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Abstract

Context-Aware Venue Recommendation (CAVR) systems aim to effec-
tively generate a ranked list of interesting venues users should visit based
on their historical feedback (e.g. checkins) and context (e.g. the time of the
day or the user’s current location). Such systems are increasingly deployed
by Location-based Social Networks (LBSNs) such as Foursquare and Yelp to
enhance the satisfaction of the users. Matrix Factorisation (MF) is a popu-
lar Collaborative Filtering (CF) technique that can suggest relevant venues
to users based on an assumption that similar users are likely to visit sim-
ilar venues. In recent years, deep neural networks have been successfully
applied to recommendation systems. Indeed, various approaches have been
previously proposed in the literature to enhance the effectiveness of MF-
based approaches by exploiting Recurrent Neural Networks (RNN) models
to capture the sequential properties of observed checkins. Moreover, recently,
several RNN architectures have been proposed to incorporate contextual in-
formation associated with the users’ sequence of checkins (for instance, the
time interval or the geographical distance between two successive checkins)
to effectively capture such short-term preferences of users. In this work, we
propose a Contextual Recurrent Collaborative Filtering Framework (CRCF)
that leverages the users’ preferred context and the contextual information
associated with the users’ sequence of checkins in order to model the users’
short-term preferences for CAVR. In particular, the CRCF framework is
built upon two state-of-the-art approaches: namely Deep Recurrent Collab-
orative Filtering framework (DRCF) and Contextual Attention Recurrent
Architecture (CARA). Thorough experiments on three large checkin and
rating datasets from commercial LBSNs demonstrate the effectiveness and
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robustness of our proposed CRCF framework by significantly outperforming
various state-of-the-art matrix factorisation approaches. In particular, the
CRCF framework significantly improves NDCG@10 by 5-20% over the state-
of-the-art DRCF framework [1] and the CARA architecture [2] across the
three datasets. Furthermore, the CRCF framework is less significantly risky
than both the DRCF framework and the CARA architecture across the three
datasets.

1. Introduction

Users in Location-Based Social Networks (LBSNs), such as Yelp and
Foursquare, tend to search for interesting venues such as restaurants and
museums to visit and can share their location with their friends by making
checkins at the venues they have visited. This results in large amounts of
user checkin data being received by the LBSNs. Such implicit feedback by
users also provides rich information about both users and venues, and thus
can be leveraged to study the users’ movement in urban cities, as well as
to enhance the quality of personalised venue recommendations. Effective
Context-Aware Venue Recommendation systems (CAVRs) have become an
essential application for LBSNs that allow users to find interesting venues
based on their historical checkins and current context (e.g. time of the day,
user’s current location as well as their recently visited venues). Matrix Fac-
torisation (MF) [3] is a Collaborative Filtering technique that is widely used
to generate a personalised ranked list of venues to the users based on their his-
torical checkins. In particular, the MF-based approaches for CAVR typically
aim to embed the users’ and venues’ preferences as well as the contextual
information about the users within latent factors, which are combined with
a dot product operator to estimate the user’s preference for a given venue
and context.

Previous studies [4, 5, 6, 7, 8] have shown that the sequences of user’s
implicit feedback (e.g. sequences of checkins or clicks) play an important role
in enhancing the effectiveness of recommendation, across various scenarios.
However, traditional MF-based approaches can only capture users’ long-term
(static) preferences and not their short-term (dynamic) preferences. Here, dy-
namic preferences that are captured from the users’ recently visited venues
can influence the next venue they may visit (e.g. users may prefer to visit a bar
directly after a dinner at a restaurant). In recent years, various approaches
have been proposed to leverage Deep Neural Network (DNN) algorithms such



as Multi-Layer Perceptron (MLP), Convolutional Neural Networks (CNN)
and Recurrent Neural Networks (RNN) for recommendation systems [9, 10,
4,5, 11]. Among various DNN techniques, the RNN models have been widely
exploited to extend the MF-based approaches to capture users’ short-term
preferences from their sequences of implicit feedback [12, 13, 5, 4, 14].

A common technique to incorporate RNN models (e.g. Long Short-Term
Memory (LSTM) units [15] and Gated Recurrent Units (GRU) [16]) into MF-
based approaches is to feed a sequence of user-venue interactions/checkins
into a recurrent model and use the hidden state of the recurrent models to
represent the users’ dynamic preferences [4, 5, 6]. Next, the user’s preference
for a target venue is estimated by calculating the dot product between a
latent factor of the user’s dynamic preferences (i.e. the output of the recur-
rent models) and a latent factor ! of the target venue. In addition, various
approaches have been proposed to extend the RNN models to incorporate
the contextual information associated with the sequences of user’s implicit
feedback for many recommendation tasks [12, 14, 13, 17, 18, 19, 20, 2]|. Re-
cently, Manotumruksa et al. [2] proposed a Contextual Attention Recurrent
Architecture (CARA) that separately incorporates different types of contex-
tual information associated with the users’ sequence of implicit feedback to
model the users’ dynamic preferences for CAVR. The CARA architecture in-
cludes two gating mechanisms, namely a Contextual Attention Gate (CAG)
and a Time- and Spatial-based Gate (TSG). The CAG controls the influence
of context and the previous visited venues, while TSG controls the influence
of the hidden state of the previous RNN unit, based on the time interval and
the geographical distance between two successive checkins.

Similar to the RNN models proposed in the previous literature (e.g.
(14, 13, 12|, the CARA architecture still relies on a dot product of latent
factors of users and items to capture the users’ dynamic preferences in a
Collaborative Filtering manner. However, previous works [11, 1] have shown
that the dot product of latent factors may not be sufficient to capture the
complex structures of the user-item interactions [10]. Recently, Manotum-
ruksa et al. [1] proposed a Deep Recurrent Collaborative Filtering framework
(DRCF) for venue recommendation that leverages the MLP and RNN mod-
els to learn the complex structures of the users’ sequences of checkins by
replacing the dot product with a neural architecture that can learn an ar-
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bitrary function from the sequences of user’ checkins. However, the DRCF
framework still relies on the traditional RNN models that are not sufficiently
flexible to incorporate the user’s preferred context as well as the contextual
information associated with the user’s sequences of checkins.

Both the CARA architecture and the DRCF framework leverage the se-
quence of user’ implicit feedback (i.e. sequences of checkins) to capture the
users’ dynamic preferences. A common challenge that arises when obtaining
implicit feedback by observing checkins is that only positive feedback can be
observed, and MF-based approaches trained on only positive feedback are
likely to be biased to those positive instances. To address this challenge,
various negative sampling approaches have been proposed [21, 22, 10, 23, 1].
For example, the BPR negative sampling approach proposed by Rendle et
al. [21] uniformly and randomly selects venues that the users have not vis-
ited as negative instances. Recently, Manotumruksa et al. [1] proposed a
sequence-based (dynamic) negative sampling approach that takes the se-
quential properties of checkins and the geographical location of venues into
account to enhance the effectiveness of venue recommendation, as well as to
alleviate the cold-start user problem. In this article, we aim to address a
gap between two state-of-the-art factorisation- and RNN-based approaches
(namely the DRCF framework and the CARA architecture) to capture the
users’ dynamic preferences when making context-aware venue recommenda-
tions, and thereby demonstrate that DRCF and CARA can be effectively
combined for this task. Overall, our contributions are summarised below:

e We propose the Contextual Recurrent Collaborative Filtering frame-
work (CRCF), an extension of the DRCF framework [1], which incorpo-
rates both the users’ preferred context and the contextual information
associated with the sequence of checkins to effectively capture the users’
dynamic preferences for CAVR. Indeed, the original DRCF framework
cannot incorporate the contextual information when generating venue
recommendations. Moreover, we propose to integrate the state-of-the-
art Contextual Attention Recurrent Architecture (CARA) [2] into our
proposed CRCF framework to effectively capture the users’ dynamic
preferences.

e We propose to apply a novel sequence-based (dynamic) negative sam-
pling approach proposed by Manotumruksa et al. [1] that takes the
sequential properties of checkins as well as the geographical location of



venues into account to enhance the effectiveness of our CRCF frame-
work. This is proposed in order to alleviate the cold-start user problem.

e We conduct thorough and comprehensive experiments on 3 large-scale
real-world datasets, from Brightkite, Foursquare and Yelp, to demon-
strate the effectiveness of our proposed CRCF framework for CAVR by
comparing it with state-of-the-art venue recommendation approaches.
Moreover, we investigate the robustness of the CRCF framework by
leveraging risk analyses techniques proposed by Wang et al. [24] and
Dinger et al. [25].

The experimental results presented in Section 6 demonstrate that our pro-
posed CRCF framework consistently and significantly outperforms various
state-of-the-art venue recommendation approaches in terms of effectiveness
and robustness. In particular, our experimental findings are as follows:

e The contextual information associated with the sequences of the users’
checkins (e.g. the time interval and distance between two successive
checkins) is important in enhancing the quality of context-aware venue
recommendation. Our proposed CRCF framework, which leverages the
contextual information can significantly outperform both the state-of-
the-art DRCF framework and the CARA architecture on three large
datasets.

e Leveraging the sequential order of users’ checkins as well as the geo-
graphical information of venues can enhance both the effectiveness and
robustness of the CRCF framework. In particular, our experimental
results show that the dynamic geo-based negative sampling approach,
which takes into account both the sequential order of users checkins
and the geographical information of venues, can significantly improve
the effectiveness and robustness of various approaches (i.e. the DRCF
and CRCF frameworks and the CARA architecture) as well as alleviate
the cold-start problem.

e Throughout our comprehensive robustness analysis experiments, we
observe that our proposed CRCF framework is significantly less risky,
and is less likely to generate poor venue suggestions to the users across
the three used datasets, compared to the DRCF framework and the
CARA architecture. Moreover, the CRCF framework is more robust



than various state-of-the-art venue recommendation approaches (i.e.
less likely to generate worse venue suggestions compared to a traditional
CF baseline such as BPR).

This article is structured as follows: Section 2 provides the background
literature on CAVR, recent trends in applying Deep Neural Networks to rec-
ommendation systems as well as various existing extensions of RNN models;
Section 3 provides a brief description of the DRCF framework. Section 4
details how to extend the DRCF framework for the CAVR task and also how
to integrate the CARA architecture into the resulting CRCF framework; Ex-
perimental setup and results are provided in Sections 5 & 6, respectively.
Concluding remarks follow in Section 7.

