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Abstract

Automated keyphrase extraction is a fundamental textual information process-

ing task concerned with the selection of representative phrases from a document

that summarize its content. This work presents a novel unsupervised method

for keyphrase extraction, whose main innovation is the use of local word em-

beddings (in particular GloVe vectors), i.e., embeddings trained from the single

document under consideration. We argue that such local representation of words

and keyphrases are able to accurately capture their semantics in the context of

the document they are part of, and therefore can help in improving keyphrase

extraction quality. Empirical results offer evidence that indeed local representa-

tions lead to better keyphrase extraction results compared to both embeddings

trained on very large third corpora or larger corpora consisting of several doc-

uments of the same scientific field and to other state-of-the-art unsupervised

keyphrase extraction methods.

Keywords: keyphrase extraction, unsupervised method, GloVe, local word

vectors, Reference Vector Algorithm
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1. Introduction

Keyphrase extraction is concerned with the selection of a set of phrases from

within a document that together summarize the main topics discussed in that
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document (Hasan & Ng, 2014). Automatic keyphrase extraction is a fundamen-

tal task in digital content management as it can be used for document index-

ing, which in turns enables calculating semantic similarity between documents

(and hence document clustering), and can improve browsing of digital libraries

(Gutwin et al., 1999; Witten, 2003). In addition, automatic keyphrase extrac-

tion offers an approach to document summarization. Keyphrase extraction is

particularly important in academic publishing, where it is used as a techno-

logical building block to recommend articles to readers, to highlight missing

citations to authors and to analyze research trends (Augenstein et al., 2017).

Supervised machine learning approaches for automatic keyphrase extraction

rely on annotated corpora. However, manual selection of the keyphrases of

each document by humans requires the investment of time and money and is

characterized by great subjectivity. In many cases, the extracted keyphrases

cover one or more non-core topics due to misunderstandings, or they miss one

or more of the important topics discussed in the document. Using multiple

annotators can partially address the problem of subjectivity by collecting more

keyphrases (Chuang et al., 2012; Sterckx et al., 2016). This, however, comes

at the expense of additional annotation effort. In addition, supervised methods

often fail to generalize well to documents coming from a different content domain

than the training corpus, may require retraining to address concept drift, and

are more susceptible to varying vocabularies across documents and different

personal writing styles across authors.

In contrast, this work takes a novel unsupervised path to keyphrase extrac-

tion. To be able to take into account the semantic similarity among words

we consider word embeddings, in particular the one generated by GloVe (Pen-

nington et al., 2014). Different however from past approaches that exploit word

embeddings in keyphrase extraction Wang et al. (2014), we do not use pretrained

vectors, but instead learn local GloVe representations in the context of single

documents, in particular full-texts of academic publications. Our main hypoth-

esis is that such local representations will be able to more accurately capture

the semantic similarity of the different words and phrases in the context of each
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document, and help us extract more representative keyphrases, compared to

global representations and other state-of-the-art unsupervised keyphrase extrac-

tion methods. Our research objective is to investigate whether this hypothesis

holds.

Our approach extracts keyphrases from the title and abstract of an aca-

demic publication, which constitute a clear and concise summary of the whole

publication, in order to avoid the noise and redundancy found in the full-text.

Once local word vectors have been learned from the full-text of a given academic

publication, we compute the mean vector of the words in its title and abstract,

dubbed reference vector, which we can intuitively consider as a vector repre-

sentation of the semantics of the whole publication. We then extract candidate

keyphrases from the title and abstract, and rank them in terms of their cosine

similarity with the reference vector, assuming that the closer to the reference

vector is a word vector, the more representative is the corresponding word for

the publication.

The rest of the paper is organized as follows. Section 2 gives a review of the

related work in the field of keyphrase extraction as well as a brief overview of

methods that produce word embeddings. Section 3 presents the proposed ap-

proach. Section 4 describes empirical results highlighting different aspects of our

approach and comparing it with other state-of-the-art unsupervised keyphrase

extraction methods. Finally, Section 5 presents the conclusions of this work and

points to future work directions.

2. Related Work

2.1. Automatic Keyphrase Extraction

Automatic keyphrase extraction is a well-studied task and a variety of tech-

niques have been proposed in the past. In this section, we present both super-

vised and unsupervised methods in a comprehensive and structured way.
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2.1.1. Unsupervised Approaches

Unsupervised keyphrase extraction approaches typically follow a standard

three-stage process (Hasan & Ng, 2010, 2014). The first stage concerns choosing

the candidate lexical units with respect to some heuristics, such as the exclusion

of stop words or the selection of words that are nouns or adjectives. The second

stage concerns ranking these lexical units by measuring their importance through

co-occurrence statistics or syntactic rules. The final stage concerns keyphrase

formation, where the top-ranked lexical units are used either as keywords or as

components of keyphrases.

The baseline approach for unsupervised keyphrase extraction is TfIdf (Jones,

1972). It ranks phrases in a particular document according to their frequency

in this document (tf), multiplied by the inverse of their frequency in all docu-

ments of a collection (idf). Recently, Florescu & Caragea (2017a) proposed an

approach for combining TfIdf with any other word-scoring approach. In their

approach, a phrase’s score is computed by multiplying its frequency within the

document (tf) with the mean of the scores of the phrase’s words.

Graph-based ranking algorithms are based on the following idea: first, a

graph from a document is created that has as nodes the candidate keyphrases,

and then edges are added between related candidate keyphrases. The final goal

is the ranking of the nodes using a graph-based ranking method, such as PageR-

ank (Brin & Page, 1998), Positional Function (Herings et al., 2005), and HITS

(Kleinberg, 1999). TextRank (Mihalcea & Tarau, 2004) builds an undirected

and unweighted graph with candidate lexical units as nodes for a specific text

and adds connections (edges) between those nodes that co-occur within a win-

dow of N words. The ranking algorithm runs iteratively until it converges.

