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Abstract

Existing graph- and hypergraph-based algorithms for document
summarization represent the sentences of a corpus as the nodes of a
graph or a hypergraph in which the edges represent relationships of
lexical similarities between sentences. Each sentence of the corpus is
then scored individually, using popular node ranking algorithms, and
a summary is produced by extracting highly scored sentences. This
approach fails to select a subset of jointly relevant sentences and it
may produce redundant summaries that are missing important top-
ics of the corpus. To alleviate this issue, a new hypergraph-based
summarizer is proposed in this paper, in which each node is a sen-
tence and each hyperedge is a theme, namely a group of sentences
sharing a topic. Themes are weighted in terms of their prominence in
the corpus and their relevance to a user-defined query. It is further
shown that the problem of identifying a subset of sentences covering
the relevant themes of the corpus is equivalent to that of finding a
hypergraph transversal in our theme-based hypergraph. Two exten-
sions of the notion of hypergraph transversal are proposed for the
purpose of summarization, and polynomial time algorithms building
on the theory of submodular functions are proposed for solving the
associated discrete optimization problems. The worst-case time com-
plexity of the proposed algorithms is squared in the number of terms,
which makes it cheaper than the existing hypergraph-based methods.
A thorough comparative analysis with related models on DUC bench-
mark datasets demonstrates the effectiveness of our approach, which
outperforms existing graph- or hypergraph-based methods by at least
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1 Introduction

The development of automatic tools for the summarization of large corpora of documents
has attracted a widespread interest in recent years. With fields of application ranging from
medical sciences to finance and legal science, these summarization systems considerably
reduce the time required for knowledge acquisition and decision making, by identifying
and formatting the relevant information from a collection of documents. Since most
applications involve large corpora rather than single documents, summarization systems
developed recently are meant to produce summaries of multiple documents. Similarly,
the interest has shifted from generic towards query-oriented summarization, in which a
query expresses the user’s needs. Moreover, existing summarizers are generally extractive,
namely they produce summaries by extracting relevant sentences from the original corpus.

Among the existing extractive approaches for text summarization, graph-based meth-
ods are considered very effective due to their ability to capture the global patterns of
connection between the sentences of the corpus. These systems generally define a graph
in which the nodes are the sentences and the edges denote relationships of lexical similari-
ties between the sentences. The sentences are then scored using graph ranking algorithms
such as the PageRank [1] or HITS |[2] algorithms, which can also be adapted for the pur-
pose of query-oriented summarization [3]. A key step of graph-based summarizers is the
way the graph is constructed, since it has a strong impact on the sentence scores. As
pointed out in [4], a critical issue of traditional graph-based summarizers is their inability
to capture group relationships among sentences since each edge of a graph only connects
a pair of nodes.

Following the idea that each topic of a corpus connects a group of multiple sen-
tences covering that topic, hypergraph models were proposed in [4] and [5], in which the
hyperedges represent similarity relationships among groups of sentences. These group
relationships are formed by detecting clusters of lexically similar sentences we refer to
as themes or theme-based hyperedges. Fach theme is believed to cover a specific topic
of the corpus. However, since the models of [4] and [5] define the themes as groups of
lexically similar sentences, the underlying topics are not explicitly discovered. Moreover,
their themes do not overlap which contradicts the fact that each sentence carries multiple
information and may thus belong to multiple themes, as can be seen from the following
example of sentence.

”Once John finished studying for his school test the next day, he caught up with
his friend at the sport centre and they played soccer together.”

Two topics are covered by the sentence above: the topics of studies and leisure. Hence,
the sentence should belong to multiple themes simultaneously, which is not allowed in
existing hypergraph models of [4] and [5].



The hypergraph model proposed in this paper alleviates these issues by first extracting
topics, i.e. groups of semantically related terms, using a new topic model referred to as
SEMCOT. Then, a theme is associated to each topic, such that each theme is defined a
the group of sentences covering the associated topic. Finally, a hypergraph is formed with
sentences as nodes, themes as hyperedges and hyperedge weights reflecting the prominence
of each theme and its relevance to the query. In such a way, our model alleviates the
weaknesses of existing hypergraph models since each theme-based hyperedge is associated
to a specific topic and each sentence may belong to multiple themes.

Furthermore, a common drawback of existing graph- and hypergraph-based summa-
rizers is that they select sentences based on the computation of an individual relevance
score for each sentence. This approach fails to capture the information jointly carried
by the sentences which results in redundant summaries missing important topics of the
corpus. To alleviate this issue, we propose a new approach of sentence selection using
our theme-based hypergraph. A minimal hypergraph transversal is the smallest subset of
nodes covering all hyperedges of a hypergraph [6]. The concept of hypergraph transver-
sal is used in computational biology [7] and data mining [6] for identifying a subset of
relevant agents in a hypergraph. In the context of our theme-based hypergraph, a hyper-
graph transversal can be viewed as the smallest subset of sentences covering all themes of
the corpus. We extend the notion of transversal to take the theme weights into account
and we propose two extensions called minimal soft hypergraph transversal and mazimal
budgeted hypergraph transversal. The former corresponds to finding a subset of sentences
of minimal aggregated length and achieving a target coverage of the topics of the corpus
(in a sense that will be clarified). The latter seeks a subset of sentences maximizing the
total weight of covered hyperedges while not exceeding a target summary length. As the
associated discrete optimization problems are NP-hard, we propose two approximation al-
gorithms building on the theory of submodular functions. Our transversal-based approach
for sentence selection alleviates the drawback of methods of individual sentence scoring,
since it selects a set of sentences that are jointly covering a maximal number of relevant
themes and produces informative and non-redundant summaries. As demonstrated in
the paper, the time complexity of the method is equivalent to that of early graph-based
summarization systems such as LexRank [1], which makes it more efficient than existing
hypergraph-based summarizers [4,/5]. The scalability of summarization algorithms is es-
sential, especially in applications involving large corpora such as the summarization of
news reports [8] or the summarization of legal texts [9].

The method of |10] proposes to select sentences by using a maximum coverage ap-
proach, which shares some similarities with our model. However, they attempt to select
a subset of sentences maximizing the number of relevant terms covered by the sentences.
Hence, they fail to capture the topical relationships among sentences, which are, in con-
trast, included in our theme-based hypergraph.

