2001.03010v1 [cs.IR] 9 Jan 2020

arxXiv

Topical Result Caching in Web Search Engines

Ida Mele?, Nicola Tonellotto®, Ophir Frieder®, Raffaele Perego®

¢ISTI-CNR, Pisa, Italy
bGeorgetown University, Washington, DC, USA

Abstract

Caching search results is employed in information retrieval systems to expedite query processing and reduce
back-end server workload. Motivated by the observation that queries belonging to different topics have
different temporal-locality patterns, we investigate a novel caching model called STD (Static-Topic-Dynamic
cache). It improves traditional SDC (Static-Dynamic Cache) that stores in a static cache the results of
popular queries and manages the dynamic cache with a replacement policy for intercepting the temporal
variations in the query stream.

Our proposed caching scheme includes another layer for topic-based caching, where the entries are allo-
cated to different topics (e.g., weather, education). The results of queries characterized by a topic are kept in
the fraction of the cache dedicated to it. This permits to adapt the cache-space utilization to the temporal
locality of the various topics and reduces cache misses due to those queries that are neither sufficiently
popular to be in the static portion nor requested within short-time intervals to be in the dynamic portion.

We simulate different configurations for STD using two real-world query streams. Experiments demon-
strate that our approach outperforms SDC with an increase up to 3% in terms of hit rates, and up to 36%
of gap reduction w.r.t. SDC from the theoretical optimal caching algorithm.

Keywords: efficiency; caching; topic modeling

1. Introduction

Caching is a fundamental architectural optimization strategy [14], and query-result caching is critical
for Web search efficiency. Query-result caching, as its name implies, stores the results of some selected
user queries in a fast-access memory (cache) for future reuse. When a query is requested and we have
a hit in the cache, the cached results are directly returned to the user without reprocessing the request.
Result caching improves the main efficiency-performance metrics of search engines, namely, latency and
throughput. Indeed, serving the cached results decreases the latency perceived by the user issuing the query
as well as avoids the usage of computational resources with a consequent improvement of the search engine
throughput.

Another advantage of caching query results is the reduction of energy consumption as cached queries
do not need to be reprocessed by the back-end servers. Although other energy-efficiency optimization
schemes exist [I5] [16] 30} [44], these approaches are complementary to result caching and not a contradictory
alternative. Given desired and imposed “Green Policy” restrictions and the significant economic benefits
due to the energy conservation, the interest of the search industry in energy saving is high. Energy wise,
the cost of a cached query is typically assumed to be nil, while a search of a query costs proportionally to
its processing time in combination with the electricity price at the time of processing [40].

The main challenge in query-result caching is the identification of those queries whose results should be
cached. However, via query log mining, researchers observed high temporal locality in the query stream,

Email addresses: ida.mele@isti.cnr.it (Ida Mele), nicola.tonellotto@isti.cnr.it (Nicola Tonellotto),
ophir@ir.cs.georgetown.edu (Ophir Frieder), raffaele.perego@isti.cnr.it (Raffaecle Perego)

Preprint submitted to Information Processing € Management January 10, 2020

enabling accurate search-engine side caching of popular query results, i.e., results of queries frequently
requested by different users [39, 46].

The query-result cache can be static or dynamic. A static cache is periodically populated in an offline
manner, with the results of past, most-popular queries. Query popularity is estimated observing previously
submitted queries (e.g., previous day or week) in Web search logs; a simplifying, but not always correct,
core assumption is that queries popular in the past remain popular in the future. A dynamic cache, as the
name suggests, is dynamically updated; when the cache is full, an eviction/replacement policy is applied to
decide which cache element must be removed to make space for the new one. The most common replacement
policy for dynamic caches is the Least Recently Used (LRU) strategy: every time a query is submitted, the
cache is updated, keeping track of what query was used and when; if necessary, the cache entry used least
recently is evicted to vacate space for the new entry. The LRU strategy is effective without global knowledge
and captures the “bursty” behavior of the queries by keeping recent queries in the cache and replacing those
queries that are not requested for a long period of time.