Once the algorithm converges, nodes are sorted by decreasing order and the top

T nodes form the final keyphrases. Variations of TextRank include SingleR-

ank (Wan & Xiao, 2008), where edges have a weight equal to the number of

co-occurrences of their corresponding nodes within a window, and ExpandRank

(Wan & Xiao, 2008), where the graph includes as nodes not only the lexical
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units of a specific document but also the lexical units of the k nearest neighbor-

ing documents of the initial document. In ExpandRank, an edge between two

nodes exists if the corresponding words co-occur within a window of W words

in the whole document set. Once the graph is constructed, ExpandRank’s pro-

cedure is identical to SingleRank. Recently, another unsupervised graph-based

model, called PositionRank, was proposed by Florescu & Caragea (2017b). This

method tries to capture frequent phrases taking into account, at the same time,

their corresponding position in the text. More specifically, it incorporates all

word’s positions into a biased PageRank. Finally, the keyphrases are scored

and ranked. Wang et al. (2014) propose a graph-based ranking model that

takes into consideration information coming from distributed word representa-

tions. In particular, again a graph of words is initially created with edges that

represent the co-existence between the words within a window of W consecu-

tive words. Then, a weight (the word attraction score) is assigned to every edge,

which is the product of two individual scores: a) the attraction force between

two words which uses the frequencies of the words as well as the distance be-

tween the corresponding word embeddings, and b) the dice coefficient (Dice,

1945; Stubbs, 2003). Once more, a weighted PageRank algorithm is utilized to

rank the words. A similar approach that uses a personalized weighted PageR-

ank model with pretrained word embeddings, but with different edge weights is

proposed in Wang et al. (2015).

RAKE (Rose et al., 2010) is a domain-independent and language-independent

method for extracting keyphrases from individual documents. Given a list of

stop words, a set of phrase delimiters, and a set of word delimiters, RAKE cuts

the document text up to candidate sequences of content words and then builds

a graph of word co-occurrences. Afterwards, word scores are calculated for each

candidate keyword. The basic difference in comparison with the previous ap-

proaches is that RAKE is able to identify keyphrases that contain interior stop

words. Specifically, RAKE detects pairs of keywords that adjoin one another

at least twice in the same document, in the same order, and creates a new

candidate keyphrase that contains the corresponding interior stop words.
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There exists a group of approaches that incorporate knowledge from cita-

tion networks. A typical method of this group is CiteTextRank (Gollapalli &

Caragea, 2014), which constructs a weighted graph considering the information

of short text descriptions surrounding mentions of papers (citation contexts).

Topic-based clustering methods aim at extracting keyphrases that cover all

the major topics of a document. A known technique of this family is KeyCluster

(Liu et al., 2009), which clusters similar candidate keywords utilizing Wikipedia

and co-occurrence statistics. The basic idea is that each cluster corresponds

to a specific topic of the document and by selecting candidate keyphrases from

each cluster, all the topics are covered. TopicRank (Bougouin et al., 2013) is

another method that extracts keyphrases from the most significant topics of

a document. First, the text of interest is preprocessed and then keyphrase

candidates are grouped into separate topics using hierarchical agglomerative

clustering. In the next stage, a graph of topics is constructed whose edges are

weighted based on a measure that considers phrases’ offset positions in the text.

As a final step, TextRank is used to rank the topics. Topical PageRank (TPR)

(Liu et al., 2010) is an alternative methodology which first obtains the topics of

words and documents using Latent Dirichlet Allocation (LDA) (Blei et al., 2003)

and then begins the construction of the word graph for a given document. The

idea of TPR is to run a PageRank for each topic separately by modifying the

basic PageRank score function utilizing the word topic distributions calculated

earlier for the given document.

Tomokiyo & Hurst (2003) create both unigram and n-gram language models

on a foreground corpus (target document) and a background corpus (document

set). Their main idea is based on the fact that the loss between two language

models can be measured using the Kullback-Leibler divergence. Particularly, in

a phrase level, for each phrase, they compute the phraseness as the divergence

between the unigram and n-gram language models on the foreground corpus

and the informativeness as the divergence between the n-gram language models

on the foreground and the background corpus. Finally, they sum the phraseness

and informativeness to obtain a final score for each phrase and sort them by
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this score.

2.1.2. Supervised Approaches

In supervised learning, a classifier is trained on annotated with keyphrases

documents in order to determine whether a candidate phrase is a keyphrase or

not. These keyphrases and non-keyphrases are used to generate positive and

negative examples.

The famous KEA system (Witten et al., 1999) is one of the first supervised

keyphrase extraction systems which uses only two features during training and

extraction process: TfIdf and first occurrence attribute. The training stage uses

documents whose the keyphrases are known. Then, for each document, candi-

date keyphrases are identified and their feature values are calculated. Finally,

KEA uses an expression to rank the candidates, that incorporates the corre-

sponding features, based on Naive Bayes. Later, another system which uses

linguistic knowledge has been proposed by Hulth (2003). For each candidate

phrase of the training data, that has been selected in an earlier stage, four fea-

tures are calculated: the within-document frequency, the collection frequency,

the relative position of the first occurrence, and POS tag(s). Finally, the ma-

chine learning approach is a rule induction system with bagging. The popular

keyphrase extraction system, called Maui (Medelyan et al., 2009), first deter-

mines all n-grams up to 3 words and then calculates a set of meaningful features

such as TfIdf, the position of the first occurrence, keyphraseness, phrase length,

and features based on Wikipedia statistics which are used in its classification

model. In Caragea et al. (2014), a binary classification model, CeKE, has been

proposed (Naive Bayes classifier with decision threshold 0.9) which utilizes novel

features from the information of citation contexts and existing features from pre-

vious works. Recently, Sterckx et al. (2016) conduct an interesting study where

they conclude that unlabeled keyphrase candidates are not reliable as negative

examples. For this reason, they propose to treat supervised keyphrase extrac-

tion as Positive Unlabeled Learning by assigning weights to training examples,

modeling in this way the uncertainty. Firstly, they train a classifier on a single
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annotator’s data and use the predictions on the negative/unlabeled phrases as

weights. Then, another classifier is trained on the weighted data mentioned

above in order to predict the labels of the candidates.

