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Abstract 

Supervised term weighting could improve the performance of text categorization. A way proven to 

be effective is to give more weight to terms with more imbalanced distributions across categories. 

This paper shows that supervised term weighting should not just assign large weights to imbalanced 

terms, but should also control the trade-off between over-weighting and under-weighting. Over-

weighting, a new concept proposed in this paper, is caused by the improper handling of singular 

terms and too large ratios between term weights. To prevent over-weighting, we present three 

regularization techniques: add-one smoothing, sublinear scaling and bias term. Add-one smoothing 

is used to handle singular terms. Sublinear scaling and bias term shrink the ratios between term 

weights. However, if sublinear functions scale down term weights too much, or the bias term is too 

large, under-weighting would occur and harm the performance. It is therefore critical to balance 

between over-weighting and under-weighting. Inspired by this insight, we also propose a new 

supervised term weighting scheme, regularized entropy (re). Our re employs entropy to measure 

term distribution, and introduces the bias term to control over-weighting and under-weighting. 

Empirical evaluations on topical and sentiment classification datasets indicate that sublinear scaling 

and bias term greatly influence the performance of supervised term weighting, and our re enjoys the 

best results in comparison with existing schemes. 

1 Introduction 

Baseline approaches to text categorization often involve training a linear classifier over bag-of-term 

representations of documents. In such representations, a textual document is represented as a vector of terms. 

Terms can be words, phrases, or other more complicated units identifying the contents of a document. Given 

that some terms are more informative than others, a common technique is to apply a term weighting scheme 

to give more weight to discriminative terms and less weight to non-discriminative ones. Term weighting 

schemes fall into two categories. The first one, known as unsupervised term weighting, does not take 

category information into account. Inverse document frequency (idf) is a commonly used unsupervised 

method. The second one referred to as supervised term weighting embraces the category label information 

of training documents in the categorization tasks (Batal, & Hauskrecht, 2009; Soucy, & Mineau, 2005; 

Debole & Sebastiani, 2003; Wu, & Gu, 2014). Many supervised term weighting schemes have been studied 

in the literature and show better or worse results than standard idf (see section 2 for details). So a natural 

question is: what is the key to a successful supervised term weighting scheme? 

This paper advocates that supervised term weighting should (1) assign larger weights to terms with more 

imbalanced distributions across categories, and (2) balance between over-weighting and under-weighting, 

both of which are caused by unsuitable quantification of term’s distribution. Over-weighting, a new proposed 

concept, would occur due to the improper handling of singular terms and unreasonably too large ratios 

between term weights. To reduce over-weighting, we present three regularization techniques: add-one 

smoothing, sublinear scaling and bias term. Singular terms feature high imbalanced distributions across 

categories. Singular terms could be very discriminative, or noisy and useless. Add-one smoothing, a 

commonly used technique, is introduced to handle singular terms. Sublinear scaling and bias term shrink the 

ratios between term weights, and thus prevent over-weighting. However, if the sublinear functions scale 

down term weights too much, or the bias term is too large, ratios between term weights will become too 

small, leading to under-weighting problem. So a well-performed supervised term weighting scheme should 

control the trade-off between over-weighting and under-weighting. 



Inspired by the insight of giving large weights to imbalanced terms and controlling the trade-off between 

over-weighting and under-weighting, we also propose a novel supervised term weighting scheme, 

regularized entropy (re). re bases on entropy to measure the imbalance of term’s distributions across 

categories, and assigns larger weights to terms with smaller entropy. The bias term in re controls over-

weighting and under-weighting. If its value is too small, over-weighting occurs; conversely if too large, 

under-weighting occurs. 

After presenting over-weighting, regularization and the re scheme, experiments are conducted on both 

topical and sentiment classification tasks. In our experiments, we first compare re with many existing term 

weighting schemes. The experimental results show that re performs well on all datasets, including sentiment 

and topical, balanced and imbalanced datasets. Specially, it achieves the best results on 9 of 14 tasks. Then 

we experimentally demonstrate that scaling functions greatly influence the performance of supervised term 

weighting. Additionally, we empirically analyse the effect of bias term in re, showing that the performance 

of re and the value of bias term exhibits an inverted U-shaped relationship. 

