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Abstract

Popular events are well reflected on social media, where people share their feel-

ings and discuss their experiences. In this paper, we investigate the novel problem of

exploiting the content of non-geotagged posts on social media to infer the users’ atten-

dance of large events in three temporal periods: before, during and after an event. We

detail the features used to train event attendance classifiers and report on experiments

conducted on data from two large music festivals in the UK, namely the VFestival

and Creamfields events. Our classifiers attain very high accuracy with the highest re-

sult observed for the Creamfields festival (∼91% accuracy at classifying users that will

participate in the event). We study the most informative features for the tasks addressed

and the generalization of the learned models across different events. Finally, we discuss

an illustrative application of the methodology in the field of transportation.

Keywords: Social media analysis, event attendance

prediction, classification.

1. Introduction

An unprecedented amount of user-generated content about human activities has

been created through the introduction of popular social media applications on smart-
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phones (e.g. Facebook, Foursquare, Instagram, Twitter) [1, 2]. The diversity and vari-

ety of content shared on these online social networks bears witness to the richness of5

these new forms of social interactions constituting nowadays an important source for

an unprecedented outreach, speed and democratization of communication. Due to this

vast applicability, social media analytics is a fast growing research area [3]. Social me-

dia can be exploited to extract valuable information concerning human dynamics and

behaviors [4, 5, 6]. As a consequence, they can play a role in understanding modern10

life, including transportation [7, 8, 9] and human mobility [4, 10, 11].

Music festivals, like many other popular events (e.g., important religious celebra-

tions or sports matches) attract thousands of participants. Usually, they are well re-

flected in social media networks, allowing people to connect with “the event”, express-

ing through posts their feelings, experiences or opinions well in advance of its planned15

date.

Given the attention to popular events reflected in social media, this paper addresses

a novel challenging problem: “Is it possible to infer from Twitter posts the actual

attendance of the user to the cited event?”. If we could classify user posts discussing

an event on the basis of the actual attendance of the user to the event, we could enable or20

enhance several practical applications in the fields, for example, of targeted advertising

and mobility management.

The simplest way of inferring the presence of users at events is to consider the

geotag associated with their posts: the “check-in” or the user location in the event

place at the time of the event can indeed be trivially associated with attendance. We25

observe however that this approach suffers from two drawbacks.

The first drawback is that very few social media users enable the geotagging of

their posts (in Twitter the percentage of geotagged posts is about 2% [12, 13]). In

fact, geolocation information is geographically accurate, but represents a very sparse

data source. Learning attendance prediction classifiers based on sparse data would be30

extremely difficult and may lead to ineffective predictive models.

The second drawback of only using geolocated data is that they do not represent

the intention of the user to participate in the event. Indeed, our aim is to infer the user’s

intention of participating to the event even before the event takes place.
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To overcome these two aforementioned issues, we take a different direction by ad-35

dressing the novel challenge of inferring the actual attendance of users to a mentioned

event by only relying on the content of non-geotagged posts, without considering any

spatial features. Moreover, we perform our event attendance classification by distin-

guishing three temporal intervals identifying when the posts have been shared on social

media: before, during or after the event. We propose three distinct classification tasks,40

one for each temporal interval. The analysis of posts shared before the event acts as a

prediction for the users’ actual attendance, the analysis of posts shared during the event

reflects the actual participation of users at the event, while the analysis of posts shared

after the event gives a view or a summary of past attendance.

The “before” case is particularly interesting, since an early knowledge of the pos-45

sible user attendance can be useful to enable innovative services and applications. For

example, event organizers or third-party companies could precisely target their adver-

tisement campaigns by offering specific or personalized services to the users predicted

to participate in the event. Another example is in the field of transportation planning,

where attendance prediction could allow the organizers or the local authorities to push50

potential attendees to use public transportation or can help bus and shuttle companies

to plan and advertise collective transport services to the event [14]. During the event,

people may express their feelings about the event, may report issues with the provided

services or may also share photos and videos about the event. After the event, users

may report feelings and comments on their experience at the event. Knowledge of the55

social media users who attended (or did not attend) the event can be very useful as well.

Their posts can be used for example to understand attendees’ profiles and provide in-

sights, allowing to improve the future editions of the event. In addition, this knowledge

can also be used to help in estimating crowd sizes and support transportation planning

for the future version of the event [15].60

This paper extends a previous work where we initially investigated the supervised

training of classifiers aimed at inferring the attendance of users to two musical festivals:

VFestival and Creamfields, two large popular events in the UK [16].

The preliminary results achieved highlighted that the features extracted from the

textual content are those playing the most important role for attaining a good classi-65
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fication accuracy. This interesting insight encouraged us to explore in more in-depth

these features and to study, in the present paper, how to enrich the textual features to

help generalize across different events the learned classification models. The present

work, apart from being built on the previous research, proposes several new original

contributions:70

• we investigate the use of word-embedding features to improve the prediction

accuracy and the robustness of the attendance classifiers when trained in different

events;

• we discuss the new experiments conducted for assessing the improved accuracy

and the ability of our classifiers to generalize across different datasets;75

• we validate the labelling process and the classifiers’ performances by using a

second ground truth dataset consisting of posts published by users in which they

share their position;

• we investigate the expressions most commonly used by users to convey atten-

dance or not at a large event;80

• we introduce and discuss a real-world application of the proposed attendance

classifiers for organizing the transportation towards the events.

The remainder of this paper is organized as follows. We describe related work

in Section 2. In Section 3, we introduce our approach for classifying attendance, we

detail the features used to train suitable classifiers and highlight our research questions.85

Section 4 assesses the performance of our classifiers and answers the research questions

by discussing the experimental results achieved. In Section 5, we provide an example

application of the deployed classifier for transport planning, while Section 6 provides

concluding remarks and plans for future work.

2. Related Work90

Many papers tackled the problem of estimating the current location of users or

their home from non geo-located tweets [17, 18, 19, 20, 21, 22, 23, 24]. Compared to
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these proposals, we have a different objective as we do not want to estimate the ex-

act user location at the time of the post. Instead, we aim to classify the single posts

on the basis of a user’ future, current and past attendance to a given event. Events in95

social media have been extensively studied. The main aspects investigated in the litera-

ture are: (1) prediction of events attendance in Event-Based Social Networks (EBSN),

such as Meetup and Plancast, and Location-Based Social Networks (LBSN), such as

Foursquare [25, 26, 27, 28, 29]; (2) recommendation of events to users [5, 30, 31]; (3)

estimation of the number of attendees in a given event [32]; and (4) modeling partici-100

pants’ behavior during an event. [33, 4, 34]

Du et al. [25] analyzed an EBSN to predict users’ attendance by taking into ac-

count the content, the spatial and temporal context, the users’ preferences and their

social influence. They used a Singular Value Decomposition with Multi-Factor Neigh-

borhood (SVD-MFN) algorithm to predict activity attendance on the Douban Events105

network. Zhang et al. [26] proposed a supervised learning model to predict event atten-

dance based on semantic, temporal, and spatial features, representing how frequently

and when users have attended similar events in the past, the semantic similarity be-

tween events, the location preference when attending events and the home location of

the user. They trained three classifiers on a Meetup dataset with semantic descriptions110

of all organized events. Georgiev et al. [27] addressed the extent to which geospatial,

temporal, and social factors influence the users’ preferences towards events formulat-

ing a predictive modeling task trying to match a user’s mobility profile against the

collective past Foursquare check-in activity of potential event attendees. Zhang and

Lv [35] proposed a group-based social influence propagation network to model group-115

specific influences on events. In [36], the same authors extended the previous work

by proposing a group-based event participation prediction framework that embeds and

connects group context features and social-related features using historical event atten-

dance logs. They extracted the group-based social features by using a hybrid event-

group/category-user network that captures intrinsic social relationships. Their results120

showed that these features are important for predicting event participation. In [28],

the authors proposed a classification task for inferring the response to Facebook event

invitations by using data collected by a Facebook soccer application. Their classifiers
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used not only user-level features but also network-based friendship information. Their

experiments suggested that the use of network-based features is very important since it125

allows to increase the AUC from 0.22% to 0.82%. The approach presented in [29] aims

to predict the response to event invitations in the Meetic social network. The authors

proposed and evaluated a competing risk methodology for the task showing how their

method performs better than the baselines. Note that in the two above cases, there is not

evidence showing if a person actually participated in the event or not but the prediction130

simply infers the response to the invitation on the social media.

Compared to these approaches, we do not specifically address EBSNs and LBSNs,

but instead focus on a popular social media platforms where events can have a large

“echo”. We do not exploit users’ history or friendship relations as we aim to clas-

sify single posts by their content, completely disregarding the user profile and specific135

events information. Furthermore, we aim to directly predict the attendance to the event

by considering three different time-frames, rather than the user’s interest in the event

without indication of her actual attendance.

Within the second category, event recommendation, papers [5, 30, 31, 37] and

[38] addressed the problem of recommending events within event-based social net-140

works (EBSNs). Each of these approaches is challenged by the cold-start problem, and

recommendation evidence may resort to the events that are geographically closest to

users [5]. The works in [31] and [39] studied the influence of social groups to improve

the event recommendation performance. Gao et al. [31] proposed a new Bayesian la-

tent factor model that combines social group influence and individual preferences for145

event recommendation. In turn, Liu et al. [39] proposed a collective pairwise matrix

factorization model to estimate users’ pairwise preferences on events, groups and loca-

tions. Macedo et al [30] proposed a recommendation approach that leverages multiple

context-aware recommendation models for learning to rank events. They exploited

features based on group memberships, location signals based on the users geographi-150

cal preferences, and temporal signals derived from the users time preferences. In [37],

the authors considered also the capacity of an event to limit the number of users for the

recommendation. Their objectives was to coordinate the user arrangements among the

recommended events to attain a balanced event participation. The works in [38] and
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[40] focused on an efficient and scalable learning technique for event recommendation155

to handle large-scale, streaming data. Our work is complementary with respect to these

approaches since we are interested in identifying the posts related to event attendance

rather than in making recommendations. In any case, our approach might permit the

more precise identification of target users for recommendations.