A thorough comparative analysis with state-of-the-art summarization systems is in-
cluded in the paper. Our model is shown to outperform other models on a benchmark
dataset produced by the Document Understanding Conference. The main contributions
of this paper are (1) a new topic model extracting groups of semantically related terms
based on patterns of term co-occurrences, (2) a natural hypergraph model representing
nodes as sentences and each hyperedge as a theme, namely a group of sentences sharing
a topic, and (3) a new sentence selection approach based on hypergraph transversals for
the extraction of a subset of jointly relevant sentences.



The structure of the paper is as follows. In section [2] we present work related to our
method. In section [3] we present an overview of our system which is described in further
details in section [l Then, in section [5} we present experimental results. Finally, section
[6] presents a discussion and concluding remarks.

2 Background and related work

While early models focused on the task of single document summarization, recent systems
generally produce summaries of corpora of documents [11]. Similarly, the focus has shifted
from generic summarization to the more realistic task of query-oriented summarization,
in which a summary is produced with the essential information contained in a corpus that
is also relevant to a user-defined query [12].

Summarization systems are further divided into two classes, namely abstractive and
extractive models. Extractive summarizers identify relevant sentences in the original
corpus and produce summaries by aggregating these sentences [11]. In contrast, an ab-
stractive summarizer identifies conceptual information in the corpus and reformulates a
summary from scratch |12]. Since abstractive approaches require advanced natural lan-
guage processing, the majority of existing summarization systems consist of extractive
models.

Extractive summarizers differ in the method used to identify relevant sentences, which
leads to a classification of models as either feature-based or graph-based approaches.
Feature-based methods represent the sentences with a set of predefined features such as
the sentence position, the sentence length or the presence of cue phrases [13]. Then, they
train a model to compute relevance scores for the sentences based on their features. Since
feature-based approaches generally require datasets with labelled sentences which are
hard to produce [12], unsupervised graph-based methods have attracted growing interest
in recent years.

Graph-based summarizers represent the sentences of a corpus as the nodes of a graph
with the edges modelling relationships of similarity between the sentences [1]. Then,
graph-based algorithms are applied to identify relevant sentences. The models generally
differ in the type of relationship captured by the graph or in the sentence selection ap-
proach. Most graph-based models define the edges connecting sentences based on the
co-occurrence of terms in pairs of sentences [1,3,/4]. Then, important sentences are iden-
tified either based on node ranking algorithms, or using a global optimization approach.
Methods based on node ranking compute individual relevance scores for the sentences and
build summaries with highly scored sentences. The earliest such summarizer, LexRank [1],
applies the PageRank algorithm to compute sentence scores. Introducing a query bias
in the node ranking algorithm, this method can be adapted for query-oriented summa-
rization as in [3]. A different graph model was proposed in [14], where sentences and key
phrases form the two classes of nodes of a bipartite graph. The sentences and the key
phrases are then scored simultaneously by applying a mutual reinforcement algorithm. An
extended bipartite graph ranking algorithm is also proposed in [2] in which the sentences
represent one class of nodes and clusters of similar sentences represent the other class.
The hubs and authorities algorithm is then applied to compute sentence scores. Adding
terms as a third class of nodes, |15] propose to score terms, sentences and sentence clusters
simultaneously, based on a mutual reinforcement algorithm which propagates the scores



across the three node classes. A common drawback of the approaches based on node
ranking is that they compute individual relevance scores for the sentences and they fail
to model the information jointly carried by the sentences, which may result in redundant
summaries. Hence, global optimization approaches were proposed to select a set of jointly
relevant and non-redundant sentences as in [16] and [17]. For instance, [18] propose a
greedy algorithm to find a dominating set of nodes in the sentence graph. A summary
is then formed with the corresponding set of sentences. Similarly, |[16] extract a set of
sentences with a maximal similarity with the entire corpus and a minimal pairwise lexical
similarity, which is modelled as a multi-objective optimization problem. In contrast, |10]
propose a coverage approach in which a set of sentences maximizing the number of distinct
relevant terms is selected. Finally, |17] propose a two step approach in which individual
sentence relevance scores are computed first. Then a set of sentences with a maximal
total relevance and a minimal joint redundancy is selected. All three methods attempt
to solve NP-hard problems. Hence, they propose approximation algorithms based on the
theory of submodular functions.

Going beyond pairwise lexical similarities between sentences and relations based on
the co-occurrence of terms, hypergraph models were proposed, in which nodes are sen-
tences and hyperedges model group relationships between sentences [4]. The hyperedges
of the hypergraph capture topical relationships among groups of sentences. Existing
hypergraph-based systems [4,/5] combine pairwise lexical similarities and clusters of lex-
ically similar sentences to form the hyperedges of the hypergraph. Hypergraph ranking
algorithms are then applied to identify important and query-relevant sentences. However,
they do not provide any interpretation for the clusters of sentences discovered by their
method. Moreover, these clusters do not overlap, which is incoherent with the fact that
each sentence carries multiple information and hence belongs to multiple semantic groups
of sentences. In contrast, each hyperedge in our proposed hypergraph connects sentences
covering the same topic, and these hyperedges do overlap.

A minimal hypergraph transversal is a subset of the nodes of hypergraph of minimum
cardinality and such that each hyperedge of the hypergraph is incident to at least one
node in the subset [6]. Theoretically equivalent to the minimum hitting set problem, the
problem of finding a minimum hypergraph transversal can be viewed as finding a subset
of representative nodes covering the essential information carried by each hyperedge.
Hence, hypergraph transversals find applications in various areas such as computational
biology, boolean algebra and data mining [19]. Extensions of hypergraph transversals
to include hyperedge and node weights were also proposed in [20]. Since the associated
optimization problems are generally NP-hard, various approximation algorithms were
proposed, including greedy algorithms [21] and LP relaxations [22]. The problem of
finding a hypergraph transversal is conceptually similar to that of finding a summarizing
subset of a set of objects modelled as a hypergraph. However, to the best of our knowledge,
there was no attempt to use hypergraph transversals for text summarization in the past.
Since it seeks a set of jointly relevant sentences, our method shares some similarities
with existing graph-based models that apply global optimization strategies for sentence
selection |10l16}/17]. However, our hypergraph better captures topical relationships among
sentences than the simple graphs based on lexical similarities between sentences.