2 Review of Term Weighting Schemes 

One of the main issues in text categorization is the representation of documents. Vector Space Model 

(VSM) provides a simplifying representation by representing documents as vector of terms. Term weighting 

aims to evaluate the relative importance of different terms. There are three components in a term weighting 

scheme: local weight, global weight and normalization factor (Salton, & Buckley, 1988; Lan et al., 2009). 

Final term weight is the product of the three components: 

jiijij nglx                                         (1) 

Here xij is the final weight of ith term in the jth document, lij is the local weight of ith term in the jth document, 

gi is the global weight of the ith term, and nj is the normalization factor for the jth document. 
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BM25 tf, aver_dl is the average number of terms 

in all the documents. Default k1 and b parameters 

of BM25 are 1.2 and 0.95 respectively (Jones et 

al. 2000). 

Table 1. Local term weighting schemes. 

2.1 Local term weighting 

Local weight is derived only from frequencies within the document. Table 1 presents five common local 

weighting schemes: raw term frequency (tf), term presence (tp), logarithm of term frequency (ltf), augmented 

term frequency (atf) and BM25 term frequency (btf). The most popular and notable representation, tf, counts 

how many times the term occurs in a document. This means that tf gives more confidence to words that 

appears more frequently. The simplest binary representation, tp, ignores the occurrences of the term in the 

document. This can be useful when the number of times a word appears is not considered important. 

The atf scheme is a combination of tp and tf. It tries to give confidence to any term that appears and then 

give some additional confidence to terms that appear frequently. Logarithmic function in ltf is used to adjust 

within-document frequency because a term that appears ten times in a document is not necessarily ten times 

as important as a term that appears once in that document. The most sophisticated local weighting method 



in table 1 is btf. It bases on a probabilistic model for IR. 

 

Notation Description 

a 
Positive document frequency, i.e., number of training documents in the positive category 
containing term ti. 

b Number of training documents in the positive category which do not contain term ti. 

c 
Negative document frequency, i.e., number of training documents in the negative category 
containing term ti. 

d Number of training documents in the negative category which do not contain term ti. 

N Total number of documents in the training document collection, N = a +b + c+ d. 

 NN ,  
N+ is number of training documents in the positive category, and N

－
 is number of training 

documents in the negative category. baN  , dcN  . 

Table 2. Notations used to formulate global term weighting schemes. 
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2009) 

Table 3. Global term weighting schemes. 



2.2 Global term weighting 

Global weight depends on the whole training document collection. Global term weighting tries to give a 

discrimination value to each term and place emphasis on terms that are discriminating. To formulate different 

global weighting schemes, some notations are first introduced in table 2. With these notations, table 3 

presents several representative global term weighting schemes. 

Scheme 1-3 in table 3, idf, pidf and bidf are unsupervised as they do not utilize the category label 

information of training documents. The idf is defined as the logarithm of the ratio of number of documents 

in a collection to the number of documents containing a specific term. Another two methods, pidf and bidf, 

are the variants of idf. The common idea behind idf, pidf and bidf is that a term occurring rarely is good at 

discriminating between documents. This idea is effective in IR, but not reasonable for text categorization. 

Because the text categorization task aims to discriminate between different categories, not documents. 

Scheme 4-12 in table 3 are supervised term weighting schemes. Among these methods, ig, gr, mi and 

chi, are widely used for feature selection. Since feature selection selects relevant and valuable terms for text 

categorization, many feature selection methods are explored for term weighting in the literature. Debole and 

Sebastiani (2003) replaced idf with ig, gr, and chi for global term weighting. Experiments on Reuters-21578 

showed that these feature selection methods did not give a consistent superiority over the standard idf. Batal 

and Hauskrecht (2009) empirically showed that ig and chi could greatly boost the performance of KNN 

classifier. Deng et al. (2014) also employed several feature selection methods, including ig, mi and chi, to 

learn the global weight of each term from training documents. Experimental results showed that compared 

with bidf, mi and chi produced better accuracy on two of three datasets, but ig performed very poorly. 

Another supervised scheme is relevance frequency (rf) (Lan et al., 2009). The intuitive consideration of 

rf is that the more concentrated a high frequency term is in the positive category than in the negative category, 

the more contributions it makes in selecting the positive samples from the negative samples. Driven by this 

intuition, rf was proposed to capture this basic idea. Due to the asymmetry, rf only boosts the weights of 

terms that appear more frequently in the positive category. For terms appear more frequently in the negative 

category, it does not boost but decreases the weights of these terms. In other words, rf discriminates against 

terms appearing more frequently in negative category. 