Within the third category of related works, Botta et al. in [32] investigated whether160

mobile phone usage and the geolocated Twitter data can be used to estimate the number

of people in a specific area at a given time. In considering two case studies of access-

restricted areas in Italy: a stadium and an airport (where there were ground truth visitor

statistics), they concluded that geolocated tweets with mobile phone data could be a

good proxy for estimating the number of users. Sinnott and Wang provided solutions165

to estimate the population of suburbs and skyscrapers through the use of geo-tagged

Twitter data [41]. They constructed linear models for suburbs of four cities and investi-

gated spatial correlation properties between the geo-tagged tweets and the official Cen-

sus data. Their results showed that Twitter can be used for micro-population estimation

with quantifiable degrees of accuracy. In [15], the authors proposed a regression model170

to estimate the number of attendees from the quantity of geo-tagged tweets posted at an

event. They applied the prediction model to estimate the attendance at the Melbourne

marathon.

Finally, in the last category of works, the authors of [4, 34, 33] described a method-

ology for identifying the user behavior and mobility patterns of the Instagram social175

network users visiting the EXPO 2015 world fair in Milan and the FIFA World Cup

2014. They analyzed how the number of visitors changes over time, identified the most

frequent sets of visited pavilions, which countries the visitors came from, and the main

destinations of foreign visitors to Italian regions and cities after their visit to EXPO

2015. They also analyzed geotagged tweets of people attending the 2014 FIFA World180

Cup identifying the most frequent movements of fans, the number of matches attended

by groups of fans, the clusters of most attended matches, and the most frequented sta-

diums.

These latter two groups of works have similar objectives to our aim in studying the

social media users’ actual participation in events. However, the main differences are185
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threefold: (1) We do not use geotagged information, but we rely on the media posts

content to infer users’ participation in events. Compared to the related works based on

geotagged data, we explore a higher number of posts about the event since a low per-

centage of the social media posts are geotagged. For example, as mentioned before, on

Twitter, around 2% of the tweets are geotagged1; (2) we are not interested in estimat-190

ing the number of participants or crowd, but instead we aim to identify specific social

media users who are likely to be – or have been – present at an event. Our approach

can thus provide useful and complementary information to support both applications

of crowd behavior modeling and crowd size estimation in large events; and (3) we do

not recommend participation but instead we infer current, future or past attendance195

of users based on their media posts. In the next section, we define our classification

tasks, as well as the features used for training the attendance classifiers and the research

questions we address.

3. Classifying Event Attendance

In the real-world, an event is something that occurs in a certain place during a200

particular interval of time. The location where the event occurs can be associated with

its geographical coordinates (<lat, long>), while the temporal duration, which may

vary from minutes to days or weeks, can be represented by a time window between a

start time tstart and an end time tend. In this work, we are interested in large events

with thousands of participants. It is customary that such events have an associated205

entity in the most popular social media platforms (e.g. a Twitter account, a Facebook

page), as well as a way of identifying discussions about them through the mentions of

one or more event identifiers i1, . . . in, e.g., the event name, its acronym, some official

or popular hashtags, etc.

A social media post by a user u, may contain text, links, emoticons, photos and/or210

videos (depending on the specific social network), as well as the timestamp at which

the post was created and a social component representing the relations of u with other

1http://firstmonday.org/ojs/index.php/fm/article/view/4366/3654
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users (likes, followers, retweets, etc). In addition, some social networks permit the

optional enrichment of the post with geotags, giving the <lat, long> position of the

user when the post is made.215

We define an event-related post p as any post that mentions one or more event iden-

tifiers and is thus possibly related to the specific event being considered. We distinguish

these event-related posts as occurring before the event – when posted in a date before

tstart, during the event – when posted between tstart and tend, and after the event –

when posted after tend. Hereinafter, we will simply use the generic term posts to refer220

to event-related posts.

Our intuition is that the nature of event-related posts from attendees differ depend-

ing on when the posts are created. For instance, posts created before the event may

express the users’ intention to participate, or their regret for not being able to attend

the event or regarding ticket sales. In contrast, posts published during the event may225

contain brief live reports from the event itself by the participating users, while non-

attendees may express regrets for not being there, or comments about the coverage of

the event on traditional or social media channels. After the event, attendees may share

their opinions about the event, for example wishing to return to the event soon, while

non-attendees may hope to participate in the next edition of the event. In Section 3.1,230

we illustrate these behaviors by providing some real-world examples of event-related

posts. Later, in Section 4.4, we validate these behaviors by analyzing the expressions

most commonly used by users to positively or negatively convey event attendance.

Our work aims at understanding if these weak and noisy expressions of interest

occurring in event-related posts can be exploited to identify the users who are likely to235

attend an event and distinguish them from those users that participate actively to the

discussion about the event in social media but are not planning to attend it. In this last

category we include user accounts directly linked to the event organization, as well as

sponsors, advertisers and spammers. We propose to use supervised machine learning

approaches to train binary classifiers that can automatically distinguish between posts240

of attendees and non-attendees. In order to consider the temporal dimension, we in-

stantiate our attendance classification problem in three different tasks for the prediction

of user attendance on the basis of posts published before, during, or after the date of
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the event.

3.1. Illustrating classification tasks Before/During/After the event245

We argue that the types of posts made by users before, during or after an event

tend to differ, and different classification models are necessary to attain an accurate

classification of these posts.

Before Task: classifying attendance before the event. This task aims at predict-

ing the attendance of a user at the event based on his or her shared posts at a time before250

the event. The classifier in this case exploits the content of posts where the users im-

plicitly or explicitly express their intention to attend or not the event. Sometimes they

explicitly share their intention to go with the words “Go” or “Packing” showing their

intention to attend the event. Other common posts that might be considered as mem-

bers of the negative class are those created by organizers, sponsors, or ticket sellers to255

provide general information about the event or advertisement and marketing material.

During Task: classifying attendance during the event. The aim of this task is to

identify the users who, in the time window of the event, express their presence at the

event. Very often, social media users express their actual participation in the event by

posting photos or making comments about their experience during the event. On the260

other hand, non-attendees post general comments about their regrets for not attending

or missing the event, or general comments without an explicit attendance meaning.

After Task: classifying attendance after the event. After the event is concluded,

people often comment, express their opinions or publish memories and photos on social

media. By inspecting such posts, it is often possible to obtain a clear determination of265

the user’s attendance of the past event (positive) or not (negative).

Figure 1 shows some illustrative examples taken from our dataset related to a large

UK music event (the Creamfields festival, see Section 4.1). From the content of the

tweets reported in the figure, we can easily distinguish the positive (in green) and neg-

ative (in red) attendance cases for the before, during and after tasks.270
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Figure 1: Examples of tweets posted before, during and after the event.

3.2. Feature space for event attendance classification

We exploit four different categories of features. Each category reflects a differ-

ent dimension of social media, namely the: textual, temporal, social, and multimedia

11



dimensions.

• Textual features model the textual content of the post. We used two different275

methods for representing text. The first method uses a Bag of Words (BoW)

model. In this case, the textual content is represented as the bag of unigrams,

bigrams and trigrams occurring in the post. In order to reduce sparsity, we apply

lemmatization to group together the different inflected forms of a word. Thus

each lemma and each sequence of two and three adjacent lemmas are considered280

as features. Even if lemmatization reduces sparsity, still the BoW model cannot

capture semantic relations among different lemmas. Let us consider for example

a post with the words ‘prepared to go’ and another using the words ‘ready to

leave’ instead. The same intention to attend the event is expressed in both the

posts, but the BoW model does not capture such similarity. Later, we thus pro-285

pose to encode the text in the posts by exploiting word embedding techniques

based on word2vec [42]. These techniques permit to reduce the dimensionality

of the textual feature space and, at the same time, to capture text semantics. In

addition to the previous features, we consider some additional features model-

ing textual metadata. Specifically, these features indicate the number of words,290

hashtags, mentions, URLs and emoticons occurring in the post. We discuss the

text encoding techniques used and study the improvements achieved upon the

BoW representation in Section 4.4.

• Temporal features represent the time of the post with respect to the event. The

temporal dimension is needed to distinguish the classification task (before, dur-295

ing and after), but also to quantify how temporally distant from the event the

post has been published. We simply represent time as the number of days sepa-

rating the posting date from the event date(s). Such temporal feature is obviously

meaningful only for the before and after classification tasks.

• Social features characterize the social profile of the posting user. Our social300

features include the number of followers, the number of followees and the ratio

between them. An insight here is that users with a high number of followers

and a relatively low number of followees are typically sponsors, organizers or
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VIPs that may advertise the event but do not necessarily attend it. Normal users

targeted by our attendance classification task are indeed generally characterized305

by a lower number of followers and a more balanced followers/followee ratio.

• Multimedia content features identify whether a post has any multimedia content,

such as a photo, video or a link to any visual content posted in other social

networks such as Facebook or Instagram. Indeed, this feature group is motivated

by the fact that attendees may express their actual or past participation by posting310

photos or videos during and after the event. In addition, we observe that sponsors

commonly use multimedia content before the event as a marketing tool.

It is worth noting that, in order to generalize the classification models learned, we

removed the event identifiers {i} from the textual content of all of the posts. The

generalization aspect of our classifiers is studied in Section 4.2.2.315

Table 1: Features used split by category.

Textual Temporal Social Multimedia

unigram

bi/tri-grams num:photos

num:words num:days before num:followers num:videos

num:hash num:days after num:followees bool:Youtube

num:mentions ratio:(num:followers, bool:Facebook

num:URLs num:followees) bool:Instagram

num:emoticons bool:Foursquare

word embeddings

Table 1 summarizes the features used by our classifiers grouped using the above

four categories. The word embedding features are detailed in Section 4.2.2.