Static and dynamic caches can be combined together. Fagni et al. [20] proposed a Static-Dynamic Cache
(SDC) where the cache space is divided into two portions. The static portion stores results of the most
popular queries, such as “microsoft,” “youtube,” or “facebook.” The dynamic portion maintains currency
by applying the LRU strategy. This hybrid approach has proved successful in improving the performance
of query-result caching with respect to both static and dynamic caching solutions in isolation. Despite its
good performance, SDC suffers from some issues. Static caching captures highly frequent queries, while LRU
caching captures bursts of recently submitted queries. That is, static caching captures past queries that
are popular over a relatively large time span (e.g., days or weeks) while LRU caching might fail to capture
such long-term temporal locality, but does capture short-term popularity. However, a query might not be
sufficiently globally popular to be cached in the static cache and not be requested so frequently to be kept
in the dynamic cache, but it might become relatively popular in a specific time interval. For example, a
query on a specific topic, such as weather forecast, is typically submitted in the early morning hours or at
the end of a work day, but relatively seldom in the remaining hours of a day.

We design a cache for query results that can adapt the cache-space utilization to the popularity of the
various topics represented in the query stream. The intuition behind our approach is that queries can be
grouped based on broad topics (e.g., the queries “forecast” and “storm” belong to the topic weather, while
queries “faculty” and “graduate” to the topic education), and queries belonging to different topics might
have different temporal-locality patterns. We assume that the topic popularity is represented by the number
of distinct queries belonging to the topic; to capture the specific locality patterns of each topic we split the
cache entries among the different topics proportional to their popularity. This provides queries belonging to
frequently requested topics greater retention probability in the LRU cache.

As an illustrative example, consider a cache with size 2 and the query stream abcadeafg, where query
a is about a specific topic. A classical LRU strategy will get a 0% hit rate (all queries will cause a miss).
Instead, using 1 entry for the topic cache and 1 entry for the LRU cache we will get a 22.2% hit rate (the
first occurrence of a causes a miss, the other two occurrences will cause two hits in the topic cache).

The topic cache can be combined with a static cache in different configurations. We propose to improve
the SDC approach by adding yet an additional cache space partition that stores results of queries based on
their topics. We call our approach Static-Topic-Dynamic cache (STD) and in Fig|l|is shown an example of
it. To detect the query topics and incorporate them in the caching strategy we rely on the standard topic
modeling approach called Latent Dirichlet Allocation (LDA) [11]. LDA gets as input a document collection
and returns lists of keywords representing the topics discussed in the collection. Each document in our
setting consists of the query keywords and the textual content of their clicked results. Given the topics,
the queries can be classified into topical categories, and we estimate the topic popularity by observing the
number of distinct queries belonging to that topic.

For our experiments, we use real-world query logs from AOL and Microsoft search engines, and we
observe that modifying the caching strategy to include the topic partition increases the cache hit rate by
greater than 3 percent with a consequent improvement of the query processing performance. This increase
greatly reduces the gap w.r.t. Bélady’s optimal caching policy [10], measured as the difference between the
hit rate of Bélddy’s policy and the hit rate of SDC/STD policies. While the SDC gap is ~10%, the STD gap

2

Static cache
(top queries) t; t, ... t,

Topic cache

Dynamic cache
(LRU)

Figure 1: Example of STD cache.

is ~6%, with a relative improvement of more than 35% when no cache admission policy is applied. This
result is very good for query-result caching, considering that SDC is the state-of-the-art and other attempts
to enhance it resulted in small improvements [27].

Compared to a traditional SDC cache, we observe that our caching technique captures moderately popular
queries not captured by the static cache; additionally we capture requests repeated within a large time
interval that are likewise not captured by the dynamic cache. Some examples of queries that cause a miss
in SDC but not in STD are first bank, texas state bank, first national, renasant bank for the topic banking,
education world, everyday math, french-english dictionary for the topic education and florida department
of health, arthritis foundation, st vincents hospital, st marys hospital for the topic health, just to mention
a few of them.