Other approaches that use neural network models have been proposed, with

the most recent work to be a generative model for keyphrase prediction using

an encoder-decoder framework that tries to capture the semantic meaning of

the content via a deep learning method (Meng et al., 2017). In fact, it applies a

recurrent neural network (RNN) Encoder-Decoder model in order to learn the

mapping from the source text to its corresponding target keyphrases. The main

drawback with such approaches is that the model is expected to work well on

text documents that have the same domain with the training data.

Another point of view is to see keyphrase extraction as a learning to rank

task such as in Jiang et al. (2009). The basic reason to adopt this approach is

the fact that it is easier to determine if a candidate phrase is a keyphrase in

comparison with another candidate phrase than to classify it as a keyphrase or

not, by taking such hard decisions.

We should not omit the recent work on keyphrase extraction where the

task has been treated as a sequence tagging task using Conditional Random

Fields (Gollapalli et al., 2017). The features used represent linguistic, ortho-

graphic, and structure information from the document. Furthermore, they

investigate feature-labeling and posterior regularization in order to integrate

expert/domain-knowledge throughout the keyphrase extraction process.

2.2. Dense Vectors

Since 1990, a great number of methods have been proposed for words’ rep-

resentation, such as the popular Latent Dirichlet Allocation (LDA) (Blei et al.,

2003) and Latent Semantic Analysis (LSA) (Deerwester et al., 1989, 1990). Gen-

erally, such approaches that are based on co-occurrences’ matrix (Deerwester

et al., 1990; Lund & Burgess, 1996; Blei et al., 2003) are able to capture seman-

tics and are also used for further dimensionality reduction. However, Bengio

et al. (2003) invented the term “word embeddings”, proposing a simple feed-
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forward neural network which predicts the next word in a sequence of words.

In fact, word embeddings came to the foreground by Mikolov et al. (2013), who

presented the well-known Continuous Bag-of-Words Model (CBOW) and the

Continuous Skip-gram Model, establishing widely the use of pretrained embed-

dings.

In this work, we utilize the GloVe (Global Vectors) (Pennington et al., 2014)

method for the generation of the word vectors. This methodology exploits

statistical information by training only on the non-zero elements in a word-

word co-occurrence matrix in an efficient way and finally, creates a meaningful

word vector space.

3. The Reference Vector Algorithm

This section describes thoroughly our approach, called Reference Vector Al-

gorithm (RVA), for extracting keyphrases from the titles and abstracts of sci-

entific articles. Our approach exploits the GloVe word vector representation to

detect the candidate keywords and to provide a complete set of representative

keyphrases for a particular title and abstract. Fig. 1 summarizes the processing

pipeline of RVA.

Figure 1: System processing pipeline.
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3.1. Candidate Keyphrases’ Production

We follow the choice of previous keyphrase extraction systems (Hulth, 2003;

Medelyan et al., 2009) by extracting only unigrams, bigrams, and trigrams, as

these are the most frequent lengths of keyphrases that are met in the datasets

used in the experimental study (see Section 4.1 for more details about the

datasets’ statistics). In this way, we can effectively reduce the number of pos-

sible n-grams that are candidates as keyphrases by restricting the value of

n to {1, 2, 3}, with respect to the observation that, in general, a document’s

keyphrases tend to be up to trigrams (Gollapalli et al., 2017).

Candidate Unigrams: Unigrams constitute the smallest but the most

significant parts that form the longer keyphrases. The criteria for the selection

of the appropriate unigrams are the following:

• candidates should have word length lower than 36 and greater than 2

characters (a quite wide range, as the longest word in the well-known

Oxford English Dictionary contains 30 characters),

• they do not belong to the stop words list defined by us,

• they are not numbers,

• they do not include the following set of characters: !, @, #, $, *, =, +, .,

,, ?, >, <, &, (, ), {, }, [, ], |

Candidate Bigrams: We choose as candidate bigrams those whose words

are in candidate unigrams and appear in the text in that specific sequence. We

do not keep as candidate bigrams those whose the length of both words is lower

than 4.

Candidate Trigrams: We apply the same procedure as above (for bi-

grams).

3.2. Scoring the Candidate Keyphrases

As a first step, we produce the local word vectors by applying the GloVe

model to the target full-text scientific publication (that’s why we call them lo-

cal vectors). The word vectors generated by GloVe, in the context of only one
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article, encode the role of words as expressive means of writing, via a vector

representation. This type of representation can capture how a limited vocabu-

lary is structured and extended within the narrow limits of a scientific paper.

We choose the GloVe technique, instead of other word vector representations,

as it is based on the full-text co-occurrence statistics within a predetermined

window. GloVe builds an overview of the neighborhood of each one word and,

simultaneously, provides us with a picture of its local contexts. For the purposes

discussed above, we utilize the implementation of the GloVe model for learning

word vector representations that is publicly available by Stanford University on

GitHub 1.

We compute the mean vector of the title and the abstract, called reference

vector by averaging the individual local word vectors that appear in that text

segment. First, we sum all the word vectors which match to the candidate

unigrams formed in the previous step. Then, the reference vector is derived by

dividing with the number of candidate unigrams contained in the title and the

abstract. We should take into account that the more often a word shows up in

the target-text, the more it affects the reference vector. Finally, we calculate

the cosine similarity between each candidate unigram’s local vector that appears

in the text segment and the reference vector, creating a mapping between the

words and their corresponding cosine similarity scores.

As a scoring function for a candidate bigram or trigram, we choose the sum

of the individual words’ scores, as we prefer the informativeness come from the

longer keyphrases rather than the shorter ones e.g. the unigrams. A great

number of existing unsupervised approaches sum up the individual word scores

to produce the final phrase score (Mihalcea & Tarau, 2004; Wan & Xiao, 2008).