3.3. Research Questions

The overall aim of this paper is to classify social media posts, shared by users

before, during and after an event, as indicative of attendance or not attendance. We320

detail this classification objective into three tasks depending on the temporal aspect

of the post: before, during and after. We study the behavior of the approach and,
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specifically, of the three classifiers, driven by three research questions. These questions

will be answered in a number of experiments presented in Section 4. The research

questions that we tackle are the following:325

RQ1: How accurate are our event attendance prediction classifiers? This research

question is discussed in details in Section 4.2 where we describe the accuracy results

obtained by training supervised machine learning algorithms on an annotated dataset

of media event-related posts. We will compare the obtained results with one baseline

and discuss the performance achieved on the three different classification tasks. We330

introduce and discuss three more methods to improve the obtained accuracy. First, in

Section 4.2.1, we conduct a feature ablation study to identify the feature groups that

most contribute to attain high prediction accuracy. We will discover that the textual

features are the most important, especially for the before and after tasks. This drives

us to the study of word embedding as a way to reduce and enrich the feature space for335

this group of features. Section 4.2.2 discusses the improvement attained thanks to the

word2vec encoding of post texts. Finally, we conclude the study of RQ1 by assessing

in Section 4.2.3 the accuracy of the classifiers on a further, objective, ground truth built

by considering geo-located tweets.

RQ2: How do these obtained classifier models generalize across events? The pos-340

sibility of deploying an event attendance classifier even when training data for the spe-

cific event is not available is highly desirable. In fact, some events do not have a large

representation in social media or the cost of building a new training dataset could be

unaffordable. The ability of our classifiers to generalize across events is thus of great

importance. This research question is discussed in Section 4.3 where we assess how345

our models generalize across events by applying the model learned on one event to the

other and vice-versa.

RQ3: What are the most meaningful expressions posted by users to express their

attendance to a given event? This question is examined in Section 4.4 where we dis-

cuss the results of our analysis of co-occurrence and frequency of the most common350

terms in the posts classified as attendance or not attendance.
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4. Experimental Results

We instantiate our attendance classifiers in a scenario that considers two very pop-

ular music festivals held in the UK. Before addressing RQs 1-3, we first describe the355

setup of our experiments.

4.1. Experimental Setup

Our experiments are conducted using Twitter posts about two premier UK music

festivals: Creamfields 2016 (held in Daresbury, UK, on August 25th-28th), and VFes-

tival 2016 (held in Chelmsford/South Staffordshire, UK, on August 20th-21st). These360

events are notable in their size, with Creamfields in particular attracting over 70,000

attendees in 2016, and hence likely to be well-reflected in social media. Usually people

publish event-related posts using specific hashtags and/or terms that refer to the event.

We thus collected tweets related to these events by using the Twitter APIs for selecting

tweets including the terms ‘vfest’ or ‘v21st’ and ‘Creamfields’2. Tweets generated by365

the official accounts of the events (@vfestival and @Creamfields) were removed from

the collections, since they are not relevant for our tasks.

For each respective event, the collected tweets are split on the basis of their times-

tamp into three different disjoint sets: posts made before, during or after the event.

To generate our training set, we randomly sample (without replacement) 460 distinct370

tweets for each task from each dataset, thus 1,380 tweets in total for each festival. Then,

for each of the three tasks, a binary label is assigned to each tweet (positive class: a

user who intends/is/has attended, and vice-versa for the negative class). The labelling

task has been performed by a single assessor to keep the process consistent. On the

other hand, we are aware of the limitations and risks of such human labelling process.375

In our specific case, we fortunately had the possibility of objectively validating the ac-

curacy of our classifiers and the correctness of the adopted labelling procedure on a

2Specifically, in order to cover the time periods before, during and after the considered events, we used

the Twitter Streaming APIs from August 10th to September 15th 2016. Moreover, we used the Twitter

REST APIs to collect the available tweets related to the events posted from March 1st to September 15th

2016.
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Table 2: Creamsfield and VFestival datasets statistics.
Dataset Task Labeled tweets pos% neg% Tweets Users Geo-located tweets

Before 460 48.3 51.7 24,963 11,700 164

Creamfields During 460 39.1 60.9 25,625 15,884 309

After 460 69.3 30.7 29,801 17,850 425

Before 460 47.6 52.4 10,754 6,513 2

VFestival During 460 37.4 62.6 4,873 3,285 75

After 460 67.2 32.8 26,027 14,744 58

second, objective ground truth built from posts of georeferenced users. This analysis is

reported in Section 4.2.3.

The human assessment is based on the textual or visual content of the tweet, which380

allows to establish any explicit evidence of attendance at the event. Any other kind of

interpretation (advertisement, announcements, newsletter, sponsor’s posts, sale of tick-

ets, general information, regrets or impossibility, etc.) is labeled as negative. Table 2

reports for each dataset and task the number of labeled tweets, the respective percent-

age of positive and negative labeled tweets, the total number of tweets collected, and385

the number of distinct active users.

Specifically, we collected the tweets by geo-located users posted during the time

window of the event and within an area of 3 km radius from the center of the event,

gathering a total of 309 tweets from the Creamfields dataset and 75 tweets from the

VFestival dataset. These tweets correspond to positive cases of attendance for the390

during task. Starting from these geolocated tweets, we identified a total of 189 distinct

users for Creamsfield and 57 unique users for Vfestival who posted those tweets. We

also gathered the event-related tweets posted by these users before and after the events.

For the Creamfields event, we have 164 tweets before the event and 425 tweets after the

event. For the VFestival dataset, we have 2 tweets before the event and 58 tweets after395

the event. All these tweets are included in a second test set as positive cases of pre-

and post-events attendance. Table 2 summarizes in the ‘geo-located tweets’ column the

number of tweets collected for each task by following the above procedure.

Our experiments are conducted using a 5-fold cross validation, while preserving

the proportion of positive and negative instances in each fold. For each task and400
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dataset, we train five different classification models, namely: Logistic Regression (LR),

Gradient Boosting Decision Trees (GBDT), Random Forest (RF), Support Vector Ma-

chine (SVM) and Naive Bayes (NB). All these algorithms, chosen among those con-

sistently delivering state-of-the-art performances in text classification tasks [43], are

available in the scikit-learn library3 used to train our classifiers. We use a grid search405

to tune the hyperparameters of the algorithms [44]. Specifically: For LR, we con-

sider L1 and L2 regularization and sweep the penalty parameter C in the range of

{0.01,0.1,1,10,100,1000}; For GBDT and RF, we vary the number of trees in the range

of {50, 80, 100, 120, 150}, while the learning rate and maximum tree depth vary in

the ranges of {0.01, 0.05, 0.1} and {2,3,4,5}, respectively; For SVM, we use the RBF410

kernel with γ varying in {0.0001, 0.001, 0.01} and C in {0.01,0.1,1,10,100,1000}.

In the following, we report the performances achieved by our classifiers. Given that

the classes are well-balanced in our datasets, and for the peculiarities of the problem

addressed both false positives and false negatives have a similar importance, we focus

our analysis on classification accuracy values, which directly measure the number of415

correct predictions made divided by the total number of predictions made. For every

classifier, we thus use the setting of hyperparameters that maximizes accuracy by using

cross validation. Initially, we report accuracy, precision, recall, F1 and AuC for all

classification models trained with the BoW text features. Afterwards, since, as we will

show, the LR and GBDT classification models consistently outperform RF, SVM and420

NB, for the other experiments conducted, we report only the classification accuracy

attained using these two classification approaches.

4.2. Results: RQ1

In this section we address RQ1 - studying the accuracy of our event attendance

prediction classifiers.425

Table 3 reports the accuracy, precision, recall and F1 measure of our 5 classifiers on

each dataset and classification task (before, during, after). For the classifiers reported in

this table, all feature groups are used, with the textual content of posts represented ac-

3http://scikit-learn.org/
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Table 3: Classification effectiveness using BoW features.
Dataset: Creamfields Dataset: VFestival

Task Model Acc. Prec. Recall F1 AuC Model Acc. Prec. Recall F1 AuC

LRbow 0.868 0.870 0.870 0.868 0.887 LRbow 0.761 0.744 0.762 0.748 0.764

GBDTbow 0.874 0.846 0.912 0.878 0.873 GBDTbow 0.809 0.802 0.768 0.784 0.808

Before NBbow 0.587 0.540 0.977 0.696 0.600 NBbow 0.535 0.506 0.977 0.667 0.555

RFbow 0.826 0.760 0.941 0.840 0.830 RFbow 0.778 0.860 0.648 0.735 0.772

SVMbow 0.607 0.591 0.599 0.593 0.606 SVMbow 0.578 0.568 0.471 0.514 0.573

LRbow 0.741 0.766 0.538 0.602 0.690 LRbow 0.626 0.600 0.614 0.494 0.606

GBDTbow 0.817 0.830 0.616 0.708 0.790 GBDTbow 0.802 0.850 0.582 0.688 0.763

During NBbow 0.628 0.619 0.117 0.193 0.537 NBbow 0.530 0.429 0.737 0.525 0.571

RFbow 0.620 0.600 0.028 0.053 0.514 RFbow 0.680 1.000 0.145 0.248 0.573

SVMbow 0.641 0.584 0.300 0.394 0.580 SVMbow 0.670 0.800 0.157 0.257 0.566

LRbow 0.813 0.810 0.958 0.880 0.762 LRbow 0.809 0.812 0.932 0.868 0.808

GBDTbow 0.780 0.792 0.948 0.864 0.640 GBDTbow 0.815 0.824 0.902 0.862 0.767

After NBbow 0.702 0.711 0.962 0.818 0.538 NBbow 0.696 0.709 0.929 0.804 0.574

RFbow 0.713 0.708 1.000 0.829 0.532 RFbow 0.689 0.684 1.000 0.812 0.527

SVMbow 0.707 0.706 0.991 0.824 0.527 SVMbow 0.707 0.699 0.994 0.820 0.556

cording to the BoW model. On analysing the results in Table 3, we find that our GBDT

classifiers attain the highest performance for all the tasks on the VFestival dataset with430

an accuracy and precision always greater than 80%. For posts made during the event,

GBDT obtained an accuracy of ∼82% when classifying the attendance of the users at

the Creamfields event and also when inferring past attendance at VFestival. The per-

formance achieved with GBDT on the VFestival dataset for the after task is also good

with an accuracy of nearly ∼82%. LR outperforms GBDT for all metrics on the after435

task at the Creamfields, while it attains a better recall in other two cases (during and

after tasks for VFestival).