3 Problem statement and system overview

Given a corpus of Ny documents and a user-defined query ¢, we intend to produce a
summary of the documents with the information that is considered both central in the
corpus and relevant to the query. Since we limit ourselves to the production of extracts,
our task is to extract a set .S of relevant sentences from the corpus and to aggregate them
to build a summary. Let Ng be the total number of sentences in the corpus. We further
split the task into two subtasks:

e target summary length: the summary must cover the largest amount of relevant
information while not exceeding a target length L, namely > . ¢ L; < L, where
{Li,1 <i < N} represent the lengths of the sentences,

e target coverage: the summary must have a minimum length while achieving a
target coverage of the information expressed by a parameter v € [0, 1] expressing
the fraction of the information present in the corpus that must be covered by the
summary (in a sense that will be clarified).

The sentences in the set S are then aggregated to form the final summary. Figure
summarizes the steps of our proposed method. After some preprocessing steps, the
themes are detected based on a topic detection algorithm which tags each sentence with
multiple topics. A theme-based hypergraph is then built with the weight of each theme
reflecting both its importance in the corpus and its similarity with the query. Finally,
depending on the task at hand, one of two types of hypergraph transversal is generated.
If the summary must not exceed a target summary length, then a mazimal budgeted
hypergraph transversal is generated. If the summary must achieve a target coverage, then
a minimal soft hypergraph transversal is generated. Finally the sentences corresponding
to the generated transversal are selected for the summary.
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Figure 1: Algorithm Chart.



4 Summarization based on hypergraph transver-
sals

In this section, we present the key steps of our algorithm: after some standard pre-
processing steps, topics of semantically related terms are detected from which themes
grouping topically similar sentences are extracted. A hypergraph is then formed based
on the sentence themes and sentences are selected based on the detection of a hypergraph
transversal.

4.1 Preprocessing and similarity computation

As the majority of extractive summarization approaches, our model is based on the rep-
resentation of sentences as vectors. To reduce the size of the vocabulary, we remove
stopwords that do not contribute to the meaning of sentences such as "the” or "a”, using
a publicly available list of 667 stopwords B The words are also stemmed using Porter
Stemmer [23]. Let N; be the resulting number of distinct terms after these two prepro-

cessing steps are performed. We define the inverse sentence frequency isf(t) |24] as

isf(t) = log (%) (1)

where N! is the number of sentences containing term ¢. This weighting scheme yields
higher weights for rare terms which are assumed to contribute more to the semantics of
sentences [24]. Sentence i is then represented by a vector s; = [tfisf(i, 1), ..., tfisf(i, N})]
where

tfist(i, t) = tf(4, t)isf(¢) (2)

and tf(i,t) is the frequency of term ¢ in sentence 4. Finally, to denote the similarity
between two text fragments a and b (which can be sentences, groups of sentences or
the query), we use the cosine similarity between the tfisf representations of a and b, as
suggested in [3]:

>, thisf(a, t)tfisf(b, t)

V2o, thist(a, £)2/Y, thisf(b, t)?
where tfisf(a,t) is also defined as the frequency of term ¢ in fragment a multiplied by

isf(t). This similarity measure will be used in section to compute the similarity with
the query q.

sim(a,b) =

(3)

4.2 Sentence theme detection based on topic tagging

As mentioned in section [I} our hypergraph model is based on the detection of themes.
A theme is defined as a group of sentences covering the same topic. Hence, our theme
detection algorithm is based on a 3-step approach: the extraction of topics, the process
of tagging each sentence with multiple topics and the detection of themes based on topic
tags.

!Stopword Lists by Ranks NL Webmaster Tools, https://www.ranks.nl/stopwords,
accessed on 15 November 2017



A topic is viewed as a set of semantically similar terms, namely terms that refer to
the same subject or the same piece of information. In the context of a specific corpus of
related documents, a topic can be defined as a set of terms that are likely to occur close
to each other in a document [25]. In order to extract topics, we make use of a clustering
approach based on the definition of a semantic dissimilarity between terms. For terms u
and v, we first define the joint isf weight isf(u, v) as

isf(u, v) = log ( Jévu) (4)

where NV is the number of sentences in which both terms u and v occur together. Then,

the semantic dissimilarity dgem (u,v) between the two terms is defined as

isf(u,v) — min(isf(u), isf(v)) (5)
max (isf(uw), isf(v))

dsem(uv ’U) =

which can be viewed as a special case of the so-called google distance which was already
successfully applied to learn semantic similarities between terms on webpages [26]. Us-
ing concepts from information theory, isf(u) represents the number of bits required to
express the occurrence of term u in a sentence using an optimally efficient code. Then,
isf(u, v) —isf(u) can be viewed as the number of bits of information in v relative to u. As-
suming isf(v) > isf(u), dsem(u, v) can be viewed as the improvement obtained when com-
pressing v using a previously compressed code for v and compressing v from scratch [27].
More details can be found in [26]. In practice, two terms u and v with a low value of
dsem (u,v) are expected to consistently occur together in the same context, and they are
thus considered to be semantically related in the context of the corpus.

Based on the semantic dissimilarity measure between terms, we define a topic as a
group of terms with a high semantic density, namely a group of terms such that each term
of the group is semantically related to a sufficiently high number of terms in the group.
The DBSCAN algorithm is a method of density-based clustering that achieves this result
by iteratively growing cohesive groups of agents, with the condition that each member
of a group should contain a sufficient number of other members in an e-neighborhood
around it [28]. Using the semantic dissimilarity as a distance measure, DBSCAN extracts
groups of semantically related terms which are considered as topics. The advantages
offered by DBSCAN over other clustering algorithms are threefold. First, DBSCAN is
capable of detecting the number of clusters automatically. Second, although the semantic
dissimilarity is symmetric and nonnegative, it does not satisfy the triangle inequality.
This prevents the use of various clustering algorithms such as the agglomerative clustering
with complete linkage [29]. However, DBSCAN does not explicitly require the triangle
inequality to be satisfied. Finally, it is able to detect noisy samples in low density region,
that do not belong to any other cluster.