2. Background

Context-Aware Venue Recommendation (CAVR). Collaborative Filtering (CF)
techniques such as Matrix Factorisation (MF) [3], Factorisation Machines [7]
and Bayesian Personalised Ranking (BPR) [21] have been widely used in
recommendation systems. Such factorisation-based approaches assume that
users who have visited similar venues share similar preferences, and hence
are likely to visit similar venues in the future. Previous works on venue rec-
ommendation have shown that the contextual information associated with
the users’ observed feedback (time of the day, location) plays an impor-
tant role to enhance the effectiveness of CAVR as well as to alleviate the
cold-start problem [23, 26, 22, 27, 28, 29, 30]. For example, Yao et al. [26]
extended the traditional MF-based approach by exploiting a high-order ten-
sor instead of a traditional user-venue matrix to model multi-dimensional
contextual information. Manotumruksa et al. [23] and Yuan et al. [22] ex-
tended BPR to incorporate the geographical location of venues to alleviate
the cold-start problem by sampling negative venues based on an assumption
that users prefer nearby venues over distant ones. Zhao et al. [30] proposed
Spatial-TEmporal. LAtent Ranking (STELLAR), which recommends a list
of venues based on the user’s context such as time and recent checkins. How-
ever, similar to traditional MF, these approaches still rely on the dot product
operation (i.e. a linear function) to estimate the users’ preferences from their
latent factors, which has been recently demonstrated to be less effective than
non-linear activation functions [1, 10]



Deep Neural Network Recommendation Systems. With the impressive suc-
cesses of Deep Neural Network (DNN) models in domains such as speech
recognition, computer vision and natural language processing (e.g. [31, 32,
33]), various approaches (e.g. [4, 1, 10, 11, 9, 19, 34]) have been proposed to
exploit DNN models for recommendation systems. For example, He et al. [10]
and Cheng et al. [9] proposed to exploit Multi Layer Perceptron (MLP) mod-
els to capture the complex structure of user-item interactions. An advantage
of such MLP-based models is their ability to capture the user’s complex struc-
ture using a DNN architecture and a non-linear activation function such as
the sigmoid function. Liu et al. [34, 19] and Manotumruksa et al. [1] all
exploited Recurrent Neural Networks (RNNs) to model the sequential or-
der of the users’ observed feedback. In particular, Manotumruksa et al. [1]
proposed a Deep Recurrent Collaborative Filtering (DRCF) framework that
captures the users’ short-term preferences from their sequence of checkins
by exploiting an RNN model. We use DRCF as the basis of our proposed
framework in this work. Due to the complex and overwhelming number of
parameters of DNN models (i.e. the MLP and RNN models), these exist-
ing DNN-based CF approaches are likely to be prone to overfitting. Several
empirical studies [11, 10, 35] have demonstrated that the use of generalised
distillation techniques, such as dropout & regularisation, as well as pooling
techniques can alleviate the overfitting problems inherent in DNN-based CF
approaches.

The previous work mentioned above mainly focused on how to exploit
existing DNN models to enhance the quality of recommendations. How-
ever, fewer attempts have addressed how to extend such DNN models to
address particular challenges in recommendation systems. In particular,
few approaches have been proposed to extend the traditional RNN mod-
els (e.g. Long Short-Term Memory (LSTM) [15] and Gated Recurrent Units
(GRU) [16]) to incorporate the contextual information of observed feedback
into various recommendation settings (e.g. [12, 14, 13, 18, 2]). In this vein,
we note Zhu et al. [12], who proposed an extension of LSTM (TimeLSTM)
by introducing time gates that control the influence of the hidden state of a
previous LSTM unit based on the time interval between successive observed
feedback. Indeed, they assumed that the shorter the time interval between
two successive feedback, the stronger the correlation between these two feed-
back. Smirnova and Vasile [14] proposed a Contextual RNN architecture
that can incorporate different types of context that are observed from the
users’ checkins (e.g. user’s current location and the time of the day). Build-
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ing upon Smirnova and Vasile’s work [14], Beutel et al. [13] explored various
approaches to effectively incorporate the latent factors of context into RNN
models. They proposed LatentCross, a technique that incorporates contex-
tual information within a GRU, by performing an element-wise product of
the latent factors of context with the model’s hidden states. Recently, based
on TimeLSTM [12] and LatentCross [13], Manotumruksa et al. [2] proposed
a Contextual Attention Recurrent Architecture (CARA), an extension of
the GRU architecture that incorporates the contextual information associ-
ated with the sequence of users’ feedback to generate effective context-aware
venue recommendations.

In the next section, we provide an overview of the Deep Recurrent Col-
laborative Filtering (DRCF) framework. In particular, we describe how the
DRCF framework leverages the sequential order of the users’ checkins to
capture their short-term (dynamic) preferences. Later, in Section 4, we ex-
plain how to extend the DRCF framework to incorporate the contextual
information associated with the users’ sequence of checkins to generate effec-
tive context-aware venue recommendations, by integrating the CARA RNN
architecture.

3. Deep Recurrent Collaborative Filtering framework (DRCF)

In this section, we first formalise the problem statement as well as the no-
tations used in this article (Section 3.1). Then, we briefly describe the DRCF
framework for venue recommendation in Section 3.2. Later in Section 4, we
describe in detail our proposed Contextual Recurrent Collaborative Filtering
(CRCF) framework, an extension of the DRCF framework that incorporates
the contextual information associated with the sequences of user’s checkins
to enhance the quality of CAVR.

3.1. Problem Statement

The task of context-aware venue recommendation is to generate a ranked
list of venues that a user might visit given his/her preferred context and his-
torical feedback (e.g. the previously visited venues from checkin data). Let
¢;.j+ denote a user ¢ € U who has made a checkin to venue j € V at timestamp
t. Note that ¢; ;; = 0 means that user ¢ has not made a checkin at venue
J at time ¢. Let V;" denote the list of venues that the user i has previously
visited, sorted by time, and let S; to denote the set of sequences of checkins
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Figure 1: A diagram of the Deep Recurrent Collaborative Filtering (DRCF) framework.

(e.g. Si = A{la], [c1, 2l [c1, 0, ¢3]}). siv = {c = (i,j,i) eC| i< t} C S; de-
notes the sequence of checkins of user i up to time t. We use s7, to denote the
7-th checkin in the sequence s;;. t" denotes the timestamp of 7-th checkin.
Finally, lat;, Ing; are the latitude and longitude of checkin/venue j.

3.2. Deep Recurrent Collaborative Filtering framework (DRCF)

The DRCF framework proposed by Manotumruksa et al. [1] is illustrated
in Figure 1. It consists of five layers with the connections between the layers
represented using red-dashed lines. Starting at the bottom of the figure, at
time step 7, the input layer consists of a binary sparse vector with a one-
hot encoding that represents user ¢+ and venue j, respectively. The sparse
vectors of the user and venue are fed into the embedding layer. In the em-
bedding layer, there are the embedding representations for users and venues,
highlighted in green and purple, respectively. The outputs of the embedding
layer can be seen as the latent factors of each user and venue (respectively we
denote these as ¢u; € R? | Pvj € R?, where d is the number of latent dimen-
sions). 0, = {pup € RM*4 gy, € RUXEpvp € RVI¥9Y denotes the set
of parameters of the embedding layers. Next, the latent factors of the venues



are fed into the Recurrent Neural Networks (RNN). In the RNN layer, DRCF
exploits the traditional RNN models to encapsulate the users’ dynamic pref-
erences from their sequence of checkins. The outputs of the RNN layer is
a hidden state of recurrent unit h, = o(X P + Rh._1) that represents the
dynamic preferences of user i at time step 7. o(z) = 1/(1 + e ) is the
sigmoid function. R is a recurrent connection weight matrix that captures
the sequential signals between every two adjacent hidden states h,_; and
h, while X is a transition matrix between the latent factors of venues. By
0, = {R, X}, we denote the set of parameters of the RNN model. Next, the
user’s dynamic preferences h,, and the latent factors of user i, ¢i, are fed into
the Neural Collaborative Filtering layers, which consist of the Generalised
Recurrent Matrix Factorisation (GRMF), the Multi-Level Recurrent Percep-
tron (MLRP) and Recurrent Matrix Factorisation (RMF) models, to discover
certain latent structures of sequences of user-venue interactions. The outputs
of these models are concatenated and fed into the output layer. Finally, the
output layer provides a score predicting if the user ¢ will checkin at venue j,
which is defined as follows:

éiJ _ O’(H(ﬂGRMF D ﬁMLRP D ﬁRMF)) (1>

where @ denotes the concatenation operation. line:smotationd“#MF = p¢
ou;q is the output of the GRMF model, where ® denotes the element-wise
product operation. YMIEY = qp (Hp(...ai(H(hM @ ¢u;ps)))) is the output of
the MLRP model, where L is a number of layers and a denotes the activation
function. Following Manotumruksa et al. [2], we use a rectified linear unit
(ReLU(x) = maz(0,z)) as the activation function a. 9*MF = Ll © ¢u,,
is the output of the RMF model, where © denotes the dot product opera-
tion.line:emnotation H(z) = (W7'x + b) is the hidden layer, where W and b
are the weight matrix and bias vector, respectively. Overall, 0y = {W,b}
denotes the set of parameters of the hidden layers. H(x) ensures that each
dimension of the latent factors from Y&EMF YMLEP and 9RMFE are indepen-
dent (i.e. each dimension of the latent factors are treated independently by
the hidden layers). Note that the DRCF framework exploits different em-
bedding and RNN layers for each model in order to independently learn the
complex structures of user-venue interactions from different models (i.e. the
GRMF, MLRP and RMF models capture the interactions using the element-
wise product, concatenation and dot product operations, respectively). The
benefit of the DRCF framework is that it allows different models to be learned
from different sets of embeddings and RNN layers, hence capturing different
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characteristics of the task. Indeed, while these embeddings and RNN layers
have been explored in the literature [10, 1], later in Section 4, we extend
the DRCF framework to incorporate the contextual information associated
with the users’ sequence of checkins by exploiting the state-of-the-art RNN
architecture.