In summary, for RQ1, the accuracy results reported in Table 3 show that our ap-

proach is reasonably effective at classifying user attendance. We observe that GBDT

on average outperforms the other algorithms and LR achieves the best accuracy in one440

of the six cases.

4.2.1. Feature groups that help the most to attain a high prediction accuracy

In this section, we explore in more details the previous results by analysing the

contribution of the feature groups defined in Section 3: multimedia, social, temporal
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and textual feature groups. Our objective is to understand which feature group deserves445

further study because it provides the largest benefit to attain a high prediction accuracy.

To evaluate the contribution of each group of features, we conduct an ablation study.

Specifically, we remove each group of features one at a time from the datasets used to

train and test the classifiers. For such analysis, we use the GBDT classifier, which,

according to the results reported in Section 4.2, on average achieves the highest per-450

formance. Table 4 reports the results of the ablation study sorted by accuracy for each

of the before, during and after classification tasks. In the table, each row denoted with

‘All - feature group’ indicates that the features of group ‘feature group’ were ablated

(removed).

On examination of Table 4, we find that the multimedia features are very important455

for the during task, particularly for VFestival, where a ∼5% drop in accuracy is ob-

served when the multimedia feature group is ablated (0.802→ 0.757). Indeed, in this

dataset, we note that 0.85%, 22% and 27% of the tweets posted, respectively before,

during and after the event have some multimedia content. For Creamfields, the cor-

responding percentages tweets containing multimedia content are 0.4%, 8% and 20%,460

respectively.

Next, we note that the social features are useful for the before task in Creamfields

and for the after task on VFestival, where their exclusion implies a loss of accuracy. We

note that these features allow to identify (negative) advertisement posts coming from

event sponsors or news providers, all of whom have a high number of followers.465

The temporal features are important when classifying attendance after the comple-

tion of the event. We note that low values for this feature (i.e. a shorter difference

between the dates before or after the event) are indicative for identifying the actual

attendees of the event, while higher values (i.e. more distant from the event) are indica-

tive for identifying non-attendees. This is reasonable when observing the real-world,470

where people who participated in events discuss them on social media only for a short

period of time, usually for a few days before or after the event. Sponsors and news

providers, instead, tend to post about the event regularly over a longer time period for

marketing purposes. Indeed, by manually inspecting the posts in our training datasets

for the tasks before and after, we found that more than 82% of the distribution of posts475
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published by attendees is concentrated in a time interval of 5 days before and 3 days

after the event, while the posts of sponsor accounts are more uniformly distributed over

time.

Users express their attendance at an event through the post text in different ways

depending on the period (before, during, after). Hence, as highlighted in Section 3.1,480

the textual features extracted from the posts vary depending on the task. As we can

see from the table, textual features are the most important for the before and after

tasks. For these tasks, in both datasets, once we exclude those features, the accuracy

drops tightly. Furthermore, in all experiments, keeping the textual features allows the

models to achieve good accuracies, close to the optimal cases. Before the event, the485

users mention often their participation by posting about the purchase and delivery of

their tickets (feature ‘ticket’ is among the most important for both Creamfields and

VFestival), or when they express their anxiety to attend the festival (e.g. features such

as ‘wait’ and ‘excited’). After the event, the users share their experience, how they feel

after the event and state willingness to come back to the next edition.490

Lastly, the meta textual content (number of words, hashtags, mentions, URLs and

emoticons) only exhibit an importance for attaining accurate classifications for the

before task of the VFestival. For the same festival and for the after task, these fea-

tures introduce noise into the GBDT model, since the exclusion of this set of features

marginally improves the accuracy of the model.495

Finally, as a summary of our findings, we observe that while each of the feature

groups has some impact for at least one of the tasks, we highlight again the usefulness

of the textual features for the prediction of attendance for all the tasks. Indeed, when

this group is ablated from the model, the classification accuracy decreases remarkably

on both datasets. This observation suggests to attempt improving the results by en-500

riching the group of textual features. This research direction is investigated in the next

section.

4.2.2. How to improve classification accuracy with word-embedding features

In the context of RQ1, the analysis in this section aims to investigate new features

that could enhance the performance of our classifiers. Thus far, in our models, the tex-505
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Table 4: Accuracies of the GBDT models by ablating groups of features.

Creamfields VFestival

Task Group Accuracy Group Accuracy

All 0.874 All 0.809

All - Temporal 0.874 All - Social 0.809

Before All - Multimedia 0.874 All - Textual meta feats 0.809

All- Textual meta feats 0.865 All - Multimedia 0.794

All - Social 0.863 All - Temporal 0.792

All - Text 0.606 All - Text 0.656

All 0.817 All - Textual meta feats 0.806

All - Textual meta feats 0.815 All 0.802

During All - Social 0.811 All - Text 0.802

All - Multimedia 0.804 All - Social 0.791

All - Text 0.667 All - Multimedia 0.757

All - Social 0.793 All 0.815

All - Textual meta feats 0.787 All - Textual meta feats 0.811

After All 0.780 All - Temporal 0.809

All - Temporal 0.780 All - Social 0.807

All - Multimedia 0.769 All - Multimedia 0.781

All - Text 0.689 All - Text 0.724

tual content of posts has been represented as BoW features. One drawback of BoW is

that different words have different representations, regardless of their semantic mean-

ing [45, 46]. For example, while the words ‘buy’ and ‘purchase’ have similar meanings

(synonyms), in a BoW representation they are as similar as two antonyms. This is not

desirable for our attendance classifiers that aim to capture the semantic of the users’510

posts. To tackle this problem, we use word2vec, a neural net learning technique that

embeds words from a vocabulary into a vector space, which represents the linguistic

contexts of words - namely, that words that have similar meanings are represented by
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close vectors in the embedding space. Specifically, we use the gensim 4 implementa-

tion of word2vec and a word2vec model trained on part of the Google News dataset515

(about 100 billion words)5. This model contains 300-dimensional vectors for 3 million

words and phrases6. We represent each post with a single 300-dimensional vector ob-

tained by combining the vectors that represent all the terms occurring in the post. This

combination can be done with different aggregation functions. We explore the use of

the ‘sum’, ‘mean’ and ‘max’ aggregation functions and also the concatenation of these520

three representations that we denote by mix. The aggregation functions ‘sum’, ‘mean’

and ‘max’ have the intuitive meaning of building a single vector for a post by comput-

ing the sum (respectively, mean, max) among the 300 dimensions in the embedding of

all the post words. Differently, the mix representation of the post consists in simply

using the concatenation of the above three aggregated vectors.525

Table 5 reports the performances achieved by the GBDT and LR models trained:

(a) using BoW features (denoted by bow); (b) using word2vec features (denoted by

w2v) instead of BoW; (c) using both the BoW and w2v features (denoted by both). For

these experiments the other groups of features (social, temporal and multimedia) are

also included in the training sets. For the sake of simplicity, the table reports only the530

best results achieved by a given algorithm with the corresponding sets of features. For

example, the notation GBDTboth
mean means that the GBDT classifier is trained using both

BoW and w2v features and that the w2v representation of the post is obtained using

the mean aggregation function. Similarly, LRw2v
sum means that the LR model was trained

using w2v features aggregated with sum.535

We observe that, in general, the use of w2v features improves the classification ac-

curacy compared to the sole use of BoW features (bow). Indeed, for the Creamfields

dataset, the use of embedding features improves the accuracy and precision figures up

to ∼91%. It is worth noting that the improvement in Accuracy is higher with LR. In-

4https://radimrehurek.com/gensim/models/word2vec.html
5https://github.com/mmihaltz/word2vec-GoogleNews-vectors
6We also conducted initial experiments using a word2vec model trained on a large Twitter corpus. How-

ever, since the results of the experiments conducted using the Google News model consistently outperformed

those with the model trained on the Twitter corpus, we report only the former in the following experiments.
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deed, when the w2v textual features are used, either jointly with BoW (both) or not540

(w2v), the LR classifiers improve by +4.5%, +7.9% and +2.6% the Accuracy on the

before, during, and after tasks on the Creamfields, respectively. Further large improve-

ments are achieved on the VFestival dataset where we observe +5.2%, +16.1%, +4.9%

in accuracy for the three tasks. Moroever, the GBDT models attain increased accuracy

when using the embedding features, although they are more remarkable for the after545

task. Here, we observe improvements up to ∼5% (0.78→ 0.833 on Creamfields and

0.815→ 0.861 on VFestival) when using only the w2v features. On closer inspection,

we see that the w2v features enhance the classification accuracy almost independently

of the tasks and algorithm used to train the model. Compared to the results using

only the BoW features, the Accuracy is most increased for the before (0.874→ 0.913550

for Creamfields) and after (0.815→ 0.861 for VFestival) tasks. In these tasks, as dis-

cussed above, the textual features have high importance for accurate classification, thus

the embedding features provide meaning in a lower-dimensional space that allows for

more accurate models compared to the other features.

4.2.3. Assessment of accuracy on the geo-located tweets555

As a further evaluation of the classifier accuracy, we test the models with the second

ground truth dataset composed by geo-located tweets. Recall that the fraction of geo-

located tweets is very low, thus making any approach based on geo-location only not

feasible for addressing our event attendance classification problem. However, since

the geo-location gives the certainty of the presence of the user at a given place, we560

can exploit the geo-located tweets in our dataset to further assess the validity of our

approach on a second independent test set having no intersection with the training set.