In sentiment analysis literature, Martineau and Finin (2009) presented a new supervised scheme didf. It 

is the difference of a term’s idf values in the positive and negative training documents. Clearly, didf assigns 

large weights to terms with unevenly distribution between the positive and negative categories and discounts 

evenly distributed terms. A problem with didf is susceptible to the errors caused by the case of a = 0 or c = 

0. Following the idea of didf and to rectify the problem of didf, Paltoglou and Thelwall (2010) presented a 

smoothed version of didf, delta smoothed idf (dsidf).1 They also explored other more sophisticated methods 

originated from IR such as delta smoothed probabilistic idf (dspidf) and delta BM25 idf (dbidf). Empirical 

evaluations revealed that these smoothed delta variants of the classic idf scheme provided significant increase 

over the best term weighting methods for sentiment analysis in terms of accuracy. 

2.3 Normalization 

Normalization eliminates the document length effect. A common method is cosine normalization. 

Suppose that tij represents weight of ith term in the jth document, then the cosine normalization factor is 

defined as i ijt 2/1 . 

3 Methodology 

Our review of term weighting schemes above shows that supervised term weighting can, but not always, 

boost the performance of text categorization. Actually, the somewhat successful ones, such as rf and didf, 

follow the intuition that the more imbalanced a term’s distribution across different categories, the more 

contribution it makes in discriminating between the positive and negative documents.  The difference 

between them is the quantification of the degree of the imbalance of term’s distributions. We argue that a 

 
1The formulation of dsidf in Paltoglou and Thelwall (2010) is dsidf = )5.0/5.0(log2   cNaN , which suffers 
from over-weighting severely (see section 3.1 for details). So in table 3, we formulate dsidf as 

)5.0(/)5.0(log2   cNaN . 



successful supervised term weighting scheme should not just assign large weights to terms with imbalanced 

distributions, but should also balance between over-weighting and under-weighting when quantifying term’s 

distributions across different categories. 
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Figure 1. Over-fitting & under-fitting and over-weighting & under-weighting. Over-fitting and under-fitting 

occur with model parameter w. Over-weighting and under-weighting occur with term weight x. 

xw
Txd )(  is the decision function for a text classifier. 

3.1 Over-weighting & under-weighting and regularization 

Over-weighting (and under-weighting) in supervised term weighting is somewhat like over-fitting (and 

under-fitting) in statistical machine learning. Let xw
Txd )(  be the decision function for a linear text 

classifier. Over-fitting and under-fitting occur with model parameter w. Over-fitting arises when a statistical 

model describes random error or noise instead of the underlying relationship. Similarly, over-weighting and 

under-weighting occur with term weight x (see figure 1). In practice we identify that over-weighting is 

caused by the improper handling of singular terms and too large ratios between term weights. 

The improper handling of singular terms would lead to the problem of over-weighting. Here we define 

singular terms as terms with high imbalanced distributions. Singular terms with high frequency could be 

very discriminative, deserving large term weights. But low frequency singular terms could be noisy and 

useless, and should be assigned small weights. Improper handling of singular terms could result in over-

weighting. To illustrate this, suppose the training document collection is balanced with 1000  NN , 

term t1 with a = 100 and c = 0, and term t2 with a = 2 and c = 0. For comparison, we also include t3 with a = 

100 and c = 1. According to some existing schemes such as dsidf = )5.0/()5.0(log2   cNaN  in 

(Paltoglou, & Thelwall, 2010), the global weight of t1, t2 and t3 is g1 = 17.6, g2 = 12.0 and g3 = 6.6 respectively. 

This result violates our intuition that the weight of t1 and t3 should be large, and the weight of t2 should be 

relatively small. Since the document frequency of t2 is so trivial compared to the size of training collection, 

t2 could be an unusual or noisy word. Another unreasonable observation is that the weight of t1 seems too 

large compared to t3, as both their frequency and distribution are close to each other. The unsuitable 

implementation of add-one smoothing2 in this dsidf leads to unreasonably too large weight for both high and 

low frequency singular terms. Using the add-one smoothing as )5.0(/)5.0(log2   cNaN , then g1 = 

7.7, g2 = 1.3 and g3 = 6.1. This result satisfies our intuition that the weights of t1 and t3 should be close and 

large, and the weight of t2 should be small. 