Next, the DRCF framework applies the Bayesian Personalised Ranking
(BPR) model to learn the parameters © = {60,,0.,0,}. Note that the BPR
model consists of a pairwise ranking function and a negative sampling pro-
cess. As mentioned before, with the implicit feedback in the form of checkins,
only the users’ activities are observed (i.e. users have visited some venues at
some particular times), while their preferences on those venues cannot be ob-
served. To alleviate this problem, inspired by the negative sampling process
of the BPR model, for each user, given the sequence of the user’s checkins,
DRCF samples, as negative instances, venues that the user has never vis-
ited before, V — s;;. Then, DRCF aims to rank the venues that the users
have previously visited higher than the unvisited venues. In particular, the
objective function of the DRCF framework is defined as follows:

JO=>> > D loglo(é;— i) (2)

€U SiytESi (i,j,t)ESM kev—5i7t

where j is the venue most recently visited in s;, k& is an unvisited venue.
Next, Manotumruksa et al. [1] proposed a dynamic geo-based negative sam-
pling approach to enhance the effectiveness of the DRCF framework as well
as alleviate the cold-start problem. In particular, they modified the objec-
tive of the DRCF framework (Equation (2)) to incorporate the geographical
information of venues during the sampling process as follows:

m0-YY YOy ¥

1€U 5;4€S; (i,5,t)Esit KENj—s:,t IEV =54
log(o(éij — ¢ix)) — log(o(Cup — Cut)) ] (3)

line:s:samplingwhere j is the venue most recently visited in s;, k£ is an un-
visited venue that is nearby to venue j, [ is an unvisited venue that is far
away from venue j and N is the set of venues that are nearby to venue
7. Intuitively, this dynamic geo-based negative sampling approach assumes
that the nearby unvisited venue k should be ranked higher than distant and
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unvisited venue [ because the users are likely to visit new venues nearby
to the venues they previously visited. By leveraging the geographical loca-
tions of venues during the sampling process, we can alleviate the cold-start
problem by effectively sampling the nearby yet unvisited venues as negative
instances.line:e:sampling

In this section, we have provided an overview of the Deep Recurrent
Collaborative Filtering (DRCF) framework. In particular, we described how
the DRCF framework leverages the sequential order of the users’ checkins
to capture their short-term (dynamic) preferences. In the next section, we
explain how to extend the DRCF framework to incorporate the contextual
information associated with the users’ sequence of checkins (such as the time
interval and the distance between successive checkins) to generate effective
context-aware venue recommendations

4. Contextual Recurrent Collaborative Filtering Framework (CRCF)

In this section, we describe a Contextual Recurrent Collaborative Fil-
tering framework (CRCF), an extension of the DRCF framework, that can
effectively incorporate different types of contextual information associated
with the sequential feedback (i.e. the time interval and geographical distance
between two successive checkins) to model users’ short-term (dynamic) pref-
erences. In particular, the CRCF framework aims to generate a ranked-list
of venues that a user might prefer to visit at time ¢ based on the sequences
of checkins s;;. The CRCF framework consists of five layers - the connec-
tions between these layers are presented using both blue- and red-dashed
lines in Figure 2. The structure of the CRCF framework is different from
the structure of the DRCF framework including its input, embedding and
RNN layers. Starting at the bottom of the figure, at the input layer, at time
step 7, given a user i, venue j and time t7, we compute the time interval
and the geographical distance between the given venue j and the venue £,
which was previously visited at time step 7 — 1, as At” = ¢ —¢"~! and
Ag, = dist(lat;,Ing;, laty, Ingy), respectively. dist() is the Haversine dis-
tance function that returns the distance between the given latitudes and
longitudes. In the embedding layer, there are three adding layerighted in
yellow in Figure 2 that are used to generate the latent factors of the time
#t™ € Re. Note that we only consider the time of checkins as the user’s pre-
ferred context. However, our proposed framework is sufficiently flexible to
support other possible types of context (e.g. the current weather of the day).
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Figure 2: A diagram of the Contextual Recurrent Collaborative Filtering (CRCF) frame-
work. The connections of each layer linked by the red-dashed lines illustrate the DRCF
framework. The connections of each layers linked by the blue-dashed and red-dashed lines

illustrate the CRCF framework, which is an extension of the DRCF framework.

Next, the latent factors of venue and time (¢v7 and ¢t7) as well as the time
interval At, and the geographical distance Ag, are fed into the RNN layer.
In the RNN layer, we exploit the CARA architecture proposed by Manotum-
ruksa et al. [2] rather than the traditional RNN models used by the DRCF
framework to encapsulate the dynamic user preferences. In particular, the
main advantage of the CARA architecture over the traditional RNN models
is that it can effectively capture the users’ dynamic preferences by taking
the contextual information associated with the users’ two successive checkins
into account. The output of the recurrent layer is the hidden state of the

recurrent unit at time step 7, h, € R%, which is defined as follows:

h’T - fC’ARA(gbU;'—; QStTy AtT) Agﬂ 01”)

where 6, = {W, R, U, b} denotes the set of parameters of the recurrent layer.
Further details of the CARA architecture, fcara, are described in [2]. Then,
similar to the DRCF framework, the latent factors of user ¢u;, and the user’s
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dynamic preferences h, are fed into the Neural CF layer and the output
layer, respectively. The objective function of the CRCF framework is similar
to DRCE’s, as described in Equation (3).

There are two advantages of the CRCF framework over either the DRCF
framework or the CARA architecture. First, CRCF allows to take the user’s
context into account to generate effective venue recommendations based on
his/her context, while DRCF cannot. Although CARA can incorporate the
user’ context during the recommendation process, it still relies on the dot
product of the latent factors when making recommendations. Indeed, previ-
ous works [10, 1] have shown that the dot product operation is not effective in
capturing the complex structure of user-venue interactions. Unlike CARA,
our proposed CRCF approach is built upon the DRCF framework, which
exploits the element-wise product and the concatenation operation to effec-
tively capture the complex structure of user-venue interactions.

5. Experimental Setup

In this section, we evaluate the effectiveness and robustness of our pro-
posed Contextual Recurrent Collaborative Filtering (CRCF) framework in
comparison with various matrix factorisation-based approaches. In particu-
lar, we aim to address the following research questions:

RQ1 Can we enhance (a) the effectiveness and (b) the robustness of the
Contextual Recurrent Collaborative Filtering (CRCF) framework for
CAVR, by exploiting the state-of-the-art Contextual Attention Recur-
rent Architecture (CARA) to leverage the time interval and the geo-
graphical distance associated with sequences of checkins?

RQ2 Can the dynamic geo-based negative sampling approach proposed by
Manotumruksa et al. [1], which leverages both the sequential properties
of checkins and the geographical location of venues, enhance (a) the ef-
fectiveness and (b) the robustness of CRCF and alleviate the cold-start
problems?

In the remainder of this section, we describe the experimental setup in
terms of datasets (Section 5.1), baselines (Section 5.2), algorithm parame-
ters (Section 5.3) and measures(Section 5.4). The experimental results and
analysis follow in Section 6.
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Table 1: Statistics of the three used datasets

Brightkite  Foursquare  Yelp
Number of normal users 14,374 10,766 38,945
Number of venues 5,050 10,695 34,245
Number of ratings or checkins 681,024 1,336,278 981,379
Number of cold-start users 5,578 154 6903
% density of User-Venue matrix | 0.93 1.16 0.07

5.1. Datasets

We conduct experiments using three publicly available large-scale user-
venue interaction datasets from LBSNs. In particular, to show the generalisa-
tion of our proposed CRCF framework across multiple LBSN platforms and
sources of feedback evidence, we use two checkin datasets from Brightkite?
and Foursquare®, and a rating dataset from Yelp?. Following the common
practice from previous works [21, 1, 10, 2], we remove venues with less than 10
checkins. Table 1 summarises the statistics of the filtered datasets. To evalu-
ate the effectiveness of our proposed CRCF framework and following previous
works [10, 1, 2], we adopt a leave-one-out evaluation methodology: for each
user, we select his/her most recent checkin as a ground truth and randomly
select another 100 venues that the user has not visited before as the testing
set, where the remaining checkins are used as the training and validation
sets. The context-aware venue recommendation task is thus to rank those
101 venues for each user, given their preferred context (i.e. time), aiming to
rank the highest the most recent ground truth checkin. line:s:taskNote that
the context-aware venue recommendation task allows to recommend venues
that the user has previously visited, for example in a different context. For
instance, while a user may have visited a restaurant a week ago, recom-
mending the same restaurant to the user to visit in the next few hours is
acceptable.line:e:task

We conduct two separate sets of experiments, namely: Normal Users
(those with > 10 checkins) and Cold-start Users (< 10 checkins) to evaluate
the effectiveness of our proposed CRCF framework in the general and cold-
start settings.

5.2. Baselines

We compare our proposed Contextual Recurrent Collaborative Filtering
(CRCF) framework with various matrix factorisation-based approaches. We

2 https://snap.stanford.edu/data/ ? https://archive.org/details/201309_foursquare_dataset_umn
4 https://www.yelp.com/dataset_challenge
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Table 2: Summary of baselines.

MF [3] BPR [21] GeoBPR [22] STELLAR [30] NeuMF [10] DRCF [1] RNN [6] DREAM [4] CARA [2]
Neural networks X X X X v v v v v
Sequential-based X X X v X v v v v
Context-aware X X only geo v X X X X v
Ordinary/Transition X X X v X X X X v
Special gates X X X X X X X X v

implement all baselines and the CRCF framework using Keras®, a deep learn-
ing framework built on top of Theano®. Our implementation of the CRCF
framework is available as open source’. Note that some baselines may not
have been originally proposed for venue recommendation but are sufficiently
flexible to be applied to such a task without any disadvantage. The choice of
recurrent models is fixed to the GRU units proposed by Zhang et al. [16]. Ta-
ble 2 characterises the various baselines into different categories, namely neu-
ral network-based approaches, sequential-based approaches, context-aware
based approaches, approaches that take both the ordinary and transition
context into account, as well as approaches that make use of adapted RNN
gates. All baselines are summarised below: line:s:baseline

MostPop. A baseline that ranks venues in descending order of the venues’
popularities, calculated across all users.

MostVisit. This baseline ranks venues for a given user in descending order
of the venues’ popularity for that user.

RecentVisit. A baseline that takes the user’s sequential order of checkins
into account and recommends the most recently visited venue to the user.
line:e:baseline

MF. The traditional matrix factorisation approach proposed by Koren et
al. [3] that aims to accurately predict the users’ checkin on the unvisited
venues.

BPR. The classical pairwise ranking approach, coupled with matrix factori-
sation for user-venue checkin prediction, proposed by Rendle et al. [21].