In addition, this second experiment permits to indirectly validate the labeling procedure

adopted to generate our ground truth.

Table 6 shows the performances of our best performing LR and GBDT models on565

this second test set. We measured very high accuracies, always higher than 85%, on

each classification task. Accuracy reaches the astonishing figures of 96% and 100%

on the during task for the Creamfields and VFestival events, respectively. Since the

above classification accuracies are higher than those measured on the other test sets, we
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Table 5: Accuracy of the GBDT and LR classifiers trained with BoW, w2v and both(BoW+w2v) features.

The * indicates statistical significant differences compared to the best classifiers using only BoW features

(McNemar’s test with 95% confidence interval).

Creamfields VFestival

Task Model Accuracy Model Accuracy

LRbow 0.868 LRbow 0.761

LRw2v
mix 0.885 (+1.7%) LRw2v

mix 0.778 (+1.7%)

Before LRboth
max 0.913* (+4.5%) LRboth

sum 0.813* (+5.2%)

GBDTbow 0.874 GBDTbow 0.809

GBDTw2v
sum 0.874 (0.0%) GBDTw2v

max 0.818 (+0.9%)

GBDTboth
mean 0.872 (0.0%) GBDTboth

max 0.824 (+1.5%)

LRbow 0.741 LRbow 0.626

LRw2v
sum 0.800* (+5.9%) LRw2v

mix 0.772* (+14.6%)

During LRboth
mix 0.820* (+7.5%) LRboth

mix 0.787* (+16.1%)

GBDTbow 0.817 GBDTbow 0.802

GBDTw2v
max 0.789 (0.0%) GBDTw2v

max 0.823* (+2.1%)

GBDTboth
mix 0.796 (0.0%) GBDTboth

max 0.826* (+2.4%)

LRbow 0.813 LRbow 0.809

LRw2v
sum 0.824* (+1.1%) LRw2v

mix 0.850* (+4.1%)

After LRboth
sum 0.839* (+2.6%) LRboth

sum 0.858* (+4.9%)

GBDTbow 0.780 GBDTbow 0.815

GBDTw2v
max 0.830* (+5.0%) GBDTw2v

mix 0.861* (+4.6%)

GBDTboth
max 0.833* (+5.3%) GBDTboth

mix 0.854* (+3.9%)
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Table 6: Accuracy of the classifiers on the geo-located tweets.

Creamfields VFestival

Task Model Accuracy Model Accuracy

Before LRw2v
mean 0.854 LRboth

max 0.500

GBDTbow 0.726 GBDTw2v
sum 1.000

During LRboth
mean 0.958 LRboth

sum 1.000

GBDTbow 0.964 GBDTw2v
sum 1.000

After LRw2v
sum 0.934 LRboth

mean 0.844

GBDTbow 0.960 GBDTboth
sum 0.879

manually inspected the geo-located tweets in these second test sets. We observed that570

for both festivals, for the during task, about 90% of the geo-located tweets contain some

multimedia content. The percentage of during posts including multimedia content in

the original ground truth were instead much lower: 8% and 22% for the Creamfields

and VFestival events, respectively. As discussed in Section 4.2.1, multimedia features

are among the most important for the during task.575

The high classification accuracy achieved on this georeferenced posts validates the

correctness of the adopted labeling procedure. Finally, it strongly confirms the quality

of our attendance prediction classifiers and the validity of our approach based on the

content of tweets only.

4.3. Results: RQ2580

Our second research question (RQ2) aims to determine how the classifiers can gen-

eralize to other similar events (in our case, music festivals). Indeed, while our exper-

iments are conducted over two datasets representing two music festivals, these events

have some specific differences. For instance, the VFestival event is a music festival for

pop music, while Creamfields is an electronic music festival, with distinctly different585

genres of performing artists. Therefore, these events may attract different kinds of at-

tendees and may lead to different discussions on social media, reflecting different ways

of expressing attendance at the event.
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In order to address RQ2, we conduct experiments by applying the model trained

on one dataset to classify the labeled samples of the other dataset and vice-versa. The590

results of these experiments are shown in Table 7. We can observe that our classifiers

attain reasonable performances even across different events. The classifiers trained

on the VFestival dataset achieve an accuracy ∼87% (LRw2v) and ∼81% (GBDTboth)

for the prediction of attendance before and after the Creamfields event respectively.

Accuracy however drops to ∼75% (GBDTboth) for the during task. One possible rea-595

son of this drop is that for the VFestival training set the most relevant features for

the classification during the event are the posts with photos and Instagram, while for

the Creamfields dataset, the textual features were observed to be the most useful (as

discussed in Section 4.3).

Table 7 also shows that the LR and GBDT models achieve the highest accuracies600

when using only w2v features or both BoW and w2v features. The table also shows

the improvement of GBDT and LR compared to the use of only BoW features. As ex-

pected, we note that the word embedding features substantially boost the performance

of cross-event classification with respect to models using BoW features only. Indeed,

when training the models with the Creamfields dataset and testing it on VFestival for605

the after task, the GBDT accuracy goes from 71.7% with GBDTbow to 78.9% with

GBDTw2v ( +5.6% improvement compared to the GBDTbow). Moreover, LR reaches

78.7% with LRboth w.r.t. 72.0% with LRbow (+6.7 %). Answering RQ2, we can con-

clude that our classifiers, trained on one event and tested on the other, generalize well,

particularly benefiting by the abstraction from the specific event provided by the use of610

w2v features.

4.3.1. Improving the robustness of the classifiers.

We now conduct experiments to understand if the generalizability of our classifiers

can be enhanced. In doing so, we use the annotated dataset to understand if a given

term occurring in a post is more indicative of attendance or not attendance. To this end,615

we count the occurrences of all the terms in the positive or negative posts of our gold

standard, and consider the normalized frequency of the term in the respective classes

as an indicator of whether a word is likely to be more associated with event attendance

26



Table 7: Generalization ability of the classifiers: models trained on Creamsfields are tested on VFestival and

vice-versa. The * indicates statistical significant differences compared to the best classifiers using only BoW

features (McNemar’s test with 95% confidence interval).

Training/Test Creamfields/VFestival VFestival/Creamfields

Task Model Accuracy Model Accuracy

Before LRboth
mix 0.796 (+1.3%) LRw2v

mix 0.865* (+1.3%)

GBDTbow 0.780 (0.0%) GBDTbow 0.824 (0.0%)

During LRboth
max 0.702* (+3.2%) LRboth

sum 0.741* (+9.2%)

GBDTw2v
max 0.724* (+1.3%) GBDTboth

max 0.743* (+3.2%)

After LRboth
mix 0.787* (+6.7%) LRbow 0.787 (0.0%)

GBDTw2v
sum 0.789* (+5.6%) GBDTboth

mean 0.807* (+3.7%)

or not. For example, a term occurring 10 times in the gold standard, 4 times in posts

expressing attendance and 6 times in negative ones, is scored 0.6 for attendance and620

0.4 for not attendance. By aggregating (with ‘sum’, ‘mean’ and ‘max’) such values

for each term occurring in a post, we can generate two additional features to be used

for the classification tasks. Furthermore, the concatenation of the ‘sum’, ‘mean’ and

‘max’ representations is considered (denoted as ‘mix’), generating then six additional

features (i.e. two features for each aggregation). However, these values are available625

only for terms occurring in the training set and posts to be classified can include “out-

of-vocabulary” (OOV) terms not in this set [47].

The word2vec features provide us with a solution to address the OOV issue. Specif-

ically, given a term t occurring in a post but not present in the training set, we compute

its embedding vector v and retrieve the top-k most similar vectors (using Cosine sim-630

ilarity [48]) for which the feature is available from the training set. The feature for t

is finally computed as the average of the features associated with the k closest vectors

weighted by the cosine similarity. The intuition behind is that terms with similar em-

bedding vectors have also similar semantics. We indicate this approach as Normalized

Frequency Vectors (NFV), and report the results of experiments where we varied the635

value of k in the range of 1, 3 and 5.

Table 8 reports the accuracy performances for the LR and GBDT classifiers ex-
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ploiting the NFV features measured across the datasets. In the table, we report the

improvement in accuracy achieved over the best results reported in Table 7 and the

operators used for aggregating the embedding vectors and the NFV features.640

From Table 8, we observe that the NFV features enhance the accuracy of our at-

tendance classifiers up +2.4% and +3.5%, on the VFestival and Creamfields events,

respectively. However, the during task still attains the lowest classification accuracies

compared to the other two tasks. Furthermore, we see from the table that, for all of

the tasks, the accuracy is higher when training uses the VFestival datasets, thus sug-645

gesting some over-fitting of the models trained on the Creamfields data. In general

however, for most of the tasks and models, we observe statistically significant per-

formance improvements (McNemar’s test, p < 0.05), corroborating our expectations

of the usefulness of the NFV features for the robustness of the classifiers. To better

understand how the context and semantic behind the embedding features can help the650

classification, we investigate in the next section how the semantic similarity among

terms actually contribute to the robustness of the models.

Table 8: Robustness of the classifiers exploiting the NFV features. Models trained on Creamsfields are tested

on VFestival and vice-versa. The * indicates statistically significant improvements with respect to the best

accuracy figures reported in Table 7 (McNemar’s test with 95% of confidence interval).