An unsuitable quantification of term distribution may lead to unreasonably too large ratios between term 

weights and thus results in over-weighting. Let x be a variable quantifying term’s distribution across 

categories. Here we define x as ),min(/),max(  rrrrx , where   Nar /)1( , 
  Ncr /)1( . 

Obviously, x itself quantifies term distribution and could be used as global term weight. However, directly 

using x as global term weight often leads to unreasonably too large ratios between term weights. Because a 

term with x = 100 is not necessarily ten times as discriminative as a term with x = 10. To change the ratios 

between term weights, an intuitive regularization technique is to introduce sublinear scaling functions of x. 

This paper proposes and compares seven different scaling functions: 2)(1 xxf  , 2/1)(2 xxf  , 
3/1)(3 xxf  , xxf 2log)(4  , )/11.0/(1)(5 xxf  , )/105.0/(1)(6 xxf   and 6/1)(7 xxf  . For 

comparison, we also include xxf )(0 , which does not change the ratios between term weights. These 

functions are illustrated in figure 2. In these functions, )(1 xf  dramatically amplifies ratios between term 

weights, increasing the risk of over-weighting. Conversely, )(7 xf  may shrink the ratios too much, making 

no difference between discriminative and non-discriminative terms, hence leading to under-weighting. 

 
2The “one” of add-one smoothing for )5.0/()5.0(log2   cNaN is actually 0.5. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Illustration of different scaling functions: xxf )(0 , 2)(1 xxf  , 2/1)(2 xxf  , 3/1)(3 xxf  , 

xxf 2log)(4  , )/11.0/(1)(5 xxf   )/105.0/(1)(6 xxf   and 6/1)(7 xxf  . 

In addition to sublinear scaling, we also propose another regularization technique, bias term, to further 

shrink the ratios between term weights. With bias term, the global term weight is formulated as follows: 

)()1( 00 xfbbgi  .                                       (2) 

Here )(xf , which should be normalized to [0,1], is a measurement quantifying term’s distribution across 

categories, and ]1,0[0 b  is the bias term. The value of b0 controls the trade-off between over-weighting 

and under-weighting. If b0 is too large, under-weighting would occur. If b0 is too small, over-weighting 

would occur. The optimal value of b0 can be obtained via cross-validation, a model selection technique 

widely used in machine learning. 

3.2 Regularized entropy 

Inspired by the insight of balancing between over-weighting and under-weighting, we propose a novel 

supervised term weighting scheme, regularized entropy (re). For re, entropy is exploited to measure the 

degree of the imbalance of a term’s distribution across different categories. According to information theory 

(Shannon, 1948), for a random variable X with m outcomes {x1,…, xm}, the entropy, a measure of uncertainty 

and denoted by H(X), is defined as 


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where p(xi) is the probability that X equals to xi.  

Let p and p denote the probability of a document belonging to positive and negative category 

respectively, then p  and p can be estimated as 
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Here we divide a and c by 
N and 

N  respectively. This makes our method work for unbalanced 

datasets. According to formula (3), if term ti occurs in a document, the degree of uncertainty of this document 

belonging to a category is 
  pppph 22 loglog .                             (5) 

Obviously, if the documents containing term ti distribute evenly over different categories, the entropy h 

will be large. In contrast, if the documents containing term ti distribute unevenly over different categories, 

the entropy h will be relatively small. However, we hope that the more uneven the distribution of documents 

where term ti occurs, the larger the weight of ti is. And that the entropy h is between 0 and 1, so we define 

the original formula of term weight as 

  hgi 1 .                                            (6) 

We call the scheme formulated by the (6) as nature entropy (ne). It seems that ne can be used as the 

weights of terms directly and will perform well. Unfortunately, ne may severely suffer from the problem of 

over-weighting. To avoid over-weighting, we modify ne with two regularized techniques: (1) using add-one 



smoothing for all terms and (2) adding a bias term to shrink the ratios between term weights. Regularized 

version of ne is formulated as 

)1)(1( 00 hbbgi  .                                      (7) 

Here ]1,0[0 b  is the bias term, whose value controls the trade-off between over-weighting and under-

weighting. We name the proposed scheme formulated by (7) regularized entropy (re).  

4 Datasets and Experimental setup 

4.1 Datasets 

We conduct experiments on both topical and sentiment classification datasets. Detailed statistics are 

shown in table 4. The sentiment classification datasets are: 

RT-2k: de facto bechmark for sentiment analysis, containing 2000 movie reviews (Pang and Lee, 2004). 