GeoBPR. An extension of BPR that incorporates geographical location of
venues to sample negative venues that are far away from the user’s previous
visits. GeoBPR was proposed by Yuan et al. [22].

° https://github.com/fchollet/keras % http://deeplearning.net/software/theano
" https://github.com/feay1234/CRCF
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RNN. A sequential click prediction with recurrent neural networks approach
proposed by Zhang et al. [6].

DREAM [4]. A RNN model that incorporates BPR for ranking optimisation.
As DREAM is originally proposed for next shopping-basket recommendation,
to permit a fair comparison with our proposed DRNN approach, we reimple-
ment DREAM to treat a single checkin as the shopping-basket purchase.

NeuMF. A Neural Matrix Factorisation framework®, proposed by He et al. [10],
which exploits Multi-Level Perceptron (MLP) models to capture the complex
structure of user-item interactions.

DRCF. A Deep Recurrent Collaborative Filtering framework for venue rec-
ommendation proposed by Manotumruksa et al. [1], which extends NeuMF [10]
to exploit the RNN-based models to model the sequences of users’ checkins
(see Section 3).

STELLAR. A Spatial-TEmporal. LAtent Ranking framework for CAVR pro-
posed by Zhao et al. [30] that aims to recommend the list of venues based on
the user’s preferred time and last successive visits. Note that this is the only
context-aware framework that does not rely on the RNN-based approaches
to model the users’ sequential order of checkins.

CARA. A state-of-the-art Contextual Attention Recurrent Architecture? for
CAVR proposed by Manotumruksa et al. [2] that leverages the contextual
information associated with the sequence of user’s checkins to model the
user’s dynamic preferences.

5.3. Recommendation Parameter Setup

Following [1, 10, 2|, we set the dimension of the latent factors d and
hidden layers h, of our proposed CARA architecture and all of the matrix
factorisation-based approaches to be identical: d = 10 across three datasets.
Later, in Section 6.1.1, we vary the dimension of the latent factor to empir-
ically verify their impact on effectiveness. Following He et al. [10], we ran-
domly initialise all embeddings and recurrent layers’ parameters, 6,,60., 0,
with a Gaussian distribution (with a mean of 0 and a standard deviation
of 0.01) and apply the mini-batch Adam optimiser [36] to optimise those

8 https://github.com/hexiangnan/neural_collaborative_filtering
9 https://github.com/feay1234/CARA
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parameters, which yields a faster convergence than SGD and automatically
adjusts the learning rate for each iteration. We initially set the learning rate
to 0.001'° and set the batch size to 256. Since the impact of the recurrent
parameters such as the size of the hidden state, have been explored in previ-
ous works [10, 37, 35], in this article we omit varying the size of the hidden
layers and the dimension of the latent factors. Indeed, larger sizes of hidden
layers and dimensions may cause overfitting and degrade the generalisation
of the models [37, 10, 35].

5.4. Measures

We measure the quality of the ranked list of venues in terms of Hit Ratio
(HR) and Normalized Discounted Cumulative Gain (NDCG) - as applied in
the existing literature [10, 4, 1, 2]. In particular, HR considers the ranking
nature of the task, by taking into account the rank(s) of the venues that
each user has previously visited /rated in the produced ranking, while NDCG
goes further by considering the checkin frequency/rating value of the user as
the graded relevance label. Finally, significance tests are conducted using a
paired t-test.

Furthermore, we experiment to determine the robustness of the CRCF
framework, to measure its likelihood to underperform in comparison to an
established baseline recommender system. Throughout our robustness ex-
periments, we use the Bayesian Personalised Ranking (BPR) model, which
is equivalent to BM25 baseline in web search, as the established baseline for
venue recommendation system to evaluate the robustness of our proposed
CRCF framework. To this end, we use risk-sensitive evaluation measures to
quantify any underperformance compared to a given baseline model (i.e. the
BPR model). All risk-sensitive measures are defined in terms of Risk & Re-
ward [24], where Risk is defined as the average reduction in effectiveness due
to the use of the new target model in comparison to the baseline CF ranking
model. In contrast, Reward is the positive improvement in effectiveness of
the target model over the baseline model, averaged across all users. We use
NDCG as the primary effectiveness measure for comparing the effectiveness
of the new target model and the baseline CF ranking model. In particular,
given a baseline CF ranking model (i.e. BPR), the Risk and Reward scores
of using a target model (e.g. DRCF or CRCF) over the set of all users are

10 The default learning rate setting of the Adam optimiser in Keras.
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measured as follows:

Reward = ﬁ Z max (0, My(i) — My(7)) (5)
€U
Risk — — > maz(0, My(i) — My(i)) (6)

2]

ieu
where M, and M, denote the effectiveness of the baseline CF ranking model
and the target model for a given user 7, respectively, calculated using NDCG.
Let the overall gain of a target model be Gain = reward —risk. Next, a sin-
gle measure that takes the risk-reward tradeoff into account is calculated as
Urisk = Gain—a- Risk, where o > 0 is a risk-sensitivity parameter [24]. Note
that with a = 0, U,;5, simply measures the average difference in performances
between the two models across all users; On the other hand, increasing o > 0
places more emphasis on penalising models that underperform compared to
the baseline.

Following Dinger et al. [25], for a > 0, a t-statistic can be formulated
based on U,;s, which they call T,,;., and can be expressed as follows:

Urisk

Tris = A/ N

where SE() is the standard error of the paired sample mean. The advantage
of T,;s over U4 is that it is easily interpreted for an inferential analysis of
risk (i.e. if the system exhibits a significant level of risk for a given «). Indeed,
T,isk < 2 denotes a significant risk [25] at p < 0.05. Later in Section 6.2,
we test the significance of an observed risk-reward tradeoff score between a
target model and a given baseline by using T,;. as the test statistic of the
Student’s t-test for matched pairs'!.

6. Experimental Results

In this section, we report the effectiveness and robustness of our proposed
CRCF framework in comparison with various state-of-the-art approaches. In
particular, to address research questions RQ1(a) and RQ2(a), we conduct

1 Note that for v = 0, T,.1, exceeding +2 simply denote a significant difference according
the normal t-test with p < 0.05.
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various experiments to evaluate the effectiveness of the CRCF framework un-
der the Normal and Cold-Start settings, which are discussed in Section 6.1.
Moreover, to answer research questions RQ1(b) and RQ2(b), we further per-
form several risk analysis experiments to investigate the robustness of the
CRCF framework, which are discussed in Section 6.2

6.1. Effectiveness Fvaluation

In this section, we report the effectiveness of our proposed CRCF frame-
work in comparison with various state-of-the-art approaches. This section
is structured to separately address research questions RQ1(a) and RQ2(a).
In particular, to answer research question RQ1(a), Section 6.1.1 reports the
performance of the CRCF framework and the used baselines under the the
Normal and Cold-Start settings. Where negative sampling is used (e.g.
DRCF and CRCF), we apply the traditional BPR negative sampling ap-
proach (Equation (2)). To answer research question RQ2(a), Section 6.1.2
demonstrates the usefulness of the dynamic geo-based negative sampling ap-
proach (Equation (3)) in enhancing the effectiveness of the CRCF framework
and alleviating the cold-start problem.

line:s:secl

6.1.1. Effectiveness of the CRCF' framework

Table 3 reports the effectiveness of the CRCF framework in comparison
with various matrix factorisation-based approaches in term of the HR@10
and NDCG@10 measures on the three used datasets. In particular, the table
contains two groups of rows, which report the effectiveness of various ap-
proaches under the Normal Users and Cold-Start Users experiments, respec-
tively. Similar to Table 3, Table 4 reports the observed performances of the
CRCF and DRCF frameworks as well as the CARA architecture when incor-
porating the dynamic geo-based negative sampling approach (Equation (3)),
which takes the geographical location of venues into account during the neg-
ative sampling process.

Firstly, on inspection of the first group of rows of Table 3, we note that the
relative venue recommendation quality of the baselines on the three datasets
in terms of the two measures are consistent with the results reported for
the various baselines in the corresponding literature [10, 4, 6, 1, 2]. For
instance, DRCF outperforms MF, BPR and NeuMF across the three datasets.
Similarly, CARA outperforms STELLAR across the three datasets. Note
that previous works (i.e. NeuMF [10], DREAM [4],STELLAR [30]) used
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Table 3: Performance in terms of HR@Q10 and NDCG@10 between various approaches. The
best performing approach is highlighted in bold; — and * denote a significant difference
compared to the best performing result, according to the paired t-test for p < 0.05 and
p < 0.01, respectively.

Normal Users Experiments
Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG
MostPop 0.1462* | 0.1010* | 0.2009* | 0.1167* | 0.0739* | 0.0334*
MostVisit 0.4032*% | 0.3473* | 0.4733* | 0.4290* | 0.1083* | 0.0528*
RecentVisit | 0.4809% | 0.4370* | 0.4584* | 0.4037* | 0.1096* | 0.0542*

MF 0.6206* | 0.3470* | 0.6656* | 0.3818* | 0.3539* | 0.1734*
RNN 0.6368* | 0.3824* | 0.8040* | 0.5459* | 0.3814* | 0.1891*
BPR 0.6890* | 0.4333* | 0.7550% | 0.4834* | 0.4963* | 0.2676*

DREAM 0.7041* | 0.4839* | 0.8147* | 0.6081* | 0.4349* | 0.2235*
STELLAR | 0.7267* | 0.5635* | 0.8751* | 0.6984* | 0.5356* | 0.2969*

NeuMF 0.7073* | 0.5358% | 0.8361* | 0.5842* | 0.4934* | 0.2729*
DRCF 0.7419* | 0.6048* | 0.8952* | 0.7223* | 0.5162* | 0.2963*
CARA 0.7385* | 0.6040* | 0.8851* | 0.7154* | 0.5587* | 0.3272*
CRCF 0.7528 | 0.6319 | 0.8981 | 0.7442 | 0.5861 | 0.3479
Cold-Start Users Experiments
Brightkite Foursquare Yelp
Model HR NDCG HR NCDG HR NDCG

MostPop 0.1155% | 0.0778* | 0.0584* | 0.0286* | 0.0714* | 0.0316*
Most Visit 0.4285*% | 0.3789* | 0.3506* | 0.3175* | 0.1044* | 0.0489*
RecentVisit | 0.4995% | 0.4585% | 0.3831* | 0.3446* | 0.1052* | 0.0497*

MF 0.6768* | 0.3913* | 0.6623* | 0.3650* | 0.3748% | 0.1868*
BPR 0.7519% | 0.4907* | 0.7792- | 0.4961* | 0.5273* | 0.2946*
RNN 0.6486* | 0.3694* | 0.5909* | 0.4041* | 0.3856* | 0.1901*

DREAM 0.7452% | 0.4969* | 0.7987- | 0.5379* | 0.4523* | 0.2239*
STELLAR | 0.7406* | 0.5580* | 0.8052- | 0.6007* | 0.5537* | 0.3147*

NeuMF 0.7160* | 0.5894* | 0.7922- | 0.6227* | 0.5102* | 0.2734*
DRCF 0.7526* | 0.5980* | 0.8377 | 0.6645 | 0.5330* | 0.3136*
CARA 0.7648* | 0.6220* | 0.8636 | 0.6505- | 0.5748% | 0.3493*
CRCF 0.7782 | 0.6582 | 0.8571 | 0.6967 | 0.5913 | 0.3622

different datasets, but our reimplementations of their proposed approaches
obtain similar relative improvements.