In this way, we expand the mapping mentioned above with the bigrams/trigrams

and their corresponding score.

Note that most approaches include the Part-of-Speech (PoS) tagging stage

based on the observation that the lexical units which belong to a keyphrase

1https://github.com/stanfordnlp/GloVe
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often are nouns, adjectives or adverbs (see Sections 2.1.1, 2.1.2). In addition to

PoS tagging, stemming is another basic preprocessing step that is suggested by

some approaches such as in Hulth (2003). Our decision, to use the word vectors’

representation mentioned above, provides us with the advantage to avoid such

additional and time-consuming processes, as GloVe is designed to capture in a

quantitative way the nuance necessary to discriminate two individual words by

associating more than a single number to them, utilizing the vector difference

between the two corresponding word vectors.

4. Experiments

We first present the two collections that were used in our empirical study

along with some interesting statistics. Then, we describe the evaluation frame-

work and the experimental setup. Finally, we discuss in detail the results,

providing both a quantitative and a qualitative evaluation of the proposed ap-

proach.

4.1. Data Sets and their Statistics

Our empirical study is based on 2 popular collections of scientific publica-

tions: a) Krapivin (Krapivin et al., 2008), which contains 2304 scientific full-text

articles from computer science domain published by ACM, along with author-

assigned and editor-corrected keyphrases, and b) Semeval (Kim et al., 2010),

which contains 244 scientific full-text articles from the ACM Digital Library,

along with author-assigned, as well as reader-assigned keyphrases. We apply a

preprocessing stage on both datasets in order to separate the upper part (title,

abstract for Krapivin and title, abstract, Categories/Subject Descriptors as well

as General Terms of the ACM’s Computing Classification System for Semeval)

of each document from the remaining part (main text body). The refinement

process of the Krapivin dataset was quite simple as the title and the abstract

are clearly indicated. However, the corresponding separation process for the Se-

meval dataset was based on heuristic rules (the main body usually starts with
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a section that contains in its title derivatives of the word “introduction” and it

is located below the Categories/Subject Descriptors and the General Terms).

Figure 2 presents box and whisker plots of the percentage of the gold, i.e.,

ground truth keyphrases appearing in the abstract, and in the full-text of each

scientific publication of both collections. We notice that full-texts include the

great majority of the gold keyphrases with a mean value approximately equal

to 90%. Abstracts, on the other hand, include approximately half of the gold

keyphrases on average.

Figure 2: Box plots of the percentage of keyphrases found in the abstract and full-text of each

of the two collections. The two box plots on the left correspond to the Semeval collection,

while the two on the right correspond to the Krapivin collection.

Figure 3 presents box and whisker plots of the number of gold keyphrases

that are associated with each article of the two collections. We can see that in

Semeval an average number of 14 keyphrases is assigned per document, whereas

the main range of values is from 13 to 17 keyphrases. In the case of Krapivin,

the main range of values varies from 4 to 6, with a mean value approximately
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equal to 5.

Figure 3: Box plots of the number of keyphrases for Semeval (left) and Krapivin (right).

Figure 4 presents box and whisker plots of the percentage of “gold” keyphrases

per article that include at least one stop word. The keyphrases of Semeval

dataset have quite high percentages of phrases with stop words in comparison

with the Krapivin dataset.

Finally, Table 1 presents the frequency of the gold keyphrases in each collec-

tion per different length (number of words). We can see that most keyphrases

are bigrams, followed by unigrams/trigrams. Keyphrases with 4 to 6 words are

less frequent, while there also exist a couple of outliers with 7 to 9 words.

Data sets 1 2 3 4 5 6 7 8 9

Semeval 759 2005 782 171 46 16 3 2 1

Krapivin 2330 7575 1936 364 70 18 2 1 0

Table 1: Frequency of gold keyphrases per length (number of words), ranging from 1 to 9.

14



Figure 4: Box plots of the percentage of “gold” keyphrases per article that include at least

one stop word for Semeval (left) and Krapivin (right).

4.2. Experimental Setup

It is not clear how to properly evaluate a returned n-gram phrase given a

golden multiword keyphrase, especially in cases where the returned n-gram is

part of or longer than the golden keyphrase. For this reason, we follow the

evaluation process of Rousseau & Vazirgiannis (2015), which calculates the F1-

measure between the set of words found in all golden keyphrases and the set of

words found in all extracted keyphrases.

Regarding the GloVe setup, we used the default parameters (xmax = 100,

α = 3
4 , window size = 10), as they are set in the experiments of Pennington

et al. (2014) who used empirically parameter tuning to find the best values.

Finally, we produce 50 and 200-dimensional vectors with 50 iterations as indi-

cated in Pennington et al. (2014) for vectors smaller than 300 dimensions. Such

dimensions are appropriate as there are also pretrained GloVe word embeddings

for 50 and 200-dimensional vectors, useful for the comparison between local and
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pretrained word vectors.

We propose the number of keyphrases to be determined based on the title’s

and abstract’s size. Particularly, we choose a more flexible threshold for the

number of the representative phrases that will be returned as keyphrases which

is inspired by Mihalcea & Tarau (2004), i.e., the selection of the top-scored N

phrases as keyphrases, where N is equal to 1
3 of the number of the different

words in the title and abstract, rather than to set a fixed number, which would

be a quite strict decision considering Fig. 3.

We utilize the PKE, which is an open source python-based keyphrase extrac-

tion toolkit (Boudin, 2016), for the experiments with TfIdf and the graph-based

approaches. The code for the RVA method will be uploaded to our Github

repository 2. The datasets with the abstracts of Krapivin and Semeval are

available for research purposes 3

4.3. RVA Variants Evaluation Based on Text Size for GloVe Training

In this section, we give a general view of the performance of the RVA algo-

rithm by changing the dimension of the word vectors and training the GloVe

model on different corpus sizes, including the use of word vectors trained on mas-

sive web datasets (pretrained word vectors). Specifically, we ran experiments

with the pretrained word vectors that were created by training on Wikipedia

2014 + Gigaword 5 which have 400000 vocabulary size, uncased. Furthermore,

according to the RVA’s methodology, we generated local word vectors from each

one scientific publication of the 2 collections, keeping them in separate files. Fi-

nally, we trained a GloVe model on the smaller dataset collections of Semeval

and Krapivin, separately, as an intermediate size of the corpus. In all cases, ex-

cept for those of the pretrained word vectors, we have included in the vocabulary

all the possible words that appear in the texts.