The reviews are balanced across sentiment polarities. 

IMDB: a large movie review dataset containing 50k reviews (25k training, 25k test), collected from 

Internet Movie Database (Mass et al., 2011). The reviews are also balanced across sentiment polarities. 

The topical classification datasets are: 

N-WiX, N-GrX, N-MaI, N-MoA, N-PoR: The Newsgroups dataset with headers removed. 

Classification task is to classify which topic a document belongs to. N-WiX: comp.os.ms-windows.misc vs. 

comp.windows.x, N-Grx: comp.graphics vs. comp.windows.x, N-MaI: comp.sys.ibm.pc.hardware vs. 

comp.sys.mac.hardware, N-MoA: rec.motorcycles vs. rec.autos, N-PoR: talk.politics.misc vs. 

talk.religion.misc. The documents are approximately balanced across topics. 

R-Ear, R-Acq, R-Mon, R-Gra, R-Cru: Reuters-21578 dataset, using documents from top 5 largest 

categories. The classification task is to retrieve documents belonging to a given topic. R-Ear: earn, R-Acq: 

acq, R-Mon: money-fx, R-Gra: grain, R-Cru: crude. The highly imbalanced category distribution of Reuters-

21578 makes it significant among other datasets. 

 

Dataset RT-2k IMDB N-WiX N-GrX N-MaI N-MoA N-PoR R-Ear R-Acq R-Mon R-Gra R-Cru 

L 762 271 419 419 419 419 419 130 130 130 130 130 

N  1000 25k 985 973 982 996 775 3753 2131 601 528 510 

N  1000 25k 988 988 963 990 628 3770 5392 6922 6995 7013 

Table 4. Dataset statistics. L: average number of unigram tokens per document. 
N : number of positive 

examples. 
N : number of negative examples. 

4.2 Experimental setup 

We lower-case all words but do not perform any stemming or lemmatization. We restrict the vocabulary 

to all tokens that occurred at least 3 times in the training set. Unless otherwise specified, only unigrams are 

used as feature terms. Support vector machine (SVM) is used as the classifier in our experiments. Specially, 

we adopt the L2-regularized L2-loss linear SVM and the implementation software is LIBLINEAR (Fan et 

al., 2008). Except setting C = 0.3 for SVM on IMDB, C = 1.0 is used for other datasets. Tuning of bias b0 is 

done by testing the models on the held-out portion of the training data, and then the models were re-trained 

with the chosen b0 using the entire training data. 

For RT-2k, there are no separate test sets and hence we use 10-fold cross validation. The overall result 

is the average accuracy across 10 folds. The standard train-test splits are used on IMDB and Newsgroups 

datasets. For Reuters-21578, training and test documents are separated according to ModApte split. 

Scheme tp is used as local term weighting method for RT-2k and IMDB due to its superior performance 

on the two sentiment datasets. For newsgroups datasets, atf is adopted. For Reuters-21578 datasets, we 

choose tf as the local term weighting scheme. Cosine normalization is used for all term weighting schemes 

in our experiments. 

For Reuters-21578 dataset, F1-score is used as the evaluation metric due to the highly imbalanced 

category distribution. Classification accuracy is adopted for other datasets. 

 