Given a set of pairwise dissimilarity measures, a density threshold e and a mini-
mum neighborhood size m, DBSCAN returns a number K of clusters and a set of labels
{c(?) € {-1,1,.., K} : 1 < i < N;} such that ¢(i) = —1 if term ¢ is considered a noisy
term. While it is easy to determine a natural value for m, choosing a value for € is not
straightforward. Hence, we adapt DBSCAN algorithm to build our topic model referred to
as Semantic Clustering Of Terms (SEMCOT) algorithm. It iteratively applies DBSCAN
and decreases the parameter ¢ until the size of each cluster does not exceed a predefined



value. Algorithm summarizes the process. Apart from m, the algorithm also takes
parameters ¢y (the initial value of €), M (the maximum number of points allowed in a
cluster) and 8 < 1 (a factor close to 1 by which e is multiplied until all clusters have
sizes lower than M). Experiments on real-world data suggest empirical values of m = 3,
€0 = 0.9, M = 0.1N; and B = 0.95. Additionally, we observe that, among the terms
considered as noisy by DBSCAN, some could be highly infrequent terms with a high isf
value but yet having a strong impact on the meaning of sentences. Hence, we include
them as topics consisting of single terms if their isf value exceeds a threshold p whose
value is determined by cross-validation, as explained in section [f]

Algorithm 4.1: SEMCOT

INPUT: Semantic Dissimilarities {dsem(u,v) : 1 < u,v < Ni},
PARAMETERS: ¢y, M, m, 8 <1, i
OUTPUT: Number K of topics, topic tags {c(i) : 1 <i < N}
€ < €g, minTerms < m, proceed < True
while proceed:

[, K] + DBSCAN (dsem, €, minTerms)

if lg}fang(‘{Z :¢(i) = k}|) < M: proceed + False

else: ¢ «+ (e
for each ¢ s.t. ¢(t) = —1 (noisy terms):
if isf(¢) >
)+ K+1, K+ K+1

Once the topics are obtained based on algorithm [} a theme is associated to each
topic, namely a group of sentences covering the same topic. The sentences are first tagged
with multiple topics based on a scoring function. The score of the [-th topic in the i-th
sentence is given by

o= Z tfisf(7, t) (6)

tie(t)=l

and the sentence is tagged with topic ! whenever o;; > §, in which ¢ is a parameter
whose value is tuned as explained in section [5| (ensuring that each sentence is tagged with
at least one topic). The scores are intentionally not normalized to avoid tagging short
sentences with an excessive number of topics. The [-th theme is then defined as the set

of sentences
Ti={i:0q4>0,1<1< N} (7)

While there exist other summarization models based on the detection of clusters or
groups of similar sentence, the novelty of our theme model is twofold. First, each theme
is easily interpretable as the set of sentences associated to a specific topic. As such,
our themes can be considered as groups of semantically related sentences. Second, it
is clear that the themes discovered by our approach do overlap since a single sentence
may be tagged with multiple topics. To the best of our knowledge, none of the previous
cluster-based summarizers involved overlapping groups of sentences. Our model is thus
more realistic since it better captures the multiplicity of the information covered by each
sentence.



4.3 Sentence hypergraph construction

A hypergraph is a generalization of a graph in which the hyperedges may contain any
number of nodes, as expressed in deﬁnition [4]. Our hypergraph model moreover includes
both hyperedge and node weights.

Definition 1 (Hypergraph). A node- and hyperedge-weighted hypergraph is defined as a
quadruplet H = (V, E, ¢, w) in which V is a set of nodes, E C 2V is a set of hyperedges,
¢ e RLV‘ is a vector of positive node weights and w € R‘fl s a vector of positive hyperedge
weights.

For convenience, we will refer to a hypergraph by its weight vectors ¢ and w, its
hyperedges represented by a set £ C 2V and its incidence lists inc(i) = {e € E : i € e}
for each i € V.

As mentioned in section [I} our system relies on the definition of a theme-based hy-
pergraph which models groups of semantically related sentences as hyperedges. Hence,
compared to traditional graph-based summarizers, the hypergraph is able to capture more
complex group relationships between sentences instead of being restricted to pairwise re-
lationships.

In our sentence-based hypergraph, the sentences are the nodes and each theme defines
a hyperedge connecting the associated sentences. The weight ¢; of node ¢ is the length
of the i-th sentence, namely:

V={1,..,Nand ¢; = Li, 1<i<N,
E:{el,...7ex}§2v (8)
ege="T ie e €inc(i) < ieT

Finally, the weights of the hyperedges are computed based on the centrality of the
associated theme and its similarity with the query:

wy = (1 — N)sim(7Ty, D) + Asim(77}, q) 9)

where A € [0,1] is a parameter and D represents the entire corpus. sim(7;, D) denotes
the similarity of the set of sentences in theme 7T; with the entire corpus (using the tfisf-
based similarity of equation [3]) which measures the centrality of the theme in the corpus.
sim(77}, q) refers to the similarity of the theme with the user-defined query gq.

4.4 Detection of hypergraph transversals for text sum-
marization

The sentences to be included in the query-oriented summary should contain the essential
information in the corpus, they should be relevant to the query and, whenever required,
they should either not exceed a target length or jointly achieve a target coverage (as
mentioned in section . Existing systems of graph-based summarization generally solve
the problem by ranking sentences in terms of their individual relevance [1,|3,/4]. Then,
they extract a set of sentences with a maximal total relevance and pairwise similarities
not exceeding a predefined threshold. However, we argue that the joint relevance of a
group of sentences is not reflected by the individual relevance of each sentence. And
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limiting the redundancy of selected sentences as done in [4] does not guarantee that the
sentences jointly cover the relevant themes of the corpus.

Considering each topic as a distinct piece of information in the corpus, an alternative
approach is to select the smallest subset of sentences covering each of the topics. The
latter condition can be reformulated as ensuring that each theme has at least one of its
sentences appearing in the summary. Using our sentence hypergraph representation, this
corresponds to the detection of a minimal hypergraph transversal as defined below [6].

Definition 2. Given an unweighted hypergraph H = (V,E), a minimal hypergraph
transversal is a subset S* C V' of nodes satisfying

S* = argmin|S]
scv

s.t. Jinc(i) = E
€S

(10)

where inc(i) = {e : i € e} denotes the set of hyperedges incident to node i.

Figure 2] shows an example of hypergraph and a minimal hypergraph transversal of
it (star-shaped nodes). In this case, since the nodes and the hyperedges are unweighted,
the minimal transversal is not unique.

Hyperedge 1

* =nodes in the transversal

@ = other nodes

Hyperedge 2

Hyperedge 3

Hyperedge 6

%

Hyperedge 5

Figure 2: Example of hypergraph and minimal hypergraph transversal.