Comparing CRCF with the various baselines, we observe that CRCF con-
sistently and significantly outperforms all baselines for both HR and NDCG,
across all datasets. In particular, comparing with DRCF and CARA, CRCF
obtains 4.61%, 3-4.02% and 6.32-17.41% improvements in terms of NDCG for
Brightkite, Foursquare and Yelp datasets, respectively. These results suggest
that our proposed framework, an extension of DRCF that exploits the CARA
architecture instead of the traditional RNN models to leverage the user’s pre-
ferred context (i.e. time) and the contextual information associated with the
sequence of checkins, is more effective than the DRCF framework, which
ignores those contexts. Moreover, comparing CRCF with the CARA archi-
tecture, which both take the users’ context into account, the results suggest
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that the neural architecture in the CRCF framework (i.e. an element-wise
product and concatenation between the latent factors (see Figure 2)) can
enhance the quality of venue recommendations. Such observations are con-
sistent with the results reported by previous literature for NeuMF [10] and
DRCF [1].

Next, we note that unlike the Brightkite and Foursquare checkin datasets,
the Yelp dataset consists only of user-venue ratings, and hence the sequential
properties of visits to venues are less likely to be observed. We observe that
the RNN-based approaches (RNN and DREAM) that take the sequential
properties of checkins into account are more effective than the traditional
MF-based approaches (MF and BPR) across the Brightkite and Foursquare
checkin datasets. However, both RNN and DREAM are less effective than
BPR for the Yelp rating dataset because the sequential properties of rat-
ing data are less pronounced than the other LBSNs. This is likely due to
users writing Yelp reviews after visiting the venues. In contrast, our pro-
posed CRCF framework is still the most effective across the different types
of datasets, which is indicative of the generalisability of CRCF. In addition,
we observe that CARA, which incorporates the contextual information, is
as effective as DRCF on the two checkin datasets in terms of the two used
measures'?, while CARA outperforms DRCF on the Yelp dataset. These
results demonstrate that contextual information plays an important role in
enhancing the effectiveness of CAVR. By integrating CARA into CRCF, we
can further enhance the quality of CAVR across three datasets in terms of
HR@10 and NDCG@10.

line:s:factorsNext, Figure 3 reports the test performance of the CRCF
framework and the baselines with respect to different dimensions of latent
factors on the three datasets in terms of HR@10 and NDCG@10. From
the figure, we observe that on the Brightkite dataset, the performances of
DRCF, CARA and CRCF for both metrics increase as the dimensions of
latent factors increase, while their performances decrease when the latent
factors are set to 80. This effect can be clearly seen with CARA for the
Brightkite and Foursquare datasets. These results are consistent with those
reported in the previous literature (e.g. [10, 37]) where the performance of the

12 Note that DRCF consists of three components (namely GRMF, MLRP and RMF mod-
els (see Section 3.2)), with each component having its own recurrent layer. Although
CARA consists only one recurrent layer, it is as effective as DRCF. Moreover, in [2], we
demonstrated that CARA significantly outperforms each individual component of DRCF.
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Deep Neural Network model decreases when its parameter size increases, due
to overfitting. Interestingly, on the Yelp dataset, CARA outperforms CRCF
when the dimensions of latent factors increase using both metrics. These
results are intuitive because CARA has a lower number of parameters than
CRCF (indeed, the number of parameters of CRCF is approximately the
sum of CARA’s and DRCF’s parameters). Therefore, when we increase the
number of latent factors in CARA, it can learn to more effectively capture the
complex structure of user-venue interactions on the Yelp dataset. In contrast,
CRCF already has a large number of parameters, increasing the dimensions
of latent factors of CRCF is likely to degrade its effectiveness.line:e:factors

Within the second group of rows in Table 3, we further investigate the
effectiveness of the CRCF framework by comparing with the baselines for the
Cold-Start Users. Similar to the first group of rows in Table 3, the results in
the second group demonstrate that CRCF consistently and significantly out-
performs all baselines across the Brightkite and Yelp datasets on both mea-
sures. In particular, comparing the effectiveness of CRCF for cold-start users
with DRCF and CARA, CRCF obtains 5.81-10% and 3.69-15.49% improve-
ments in terms of NDCG, for the Brightkite and Yelp datasets, respectively.
Although the performance of CRCF in alleviating the cold-start user problem
is statistically indistinguishable from CARA and DRCF for the Foursquare
dataset in terms of HR@10, CRCF significantly outperforms CARA in terms
of NDCG@10 by 7%. This result suggests that the element-wise product and
the concatenation of the latent factors used by CRCF play a more important
role than the dot product of the latent factors used by CARA in generating
more effective top-K venue recommendations for cold-start users. Overall,
the results reported in the second group of rows in Table 3 demonstrate
that our proposed CRCF framework is more effective than the DRCF frame-
work and the CARA architecture in alleviating the cold-start user problem.
Overall, in response to research question RQ1(a), we find that our proposed
CRCF framework, which leverages the sequences of users’ checkins as well
as the contexts associated with the checkins, is effective for CAVR for both
normal and cold-start users.

line:s:sec2

6.1.2. Usefulness of Dynamic Geo-based Negative Sampling

In this section, to address research question RQ2(a), we evaluate the
usefulness of the dynamic geo-based negative sampling approach (Equa-
tion (3), denoted with the suffix 44,) in enhancing the robustness of var-
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Table 4: As per Table 3. Performances in terms of HR@10 and NDCG@10 between various
approaches that apply the dynamic geo-based negative sampling approach proposed in [1],
denoted as dgeo

Normal Users Experiments
Brightkite Foursquare Yelp
Model HR NDCG HR NDCG HR NDCG
MostPop 0.1462* | 0.1010* | 0.2009* | 0.1167* | 0.0739* | 0.0334*
Most Visit 0.4032*% | 0.3473* | 0.4733* | 0.4290* | 0.1083* | 0.0528*
RecentVisit | 0.4809% | 0.4370* | 0.4584* | 0.4037* | 0.1096* | 0.0542*
GeoBPR 0.7339% | 0.4672* | 0.8216* | 0.5395- | 0.5570* | 0.3032*

DRCF 0.7419* | 0.6048* | 0.8952* | 0.7223* | 0.5162* | 0.2963*
CARA 0.7385* | 0.6040* | 0.8851* | 0.7154* | 0.5587* | 0.3272*
CRCF 0.7528 | 0.6319 | 0.8981 | 0.7442 | 0.5861 | 0.3479

DRCFygeo | 0.7852% | 0.6210% | 0.9095* | 0.7214* | 0.5618* | 0.3064*
CARAygeo | 0.7717*% | 0.6266* | 0.9129* | 0.7567* | 0.6107* | 0.3665*
CRCF ggeo 0.8029 | 0.6606 | 0.9260 | 0.7788 | 0.6548 | 0.3927
Cold-Start Users Experiments
Brightkite Foursquare Yelp

Model HR NDCG HR NCDG HR NDCG
MostPop 0.1155* | 0.0778% | 0.0584* | 0.0286* | 0.0714* | 0.0316*
MostVisit 0.4285* | 0.3789* | 0.3506* | 0.3175% | 0.1044* | 0.0489*
RecentVisit | 0.4995% | 0.4585* | 0.3831* | 0.3446* | 0.1052* | 0.0497*
GeoBPR 0.8093* | 0.5262* | 0.8312- | 0.5486* | 0.5802* | 0.3202*

DRCF 0.7526* | 0.5980* | 0.8377* | 0.6645* | 0.5330* | 0.3136*
CARA 0.7648* | 0.6220* | 0.8636* | 0.6505* | 0.5748% | 0.3493*
CRCF 0.7782* | 0.6582* | 0.8571* | 0.6967* | 0.5913* | 0.3622*

DRCF g, | 0.8094* | 0.6199% | 0.8896 | 0.7074 | 0.5877* | 0.3318*
CARAggeo | 0.8153*% | 0.6556* | 0.8766 | 0.7225 | 0.6332* | 0.3893*
CRCF 4ge0 0.8557 | 0.6995 | 0.8701 | 0.7152 | 0.6612 | 0.4053

ious approaches that used the traditional BPR negative sampling approach
(Equation (2). In the first group of rows in Table 4, we report the effec-
tiveness for Normal Users of the CRCF framework by comparing it with the
state-of-the-art DRCF framework and the CARA architecture when incorpo-
rating the dynamic geo-based negative sampling approach. First, we observe
similar results to those reported in [1], namely that the negative sampling
approach can significantly improve the effectiveness of DRCF, CARA and
CRCF in terms of HR@10 and NDCG@10 across the three datasets. For ex-
ample, CRCF44¢, obtains over 6.65%, 3.1% and 11.72% improvements over
CRCF in terms of HR@10 on the Brightkite, Foursquare and Yelp datasets,
respectively. Note that DRCFgy., and CARAyy, also obtain similar per-
centage improvements over DRCF and CARA, respectively, across the three
datasets. In addition, CRCF4, consistently and significantly outperforms
all baselines that consider the geographical location of venues during the
negative sampling process (i.e. GeoBPR, DRCF 4., and CARA4,) across
all three datasets. These improvements and observed results demonstrate
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that the dynamic geo-based negative sampling approach plays a crucial role
in enhancing the effectiveness of DNN-based approaches. In addition, Fig-
ure 4 reports the test performance of CRCFg4, and the baselines for each
of the three datasets with all users over each training iteration. From the
figure, we observe that CRCF 44, outperforms all the baselines at every iter-
ation and converges faster than others across the three datasets. Moreover,
we observe that both DRCF 44¢, and CARA 44¢, are more effective that DRCF
and CARA. However, on the Yelp dataset, we find that CRCF, which relies
on the traditional BPR negative sampling approach [21] is more effective
than DRCF 44, at every iteration in terms of HR@10 and NDCG@10. These
results demonstrate that the users’ context plays an important role in enhanc-
ing the quality of CAVR. Indeed, the dynamic geo-based negative sampling
approach may not be useful when the sequential properties of the users’ ob-
served feedback are less likely to be observed, as in the Yelp rating dataset.
Hence, DRCF g4, is less effective than CRCF for both measures on the Yelp
dataset.

