.7610

8 Ωλ-MART 0.4637 GBRT 0.7513 GBRT 0.7620

16 Ωλ-MART 0.4644 GBRT 0.7554 GBRT 0.7620

32 Ωλ-MART 0.4644 GBRT 0.7555 GBRT 0.7620

64 Ωλ-MART 0.4644 GBRT 0.7555 GBRT 0.7620

5.3. Area under QC-curve

We now address Q3, i.e., how can we characterise the quality versus cost tradeoff of a given LtR algorithm,

by analyzing the results obtained by the proposed measure area under QC-curve (AuQC). This measure

takes into account the capability of a given algorithm to provide high effectiveness for any given time budget

up to a maximum one. Since a QC-curve encompasses all the dominant rankers generated by a given LtR620

25

algorithm for the various tuning parameters of the algorithm, a very large value of AuQC reveals that the

training step of the given LtR algorithm can be tuned in a way to produce a high quality ranker for any

given time budget up to a maximum one.

In Table 4, we report the AuQC value for the maximum time budget B = 100µs for all the LtR algorithms

analyzed on the three datasets. Ωλ-MART and GBRT turned out to be globally the best choices, namely625

Ωλ-MART for the MSN dataset, and GBRT for both Y!S1 and Y!S2. Looking at the QC-curves in Figure 4,

we can actually observe that Ωλ-MART and GBRT are not only the best when, as expected, a very large

number of trees is exploited and thus the time budget is used almost completely to score each document,

but also when simpler models with smaller scoring time, down to 1µs, are exploited. We highlight that

λ-MART exhibits quality in between the two algorithms on the three datasets, and it has the second best630

average performance across the three datasets, showing that it is a robust and high performing approach.

Therefore, we can conclude that our AuQC proposed metric is able to capture the global behaviour of a LtR

algorithm in the whole quality vs. cost space.

Table 4: AuQCR(B) with B = 100µs.

MSN Y!S1 Y!S2 avg.

CA 0.4096 0.7002 0.7160 0.6086

Ridge 0.3671 0.7245 0.7347 0.6088

SVM-rank 0.4006 0.7189 0.7258 0.6151

ListNet 0.4300 0.6971 0.6844 0.6038

RankBoost 0.3418 0.7086 0.7257 0.5920

RF 0.4115 0.7215 0.7450 0.6260

GBRT 0.4568 0.7491 0.7550 0.6536

iGBRT 0.4382 0.7405 0.7496 0.6428

λ-MART 0.4600 0.7483 0.7493 0.6525

Ωλ-MART 0.4625 0.7414 0.7333 0.6457

6. Conclusions

In this paper we studied the performance of ten LtR algorithms in the quality vs. cost space. The635

spectrum of ranking models analyzed ranges from the simplest ones, which at scoring time exploit a simple

linear combination of features values associated with each query-document pair, to the most complex ones,

based on forests of regression trees.

We present a comprehensive and reproducible analysis done by means of three well-known publicly avail-

able datasets for Learning to Rank. Our analysis employs QuickRank, an open-source C++ framework which640

allowed us to fairly compare the effectiveness and the efficiency of the different LtR algorithms analyzed.

Notably, QuickRank includes the optimized, multi-threaded implementations of the most effective tree-based

26

learners: GBRT [6], λ-MART [7], and the first public-domain implementation of Oblivious Lambda-Mart

(Ωλ-MART) [2]. QuickRank also provides a C++ plugin that scores tree-based models by using a state-of-

the-art strategy, namely QuickScorer [16]. Experiments were performed by sweeping the training parameters645

of each LtR algorithm to build instances of ranking models behaving differently in the quality vs. cost space.