The problem of finding a minimal transversal in a hypergraph is NP-hard [30]. How-
ever, greedy algorithms or LP relaxations provide good approximate solutions in prac-
tice [22]. As intended, the definition of transversal includes the notion of joint coverage
of the themes by the sentences. However, it neglects node and hyperedge weights and it
is unable to identify query-relevant themes. Since both the sentence lengths and the rel-
evance of themes should be taken into account in the summary generation, we introduce
two extensions of transversal, namely the minimal soft hypergraph transversal and the
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mazimal budgeted hypergraph transversal. A minimal soft transversal of a hypergraph is
obtained by minimizing the total weights of selected nodes while ensuring that the total
weight of covered hyperedges exceeds a given threshold.

Definition 3 (minimal soft hypergraph transversal). Given a node and hyperedge weighted
hypergraph H = (V,E,¢,w) and a parameter v € [0,1], a minimal soft hypergraph
transversal is a subset S* C 'V of nodes satisfying

S* = argmind ¢;
SCV ieS (11)
st > we =AW
ecinc(S)

in which inc(S) = | inc(i) and W =3 we.
icS

The extraction of a minimal soft hypergraph transversal of the sentence hypergraph
produces a summary of minimal length achieving a target coverage expressed by parameter
v € [0,1]. As mentioned in section applications of text summarization may also involve
a hard constraint on the total summary length L. For that purpose, we introduce the
notion of mazimal budgeted hypergraph transversal which maximizes the volume of covered
hyperedges while not exceeding the target length.

Definition 4 (maximal budgeted hypergraph transversal). Given a node and hyperedge
weighted hypergraph H = (V, E, ¢, w) and a parameter L > 0, a maximal budgeted hyper-
graph transversal is a subset S* CV of nodes satisfying

S* = argmaz Y, we
SCV  e€inc(S) (12)

€S
We refer to the function > w, as the hyperedge coverage of set S. We observe
e€inc(S)
that both weighted transversals defined above include the notion of joint coverage of the
hyperedges by the selected nodes. As a result and from the definition of hyperedge weights
(equation E[), the resulting summary covers themes that are both central in the corpus
and relevant to the query. This approach also implies that the resulting summary does
not contain redundant sentences covering the exact same themes. As a result selected
sentences are expected to cover different themes and to be semantically diverse. Both the
problems of finding a minimal soft transversal or finding a maximal budgeted transversal
are NP-hard as proved by theorem [}

Theorem 1 (NP-hardness). The problems of finding a minimal soft hypergraph transver-
sal or a mazimal budgeted hypergraph transversal in a weighted hypergraph are NP-hard.

Proof. Regarding the minimal soft hypergraph transversal problem, with parameter v =
1 and unit node weights, the problem is equivalent to the classical set cover problem
(definition [2]) which is NP-complete [30]. The maximal budgeted hypergraph transversal
problem can be shown to be equivalent to the maximum coverage problem with knapsack
constraint which was shown to be NP-complete in [30]. O
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Since both problems are NP-hard, we formulate polynomial time algorithms to find
approximate solutions to them and we provide the associated approximation factors. The
algorithms build on the submodularity and the non-decreasing properties of the hyperedge
coverage function, which are defined below.

Definition 5 (Submodular and non-decreasing set functions). Given a finite set A, a
function f : 24 — R is monotonically non-decreasing if ¥S C A and Yu € A\ S,

f(SU{u}) = f(5) (13)
and it is submodular if VS, T with S CT C A, and Vu € A\ T,
F(Tufu}) = £(T) < f(SU{u}) — f(S). (14)

Based on definition [b] we prove in theorem [2] that the hyperedge coverage function
is submodular and monotonically non-decreasing, which provides the basis of our algo-
rithms.

Theorem 2. Given a hypergraph H = (V, E, ¢, w), the hyperedge coverage function f :
2V = R defined by

1s)= 3 w (15)

e€inc(S)

is submodular and monotonically non-decreasing.

Proof. The hyperege coverage function f is clearly monotonically non-decreasing and it
is submodular since VS CT C V,and s € V\ T,

(f(SU{s}) = £(9)) = (F(TU{s}) = F(T))
= Z We — Z ’U);| - [ Z We — Z we‘|

e€inc(SU{s}) e€inc(S) e€inc(TU{s}) e€inc(T)
(16)

Z we‘| - [ Z We
ecinc({s})\inc(S) ecinc({s})\inc(T")
= > we >0
e€(inc(T)Ninc({s}))\inc(S)

where inc(R) = {e:eNS # 0} for R C V. The last equality follows from inc(S) C inc(T)
and inc({s}) \ inc(T) C inc({s}) \ inc(S). O

Various classes of NP-hard problems involving a submodular and non-decreasing func-
tion can be solved approximately by polynomial time algorithms with provable approx-
imation factors. Algorithms [£.2] and [£.3] are our core methods for the detection of ap-
proximations of maximal budgeted hypergraph transversals and minimal soft hypergraph
transversals, respectively. In each case, a transversal is found and the summary is formed
by extracting and aggregating the associated sentences. Algorithm is based on an
adaptation of an algorithm presented in |31] for the maximization of submodular func-
tions under a Knaspack constraint. It is our primary transversal-based summarization
model, and we refer to it as the method of Transversal Summarization with Target Length
(TL-TranSum algorithm). Algorithm is an application of the algorithm presented
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in [21] for solving the submodular set covering problem. We refer to it as Transversal
Summarization with Target Coverage (TC-TranSum algorithm). Both algorithms pro-
duce transversals by iteratively appending the node inducing the largest increase in the
total weight of the covered hyperedges relative to the node weight. While long sentences
are expected to cover more themes and induce a larger increase in the total weight of
covered hyperedges, the division by the node weights (i.e. the sentence lengths) balances
this tendency and allows the inclusion of short sentences as well. In contrast, the methods
of sentence selection based on a maximal relevance and a minimal redundancy such as,
for instance, the maximal marginal relevance approach of [32], tend to favor the selec-
tion of long sentences only. The main difference between algorithms and is the
stopping criterion: in algorithm [£.3] the approximate minimal soft transversal is obtained
whenever the targeted hyperedge coverage is reached while algorithm appends a given
sentence to the approximate maximal budgeted transversal only if its addition does not
make the summary length exceed the target length L.

Algorithm 4.2: Transversal Summarization with Target Length (TL-
TranSum)

INPUT: Sentence Hypergraph H = (V| E, ¢, w), target length L.