As this is the first time that such local word vectors are utilized in this way,

2https://github.com/epapagia/RVA
3https://github.com/epapagia/Datasets-Keyphrase-Extraction
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we prepared an experimental study appropriate to provide us with comprehen-

sive conclusions about the functionality of the reference vectors as guides of the

keyphrase extraction process. For this reason, we have designed 2 additional dif-

ferent versions of the proposed RVA approach called Full-text Reference Vector

Algorithm (RVA-F-F) and Reference Vector Algorithm using Full-text Candi-

dates (RVA-A-F), respectively. The RVA-F-F follows exactly the same process

as the RVA. The main difference is that the reference vector, i.e., the mean

vector, is computed by averaging the individual local word vectors that appear

in the full-text, not only in the title and the abstract. The candidate words are,

also, extracted from the full-text article. On the other hand, the main difference

between RVA and RVA-A-F is that the latter uses candidate unigrams, bigrams

and trigrams from the whole article without being limited to the article’s sum-

mary like RVA. However, the reference vector is still calculated based only on

the title and the abstract. Conventionally, the first letter after the first dash

indicates the part of the text from where the reference vector is calculated (A

for abstract and title and F for full-text), whereas the second letter refers to the

part of the text from which the candidate keywords come. For consistency rea-

sons, the proposed method is denoted as RVA-A-A. Table 2 describes in detail

the different word vector settings with respect to the vector dimensions and the

text size used for training of GloVe, providing the corresponding abbreviations

that are used in the results’ Table 3.

Abbreviation Description

LOC-50 local 50-dim vectors - trained on individual files

LOC-200 local 200-dim vectors - trained on individual files

CV-50 50-dim vectors - trained on each collection separately

CV-200 200-dim vectors - trained on each collection separately

PV-50 50-dim pretrained vectors

PV-200 200-dim pretrained vectors

Table 2: Explanation of the abbreviations used in the tables with the experimental results to

describe the settings of the proposed method and its variants.
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Experiments conducted for word vectors with dimensions 50 and 200 for all

RVA variants (RVA-A-A, RVA-F-F, RVA-A-F) and the corresponding results

show that the vectors’ dimensions do not substantially affect the methods’ per-

formance. Regarding the size of the text on which the method was trained to

produce the respective word vectors, we see that the usage of local word vec-

tors in all RVA variants outperforms the experimental results where collection

word vectors or pretrained word vectors are used. More specifically, in Semeval

RVA-A-A with local word vectors achieves approximately 0.37 in the F1 score,

whereas with the utilization of collection word vectors or pretrained ones per-

forms worse, with 0.34 and 0.30 scores, respectively. For the large dataset of

Krapivin, the results of RVA-A-A have again the same ranking, i.e., the settings

with local word vectors are the winners (0.32), followed by the setup of collec-

tion word vectors (0.28). The cases with pretrained word vectors are once more

last in the ranking (0.26 F1-measure). The results of RVA-F-F and RVA-A-F

follow the same ordering. However, the differences in the usage of local, collec-

tion and pretrained word vectors range at higher levels for RVA-F-F and lower

for RVA-A-F.

F1-measure

Setup
Semeval Krapivin

RVA-A-A RVA-F-F RVA-A-F RVA-A-A RVA-F-F RVA-A-F

LOC-50 0.36815 0.29543 0.11353 0.32062 0.21171 0.06265

LOC-200 0.36493 0.29641 0.11259 0.31999 0.20984 0.06212

CV-50 0.34202 0.23608 0.06779 0.28149 0.14415 0.03893

CV-200 0.34122 0.23535 0.06904 0.28267 0.15075 0.03944

PV-50 0.30188 0.15535 0.02026 0.25903 0.09089 0.01488

PV-200 0.30015 0.15505 0.02209 0.25804 0.09078 0.01583

Table 3: Experimental results for RVA-A-A, RVA-F-F and RVA-A-F using different settings

for the GloVe method. The 2nd, 3rd and 4th columns concern the Semeval dataset, whereas

the results of the last 3 columns correspond to the articles of the Krapivin dataset.

Regarding the use of local word vectors instead of the pretrained ones, the
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experimental results essentially confirm that a small text (e.g. in the size of

a scientific publication that refers to a specific subject) is possible to offer a

sufficient basis to GloVe for the keyphrase extraction task. That is due to the

fact that a scientific article includes a complete textual description of a specific

topic, usually structured, using a limited but adequate vocabulary to reflect the

semantic context of its words. Despite the fact that the pretrained word vectors

succeed in capturing more general meanings as well as the underlying concepts

that distinguish the words, performing well in tasks like the one of word analogy,

we note that in the task of keyphrase extraction, they have low performance.

Apparently, the generalization that is included in the pretrained word vectors is

unnecessary and incorporates probably “noise” (redundant information). The

above claim is also corroborated by the results when collection word vectors are

used; the more local the word vectors, the better are the results.

At this point, we focus on the first two columns of each dataset trying to

explain why we prefer the title and the abstract as the most suitable part of the

article for the calculation of the reference vector rather than the full-text. As

we can see, RVA-A-A clearly outperforms RVA-F-F in all cases. Indicatively, we

mention that for the Semeval the RVA-A-A LOC-50 achieves approximately 0.37

while for the RVA-F-F LOC-50 the F1 score equals to 0.30. For the Krapivin

dataset, we have exactly the same ranking, however, with a higher difference

between the two RVA variants (greater than 0.10). The intuition is that, pos-

sibly, there are frequent words in the full-text which play an important role

in the text structure and in the content’s presentation. However, these words

have an auxiliary role and they could not be considered as keywords. Unfor-

tunately, when we extract candidates from the whole article, the importance

of such words is reflected in the computation of the reference vector. For this

reason, we conclude that it is much safer to use only the title and the abstract

instead of the full-text, or generally speaking, parts of a limited text that con-

tain some semantically significant and meaningful words, avoiding in this way

the noise of the full-text.