We introduced a novel measure, called area under QC-curve (AuQC), to evaluate which LtR algorithm

learns the most effective ranker (measured in terms of NDCG@10) for a given time budget. The analysis

conducted by considering AuQC shows that, for a maximum time budget of 100 µs, the LtR algorithms

Ωλ-MART and GBRT are globally the most effective. The two algorithms show the best effectiveness650

when a large number of deep trees are exploited and thus the time budget is used almost completely to score

each document. However, these two algorithms turned out to be very effective also when small and not

expensive ranking models are used. Therefore, the area under the QC-curve is a useful measure to capture

the global behaviour of a LtR algorithm in the whole quality vs. cost space.

References655

References

[1] T.-Y. Liu, Learning to rank for information retrieval, Foundations and Trends in Information Retrieval 3 (3) (2009)

225–331.

[2] I. Segalovich, Machine learning in search quality at yandex, Invited Talk, SIGIR.

[3] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, J. Degenhardt, Early exit optimizations for660

additive machine learned ranking systems, in: Proc. WSDM, ACM, 2010, pp. 411–420.

[4] S. Robertson, H. Zaragoza, The probabilistic relevance framework: Bm25 and beyond, Found. Trends Inf. Retr. 3 (4)

(2009) 333–389.

[5] I. Arapakis, X. Bai, B. B. Cambazoglu, Impact of response latency on user behavior in web search, in: Proc. SIGIR, ACM,

2014, pp. 103–112.665

[6] J. H. Friedman, Greedy function approximation: a gradient boosting machine, Annals of Statistics (2001) 1189–1232.

[7] Q. Wu, C. Burges, K. Svore, J. Gao, Adapting boosting for information retrieval measures, Information Retrieval.

[8] K. Järvelin, J. Kekäläinen, Cumulated gain-based evaluation of ir techniques, ACM Trans. Inf. Syst. 20 (4) (2002) 422–446.

[9] C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press, New York

City, NY, USA, 2008.670

[10] N. Tax, S. Bockting, D. Hiemstra, A cross-benchmark comparison of 87 learning to rank methods, Information Processing

& Management 51 (6) (2015) 757 – 772.

[11] C. Macdonald, R. L. Santos, I. Ounis, The whens and hows of learning to rank for web search, Information Retrieval

16 (5) (2013) 584–628.

[12] C. Pölitz, R. Schenkel, Learning to rank under tight budget constraints, in: Proc. SIGIR, ACM, 2011, pp. 1173–1174.675

[13] N. Asadi, J. Lin, Fast candidate generation for two-phase document ranking: Postings list intersection with bloom filters,

in: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, ACM,

New York, NY, USA, 2012, pp. 2419–2422.

[14] N. Tonellotto, C. Macdonald, I. Ounis, Efficient and effective retrieval using selective pruning, in: Proceedings of WSDM

2013, 2013, pp. 63–72.680

27

http://dx.doi.org/10.1561/1500000019
http://doi.acm.org/10.1145/582415.582418
http://doi.acm.org/10.1145/2396761.2398656

[15] G. Ottaviano, R. Venturini, Partitioned elias-fano indexes, in: Proceedings of the 37th International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, SIGIR ’14, ACM, New York, NY, USA, 2014, pp. 273–282.

[16] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, R. Venturini, Quickscorer: A fast algorithm to rank

documents with additive ensembles of regression trees, in: Proceedings of the 38th International ACM SIGIR Conference

on Research and Development in Information Retrieval, SIGIR ’15, ACM, New York, NY, USA, 2015, pp. 73–82.685

[17] N. Asadi, J. Lin, Effectiveness/efficiency tradeoffs for candidate generation in multi-stage retrieval architectures, in:

Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval,

SIGIR ’13, ACM, New York, NY, USA, 2013, pp. 997–1000.

[18] L. Wang, J. J. Lin, D. Metzler, Learning to efficiently rank, in: Proc. SIGIR, ACM, 2010, pp. 138–145.

[19] L. Wang, D. Metzler, J. J. Lin, Ranking under temporal constraints, in: Proc. CIKM, ACM, 2010, pp. 79–88.690

[20] L. Wang, J. J. Lin, D. Metzler, A cascade ranking model for efficient ranked retrieval, in: Proc. SIGIR, ACM, 2011, pp.