OUTPUT: Set S of sentences to be included in the summary.

for each i € {1,..., Ng}: r; + q% > we

e€inc(z)

R+0,Q+V, f«0
while Q # 0:

s* < argmax r;, Q < Q \ {s*}

1€
if ¢+ f < Lt
R« RU{s*), fe f+1
S ow

e€inc(s*)Ninc(i)

for each i € {1,..., Ng}: r; < 1r; —

i
Let G+ {{i}: i e V,¢; < L}
S+ argmax > we
Se{Q}UG ecinc(S)
return S

14



Algorithm 4.3: Transversal Summarization with Target Coverage
(TC-TranSum)

INPUT: Sentence Hypergraph H = (V, E, ¢, w), parameter 7 € [0, 1].
OUTPUT: Set S of sentences to be included in the summary.
for each i € {1,..., Ng}: r; + ¢% > we
e€inc(i)

S 0,Q+V, W+ 0, W<+ 3, w,
while Q # ) and W < AW

s* < argmax r;

1€Q
S+ SuU{s*}, W W + ¢gurse

S

e€inc(s*)Ninc(i)

for each i € {1,..., Ny}: r; 1, — 5

return S

We next provide theoretical guarantees that support the formulation of algorithms
[42) and [£.3] as approximation algorithms for our hypergraph transversals. Theorem [3]
provides a constant approximation factor for the output of algorithm [.2] for the detection
of minimal soft hypergraph transversals. It builds on the submodularity and the non-
decreasing property of the hyperedge coverage function.

Theorem 3. Let ST be the summary produced by our TL-TranSum algom'thm@ and
S* be a mazimal budgeted transversal associated to the sentence hypergraph, then

> we> < (l—i) > we (17)

e€inc(ST) e€inc(S*)

Proof. Since the hyperedge coverage function is submodular and monotonically non-
decreasing, the extraction of a maximal budgeted transversal is a problem of maximization
of a submodular and monotonically non-decreasing function under a Knapsack constraint,
namely

maxf ) s.t. Z¢’ <L (18)

€S
where f(S) = > w.. Hence, by theorem 2 in [31], the algorithm forming a transversal
e€inc(S)

S by iteratively growing a set S; of sentences according to

Sit1 =5 U {argmax { f(5Y {j) — f(S)Nbs + Z¢i < L}} (19)

seV\S i€s,

produces a final summary S satisfying

187 = 15705 (1 7). (20)

e

As algorithm [£:2] implements the iterations expressed by equation [I9] it achieves a con-
stant approximation factor of % (1 — é) O
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Similarly, theorem [4] provides a data-dependent approximation factor for the output
of algorithm [43] for the detection of maximal budgeted hypergraph transversals. It also
builds on the submodularity and the non-decreasing property of the hyperedge coverage
function.

Theorem 4. Let ST be the summary produced by our TC-TranSum algorithm@ and
let S* be a minimal soft hypergraph transversal, then

e S FE e (21)

We
€8s € e€inc(ST-1)

where Sy, ..., St represent the consecutive sets of sentences produced by algorithm[{.3
Proof. Consider the function g(S) = min(yW, > w,). Then the problem of finding a

e€inc(S)
minimal soft hypergraph transversal can be reformulated as

S* = argminy ¢, s.t. g(S) > g(V) (22)
scv sES

As g is submodular and monotonically non-decreasing, theorem 1 in [21] shows that the
summary S¢ produced by iteratively growing a set S; of sentences such that

{f(S U {s}) - £(9) }}

(23)

St41 =5 U {argmax 5

seV\S

produces a summary S¢ satisfying
9(V) ))
i < i | 1+1o ( . 24
PRI (1410 (yroy 257 (24

which can be rewritten as

w
Ydi< S g | 1+1log ! - (25)
i€sG ies* W— > We
e€inc(ST-1)

As algorithm implements the iterations expressed by equation the summary S°
produced by our algorithm satisfies the same inequality. O

In practice, the result of theorem [4 suggests that the quality of the output depends on
the relative increase in the hyperedge coverage induced by the last sentence to be appended
to the summary. In particular, if each sentence that is appended to the summary in the
interations of algorithm [4.3] covers a sufficient number of new themes that are not covered
already by the summary, the approximation factor is low.
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4.5 Complexity analysis

We analyse the worst case time complexity of each step of our method. The time complex-
ity of DBSCAN algorithm [28] is O(N;log(N;)). Hence, the theme detection algorithm
takes O(N.Nylog(N;)) steps, where N, is the number of iterations of algorithm
which is generally low compared to the number of terms. The time complexity for the
hypergraph construction is O(K (Ng + N;)) where K is the number of topics, or O(N?)
if Nt > N,. The time complexity of the sentence selection algorithms [.2] and [4.3] are
bounded by O(NsKC™**L™2¥) where C™?* is the number of sentences in the largest
theme and L™2* is the length of the longest sentences. Assuming Ny is larger than N,
the overall time complexity of the method is of O(N?) steps in the worst case. Hence
the method is essentially equivalent to early graph-based models for text summarization
in terms of computational burden, such as the LexRank-based systems [1,/3] or greedy
approaches based on global optimization [16H18]. However, it is computationnally more
efficient than traditional hypergraph-based summarizers such as the one in [5] which in-
volves a Markov Chain Monte Carlo inference for its topic model or the one in [4] which
is based on an iterative computation of scores involving costly matrix multiplications at
each step.

5 Experiments and evaluation

We present experimental results obtained with a Python implementation of algorithms
42 and [£3] on a standard computer with a 2.5GH z processor and a 8GB memory.

5.1 Dataset and metrics for evaluation

We test our algorithms on DUC2005 [33], DUC2006 |34] and DUC2007 |35] datasets which
were produced by the Document Understanding Conference (DUC) and are widely used
as benchmark datasets for the evaluation of query-oriented summarizers. The datasets
consist respectively of 50, 50 and 45 corpora, each consisting of 25 documents of approx-
imately 1000 words, on average. A query is associated to each corpus. For evaluation
purposes, each corpus is associated with a set of query-relevant summaries written by
humans called reference summaries. In each of our experiments, a candidate summary is
produced for each corpus by one of our algorithms and it is compared with the reference
summaries using the metrics described below. Moreover, in experiments involving algo-
rithm the target summary length is set to 250 words as required in DUC evalutions.