Next, within the second group of rows in Table 4, we further investigate
the effectiveness of CRCF g4¢0, DRCF 44, and CARA g4¢0, which all rely on
the dynamic geo-based negative sampling approach, in the Cold-Start Users
experiments. First, similar to the Normal Users experiments, we observe
that the dynamic geo-based negative sampling approach can significantly
improve the effectiveness of DRCF, CARA and CRCF in terms of HR@Q10
and NDCG@Q10 across the three datasets in the Cold-Start Users experi-
ments. In particular, the results demonstrate that CRCF g4, consistently
and significantly outperforms all baselines across both the Brightkite and
Yelp datasets on both measures. In particular, comparing the effectiveness of
alleviating the cold-start users of CRCF g4, with DRCF 45, and CARA g4,
CRCF obtains approximately 5%, 4.42 - 12.5% improvements in terms of
HR@10 for the Brightkite and Yelp datasets, respectively. Although the ef-
fectiveness of CRCF g4, for the cold-start users is less than that of DRCF g,
and CARA 44, for the Foursquare dataset, there is no significant difference
between CRCF 440, DRCF 44¢, and CARA 44¢, in terms of HR and NDCG on
the Foursquare dataset. These results demonstrate that the dynamic geo-
based negative sampling approach can enhance the effectiveness of CRCF,
DRCF and CARA in generating effective CAVR for the cold-start users.

We further investigate the usefulness of the dynamic geo-based negative

sampling approach and the CARA architecture in enhancing the effectiveness
of CRCF g4¢, under different settings for CAVR. Note that CARA leverages
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Figure 5: Performance of various approaches in terms of NDCG@10 on the Brightkite,
Foursquare and Yelp datasets by varying the time interval At in terms of hours with the
fixed values of the geographical distances Ag (1 and 5 km).
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the time interval and geographical distance between two successive checkins
to model the user’s dynamic preferences, motivating the integration of CARA
into our proposed CRCF framework (as described in Section 4). In particular,
Figure 5 presents the performances on the Brightkite, Foursquare and Yelp
datasets — in terms of NDCG@10 — of various approaches, by considering the
users with particular time intervals At (hours) and geographical distances Ag
(km) between their last checkin and the ground-truth checkin. For example,
if a user checks in at venues A, B and C in a sequence, his/her last checkin is
at venue B and his/her ground-truth checkin is at venue C. Then, we calculate
the distance Ag and the time interval At between venues B and C. Note that
these two checkins may occur at the same venue, hence the distance Ag = 0,
while the time interval At between these two checkins is such that At > 0.
First, the results from Figure 5 demonstrate that CRCF consistently outper-
forms CARA across the three datasets in terms of NDCG@10 on various time
intervals At and geographical distances Ag. These results suggest that the
neural architecture (i.e. the element-wise and concatenation operations of la-
tent factors, described in Section 4) in CRCF can effectively integrate CARA,
hence obtaining the improvements over CARA on both settings. Moreover,
the experimental results using a fixed geographical distance of Ag = 5 km
on the right-hand plots in Figure 5 demonstrate that the effectiveness of all
approaches on the three datasets decreases as the time intervals between two
successive checkins increase. These results suggest that users are less likely to
be influenced by distant venues they visited a long time ago, which are con-
sistent with results previously reported in the literature [2]. In contrast, the
performances of all approaches on a fixed geographical distance of Ag = 1 km
setting are relatively stable on the Brightkite and Foursquare datasets. Intu-
itively, nearby venues visited by users are more likely to influence the users’
preferences for their next venues regardless of when those nearby venues were
visited. As mentioned above, the sequential properties are less likely to be ob-
served from the user-venue rating Yelp dataset. Hence, unlike the Brightkite
and Foursquare checkin datasets, the dynamic geo-based negative sampling
approach may not be useful in enhancing the performances of DRCF, CARA
and CRCF on the Yelp dataset. Furthermore, comparing the approaches
that apply the dynamic geo-based negative sampling approach, we find that
the effectiveness of both CARA 4., and CRCF g4, across the three datasets
on different settings can be enhanced by the dynamic negative sampling ap-
proach. In particular, CRCF4y, is the most effective approach compared
to all baselines across the three datasets on various settings. Overall, in
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response to research question RQ2(a), we find that the dynamic geo-based
negative sampling approach can effectively improve the performances of the
CRCF framework for CAVR on various settings that consider different time
intervals and geographical distances between users’ two successive checkins.

6.2. Robustness Evaluation

In this section, we evaluate the robustness of the CRCF and DRCF frame-
works as well as the CARA architecture using the risk-sensitive measures (i.e.
Reward & Risk and U,;s), proposed by Wang et al. [24] to quantify any un-
derperformance of DRCF, CARA and CRCF compared to the BPR model
(Section 6.2.1).'* Apart from the risk-sensitive measures, we also use the
T,isk measure, proposed by Dinccer et al. [25], to evaluate whether a given
framework or model exhibits a significant risk compared to the BPR model.
In particular, we test the significance of an observed risk-reward tradeoff
score between a target model and the BPR model by using T, as the test
statistic of the Student’s t-test for matched pairs. In addition, we evalu-
ate the usefulness of the dynamic geo-based negative sampling approach in
enhancing the robustness of the CRCF framework (Section 6.2.2).

6.2.1. Robustness of the CRCF' framework

Tables 5 & 6 report the robustness of the CRCF framework in comparison
with the DRCF framework and the CARA architecture — which do not apply
the dynamic geo-based negative sampling approach — on the three datasets
in terms of different measures under the Normal Users and Cold-Start Users
experiments, respectively. For instance, the Wins/Losses row shows the ratio
of the number of users that benefit or do not benefit from a particular model
compared to the BPR model. On analysing Table 5, in terms of the robust-
ness of the approaches, we find that CRCF is the most robust framework by
consistently having the lowest Risk/Losses and the highest Reward /Wins in
comparison with DRCF and CARA across the three datasets. In particular,
CRCF can generate a more effective ranked list of venues than BPR (i.e.
NDCG@10 is improved by CRCF compared to BPR) for 45.48%, 54.56%
and 33.32% of users on the Brightkite, Foursquare and Yelp datasets, respec-
tively. CRCF performs less effectively than BPR (i.e. NDCG@10 is degraded

13 Indeed, we argue that BPR is a widely used baseline in recommendation systems, which
is akin to the use of BM25 in web search, and hence is appropriate as our robust baseline
for risk-sensitive evaluation.
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Table 5: The robustness of various approaches in comparison with the BPR baseline in
terms of NDCG@10 on three datasets for Normal users. T,;s; scores greater than +2
or less than -2 indicate that a two-tailed paired t-test gives significance with p < 0.05.
T,.;sk scores greater than +2 are indicated with *. The best score w.r.t. each risk-sensitive
measure is highlighted in bold.

Dataset Measure DRCF CARA CRCF
Risk 0.052 0.049 0.041
Reward 0.224 0.220 0.240

Wins/Losses 6297/1805 | 6159/1687 | 6538,/1483
Brightkite | Wins%/Losses% | 43.80/12.55 | 42.84/11.73 | 45.48/10.31

Uyr o =1 0.119 0.122 0.157
Trisk =1 38.763* 40.390% 52.161%
Uisk @« =5 -0.090 -0.073 -0.007
Trisk @« =5 -24.066 -20.195 -2.051
Risk 0.019 0.029 0.022
Reward 0.258 0.261 0.283
Wins/Losses | 5723/644 | 54507910 | 5876/711
Foursquare | Wins%/Losses% | 53.14/5.98 | 50.61/8.45 | 54.56/6.60
Urie @ =1 0.220 0.202 0.238
—| 71.0637 60.024% 71.608%
Upisk @ =5 0.142 0.084 0.147
Trisk =5 44.010* 22.915% 42.049*
Risk 0.071 0.075 0.070
Reward 0.097 0.133 0.148

Wins/Losses 9232/7311 | 11820/7518 | 12980/7064
Yelp Wins% /Losses% | 23.70/18.77 | 30.35/19.30 | 33.32/18.13

Ui 0 =1 -0.045 -0.017 0.009
Trisk =1 -30.236 -10.322 5.025%
Upisk @« =5 -0.330 -0.320 -0.272
Trisk =5 -142.903 -126.541 -111.453

by CRCF compared to BPR) for 10.32%, 6.60% and 18.14% of users on the
Brightkite, Foursquare and Yelp datasets, respectively. In addition, Fig-
ure 6 reports the wins-losses histogram of CRCF and the baselines on the
three datasets. From the plots for the Normal Users experiments (left-hand
plots of Figure 6), we observe that CRCF has consistently smaller changes in
NDCG@10 on all bins on the left side of the vertical line and larger changes
in NDCG@10 on the right side of the vertical line than the baselines across
the three datasets. Moreover, we observe that, at &« = 1 (which empha-
sises risk twice over reward), the calculated U,z scores of DRCF, CARA
and CRCF are significantly higher than BPR, at p < 0.05 (as T, > 2),
across the Brightkite and Foursquare datasets, while only the U, score of
CRCF on the Yelp dataset exhibits significant risk (T, < 2). These results
demonstrate that it is highly likely that CRCF will not perform worse than
the BPR baseline across the three datasets, while both DRCF and CARA,
having T,;sr < —2 at @ = 1, may underperform on the Yelp dataset (i.e. per-
form worse than BPR). Overall, in response to research question RQ1(b), we
find that our proposed CRCF framework is robust and less likely to perform
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Table 6: The robustness of various approaches in comparison with the BPR baseline in
terms of NDCG@10 on three datasets for the Cold-Start users. T,;s; scores greater than
+2 or less than -2 indicate that a two-tailed paired t-test gives significance with p < 0.05.
T,.;sk scores greater than +2 are indicated with *. The best score w.r.t. each risk-sensitive
measure is highlighted in bold.