Train/Test Creamfields/VFestival VFestival/Creamfields

Task Modelaggv,nfv(top) Accuracy Modelaggv,nfv(top) Accuracy

Before LRboth
max,sum(3) 0.800 (+0.4%) LRboth

max,sum(3) 0.872* (+0.7%)

GBDTw2v
mix,mean(3) 0.793 (+0.4%) GBDTw2v

sum,sum(1) 0.861 (+2.6%)

During LRboth
max,max(1) 0.707 (+0.5%) LRboth

sum,max(1) 0.757* (+1.6%)

GBDTw2v
max,max(1) 0.746* (+2.2%) GBDTboth

mean,mix(1) 0.778* (+3.5%)

After LRboth
mix,max(1) 0.811 (+2.4%) LRw2v

mean,sum(3) 0.811* (+2.4%)

GBDTboth
sum,sum(5) 0.811* (+2.2%) GBDTboth

sum,mean(5) 0.817* (+1.0%)

4.3.2. Contribution of word embedding features

The experiments above show that the robustness of our classifiers across events

is enhanced when word embedding features capturing text semantics for positive and655

negative attendance are introduced.
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To analyze this effect, we consider the twenty five most important terms (BoW

features) occurring in the Creamsfields and VFestival datasets and used by the GBDT

classifiers trained on the corresponding dataset for each one of the three tasks. Term

importance is determined by the gain in the loss function when the node of a decision660

tree is split on that feature [49]. Then, for each task, the terms occurring in both the

datasets are filtered out since they are non-relevant for our analysis. Finally, the Cosine

similarity between the embedding vectors of each pair in the Cartesian product of the

remaining terms is computed.

The results of this investigation are summarized in Table 9, which reports the top-665

10 pairs of terms with the highest similarity. From the table, it can be seen that the

two datasets include different terms that are likely to be relevant for the classification

of the post and whose semantic is captured by the word embedding. For example, the

word ‘purchase’, which appears in some posts of Creamfields but not in the VFestival

dataset, has a similar embedding vector to the word ‘sell’ which, in turn, appears in the670

VFestival dataset but not in Creamfields: both words are mainly used in posts related

to the purchase of the tickets for the events. For the during task, we can observe a

high similarity between the embedding of the words ‘excite’ and ‘amaze’ and also ‘ex-

citement’ and ‘atmosphere’: in both cases, the words mainly represent the attendees’

experiences during the event. Similarly for the after task, where we can see the sim-675

ilarity between the words representing periods of time as ‘week’ and ‘weekend’ used

mainly to refer to the past event.

In summary, in addressing RQ2, we find that the w2v and NFV features introduced

allow us to exploit the semantic similarity of text, thus improving the classification

accuracy and the robustness across events of our classifiers.680
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Table 9: Per task top-10 most similar pairs of terms (according to the w2v vectors) in the sets of disjoint

terms occurring in the Creamsfields and VFestival datasets.
Before During After

Creamsfields VFestival Sim. Creamsfields VFestival Sim. Creamsfields VFestival Sim.

purchase sell 0.656 excite amaze 0.545 week weekend 0.713

want go 0.452 wait watch 0.432 week day 0.655

ready wait 0.432 back rest 0.410 hear listen 0.649

camp tent 0.431 excitement atmosphere 0.382 ago years 0.505

want wait 0.419 go rest 0.347 leeds justin 0.453

ready unprepared 0.402 jealous sick 0.345 week years 0.433

dj buzzin 0.391 excitement experience 0.341 week time 0.408

work go 0.354 go jump 0.318 ago old 0.393

want bring 0.315 buzz atmosphere 0.317 go miss 0.389

ready finally 0.300 go watch 0.317 good little 0.389

4.4. Results: RQ3

Our last research question (RQ3) asks if it is possible to identify expressions com-

monly used by users on social media to express attendance (or not) to an event. By

using our whole corpus of gathered tweets, we conduct a co-occurrence analysis of the

words written in the user’s posts. First, by using our most accurate classifiers for each685

event and task, we classify all of the unlabeled tweets into (a) attendance and (b) not

attendance. Then, for each class, task and event, we compute terms’ co-occurrences to

find the set of words most frequently co-occurring in posts of the same class, task and

event. The results of this analysis are shown in Table 10 for the positive attendance

class, and in Table 11 for the negative one. For the sake of simplicity, in both tables we690

report only the top-5 sets of 3 words ordered by their co-occurrence frequency. Note

that to compute the co-occurrence frequencies, we do not consider the order in which

the words occur. It is also worth noting that in this analysis all of the numeric values

have been replaced with the symbol ‘#’.

Looking at Table 10, for the before task, we clearly notice the user’s expectation695

to attend the event when they count down the days, reflected by a high occurrence

of the set “{#, days, until}”, or when they mention future participation, supported by

the high frequency of the set “{be, next, week}”. This is illustrated for example in

the following posts found in the Creamfields dataset: (a) “I’ll be at Creamfields this
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time next week and I cannot wait”; (b) “This time next week I’ll be in Creamfields,700

what an absolute blinding feeling”; (c) “Can’t believe Creamfields is next week”. For

the during task, the co-occurrence of the words have a much lower frequency. This

is justified by the slightly lower amount of tweets in this temporal slot and also by

the higher diversity of manners in which people express their current attendance: for

example, they sometimes post photos with very few words to describe their personal705

experience. For the after task, we can see a similar style of posts for both events,

expressing pleasure and happiness for attending the event: “weekend, best, had”, and

desires to relive such experience, commonly written by using the expression “take me

back”.

On the other hand, the sets of words reported in Table 11 help us to devise common710

expressions for the negative attendance case. In particular, for the before task and

in both datasets, we notice a high correlation among the words ‘pounds’ and ‘ticket’

associated with the ticket cost and time periods like month, weekend or day. Indeed,

these words are mostly used in advertisements tweets of sponsors and ticket sellers,

which are not considered to be actual attendees. For the during task, we notice in the715

Creamfields dataset common expressions of people regretting not being able to attend

the event: (a) “Couldn’t be anymore gutted that I’m not going to Creamfields, cry cry

cry”; (b) “gutted not to be back at Creamfields this year”; (c) “A part of me is very

gutted not to be heading to Creamfields tomorrow”. For the during and after tasks, we

observe that many non-attendance posts contain terms related to the performance of720

famous artists. Those posts are, in general, written by sponsors, newspapers and fans

not necessarily attending the festival.
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Table 10: Top-5 most frequent 3-grams in the positive attendance class.

Creamfields VFestival

Task Words Freq. Words Freq.

{be, next, week} 253 {#, days, until} 414

{next, week, time} 214 {#, days, till} 59

Before {be, next, time} 178 { be, so, excited} 59

{be, week, time} 173 {#, only, hours} 50

{#, days, work} 170 {weekend, so, excited} 44

{#, more, sleep} 68 {park, chelmsford, highlands} 45

{up, line, great} 40 {you, so, proud} 21

During {#, uk, kingdom} 31 {you, much, thank} 14

{#, uk, united} 31 {so, park, hylands} 14

{we, here, come} 29 {down, via, chilling} 13

{my, best, life} 377 {weekend, best, had} 302

{me, back, take} 317 {me, back, take} 207

After {my, weekend, best} 312 {my, weekend, best} 174

{last, time, week} 283 {my, best, life} 147

{was, last, time} 233 {weekend, good, such} 134

Table 11: Top-5 most frequent 3-grams in the negative attendance class.
Creamfields VFestival

Task Words Freq. Words Freq.

{#, day, pounds} 7894 {#, tickets, pounds} 141

{#, pounds, monthdate} 3328 {#, weekend, pounds} 140

Before {#, pounds, warrington} 3316 {#, ticket, pounds} 127

{#, monthdate, warrington} 3316 {#, pounds, sale} 118

{#, day, camping} 3122 {#, camping, pounds} 118

{festival, man, dies} 345 {justin, is, performing} 174

{be, not, going} 283 {great, john, newman} 120

During {be, not, gutted} 234 {justin, bieber, staffordshire} 116

{festival, music, dance} 223 {justin, not, bieber} 112

{going, was, wish} 196 {you, so, love} 101

{#, mix, essential} 288 {justin - monthdate - performing} 400

{#, cirez, essential} 233 {justin, performing, staffordshire} 271

After {#, cirez, mix} 232 {justin, united, kingdom} 262

{cirez, mix, essential} 209 {justin, monthdate, staffordshire} 260

{festival, man, dies} 177 {justin, performing, united} 259
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5. Example Application: Transport Planning

As an example use case for our proposed classifiers, we aim to evaluate the geo-

graphic areas with a higher potential demand for transportation services to an event.725

We analyse the hometown of users who have been predicted to attend a given festival

by our classifiers. This analysis can be useful to support strategies for the allocation

of shuttle buses or ride-sharing services to the event, or to forecast possible traffic con-

gestions towards the event. We conduct this analysis upon our Creamfields dataset, the

largest in terms of users, thereby allowing for a more realistic analysis compared to the730

VFestival dataset.

Starting from the event-related posts, we aim to infer the users who participated in

the festival. For this purpose, it is important to note that often users on social media

share more than one post related to a given event. Each post can be classified as at-

tendance or not attendance depending on the content. There is no guarantee that all735

event-related posts of the same user will be consistently classified as attending or not

attending. We therefore need to infer, given a number of posts of the same user, pos-

sibly not uniformly classified as attendance or not attendance, if the user is actually

attending or not the event.

For the purpose of this example application, we trained our attendance classifiers740

on the Creamfields labeled data. We applied the best model for each task according to

Table 5 to classify the whole dataset of about 90k tweets. We were able to predict as

positive a total of 35,239 tweets. Distinguishing users attending or not attending from

a number of - possible discordant - posts can be done in several ways, for example,

through majority voting. We propose here a slightly more sophisticated method taking745

into account the confidence of the used classifier in labelling each post. Intuitively,

a more confident attendance prediction should count more than a less confident one.