In order to evaluate the similarity of a candidate summary with a set of reference sum-
maries, we make use of the ROUGE toolkit of [36], and more specifically of ROUGE-2 and
ROUGE-SU4 metrics, which were adopted by DUC for summary evaluation. ROUGE-2
measures the number of bigrams found both in the candidate summary and the set of
reference summaries. ROUGE-SU4 extends this approach by counting the number of
unigrams and the number of 4-skip-bigrams appearing in the candidate and the reference
summaries, where a 4-skip-bigram is a pair of words that are separated by no more than
4 words in a text. We refer to ROUGE toolkit [36] for more details about the evaluation
metrics. ROUGE-2 and ROUGE-SU4 metrics are computed following the same setting as
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in DUC evaluations, namely with word stemming and jackknife resampling but without
stopword removal.

5.2 Parameter tuning

Besides the parameters of SEMCOT algorithm for which empirical values were given in
section there are three parameters of our system that need to be tuned: parameters p
(threshold on isf value to include a noisy term as a single topic in SEMCOT), § (threshold
on the topic score for tagging a sentence with a given topic) and A (balance between the
query relevance and the centrality in hyperedge weights). The values of all three param-
eters are determined by an alternating maximization strategy of ROUGE-SU4 score in
which the values of two parameters are fixed and the value of the third parameter is tuned
to maximize the ROUGE-SU4 score produced by algorithm with a target summary
length of 250 words, in an iterative fashion. The ROUGE-SU4 scores are evaluated by
cross-validation using a leave-one-out process on a validation dataset consisting of 70%
of DUC2007 dataset, which yields g = 1.98, § = 0.85 and A = 0.4.

Additionally, we display the evolution of ROUGE-SU4 and ROUGE-2 scores as a
function of 6 and A. For parameter ¢, we observe in graphs and that the quality
of the summary is low for d close to 0 since it encourages our theme detection algorithm
to tag the sentences with irrelevant topics with low associated tfisf values. In contrast,
when § exceeds 0.9, some relevant topics are overlooked and the quality of the summaries
drops severely. Regarding parameter A, we observe in graphs and that A =04
yields the highest score since it combines both the relevance of themes to the query and
their centrality within the corpus for the computation of hyperedge weights. In contrast,
with A = 1, the algorithm focuses on the lexical similarity of themes with the query but
it neglects the prominence of each theme.
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Figure 3: ROUGE-2 and ROUGE-SU4 as a function of § for A = 0.4 and
w = 1.98.
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Figure 4: ROUGE-2 and ROUGE-SU4 as a function of A for 6 = 0.85 and
w=1.98.

5.3 Testing the TC-TranSum algorithm

In order to test our soft transversal-based summarizer, we display the evolution of the
summary length and the ROUGE-SU4 score as a function of parameter v of algorithm
In figure we observe that the summary length grows linearly with the value
of parameter v which confirms that our system does not favor longer sentences for low
values of 7. The ROUGE-SU4 curve of figure has a concave shape, with a low
score when v is close to 0 (due to a poor recall) or when ~ is close to 1 (due to a poor
precision). The overall concave shape of the ROUGE-SU4 curve also demonstrates the
efficiency of our TC-TranSum algorithm: based on our hyperedge weighting scheme and
our hyperedge coverage function, highly relevant sentences inducing a significant increase
in the ROUGE-SU4 score are identified and included first in the summary.

In the subsequent experiments, we focus on TL-TranSum algorithm [I.2] which includes
a target summary length and can thus be compared with other summarization systems
which generally include a length constraint.

5.4 Testing the hypergraph structure

To justify our theme-based hypergraph definition, we test other hypergraph models. We
only change the hyperedge model which determines the kind of relationship between
sentences that is captured by the hypergraph. The sentence selection is performed by
applying algorithm to the resulting hypergraph. We test three alternative hyperedge
models. First a model based on agglomerative clustering instead of SEMCOT: the same
definition of semantic dissimilarity (equation [5)) is used, then topics are detected as clus-
ters of terms obtained by agglomerative clustering with single linkage with the semantic
dissimilarity as a distance measure. The themes are detected and the hypergraph is con-
structed in the same way as in our model. Second, Overlap model defines hyperedges as
overlapping clusters of sentences obtained by applying an algorithm of overlapping cluster
detection [37] and using the cosine distance between tfisf representations of sentences as
a distance metric. Finally, we test a hypergraph model already proposed in HyperSum
system by |4] which combines pairwise hyperedges joining any two sentences having terms
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Figure 5: Evolution of the ROUGE-SU4 score (left) and the summary length
(right) as a function of the coverage parameter v of TC-TranSum algorithm
4.0l

in common and hyperedges formed by non-overlapping clusters of sentences obtained by
DBSCAN algorithm. Table [1] displays the ROUGE-2 and ROUGE-SU4 scores and the
corresponding 95% confidence intervals for each model. We observe that our model out-
performs both HyperSum and Overlap models by at least 4% and 15% of ROUGE-SU4
score, respectively, which confirms that a two-step process extracting consistent topics
first and then defining theme-based hyperedges from topic tags outperforms approaches
based on sentence clustering, even when these clusters do overlap. Our model also out-
performs the Agglomerative model by 10% of ROUGE-SU4 score, due to its ability to
identify noisy terms and to detect the number of topics automatically.

System ROUGE-2 ROUGE-SU4
TL-TranSum 0.12997(0.12548 — 0.13446) 0.17995(0.17612 — 0.18377)
Agglomerative 0.12334(0.11673 — 0.12994 0.16292(0.15302 — 0.17282)

Overlap 0.11831(0.11334 — 0.12328§ 0.15640;0.14762 — 0.16518
HyperSum 0.12317(0.11743 — 0.12892 0.17231(0.16561 — 0.17900

Table 1: ROUGE-2 and ROUGE-SU4 scores for our TL-TranSum system
compared to three other hypergraph models.