The final issue that we discuss in this section is whether the candidate key-
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words should come from abstracts or from full-texts regardless of the calculation

of the reference vector, i.e., keeping as reference vector the mean word vector

of the title and the abstract. Focusing on the 1st and the 3rd column of each

dataset, we notice that there is a dramatic reduction in the rates in all the cases

of RVA-A-F where we take into account as candidate keywords, the words from

the full-text article (greater than -0.24). The above results lead us to the con-

clusion that it is more efficient for all the candidate words to participate in the

calculation of the reference vector, as this facilitates the keywords’ detection.

4.4. Comparison with Other Methods

We compare the standard version of RVA (GloVe vectors of dimension 50

trained on each full-text) to TfIdf and 4 graph-based approaches, namely Sin-

gleRank (Wan & Xiao, 2008), TopicRank (Bougouin et al., 2013), WordAttrac-

tionRank (WARank) (Wang et al., 2014) and its extended version (WARank2015)

(Wang et al., 2015). TfIdf, SingleRank and TopicRank are considered state-of-

the-art methods for keyphrase extraction (Kim et al., 2013; Hasan & Ng, 2014).

The document frequency used by TfIdf approach is calculated separately for

each dataset collection. Graph-based methods are employed using their de-

fault parameters as finally set in the corresponding papers. For WARank and

WARank2015, we used the pretrained word embeddings from (Collobert et al.,

2011), which were also used in (Wang et al., 2014) and (Wang et al., 2015).

We experimented with two versions of each competitor of RVA, one using the

abstracts and one using the full-texts of each article.

4.4.1. Results

Table 4 shows the F1 score of each method in each of the two datasets,

sorted in descending order. We first notice that in both datasets the full-text

version of TfIdf is much better than the abstract version. This is no surprise,

as abstracts do not contain enough text to enable the separation of keyphrases

from non-keyphrases in contrast with the full-text of articles. For the 4 graph-

based methods, the opposite is observed, similarly to what we noticed for RVA
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in Section 4.3. It appears that, despite their smaller size, abstracts capture

adequately the co-occurrence (proximity) of words that is necessary for graph

creation, avoiding at the same time the noise (lots of unimportant words) in

the full-texts. We focus on the best versions of TfIdf and the 4 graph-based

approaches in the rest of this section.

We then notice that RVA achieves the best place in both datasets. SingleRank-

ab is 2nd in Krapivin and 3rd in Semeval. TfIdf-ft is 2nd in Semeval (with-

out large difference from RVA) and 3rd in Krapivin (without large difference

from SingleRank-ab). The other 3 graph-based methods follow in positions

4 to 6, without large differences among them. WARank-ab is better than

WARank2015-ab in both datasets. We therefore focus on WARank-ab only

in the rest of this section.

Method Semeval Method Krapivin

RVA 0.36815 RVA 0.32062

TfIdf-ft 0.36114 SingleRank-ab 0.27795

SingleRank-ab 0.33043 TfIdf-ft 0.27668

WARank-ab 0.32797 WARank-ab 0.27436

TopicRank-ab 0.32571 WARank2015-ab 0.27365

WARank2015-ab 0.32553 TopicRank-ab 0.27038

TopicRank-ft 0.32044 TfIdf-ab 0.23196

SingleRank-ft 0.28401 SingleRank-ft 0.23088

WARank2015-ft 0.27799 TopicRank-ft 0.23032

TfIdf-ab 0.26102 WARank2015-ft 0.18934

WARank-ft 0.22005 WARank-ft 0.16869

Table 4: Experimental results (F1 measure) for the baseline TfIdf and the methods Topi-

cRank, SingleRank, WARank, and WARank2015 as well as the proposed method RVA. The

“-ab” at the end of the methods’ names implies that they are applied only on titles and

abstracts, whereas the “-ft” means that keyphrases are extracted from the full-text of the

articles. Methods are ordered in descending F1 measure.

We further employ statistical tests to compare RVA against each one of
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TfIdf-ft, SingleRank-ab, TopicRank-ab and WARank-ab. For each dataset and

pair of methods, we test if the differences of the F1 scores across articles are

statistically significant. For Semeval, we used the paired-t-test, as the differences

in the F1 score of RVA and each other method in each article are approximately

normally distributed according to the Shapiro-Wilk test at the 0.01 significance

level (Table 5). For Krapivin, we used the Wilcoxon test, as the normality

assumption on the differences of the F1 scores is rejected by the Shapiro-Wilk

test. Table 6 shows that RVA is significantly better than the competing methods

in both datasets with the exception of TfIdf-ft in Semeval. Note however, that

Semeval is a much smaller dataset (244 articles) compared to Krapivin (2304

articles).

A possible reason for the quite high performance of TfIdf-ft in Semeval is

the fact that a considerable ratio of its articles’ “gold” keyphrases include stop

words (see Fig. 4 in Section 4.1). RVA does not return phrases with stop words,

while TfIdf-ft extracts all possible n-grams (n ∈ {1, 2, 3}) without excluding

stop words.

Shapiro-Wilk (p-values)

Method Semeval Krapivin

TopicRank-ab 0.153 ≈0.000

SingleRank-ab 0.129 ≈0.000

TfIdf-ft 0.221 ≈0.000

WARank-ab 0.113 ≈0.000

Table 5: Results from the Shapiro-Wilk test on the performance differences between RVA and

the other methods.