105–114.

[21] N. Asadi, J. Lin, Training efficient tree-based models for document ranking, in: Proc. ECIR, Springer, 2013, pp. 146–157.

[22] N. Asadi, J. Lin, A. P. de Vries, Runtime optimizations for prediction with tree-based models, IEEE Transactions on

Knowledge and Data Engineering 99 (PrePrints) (2013) 1.695

[23] X. Tang, X. Jin, T. Yang, Cache-conscious runtime optimization for ranking ensembles, in: Proc. SIGIR, ACM, 2014, pp.

1123–1126.

[24] D. Broccolo, C. Macdonald, S. Orlando, I. Ounis, R. Perego, F. Silvestri, N. Tonellotto, Load-sensitive selective pruning

for distributed search, in: Proceedings of CIKM 2013, 2013, pp. 379–388.

[25] T. Joachims, Optimizing search engines using clickthrough data, in: Proc. SIGKDD, ACM, 2002, pp. 133–142.700

[26] D. Metzler, W. B. Croft, Linear feature-based models for information retrieval, Information Retrieval 10 (3) (2007) 257–

274.

[27] RankLib, http://sourceforge.net/p/lemur/wiki/RankLib/.

[28] A. N. Tikhonov, A. Goncharsky, V. Stepanov, A. G. Yagola, Numerical methods for the solution of ill-posed problems,

Vol. 328, Springer Science & Business Media, 2013.705

[29] SVM-rank, http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html.

[30] T. Joachims, Training linear svms in linear time, in: Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining, ACM, 2006, pp. 217–226.

[31] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, G. Hullender, Learning to rank using gradient

descent, in: Proc. ICML, ACM, 2005, pp. 89–96.710

[32] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, H. Li, Learning to rank: from pairwise approach to listwise approach, in: Proc.

ICML, ACM, 2007, pp. 129–136.

[33] Y. Freund, R. Iyer, R. E. Schapire, Y. Singer, An efficient boosting algorithm for combining preferences, Journal of

Machine Learning Research 4 (2003) 933–969.

[34] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32.715

[35] A. Mohan, Z. Chen, K. Q. Weinberger, Web-search ranking with initialized gradient boosted regression trees., in: Yahoo!

Learning to Rank Challenge, 2011, pp. 77–89.

[36] RT-rank, https://sites.google.com/site/rtranking/.

[37] R. Kohavi, Bottom-up induction of oblivious read-once decision graphs, in: Proc. ECML, Springer, 1994, pp. 154–169.

[38] O. Chapelle, Y. Chang, Yahoo! learning to rank challenge overview., Journal of Machine Learning Research-Proceedings720

Track 14 (2011) 1–24.

[39] C. Macdonald, N. Tonellotto, I. Ounis, Learning to predict response times for online query scheduling, in: Proceedings of

the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’12, ACM,

28

http://doi.acm.org/10.1145/2600428.2609615
http://doi.acm.org/10.1145/2766462.2767733
http://doi.acm.org/10.1145/2766462.2767733
http://doi.acm.org/10.1145/2766462.2767733
http://doi.acm.org/10.1145/2484028.2484132
http://sourceforge.net/p/lemur/wiki/RankLib/
http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://dl.acm.org/citation.cfm?id=945365.964285
http://dx.doi.org/10.1023/A%3A1010933404324
https://sites.google.com/site/rtranking/
http://doi.acm.org/10.1145/2348283.2348367

New York, NY, USA, 2012, pp. 621–630.

29

	Introduction
	Related Work
	Evaluation methodology
	Evaluating Quality vs.Cost
	Efficient Scorers and QuickRank
	Datasets and Experimental Settings

	Modeling LtR Rankers
	Linear Combinations
	Artificial Neural Networks
	Forests of Regression Trees

	Quality vs. Cost Tradoffs
	Comparison through Dominant Curve
	Comparison under Budget Constraints
	Area under QC-curve

	Conclusions