Dataset Measure DRCF CARA CRCF
Risk 0.082 0.060 0.047
Reward 0.190 0.192 0.215

Wins/Losses | 2183/1043 | 2221/803 | 2394/661
Brightkite | Wins%/Losses% | 39.13/18.69 | 39.81/14.39 | 42.91/11.85

Upjs v =1 0.025 0.071 0.121
T =1 4.871% 15.045* 25.832%
Upisk =5 -0.304 -0.170 -0.067
Trisk =5 -40.821 -27.581 -12.069
Risk 0.056 0.067 0.041
Reward 0.224 0.221 0.241
Wins/Losses 73/20 57/86 65/81
Foursquare | Wins%/Losses% | 47.40/12.98 | 37.01/55.84 | 42.20/52.59

Upis v =1 0.113 0.087 0.160
Trisk =1 3.785% 2.813% 5.498*
Upisk 0 =5 -0.109 -0.181 -0.003
J— .55 WWES 10.002
Risk 0.079 0.079 0.078
Reward 0.098 0.134 0.145

Wins/Losses 1593/1421 2119/1374 | 2266/1328
Yelp Wins%/Losses% | 23.07/20.58 | 30.69/19.90 | 32.82/19.23

Upisk @ =1 -0.059 -0.024 -0.010
Trisk @ = 1 -16.220 -5.982 2411
Uyt =5 -0.374 -0.341 -0.321
Trse @ =5 -63.249 -55.016 -51.850

worse than the BPR baseline for CAVR for Normal users.

Next, Table 6 reports the risk measures for the Cold-Start Users, using
the same notations as Table 5. In Table 6, we observe that CRCF has
consistently lower Risk/Losses and higher Reward/Wins than DRCF and
CARA across the Brightkite and Yelp datasets for the Cold-Start Users.
For example, CRCF is more robust than DRCF and CARA in terms of
Wins as it can generates more effective venue suggestions than BPR for
2,394 users on the Brightkite dataset, while DRCF and CARA can only
generate more effective venue suggestions than BPR for 2,183 and 2,221
users, respectively. Similar results in terms of Wins for DRCF, CARA and
CRCF can also be observed on the Yelp dataset. In addition, CRCF exhibits
less risk than DRCF and CARA at generating less effective venue suggestions
than BPR. For example, on the Brightkite dataset, CRCF only generates less
effective venue suggestions than BPR for 661 users, while DRCF and CARA
generate less effective venue suggestions than BPR for 1,043 and 803 users,
respectively. We observe similar results for DRCF, CARA and CRCF in
terms of Losses on the Yelp dataset.
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Moreover, we observe that, at o = 1, the U, scores of DRCF, CARA
and CRCF exhibit significant improvements across the Brightkite and Foursquare
datasets. These results demonstrate that there is no significant risk that
these three approaches will perform worse than the BPR baseline for the
Cold-Start users for the Brightkite and Foursquare datasets. However, these
three approaches are likely to perform worse than BPR on the Yelp dataset
when both @ = 1 and o = 5. Figure 6 (left-hand plots) shows that CRCF
consistently has a larger number of positive changes over BPR than DRCF
and CARA on the Brightkite and Yelp datasets across all positive bins, and
likewise has a smaller number of negative changes over BPR than DRCF and
CARA across negative the bins. However, for the Foursquare dataset, CRCF
has a higher Reward and lower Risk than DRCF on average, while the num-
ber of Losses of DRCF is lower than that of CRCF. Likewise, the number
of Wins of DRCF is higher than CRCF. For example, there are only 13% of
cold-start users (20 out of 154 cold-start users) on the Foursquare dataset
whose recommendations generated by DRCF are less effective than BPR,
while 52% of cold-start users (81 out of 154 cold-start users) on Foursquare
get less effective recommendations from CRCF than BPR. These results can
be clearly observed in Figure 6 on the Foursquare dataset for the Cold-Start
Users experiments where CARA and CRCF obtain a large number of nega-
tive changes in terms of NDCG@10 over BPR for 0 < NDCG < 0.2. Overall,
in response to research question RQ1(b), we find that our proposed CRCF
framework is robust and less likely to perform worse than the BPR baseline
for CAVR for the Cold-Start users.

We further investigate the robustness of the CRCF framework in com-
parison with the DRCF framework and the CARA architecture using the
T,;sr score. Figure 7 demonstrates the change in the T, scores of the ap-
proaches for various risk-sensitivity a parameter values from 0 to 15 under
the Normal and Cold-Start Users experiments. Note that, as mentioned in
Section 5, the risk-sensitivity a parameter controls the risk-reward tradeoff
of the U,;x and T, scores. Indeed, as « increases, the tradeoff between
risk and reward for each model changes in favour of risk compared to re-
ward. T, scores greater than +2 (indicated by the red horizontal line in
the figure) or less than 2 (indicated by the blue-dashed horizontal line in
the figure) exhibit significant differences from the baseline according to a
two-tailed paired t-test with p < 0.05. On analysing the left-hand plots in
Figure 7, with respect to the Normal experiments, at a = 1, we observe that
all approaches (DRCF, CARA and CRCF) are significantly less risky than
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effective as BPR).
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BPR across the three datasets. Moreover, we observe that as « increases, on
the Brightkite and Yelp datasets, CRCF is significantly less risky than BPR
when o = 4 and « = 1, respectively, while DRCF and CARA are not. On
the Foursquare dataset, CRCF and DRCF are significantly less risky than
BPR until @ = 11, while CARA is significantly less risky than BPR until
a="T.

Next, on analysing the right-hand plots in Figure 7, regarding the ro-
bustness of DRCF, CARA and CRCF under the Cold-Start experiments, we
observe that, at a = 1, all approaches are significantly less risky than BPR.
However, as « increases to 3, CRCF is the only approach that is less risky
than the BPR baseline across the Brightkite and Foursquare datasets. More-
over, comparing CRCF with either DRCF or CARA, we observe that CRCF
is only significantly less risky than DRCF when o = 1 on the Brightkite
dataset for the Cold-Start users. Overall, in response to research question
RQ1(b), we find that our proposed CRCF framework is less risky for deploy-
ment to users, in that it only exhibits real risk compared to BPR for higher
values of « than the existing state-of-the-art, DRCF and CARA approaches,
for both Normal and Cold-Start users experiments.

6.2.2. Usefulness of Dynamic Geo-based Negative Sampling for Robustness
In this section, in addressing research question RQ2(b), we evaluate the
usefulness of the dynamic geo-based negative sampling in improving the ro-
bustness of the CRCF framework for the Normal Users experiments. In
Table 7, we first observe that the dynamic geo-based negative sampling
approach can consistently enhance the robustness of the CRCF framework
across the three datasets. In particular, in comparison with DRCF 4., and
CARA jyeo, CRCF 44, is the most robust framework, as it generates more ef-
fective venue suggestions than BPR for 49.94% , 59.16% and 40.55% of users
on the Brightkite, Foursquare and Yelp datasets, respectively. Moreover,
comparing CRCF 44, and CRCF, we observe that the dynamic geo-based
negative sampling approach can enhance the Reward score of CRCF by ap-
proximately 4-7% and can reduce the Risk score of CRCF by approximately
0.6-3%. In addition, comparing the T,;s scores of CRCF and CRCFy,e, on
the Brightkite dataset, at o = 5, we observe that CRCF 4, is less likely to
exhibit a real risk of performing worse than the BPR baseline, while CRCF
is not. In addition, Figure 8 reports the robustness of CRCF and CRCF 44,
on the three datasets. From the left-hand plots in Figure 8 on the Normal
Users experiments, we observe that CRCF g4¢, has consistently lower changes
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Table 7: The robustness of various approaches that incorporate the dynamic geo-based
negative sampling in comparison with the BPR baseline in terms of NDCG@10 on three
datasets for Normal users. T.;s. scores greater than +2 or less than -2 indicate that a
two-tailed paired t-test gives significance with p < 0.05. T, scores greater than +2 are
indicated with *. The best score w.r.t. each risk-sensitive measure is highlighted in bold.

Dataset Measure DRCF CARA CRCF DRCFyge0 | CARAy4co CRCF 44¢0
Risk 0.052 0.049 0.041 0.049 0.044 0.031
Reward 0.224 0.220 0.240 0.237 0.238 0.258

Wins/Losses 6297/1805 | 6159/1687 | 6538/1483 | 6836/1677 | 6660/1568 | 7179/1139
Brightkite | Wins%/Losses% | 43.80/12.55 | 42.84/11.73 | 45.48/10.31 | 47.55/11.66 | 46.33/10.90 | 49.94/7.92

[ 0.119 0.122 0.157 0.138 0.149 0.196
Trise @ = 1 38.763% 40.390% 52.161% 45.453% 192127 67.637*
Uik @ =5 ~0.090 -0.073 -0.007 -0.059 ~0.029 0.073
Trier @ =5 24,066 -20.195 2.051 16.113 8170 231717
Risk 0.019 0.029 0.022 0.022 0.027 0.021
Reward 0.258 0.261 0.283 0.260 0.301 0.316

Wins/Losses | 5723/644 | 5450/910 | 5876/711 | 5798/749 | 6153/821 | 6371/652
Foursquare | Wins%/LossesV% | 43.80/12.55 | 42.84/11.73 | 45.48/10.31 | 53.84/6.95 | 57.14/7.62 | 59.16/6.05

Up o =1 0.220 0.202 0.23 0.215 0.245 0.274
Tyip 0 = 1 71.063% 60.024% 71.698% 63.998* 70.814% 30.755"
[O— 0.142 0.034 0.147 0.125 0.134 0.189
— I4.010% 22.915% 12.049% 37.960 36.110% 53.524%
Risk 0.071 0.075 0.070 0.072 0.067 0.059
Reward 0.097 0.133 0.148 0.109 0.165 0.183

Wins/Losses 9232/7311 | 11820/7518 | 12980/7064 | 10927/7184 | 14270/6721 | 15807/6117
Yelp Wins% /Losses% | 23.70/18.77 | 30.35/19.30 | 33.32/18.13 | 28.05/18.44 | 36.64/17.25 | 40.58/15.70

o 0.045 0.017 0.009 -0.035 0.029 0.064

— 730.236 10.322 5.025% 22.989 16.783% 36.938*
Uik € =5 20.330 0320 0272 0323 0.243 0.174
— 142.903 126541 111453 137.942 -99.610 76.218

in NDCG@10 on all negative bins (i.e. to the left side of the vertical line) and
higher changes in NDCG@10 on all positive bins (i.e. the right side of the
vertical line) than CRCF across the three datasets. Furthermore, Figure 9
reports the wins-losses histograms of DRCFggc,, CARA 44, and CRCEF gy,
on the three datasets. From the left-hand plots in Figure 9, on the Normal
Users experiments, we observe that CRCF 44¢, consistently has lower changes
in NDCG@10 on all negative bins (i.e. to the left side of the vertical line)
and higher changes in NDCG@10 on all positive bins (i.e. to the right side
of the vertical line) than DRCF4,¢, and CARA 4, across the three datasets.