4.4.2. Discussion

The graph-based methods with which we have experimented, first, construct

a graph of words (SingleRank, WARank) or topics (TopicRank) based on the

position of the words in the text. For example, SingleRank assigns weights to
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P-values

Method Semeval (Paired-t-test) Krapivin (Wilcoxon)

TopicRank-ab ≈0.000 ≈0.000

SingleRank-ab ≈0.000 ≈0.000

TfIdf-ft 0.240 ≈0.000

WARank-ab ≈0.000 ≈0.000

Table 6: Paired-t-test and Wilcoxon test results between RVA and the other methods. Each

row of the table contains the comparison with a specific method.

the graph edges utilizing the co-occurrence of words in a given window; Topi-

cRank uses distances between words’ offset positions in the document; WARank

exploits information that incorporates word frequencies as well as semantic dis-

tances between pretrained word embeddings. Then, the PageRank algorithm

determines the final score of the words/topics (graph vertices), recursively, us-

ing information coming from the graph’s links. On the other hand, GloVe is an

unsupervised method that produces word vector representations. Its aim is to

learn word vectors such that their dot product is equal to the logarithm of the

words’ probability of co-occurrence. Both graph-based approaches and GloVe

capture information from the neighborhood of each one word (text statistics).

However, in the context of our method, GloVe produces local word vectors,

which is a more expressive representation than the assignment of a simple num-

ber as a score to each word by PageRank. This word vector representation allows

us to express the article’s summary (title and abstract) with only one vector,

which then guides the ranking of the candidate words as keywords. Moreover,

the strong baseline TfIdf focuses on each word separately without taking into

account any information related to the context of the words, but only to their

frequency. As a result, TfIdf cannot capture any interrelationships between

words in the text as well as word semantics.

Moreover, we propose an alternative (semantic) evaluation, focused on the

“gold” keyphrases’ comparison with the returned keyphrases of the best systems
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given above, that exploits the representation of the words as vectors. Particu-

larly, considering for each article as the “gold” reference vector the mean word

vector derived from the ground truth’s keyphrases, we compute the cosine sim-

ilarity between this vector and the following:

i. the mean vector of the summary (i.e. title and abstract) which is used as

a reference vector by RVA,

ii. the mean vector of the suggested keyphrases by RVA,

iii. the mean vector of the rejected candidates by RVA, as they appear in a

low ranking,

iv. the mean vectors that come from the proposed keyphrases by the four

best systems (i.e. TfIdf-ft, SingleRank-ab, WARank-ab, and TopicRank-

ab), using the same local word vectors that are produced in the context

of RVA.

Figures 5a, 5b and 6a, 6b show the results of the Krapivin and Semeval

articles, respectively. In both datasets, the mean vector of RVA’s keyphrases

achieves higher cosine similarity (RVA) than the reference vector (Summary)

and the mean vector of the low ranked candidate n-grams (Unselected). Fur-

thermore, the four mean vectors of the other methods have lower cosine similar-

ities in the majority of the articles than RVA, except for TfIdf-ft in the Semeval

where the similarity values are at the same levels. Generally, the results based

on the F1-measure are consistent with the results of the semantic evaluation.

The 50% of the mean vectors that are included in the “box” part of the plot,

i.e., from the first (Q1) to the third (Q3) quartile seem to interpret the methods’

ranking according to the F1-measure which goes almost hand in hand with the

semantic evaluation. Even the slight superiority in the Semeval dataset of RVA

over TfIdf-ft seems to be determined by this “box” part of the plot. Particularly,

for RVA’s box plot the Q1 is equal to 0.9619 and the Q3 is 0.9930, whereas for

TfIdf the corresponding values are 0.9611 and 0.9924, respectively.
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(a)

(b)

Figure 5: Semantic evaluation on the Krapivin dataset. (a) Quality evaluation of methods

based on the word vector representation. (b) Close-up view.
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(a)

(b)

Figure 6: Semantic evaluation on the Semeval dataset. (a) Quality evaluation of methods

based on the word vector representation. (b) Close-up view.

4.5. Qualitative Results: RVA in Practice

In this section, we use RVA to extract the keyphrases of a publication based

only on its title and abstract. This scientific article belongs to the Krapivin

data collection. We quote its content below:
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Title: Clustering for Approximate Similarity Search in High-Dimensional Spaces.

Abstract: In this paper, we present a clustering and indexing paradigm (called Clindex) for high-

dimensional search spaces. The scheme is designed for approximate similarity searches, where one

would like to find many of the data points near a target point, but where one can tolerate missing a

few near points. For such searches, our scheme can find near points with high recall in very few IOs

and perform significantly better than other approaches. Our scheme is based on finding clusters

and, then, building a simple but efficient index for them. We analyze the trade-offs involved in

clustering and building such an index structure, and present extensive experimental results.

The corresponding set of the “gold” keyphrases are: {clustering, approximate

search, high-dimensional index, similarity search}. For evaluation purposes,

we transform the set of “gold” keyphrases into the following one (stemmed

keyphrases):

{(cluster), (approxim, search), (highdimension, index)(similar, search)}
The RVA’s result set is given in the first box below, followed by its stemmed

version in the second box. The candidate keyphrases are presented by descend-

ing cosine similarity score. The words that are both in the golden set and in

the set of our candidates are highlighted with bold typeface:

{approximate similarity search, data points near, index structure, similar-

ity search, approximate similarity, high recall, near points, points near, data

points, finding clusters, search spaces, highdimensional search spaces, efficient

index, target point, approximate similarity searches, near, indexing, search,

highdimensional search, structure, present, data, clustering, recall}

{(approxim, similar, search), (data, point, near), (index, structur),

(similar, search), (approxim, similar), (high, recal), (near, point), (point,

near), (data, point), (find, cluster), (search, space), (highdimension,

search, space), (effici, index), (target, point), (near), (index), (search),

(highdimension, search), (structur), (present), (data), (cluster), (recal)}

The set of the returned keyphrases include all the words (unigrams) appear-

ing in the “gold” keyphrases as well as additional keywords that have quite a

strong role in the central meaning of the text. Furthermore, we notice that the

RVA output is a set of keyphrases that are quite similar to each other, using
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a quite limited set of words: {index, search, recal, target, point, similar, ap-

proxim, space, highdimension, structur, high, cluster, near, effici, data, find,

present}.