Therefore, during the classification process, for each post, we keep the difference of the

confidence scores between the attendance and non-attendance classes. Notice that this

value ranges from -1 to 1, where 1 means a higher confidence score for the attendance750

class, and -1 means the lowest attendance score. Then, taking all the classified posts or

users, we compute the mean of the difference of the confidence scores. Our intuition is
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to capture the most discordant users regarding attendance. As a final decision, we have

two cases: (a) users with a positive mean have attended the event (b) users with zero or

negative mean have not attended the event.755

We perform two kinds of analysis. The first analysis is aimed at inferring future

participation in the event based on the posts shared before the event. In the second

analysis we also consider the posts shared during and after the event. The idea here is

to use historical data to identify cities with high amount of attendees to support future

strategies in transportation and advertisement for the next editions of the event. The760

first analysis is based only on the posts published before the event. The idea here is

to predict which are the geographical areas with the highest quantity of attendees who

may potentially be needing transportation services to reach the event location. We

recall that Creamfields is held in Daresbury, England, located between Liverpool and

Manchester. We apply the above approach considering only the posts published at least765

one day before the event. From the quantity of inferred attendees, we collected, using

the Twitter REST API, a total of 3856 users’ profiles containing details of the users’

hometown within their Twitter profiles. Figure 2 shows the spatial distribution of the

inferred attendees of the Creamfields festival.

As expected, the results indicate a highest amount of participants in the surround-770

ings of the event location as in the cities of Manchester and Liverpool. However, we

can also identify other considerable amount of predicted attendees located in further

cities such as London, Newcastle, Peterborough, Glasgow and Edinburgh. Intuitively,

the higher the quantity of attendees, the higher the potential demand for transportation

services in that area. Therefore, such information could be useful for generating an775

optimized planning of bus routes across cities and this can provide efficient transporta-

tion services to the event. Ride-sharing applications could also take advantage from the

identification of groups of predicted attendees. However, we leave such applications as

possible future work.

For our second analysis, we run the best classifiers obtained in the generalization780

experiment for each of the three tasks on the relative sets of posts, namely before,

during and after Our intention here is to identify cities with high amount of attendees

to support future transportation and marketing strategies for the next editions of the
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Figure 2: Spatial distribution of inferred participants to the Creamfields festival (red point) from posts pub-

lished before the event.

event. Here, we use the approach described above to label a user as attendee or not,

based on his/her posts. Table 12 summarizes the amount of inferred attendees by city.785

We have identified a total of 10788 inferred participants to the event that have also

their hometown information displayed on their public Twitter profiles. Through the

results, we can observe that the previous analysis, predicting the most transportation

demanding areas, approximates well the final distribution of attendees by city. We

note that Liverpool, Manchester and the surrounding area of the ”North of England”790

present a high number of attendees. The Scottish cites of Edinburgh and Glasgow

might require long-distance transportation services due to the distance of these cities

to the event location.

We provide a visualization of the results on a heat map in Figure 3. We also vi-

sualized the airports that connect cities from Ireland and The Netherlands to the UK,795

in blue. Looking at this visualization, we observe red areas (i.e. the hot regions) with
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Table 12: Distribution of the before, during and after inferred attendees at the Creamfields festival by home-

town.
City # attendees City # attendees City # attendees

Aberdeen 57 Edinburgh 263 Northampton 53

Birmingham 96 Glasgow 221 Nottingham 112

Bristol 114 Hull 62 Plymouth 86

Cambridge 53 Leeds 160 Sheffield 125

Cardiff 85 Leicester 88 South Wales 109

Coventry 67 Liverpool 732 Sunderland 55

Derby 53 London 456 Swansea 106

Doncaster 83 Newcastle 312 Warrington 150

a higher density of hometowns of the inferred festival attendees. We observe that, as

expected, most of the dense areas are close to the event location. However, we also

note some small dense areas located in cities outside the UK, such as the Irish cities

of Dublin, Cork and Belfast and the Amsterdam and The Hague Dutch cities. The800

attendees from these areas might first fly to airports in the UK.

6. Conclusions

In this paper, we proposed a classification approach to infer event attendance from

the users’ media posts. A key detail of our proposed approach is that our inference

is done by classifying the non-geotagged content of the users’ posts. By not relying805

on the geotagged posts we can analyze a much larger number of posts to predict user

attendance to a given event. The large base of users covered by our approach makes it a

good and realistic candidate to enable innovative services and applications in the field,

for example, of transportation planning and crowd safety management. We structured

the attendance inference into three distinct classification tasks to identify the attendance810

from the posts published before, during and after the event.

We trained machine-learned classifiers using tweets related to two large music fes-

tivals in the UK, and we evaluated their accuracy, precision and recall. The results dis-

cussed in Section 4.2 show that our approach provides a remarkably good performance,
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Figure 3: Heatmap with distribution by hometown of the inferred attendees at the Creamfields festival (red

point).

exhibiting ∼91% accuracy at classifying users that have indicated their intention to at-815

tend the event. Our analysis showed that word embedding features contribute saliently

to the performance. Additionally, we highlighted the most informative group of fea-

tures and assessed the accuracy of our classifier even on an objective test set constituted

by geo-tagged tweets. In Section 4.3, we analyzed the generalization of the learned

models across the datasets and proposed additional word embedding features to im-820

prove cross-dataset performances. For example, when classifying the posts published

after the event, by including both the embedding and NFV features, the GBDT has

increased up to +7.8% (from 73.3% to 81.1%) its generalization ability when trained

on Creamfields dataset and tested on VFestival dataset. Furthermore, in Section 4.4,

we investigated the common expressions used by social media users to express (or not)825

attendance to an event. Finally, in Section 5, we proposed an example of application of

our methodology in event-related transportation.
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As future work, we aim to improve our results using information extracted from

the visual content of the published photos or videos. The analysis of visual content is a

growing trend in social media and could be better explored in our classification process830

through the use of deep learning techniques. Furthermore, we aim to further explore

our methodology in the context of smart transportation applications.
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1. Appendix

Table 13: Complement to Table 5 for Creamfields: accuracy achieved by all classifiers trained with BoW,

w2v and both BoW+w2v features. The * indicates statistical significant differences compared to the best

classifiers using only BoW features (McNemar’s test with 95% confidence interval).
Dataset Creamfields

Task Model Accuracy Precision Recall F1-score AuC

GBDTbow 0.874 0.846 0.912 0.878 0.873

GBDTw2v
sum 0.874 (0.0%) 0.869 0.874 0.871 0.874

GBDTbow
mean 0.872 (0.0%) 0.865 0.869 0.867 0.872

LRbow 0.868 0.870 0.870 0.868 0.887

LRw2v
mix 0.885 (+1.7%) 0.895 0.905 0.900 0.902

LRboth
max 0.913* (+4.5%) 0.927 0.905 0.916 0.919

NBbow 0.587 0.540 0.977 0.696 0.600

Before NBw2v
max 0.585 (0.0%) 0.538 0.982 0.695 0.598

NBboth
mean 0.583 (0.0%) 0.537 0.977 0.693 0.596

RFbow 0.826 0.760 0.941 0.840 0.830

RFw2v
mix 0.865* (+3.9%) 0.842 0.897 0.867 0.866

RFboth
mix 0.859* (+3.3%) 0.834 0.892 0.861 0.860

SVMbow 0.607 0.591 0.599 0.593 0.606

SVMw2v
sum 0.637* (+3.0%) 0.613 0.676 0.642 0.638

SVMboth
mix 0.654* (+4.8%) 0.628 0.698 0.661 0.656

GBDTbow 0.817 0.830 0.616 0.708 0.790

GBDTw2v
max 0.789 (0.0%) 0.791 0.661 0.714 0.768

GBDTboth
max 0.796 (0.0%) 0.796 0.667 0.720 0.773

LRbow 0.741 0.766 0.538 0.602 0.690

LRw2v
sum 0.804* (+5.9%) 0.803 0.678 0.730 0.782

LRboth
mix 0.815* (+7.0%) 0.811 0.706 0.751 0.796

NBbow 0.628 0.619 0.117 0.193 0.537

During NBw2v
mix 0.637 (+0.9%) 0.816 0.117 0.195 0.544

NBbow
mix 0.637 (+0.9%) 0.816 0.117 0.195 0.544

RFbow 0.620 0.600 0.028 0.053 0.514

RFw2v
mean 0.780* (+16.1%) 0.855 0.539 0.656 0.737

RFboth
mean 0.752* (+13.3%) 0.885 0.428 0.571 0.694

SVMbow 0.641 0.584 0.300 0.394 0.580

SVMw2v
mix 0.641 (0.0%) 0.584 0.289 0.383 0.578

SVMboth
mean 0.643 (+0.2%) 0.591 0.300 0.396 0.582

GBDTbow 0.780 0.792 0.948 0.864 0.640

GBDTw2v
max 0.830* (+5.0%) 0.831 0.953 0.887 0.753

GBDTboth
max 0.833* (+5.3%) 0.836 0.947 0.888 0.760

LRbow 0.813 0.810 0.958 0.880 0.762

LRw2v
sum 0.824* (+1.1%) 0.831 0.937 0.880 0.748

LRboth
sum 0.839* (+2.6%) 0.847 0.937 0.890 0.777

NBbow 0.702 0.711 0.962 0.818 0.538

After NBw2v
mean 0.704 (+0.2%) 0.710 0.969 0.820 0.537

NBboth
mean 0.707 (+0.5%) 0.712 0.969 0.821 0.541

RFbow 0.713 0.708 1.000 0.829 0.532

RFw2v
max 0.780* (+6.7%) 0.763 0.994 0.863 0.646

RFboth
mix 0.770* (+5.7%) 0.753 0.997 0.858 0.626

SVMbow 0.707 0.706 0.991 0.824 0.527

SVMw2v
mix 0.713 (+0.6%) 0.709 0.997 0.828 0.533

SVMbow
mix 0.713 (+0.6%) 0.708 1.000 0.829 0.532

1



Table 14: Complement to Table 5 for VFestival: accuracy of all classifiers trained with BoW, w2v and both

BoW+w2v features. The * indicates statistical significant differences compared to the best classifiers using

only BoW features (McNemar’s test with 95% confidence interval).
Dataset VFestival