Dataset no idf ig chi mi mi’ rf dsidf dsbidf ne re 

RT-2k (1) 87.20 87.65 86.90 86.60 88.05 88.05 86.95 88.25 88.40 80.80 89.30 

RT-2k (2) 87.80 89.20 88.00 87.55 89.65 89.65 87.45 89.75 89.95 85.55 90.30 

IMDB (1) 88.76 89.20 86.73 86.65 89.41 89.41 88.60 89.26 89.36 86.87 89.68 

IMDB (2) 90.11 91.24 88.04 87.92 91.60 91.60 90.16 91.76 91.75 90.38 91.86 

N-WiX 89.73 92.90 90.11 88.97 92.27 92.40 88.85 92.52 91.76 93.66 92.78 

N-GrX 86.86 88.39 87.12 87.12 90.43 90.56 87.88 89.80 89.67 88.90 89.54 

N-MaI 88.41 90.09 90.60 90.09 94.08 94.08 86.87 94.72 94.85 93.82 94.98 

N-MoA 96.10 96.98 93.83 93.45 97.36 97.36 94.46 97.10 97.10 98.11 97.61 

N-PoR 86.81 88.59 87.52 86.98 90.02 90.02 86.63 90.20 90.20 90.73 89.66 

R-Ear 98.61 98.61 96.31 96.40 98.66 98.66 98.47 98.56 98.41 98.61 99.07 

R-Acq 96.07 96.84 91.07 91.65 95.43 96.47 95.67 96.86 95.58 96.39 96.93 

R-Mon 98.22 98.57 93.48 94.37 96.55 98.94 97.86 98.95 97.10 99.29 98.94 

R-Gra 93.28 96.55 94.62 95.88 94.66 96.55 95.42 96.21 94.98 97.36 97.76 

R-Cru 90.61 92.11 83.01 88.89 91.36 92.59 93.17 92.68 88.67 92.31 93.62 

Table 5. Results of our re (and ne) against existing term weighting schemes. The best results are in bold. For 

RT-2k and IMDB, (1) indicates using unigrams as feature terms, and (2) indicates using both unigrams and 

bigrams. For other datasets, only unigrams are used as feature terms. mi’ (see formula (8) in section 5.1) is 

our improved version of mi. For comparison, we also include a special scheme no, i.e., no global term 

weighting scheme is used. 

5 Experimental Results 

Code to reproduce our experimental results is available at https://github.com/hymanng. 

5.1 Comparison with existing schemes 

We compare our re and ne against various existing global term weighting schemes. Results are shown 

in table 5. We summarize the results as follows. 

(1) Our re is a robust performer. It performs well on all datasets, including sentiment and topical, 

balanced and imbalanced datasets. Specially, it achieves the best results on 9 of 14 tasks. The performance 

of ne is, however, very different across datasets. On RT-2k and IMDB, it provides much lower accuracy 

than re. This indicates ne suffers from over-weighting, and re benefits significantly from regularization 

techniques (re is the regularized version of ne). On newsgroups datasets, ne performs closely or even better 

than re, indicating that over-weighting is not serious for newsgroups datasets.  

(2) mi performs well on balanced datasets, but poorly on the imbalanced ones: R-Acq, R-Mon, R-Gra 

and R-Cru. To improve mi, we divide a and c by N  and N  respectively, and let NN /  and NN /  

be 2, getting mi’: 

mi’ = )
//

/2
,

//

/2
max(log 2 







 NcNa

Nc

NcNa

Na
.                    (8) 

As seen in table 5, mi’ performs well on all datasets, including balanced and imbalanced ones. It produces 

the same results with mi on balanced datasets, but much better results on imbalanced datasets. 

(3) Other results. ig and chi perform very poorly. idf performs remarkably well on all datasets, including 

sentiment and topical, balanced and imbalanced datasets, despite not the best scheme. dsidf is an excellent 

performer, better than idf. dsbidf performs well on balanced datasets, but provides very poor results on 

imbalanced ones. rf does not yields good results, even underperforms no. This is not surprising due to its 

discrimination against the terms that appear more frequently in the negative category. 

To further illustrate the robustness of re, we reduced the dataset size on RT-2k, IMDB, N-MaI and R-

Cru, and compare re with no, idf, ig, mi’ and dsidf. Results are shown in figure 3. Overall, re performs best 



Figure 3. Results of re against existing schemes with different number of examples on RT-2k, IMDB, N-

MaI and R-Cru. Examples are randomly selected to ensure the same category distributions with the whole 

datasets. For R-Cru, ig only gets f1-score of about 83%, far lower than results of other schemes, so its 

performance is not illustrated. 

 

with different number of examples. ig still provides very poor results. Note that dsidf and mi’ even 

underperforms no when the number of examples are less than 1600 on RT-2k. The possible reason is that 

they suffer from over-weighting with the reduced data size. One observation to support this is that re needs 

larger b0 with smaller data size. 

5.2 Comparison of scaling functions 

As scaling function changes the ratio between term weights, unsuitable choices of it could result in over-

weighting or under-weighting problem. To confirm this, we compare the performance of scaling functions 

f1-f7 against f0. Results are shown in table 6. The first thing to note is that f1 performs poorly on all datasets, 

especially for RT-2k, IMDB, N-PoR, and Reuters-21578 datasets. This is not surprising as f1 seriously 

amplifies ratio between term weights, leading to severe over-weighting problem. f7 also performs poorly, 

but for the opposite reason. It shrinks too much the ratio between term weights, resulting in under-weighting 

problem. f2-f6 shrinks the ratio between term weights to more reasonable range, and thus provides better 

results than f1 and f7. Specially, f5 performs well on all datasets, and achieves the best results on 6 of 14 

tasks. 