We also give two box plots in Fig. 7d, which summarize in a simple way

that the “gold” keywords (bigrams and trigrams are also flattened as unigrams)

that appear in the candidates accumulate at high cosine similarity values. On

the contrary, candidates that are not keywords cover a great range of cosine

similarity values, as those words are not so close to the mean vector that is

affected by words with a critical role (keywords).

Moreover, in Fig. 7, we give the box plots of the extracted candidate n-

grams, the RVA’s output n-grams, and the “gold” keywords’ n-grams with their

similarities to the reference vector, in a more thorough view. We provide 3

separate figures (7a, 7b, 7c) to present the similarity of the unigrams, bigrams,

and trigrams with the reference vector. We see that all types of n-grams have

an expected behavior; RVA’s n-grams are quite close to those of “gold” n-grams.

In this way, we also confirm that the sum is a quite appropriate scoring function

for bigrams and trigrams, as the corresponding similarities of the bigrams’ and

trigrams’ mean vectors with the reference vectors are quite high, too.

For comparison reasons, we give the output produced by the baseline and

the graph-based methods to provide a view of their keyphrases’ quality. In the

previous section, we saw that it is better to use the articles summaries instead of

the full-text for the keyphrase extraction task in order to avoid the noise of the

full-text. For this reason, we present here, the best results of the graph-based

algorithms (TopicRank-ab, SingleRank-ab, and WARank-ab) and the baseline

(TfIdf-ab).

TopicRank-ab: {(scheme), (cluster), (approxim, similar, search), (near,

point), (highdimension, search, space), (clindex), (paradigm), (high, recal),

(data, point), (effici, index), (simpl), (index, structur), (mani), (build), (tar-

get, point), (highdimension, space), (paper), (tradeoff), (better), (present,

extens, experiment, result), (point)}
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(a) (b)

(c) (d)

Figure 7: Boxplots of the extracted ngrams, (a) unigrams, (b) bigrams, (c) trigrams and their

similarities to the reference vector. Figure (d) shows the similarity scores of all candidates as

unigrams, grouped in “Keywords” and “not keywords”

SingleRank-ab: {(highdimension, search, space), (approxim, sim-

ilar, search), (present, extens, experiment, result), (near, point),

(highdimension, space), (index, structur), (data, point), (target, point),

(effici, index), (point), (scheme), (high, recal), (cluster), (build), (tradeoff),

(better), (mani), (paradigm), (clindex), (paper), (simpl)}
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TfIdf-ab: {(approxim, similar, search), (near, point), (approxim, sim-

ilar), (similar, search), (highdimension), (clindex), (index, paradigm),

(highdimension, search, space), (highdimension, search), (call, clindex),

(toler, miss), (data, point, near), (present, extens, experiment), (cluster),

(find, cluster), (extens, experiment, result), (high, recal), (tradeoff, involv),

(target, point), (effici, index), (highdimension, space), (io), (present, ex-

tens), (point, near)}

WARank-ab: {(highdimension, search, space), (approxim, similar,

search), (such, search), (near, point), (target, point), (data, point), (point),

(highdimension, space), (present, extens, experiment, result), (scheme),

(few, io), (index, structur), (effici, index), (high, recal), (few), (build), (other,

approach), (clindex), (t), (tradeoff), (better), (mani), (simpl), (cluster)}

The corresponding sets of unigrams that create the bigrams and the trigrams

given above for each one method are presented below:

TopicRank-keywords: {effici, point, approxim, high, cluster, paper, result, in-

dex, space, better, experiment, build, scheme, simpl, recal, highdimension,

extens, data, present, clindex, search, target, structur, tradeoff, near, mani,

paradigm, similar}

SingleRank-keywords: {effici, point, approxim, high, cluster, paper, result,

index, space, better, experiment, build, scheme, simpl, recal, highdimension,

extens, data, present, clindex, search, target, structur, tradeoff, near, mani,

paradigm, similar}

TfIdf-keywords: {effici, point, approxim, high, cluster, result, io, miss, find,

involv, index, space, experiment, call, recal, highdimension, extens, toler, data,

present, clindex, search, target, tradeoff, near, paradigm, similar}

WARank-keywords: {near, point, data, target, approxim, similar, search, such,

highdimension, space, present, extens, experiment, result, scheme, few, io, in-

dex, structur, effici, other, approach, clindex, build, high, recal, mani, better,

simpl, cluster, t, tradeoff }
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We see that the number of words involved in the formation of the keyphrases

returned by TopicRank, SingleRank, WARank, and TfIdf algorithms is 28, 28,

32, 27, respectively, whereas for RVA the number of words is equal to 17, i.e.,

RVA’s keyphrases revolve around a very specific and limited number of words

instead of including additional redundant and irrelevant words like the other

methods.

5. Conclusions and Future Work

This work presented a new unsupervised keyphrase extraction method, whose

main innovation is the use of local word embeddings, in particular GloVe vectors,

to represent candidate keyphrases. Our empirical study offered evidence that

such a representation can lead to better keyphrase extraction results, compared

to using global representations, either pretrained on large corpora or focused on

a given target corpus, as well as compared to popular state-of-the-art unsuper-

vised keyphrase extraction approaches.

We hope this work inspires other researchers to further investigate this novel

local perspective of word embeddings. In particular we envisage implications

of our work towards improved keyphrase extraction methods based on local

word embeddings, towards applying local word embeddings to other information

processing tasks, and towards developing novel methods for learning local word

embeddings.

In the near future we intend to build on top of this work, and develop

graph-based unsupervised keyphrase extraction methods as well as supervised

keyphrase extraction methods that rely on local GloVe vectors. We would also

like to develop a solution that manages to extract keyphrases from the full-text

of academic publications without being affected by the noise and redundancy

that it contains.
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