Task Model Accuracy Precision Recall F1 AuC

GBDTbow 0.809 0.802 0.768 0.784 0.808

GBDTw2v
max 0.818 (+0.9%) 0.832 0.776 0.802 0.816

GBDTboth
max 0.824 (+1.5%) 0.804 0.835 0.819 0.824

LRbow 0.761 0.744 0.762 0.748 0.764

LRw2v
mix 0.778 (+1.3%) 0.793 0.826 0.807 0.814

LRboth
sum 0.813* (+4.8%) 0.792 0.826 0.807 0.813

NBbow 0.535 0.506 0.977 0.667 0.555

Before NBw2v
mean 0.535 (0.0%) 0.506 0.982 0.668 0.555

NBboth
sum 0.535 (0.0%) 0.506 0.982 0.668 0.555

RFbow 0.778 0.860 0.648 0.735 0.772

RFw2v
max 0.804* (+2.6%) 0.796 0.794 0.794 0.804

RFboth
mix 0.798 (+2.0%) 0.787 0.799 0.790 0.798

SVMbow 0.578 0.568 0.471 0.514 0.573

SVMw2v
mix 0.609* (+3.0%) 0.610 0.493 0.545 0.603

SVMboth
sum 0.602* (+2.4%) 0.603 0.484 0.537 0.597

GBDTbow 0.802 0.850 0.582 0.688 0.763

GBDTw2v
max 0.823* (+2.1%) 0.867 0.633 0.727 0.785

GBDTboth
max 0.826* (+2.4%) 0.893 0.622 0.727 0.787

LRbow 0.626 0.600 0.614 0.494 0.606

LRw2v
mix 0.772* (+14.6%) 0.855 0.500 0.626 0.722

LRboth
mix 0.787* (+16.1%) 0.887 0.505 0.639 0.732

NBbow 0.530 0.429 0.737 0.525 0.571

During NBw2v
mix 0.433 (0.0%) 0.388 0.895 0.540 0.526

NBboth
mix 0.446 (0.0%) 0.390 0.866 0.537 0.530

RFbow 0.680 1.000 0.145 0.248 0.573

RFw2v
sum 0.796* (+11.5%) 0.907 0.512 0.651 0.740

RFboth
max 0.754* (+7.4%) 0.845 0.442 0.576 0.695

SVMbow 0.670 0.800 0.157 0.257 0.566

SVMw2v
sum 0.676 (0.7%) 0.790 0.175 0.281 0.575

SVMboth
mean 0.670 (0.00%) 0.800 0.157 0.257 0.566

GBDTbow 0.815 0.824 0.902 0.862 0.767

GBDTw2v
mix 0.861* (+4.6%) 0.862 0.945 0.901 0.817

GBDTboth
mix 0.854* (+3.9%) 0.848 0.948 0.894 0.799

LRbow 0.809 0.812 0.932 0.868 0.808

LRw2v
mix 0.850* (+4.1%) 0.858 0.932 0.893 0.807

LRboth
sum 0.858* (+4.9%) 0.877 0.919 0.897 0.827

NBbow 0.696 0.709 0.929 0.804 0.574

After NBw2v
mix 0.717* (+2.1%) 0.717 0.958 0.820 0.592

NBboth
mix 0.717* (+2.1%) 0.717 0.958 0.820 0.592

RFbow 0.689 0.684 1.000 0.812 0.527

RFw2v
sum 0.789* (+10.0%) 0.782 0.951 0.858 0.704

RFboth
mix 0.774* (+8.5%) 0.763 0.964 0.851 0.674

SVMbow 0.707 0.699 0.994 0.820 0.556

SVMw2v
mean 0.709 (+0.2%) 0.705 0.977 0.819 0.568

SVMboth
mean 0.709 (+0.2%) 0.699 0.997 0.822 0.558
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Table 15: Complement to Table 7 on generalization ability of the various classifiers: models trained on

Creamsfields are tested on VFestival. The * indicates statistical significant differences compared to the best

classifiers using only BoW features (McNemar’s test with 95% confidence interval).

Training/Test Creamfields/VFestival

Task Model Accuracy Precision Recall F1 AuC

GBDTbow 0.780 (0.0%) 0.757 0.795 0.775 0.862

LRboth
mix 0.796 (+1.3%) 0.783 0.790 0.786 0.861

Before NB bow
mean 0.546 (+0.3%) 0.512 0.945 0.665 0.565

RFbow 0.778 (0.0%) 0.748 0.758 0.753 0.843

SVMboth
mix 0.526 (+0.7%) 0.502 0.470 0.486 0.497

GBDTw2v
max 0.724* (+1.3%) 0.619 0.680 0.648 0.797

LRboth
max 0.702* (+3.2%) 0.607 0.576 0.591 0.732

During NB both
mix 0.524* (+4.1%) 0.247 0.134 0.174 0.419

RFboth
max 0.693* (+7.8%) 0.604 0.523 0.561 0.679

SVMw2v
mix 0.643* (+1.7%) 0.583 0.163 0.255 0.520

GBDTw2v
sum 0.789* (+5.6%) 0.769 0.981 0.862 0.845

LRboth
mix 0.787* (+6.7%) 0.773 0.968 0.859 0.817

After NB both
mean 0.698 (0.0%) 0.699 0.968 0.811 0.559

RFw2v
sum 0.735* (+4.4%) 0.747 0.916 0.823 0.754

SVMw2v
mix 0.667* (+1.5%) 0.671 0.990 0.800 0.549
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Table 16: Complement to Table 7 on generalization ability of the various classifiers: models trained on VFes-

tival are tested on Creamsfields and vice versa. The * indicates statistical significant differences compared

to the best classifiers using only BoW features (McNemar’s test with 95% confidence interval).

Training/Test VFestival/Creamfields

Task Model Accuracy Precision Recall F1 AuC

GBDTbow 0.824 (0.0%) 0.844 0.779 0.810 0.912

LRw2v
mix 0.865* (+1.3%) 0.867 0.851 0.859 0.920

Before NBbow 0.570 (0.0%) 0.529 0.991 0.690 0.586

RF bow 0.808 (0.0%) 0.876 0.667 0.757 0.886

SVMboth
mix 0.546 (+0.4%) 0.541 0.387 0.451 0.486

GBDTboth
max 0.743* (+3.2%) 0.810 0.450 0.579 0.796

LRboth
sum 0.741* (+9.2%) 0.802 0.450 0.577 0.803

During NBboth
sum 0.370 (+0.3%) 0.377 0.933 0.537 0.468

RFbow 0.678 (0.0%) 0.686 0.328 0.444 0.677

SVMw2v
sum 0.593* (+5.7%) 0.370 0.056 0.097 0.507

GBDTboth
mean 0.807* (+3.7%) 0.844 0.884 0.864 0.863

LRbow 0.787 (0.0%) 0.862 0.824 0.843 0.857

After NBbow 0.709 (+0.2%) 0.717 0.959 0.820 0.550

RF w2v
sum 0.726* (+3.7%) 0.818 0.777 0.797 0.757

SVMbow 0.689 (0.0%) 0.699 0.969 0.812 0.582
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Table 17: Complement to Table 8: robustness of the GBDT, LR and RF classifiers exploiting NFV features.

Models trained on Creamsfields are tested on VFestival. The * indicates statistically significant improve-

ments with respect to the best accuracy figures reported in Table 15 (McNemar’s test with 95% of confidence

interval). Results of NB and SVM classifiers are not reported since they do not improve by using the NFV

features.

Train/Test Creamfields/VFestival

Task Modelaggv,nfv(top) Accuracy Precision Recall F1 AuC

GBDTw2v
mix,mean(3) 0.793 (+0.4%) 0.772 0.804 0.787 0.867

Before LRboth
max,sum(3) 0.800 (+0.4%) 0.787 0.795 0.791 0.861

RFbow 0.763 (0.00%) 0.752 0.749 0.751 0.831

GBDTw2v
max,max(1) 0.746* (+2.2%) 0.646 0.709 0.676 0.817

During LRboth
max,max(1) 0.707 (+0.5%) 0.612 0.587 0.599 0.732

RFboth
max,sum(1) 0.713 (+2.0%) 0.647 0.512 0.571 0.733

GBDTboth
sum,sum(5) 0.811* (+2.2%) 0.792 0.974 0.874 0.872

After LRboth
mix,max(1) 0.811 (+2.4%) 0.789 0.981 0.874 0.866

RFboth
sum,sum(1) 0.759 (+2.4%) 0.783 0.887 0.832 0.794

Table 18: Complement to Table 8: robustness of the GBDT, LR and RF classifiers exploiting NFV features.

Models trained on VFestival are tested on Creamsfields. The * indicates statistically significant improve-

ments with respect to the best accuracy figures reported in Table 16 (McNemar’s test with 95% of confidence

interval). Results of NB and SVM classifiers are not reported since they do not improve by using the NFV

features.

Train/Test Creamfields/VFestival

Task Modelaggv,nfv(top) Accuracy Precision Recall F1-Score AuC

GBDTw2v
sum,sum(1) 0.861 (+2.6%) 0.891 0.811 0.849 0.917

Before LRboth
max,sum(3) 0.872* (+0.7%) 0.860 0.860 0.860 0.915

RFw2v
none,mix(1) 0.833 (+2.4%) 0.919 0.716 0.805 0.921

GBDTboth
mean,mix(1) 0.778* (+3.5%) 0.792 0.550 0.649 0.828

During LRboth
sum,max(1) 0.757* (+1.6%) 0.758 0.556 0.641 0.797

RFw2v
mix,max(1) 0.702 (+2.8%) 0.717 0.394 0.509 0.725

GBDTboth
sum,mean(5) 0.817* (+1.0%) 0.840 0.903 0.870 0.839

After LRw2v
mean,sum(3) 0.811* (+2.4%) 0.847 0.868 0.858 0.855

RFboth
sum,mean(5) 0.765* (+7.6%) 0.771 0.940 0.847 0.788
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