Next, we evaluate the usefulness of the dynamic geo-based negative sam-
pling approach in improving the robustness of the CRCF framework for the
Cold-Start Users experiments. Similarly to the results reported in Table 7,
in Table 8, we find that the dynamic geo-based negative sampling approach
can consistently improve the robustness of CRCF on the Brightkite and Yelp
datasets for the Cold-Start Users experiments. For example, CRCF g4, ob-
tains approximately 7% and 3% improvements in the Reward and Risk scores
over DRCF on the Brightkite and Yelp datasets, respectively. Moreover, com-
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Table 8: The robustness of various approaches that incorporate the dynamic geo-based
negative sampling in comparison with the BPR baseline in terms of NDCG@10 on three
datasets for the Cold-Start users. T,;s scores greater than +2 or less than -2 indicate
that a two-tailed paired t-test gives significance with p < 0.05. T,;s; scores greater than
42 are indicated with *. The best score w.r.t. each risk-sensitive measure is highlighted
in bold.

Dataset Measure DRCF CARA CRCF DRCF yg4e0 CARA44e0 CRCF 4ge0
Risk 0.082 0.060 0.047 0.078 0.051 0.033
Reward 0.190 0.192 0.215 0.207 0.216 0.241

Wins/Losses 2183/1043 2221/803 2394/661 2418/974 2489/706 2767/486
Brightkite | Wins%/Losses% | 39.13/18.69 | 39.81/14.39 | 42.91/11.85 | 43.34/11.66 | 44.62/10.90 | 49.60/7.92

Upisk =1 0.025 0.071 0.121 0.051 0.114 0.176
Trigr =1 4.871% 15.045% 25.832% 9.871% 24.273% 39.980*
Upisk =5 -0.304 -0.170 -0.067 -0.262 -0.090 0.046
T =5 -40.821 -27.581 -12.069 -35.896 -15.663 9.396*
Risk 0.056 0.067 0.041 0.043 0.049 0.049
Reward 0.224 0.221 0.241 0.254 0.275 0.268
Wins/Losses 73/20 57/86 65/81 71/75 73/73 70/78
Foursquare | Wins%/Losses% | 47.40/12.98 | 37.01/55.84 | 42.20/52.59 | 46.10/48.70 | 47.40/47.40 | 45.45/50.64

Upis @ =1 0.113 0.087 0.160 0.168 0.178 0.170
Trig =1 3.785% 2.813% 5.498* 5.825% 5.796* 5.536%
Upisk € =5 -0.109 -0.181 -0.003 -0.004 -0.018 -0.024
Trisk =5 -2.955 -4.438 -0.092 -0.115 -0.491 -0.674
Risk 0.079 0.079 0.078 0.075 0.072 0.066
Reward 0.098 0.134 0.145 0.113 0.166 0.177

Wins/Losses 1593/1421 2119/1374 | 2266/1328 | 1962/1320 2548 /1257 2724/1195
Yelp Wins% /Losses% | 23.07/20.58 | 30.69/19.90 | 32.82/19.23 | 28.42/19.12 | 36.91/18.20 | 39.46/17.31

Uyt 00 = 1 20.059 0.024 20,010 20.033 0.023 0.045
Tror 0 = 1 16.220 5.082 2411 10.301 5.468* 10.617
Uik @ =5 0374 0.341 0321 0339 0.264 0220
Tk @ =5 63.249 55.016 51.850 58.746 11.024 38.381

paring the T,;s; scores of CRCF and CRCFyq., on the Brightkite dataset,
at o = 5, we observe that CRCFyg, is less likely to exhibit a real risk of
performing worse than the BPR baseline, while CRCF is not. Similarly, at
a = 1, on the Yelp dataset, we find that CRCF is likely to be under a real risk
of performing worse than the BPR baseline, while CRCF 44, is not. Next, the
right-hand plots in Figure 8 report that CRCF g4, has consistently a larger
number of positive changes in NDCG@10 over BPR across all positive bins
in comparison with CRCF across the three datasets. These significant im-
provements in the T, scores of CRCF g4¢, compared to CRCF demonstrate
that the dynamic geo-based negative sampling approach can significantly
reduce the risk of the CRCF framework in performing worse than the BPR
baselines. Furthermore, on analysing the right-hand plots in Figure 9, we ob-
serve that CRCF g4¢, has consistently a larger number of positive changes in
NDCG@10 over BPR across all positive bins in comparison with DRCF 44,
and CARA44, on the Brightkite and Yelp datasets. Overall, in response
to research question RQ2(b), we find that the dynamic geo-based negative
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sampling approach can significantly reduce the risk of our proposed CRCF
framework in performing worse than the BPR baseline for both normal and
cold-start users experiments.

Next, we evaluate the usefulness of the dynamic geo-based negative sam-
pling approach in enhancing the robustness of the CRCF framework using
the T,.;s, score. Similar to Figure 7, Figure 10 demonstrates the change in the
T,;sx scores of the various approaches with the dynamic geo-based negative
under Normal and Cold-Start Users experiments. With respect to the Normal
experiments, as « increases, we observe that CRCF g4, is significantly less
risky than the BPR baseline until a = 7, @ = 12 and a = 2 for the Brightkite,
Foursquare and Yelp datasets, respectively, while CRCF is not. These re-
sults suggest that the dynamic geo-based negative sampling approach can
significantly improve the robustness of our proposed CRCF framework (i.e.
reducing the chance generating less effective recommendations than BPR).
Overall, in response to research question RQ2(b), we observe further evidence
that the dynamic geo-based negative sampling approach reduces the risk of
our proposed CRCF framework, for both Normal and Cold-Start users.

7. Conclusions

In this article, we proposed a novel Contextual Recurrent Collabora-
tive Filtering framework (CRCF) for Context-Aware Venue Recommenda-
tion (CAVR). Our proposed framework is built on top of two state-of-the-art
deep neural network recommendation approaches, namely the Deep Recur-
rent Collaborative Filtering (DRCF) framework and the Contextual Atten-
tion Recurrent Architecture (CARA). By exploiting both DRCF and CARA,
CRCF can effectively capture the complex structure of the users’ dynamic
preferences by considering their preferred context (i.e. time of the day) as
well as the contextual information associated with the sequence of user’s
checkins.

Our comprehensive experiments on three large-scale datasets from Brightkite,
Foursquare and Yelp demonstrated the significant improvements of our pro-
posed CRCF framework for CAVR in comparison with various existing state-
of-the-art venue recommendation approaches in both normal and cold-start
settings. Moreover, our experimental results showed that CRCF is more ro-
bust than the baseline approaches in both the normal and cold-start settings.
Indeed, the CRCF framework exhibited significantly less risk than both the
DRCF framework and the CARA architecture across the three used datasets.
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Figure 8: As per Figure 6, typical Wins-Losses histograms of the CRCF framework with
or without the dynamic geo-based negative sampling approach (CRCF 44¢, and CRCF) in
comparison with the CF ranking baseline model, BPR, under the Normal and Cold-Start

Users experiments.
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Figure 9: As per Figure 6, typical Wins-Losses histograms of target new models that in-
corporate the dynamic geo-based negative sampling approach (DRCF g4c0, CARA 44¢0 and
CRCFggeo) in comparison with the CF ranking baseline model, BPR, under the Normal

and Cold-Start Users experiments.
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Figure 10: The change in standardised T} scores for CRCF and CRCF 44, with respect
to the BPR model, denoted inside the parentheses, over different o values under the
Normal and Cold-Start Users experiments.
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In particular, the following detailed findings can be observed from our thor-
ough experiments:

e The contextual information associated with the sequences of the users’
checkins (e.g. the time interval and distance between two successive
checkins) is important in enhancing the quality of context-aware venue
recommendation. In particular, in Figure 5, we demonstrated that our
proposed CRCF framework, which exploits the state-of-the-art CARA
architecture to leverage the contextual information, can outperform
both the DRCF framework and the CARA architecture across the three
used datasets. Moreover, the experimental results in Table 3 showed
that the CRCF framework significantly outperforms the DRCF frame-
work, which does not take the contextual information into account,
across the three used datasets in terms of the HR and NDCG mea-
sures.

e We have demonstrated that the dynamic geo-based negative sampling
approach, denoted with the 44, suffix, can improve the effectiveness and
robustness of various state-of-the-art context-aware recommendation
approaches, and can alleviate the cold-start problem. In particular,
CRCF 44¢, exhibited a less significant risk of underperforming for a given
user compared to BPR (Tables 7 & 8 and Figures 8 & 9).

e We have shown that leveraging the sequential order of users’ checkins as
well as the geographical information of venues can significantly improve
both the effectiveness and robustness of the CRCF framework. In par-
ticular, CRCF 40, the CRCF framework with the dynamic geo-based
negative sampling approach, obtained over 6%, 3% and 11% improve-
ments in terms of HR@10 over DRCF without the dynamic geo-based
negative sampling approach (Table 4).

e In term of Wins, 45%, 54% and 33% of the Normal users in Brightkite,
Foursquare and Yelp, respectively, received better venue suggestions
from our proposed CRCF framework compared to the BPR model.
In terms of Loss, only 10%, 6% and 18% of the users in Brightkite,
Foursquare and Yelp, received less effective venue recommendations
from CRCF compared to the BPR model (Table 5). In addition, the

CRCF framework can generate more effective venue suggestions than
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the BPR model for 42% and 32% of the Cold-Start users on Brightkite
and Yelp, respectively (Table 6).

As future work, we plan to extend the CRCF framework to incorporate

additional information such as the social relationships between users as well
as the textual content of comments to further improve the quality of recom-
mendation for CAVR - indeed, this has previously been shown to be useful
for regularisation [38, 39].
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