5.5 Comparison with related systems

We compare the performance of our TL-TranSum algorithm [I.2] with that of five related
summarization systems. Topic-sensitive LexRank of [3] (TS-LexRank) and HITS algo-
rithms of [2] are early graph-based summarizers. TS-LexRank builds a sentence graph
based on term co-occurrences in sentences, and it applies a query-biased PageRank algo-
rithm for sentence scoring. HITS method additionally extracts clusters of sentences and
it applies the hubs and authorities algorithm for sentence scoring, with the sentences as
authorities and the clusters as hubs. As suggested in [4], in order to extract query relevant
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sentences, only the top 5% of sentences that are most relevant to the query are considered.
HyperSum extends early graph-based summarizers by defining a cluster-based hypergraph
with the sentences as nodes and hyperedges as sentence clusters, as described in section
(.4l The sentences are then scored using an iterative label propagation algorithm over
the hypergraph, starting with the lexical similarity of each sentence with the query as
initial labels. In all three methods, the sentences with highest scores and pairwise lexical
similarity not exceeding a threshold are included in the summary. Finally, we test two
methods that also build on the theory of submodular functions. First, the MaxCover
approach [10] seeks a summary by maximizing the number of distinct relevant terms ap-
pearing in the summary while not exceeding the target summary length (using equation
|§| to compute the term relevance scores). While the objective function of the method
is similar to that of the problem of finding a maximal budgeted hypergraph transversal
(equation of |17], they overlook the semantic similarities between terms which are
captured by our SEMCOT algorithm and our hypergraph model. Similarly, the Mazimal
Relevance Minimal Redundancy (MRMR) first computes relevance scores of sentences as
in equation [0} then it seeks a summary with a maximal total relevance score and a mini-
mal redundancy while not exceeding the target summary length. The problem is solved
by an iterative algorithm building on the submodularity and non-decreasing property of
the objective function.

Table [2 displays the ROUGE-2 and ROUGE-SU4 scores with the corresponding 95%
confidence intervals for all six systems, including our TL-TranSum method. We observe
that our system outperforms other graph and hypergraph-based summarizers involving
the computation of individual sentence scores: LexRank by 6%, HITS by 13% and Hyper-
Sum by 6% of ROUGE-SU4 score; which confirms both the relevance of our theme-based
hypergraph model and the capacity of our transversal-based summarizer to identify jointly
relevant sentences as opposed to methods based on the computation of individual sentence
scores. Moreover, our TL-TranSum method also outperforms other approaches such as
MaxCover (5%) and MRMR. (7%). These methods are also based on a submodular and
non-decreasing function expressing the information coverage of the summary, but they
are limited to lexical similarities between sentences and fail to detect topics and themes
to measure the information coverage of the summary.

System ROUGE-2 ROUGE-SU4
TL-TranSum 0.12997(0.12548 — 0.13446) 0.17995(0.17612 — 0.18377)
TS-LexRank 0.11037(0.10263 — 0.11811 0.16939(0.16233 — 0.17645)

HITS 0.10972(0.10155 — 0.11789 0.15927(0.15251 — 0.16603)
HyperSum 0.11994(0.11298 — 0.12690 0.16993(0.16189 — 0.17797)
MaxCover 0.11985(0.11028 — 0.12943 0.17072(0.16155 — 0.17988

MRMR 0.11840(0.10999 — 0.12681 0.16857(0.16046 — 0.17668

Table 2: Comparison with related graph- and hypergraph-based summariza-
tion systems.
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5.6 Comparison with DUC systems

As a final experiment, we compare our TL-TranSum approach to other summarizers pre-
sented at DUC contests. Table [3] displays the ROUGE-2 and ROUGE-SU4 scores for the
worst summary produced by a human, for the top four systems submitted for the con-
tests, for the baseline proposed by NIST (a summary consisting of the leading sentences
of randomly selected documents) and the average score of all methods submitted, respec-
tively for DUC2005, DUC2006 and DUC2007 contests. Regarding DUC2007, our method
outperforms the best system by 2% and the average ROUGE-SU4 score by 21%. It also
performs significantly better than the baseline of NIST. However, it is outperformed by
the human summarizer since our systems produces extracts, while humans naturally re-
formulate the original sentences to compress their content and produce more informative
summaries. Tests on DUC2006 dataset lead to similar conclusions, with our TL-TranSum
algorithm outperforming the best other system and the average ROUGE-SU4 score by
2% and 22%, respectively. On DUC2005 dataset however, our TL-TranSum method is
outperformed by the beset system which is due to the use of advanced NLP techniques
(such as sentence trimming [38]) which tend to increase the ROUGE-SU4 score. Nev-
ertheless, the ROUGE-SU4 score produced by our TL-TranSum algorithm is still 15%
higher than the average score for DUC2005 contest.

DUC2005 DUC2006 DUC2007

Method ROUGE-2 ROUGE-SU4 ROUGE-2 ROUGE-SU4 ROUGE-2 ROUGE-SU4
Hum 0.0897 0.151 0.13260 0.18385 0.17528 0.21892
TL-TranSum 0.077392 0.12869 0.10779 0.15854 0.12997 0.17995
1st 0.07251 0.13163 0.09558 0.15529 0.12448 0.17711
2nd 0.07174 0.12972 0.09097 0.14733 0.12028 0.17074
3rd 0.06984 0.12525 0.08987 0.14755 0.11887 0.16999
4th 0.06963 0.12795 0.08954 0.14607 0.11793 0.17593
Syst. Av. 0.05842 0.11205 0.07463 0.13021 0.09597 0.14884
Basel. 0.04026 0.08716 0.04947 0.09788 0.06039 0.10507

Table 3: Comparison with DUC2005, DUC2006 and DUC2007 systems

6 Conclusion

In this paper, a new hypergraph-based summarization model was proposed, in which
the nodes are the sentences of the corpus and the hyperedges are themes grouping sen-
tences covering the same topics. Going beyond existing methods based on simple graphs
and pairwise lexical similarities, our hypergraph model captures groups of semantically
related sentences. Moreover, two new method of sentence selection based on the detec-
tion of hypergraph transversals were proposed: one to generate summaries of minimal
length and achieving a target coverage, and the other to generate a summary achieving a
maximal coverage of relevant themes while not exceeding a target length. The approach
generates informative summaries by extracting a subset of sentences jointly covering the
relevant themes of the corpus. Experiments on a real-world dataset demonstrate the
effectiveness of the approach. The hypergraph model itself is shown to produce more
accurate summaries than other models based on term or sentence clustering. The overall
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system also outperforms related graph- or hypergraph-based approaches by at least 10%
of ROUGE-SU4 score.

As a future research direction, we may analyse the performance of other algorithms
for the detection of hypergraph transversals, such as methods based on LP relaxations.
We may also further extend our topic model to take the polysemy of terms into acount:
since each term may carry multiple meanings, a given term could refer to different topics
depending on its context. Finally, we intend to adapt our model for solving related
problems, such as commmunity question answering.
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