5.3 Effect of bias term 

As analysed in section 4, the value of b0 controls the trade-off between over-weighting and under-

weighting. If b0 is too small, over-weighting occurs and harms the performance. If b0 is too large, under-

weighting occurs. To confirm the effect of bias term b0, we test the performance of re with different b0 value. 

Figure 4 presents the results on RT-2k, IMDB, N-MaI and R-Cru. Overall, the performance of re and the 

value of b0 exhibits an inverted U-shaped relationship. Without bias term (i.e. b0 = 0), re does not performs 

well, even underperforming idf on RT-2k and IMDB. This is due to over-weighting problem with too small 

b0. If b0 is too large, re still performs poorly. This is due to under-weighting problem with too large value of 

b0. re beats idf with a wide range of b0 settings, indicating re is a robust performer. Note that for N-MaI, re 



provides the best results with very small b0 value, increasing b0 harms the performance. This indicates that 

over-weighting is not a serious problem for this dataset. 

 

Dataset f0 f1 f2 f3 f4 f5 f6 f7 

RT-2k (1) 88.10 81.45 89.05 88.45 87.90 89.05 88.85 88.00 

RT-2k (2) 89.80 82.70 89.80 89.25 89.75 90.25 90.05 88.60 

IMDB (1) 89.39 86.60 89.59 89.30 89.26 89.62 89.61 89.04 

IMDB (2) 91.54 88.45 91.28 91.04 91.76 91.72 91.81 90.59 

N-WiX 93.28 91.13 92.14 91.00 92.52 92.14 92.77 91.38 

N-GrX 88.64 88.14 89.03 89.15 89.80 88.90 88.64 88.14 

N-MaI 93.95 93.44 93.69 92.66 94.72 94.21 94.21 91.25 

N-MoA 96.72 95.97 96.85 96.22 97.10 97.10 96.98 96.35 

N-PoR 88.59 84.85 90.55 88.95 90.20 89.48 89.48 88.24 

R-Ear 98.13 97.19 98.56 98.66 98.56 98.56 98.47 98.56 

R-Acq 96.86 95.47 96.39 96.31 96.85 96.55 96.93 95.92 

R-Mon 96.19 85.71 98.60 98.23 98.95 99.30 98.95 98.23 

R-Gra 96.29 92.75 96.24 95.79 96.21 96.95 96.24 96.15 

R-Cru 90.48 85.55 92.68 93.50 92.68 93.01 92.73 91.77 

Table 6. Results of different scaling functions. The best results are in bold. For RT-2k and IMDB, (1) 

indicates using unigrams as feature terms, and (2) indicates using both unigrams and bigrams. For other 

datasets, only unigrams are used as feature terms. 

Figure 4. Result of our re with different b0 values on RT-2k, IMDB, N-MaI and R-Cru. For comparison, the 

results of idf are also included. 

 

(c) N-MaI 

(a) RT-2k (b) IMDB 

(d) R-Cru 



6 Conclusions 

In this paper we have presented the importance of balancing between over-weighting and under-

weighting in supervised term weighting for text categorization. Over-weighting is a new concept proposed 

in this paper. It is caused by the improper handling of singular terms and the unreasonably too large ratios 

between weights of different terms. To reduce over-weighting, three regularization techniques, namely add-

one smoothing, sublinear scaling and bias term, are introduced. Add-one smoothing can be used for singular 

terms to avoid over-weighting. Sublinear scaling and bias term shrink the ratios between weights of different 

terms. If the scaling functions scale down the weights too much or bias term is too large, ratios between term 

weights become too small. Hence under-weighting occurs. Experiments on both topical and sentiment 

classification datasets have shown that regularization techniques could significantly enhance the 

performance of supervised term weighting. 

More advanced, a new supervised term weighting scheme, re, is proposed under the insight of balancing 

between over-weighting and under-weighting. re bases on entropy, which is used to measure a term’s 

distribution across different categories. The value of bias term in re controls the trade-off between over-

weighting and under-weighting. Empirical evaluations show that re performs well on various datasets, 

including topical and sentiment, balanced and imbalanced ones. 
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