The paper is structured as follows: Section [2] provides background information and discusses the re-
lated work in Web search engine caching, while Section [3| introduces our STD cache model and different
configurations of the topic-based cache, followed by how the topics are distilled. Then, Section [4] describes
and analyzes the query logs and document collections used for the assessment of the performance of our
STD cache(s). Section [5| details the experimental settings and reports on the results of our comprehensive
evaluation. Finally, we conclude our investigation in Section [6]

2. Related Work

As background, we overview related efforts investigating query log mining, caching solutions in Web
search engines, and query topic distillation.

Query Log Mining. Information extracted from query logs (e.g., search keywords, users’ IDs, query times-
tamps, and clicked results) allows us to understand the behavior of users interacting with the search engine
and, consequently, to enhance the effectiveness and efficiency of the retrieval systems. This desire for user be-
havioral understanding motivated researchers to investigate the mining of Web search logs in many different
directions [42].

Raghavan and Sever [37] performed a first study on how to use past knowledge to improve the effective-
ness of information retrieval. They proposed to improve the result retrieval for queries similar to a query
base which is obtained from past optimal queries mined from query logs. Another approach exploits infor-
mation extracted from query logs (e.g., query frequencies and distribution) for enhancing the performance
of search engines, such as designing new caching strategies [20] 28] and assessing the performance of caching
techniques [33]. Other researchers analyzed query logs observing high correlations among query terms [41]
and common searching behavior among Web users (e.g., short queries) [24, 43]. A further analysis focusing
on the temporal locality of queries was presented by Beitzel et al. [8]. The authors analyzed one week of
data, grouping queries per hours and per topic to see how their popularity changes during the day. They
observed that the query repetition rate is constant during the day, even though each popular query does
not appear frequently in every hour. This result confirms the intuition that queries grouped by topic show
some specific temporal localities in the stream.

Caching in Web Search Engines. Modern search engines are large-scale distributed systems where the in-
verted index is partitioned and stored among multiple back-end machines, each one running a search node.
In addition, there is a front-end machine hosting the broker for scheduling the queries among the different
search nodes [7]. When the query is submitted, the front-end machine sends its keywords to the different
back-end machines, each one responsible of searching a given portion of the index. Then, it collects the
results to recreate the Search Engine Result Page (SERP).

In modern search engines, query processing represents one of the major performance bottlenecks, so
caching can help to speed up the search engine performance as well as to reduce the latency perceived by
the users. Caching can be applied at different granularity including query results [28], posting lists of query
terms [39], and posting list intersections [31]. Saraiva et al. [39] proposed a two-level architecture where
the front-end machine caches the results of popular queries, while the back-end machines have a cache for
the posting lists of most frequently requested terms. This architecture gets the benefits from both types of
caching. Indeed, caching query results is faster since future requests of a query whose results are cached can
be served immediately, without further processing, but it has a lower hit rate since a hit in cache occurs
only with exact-matching queries. On the other hand, caching posting lists entails a better hit rate since the
term overlap is greater, but the query needs to be processed by the back-end servers and the only saving is
in the number of I/O operations over the disk storing the inverted index. Two-level caching was also studied
by Baeza-Yates et al. [6] in the static setting and by Altingovde et al. [2] for dynamic setting.

Three-level architectures store in the additional level of the cache the precomputed intersections of
posting lists [31], 45], [47]; this improves the processing of more complex queries such as AND or phrase
queries. Ozcan et al. [34] presented an even more sophisticated cache consisting of five levels for storing
query results, precomputed scores, posting lists, precomputed intersections of posting lists, and documents.
The caching approach is based on a greedy heuristic which allows to select the best item to cache. Each level
of the cache has a priority queue, and the items are ordered in the queue according to their gains reflecting
the frequency of the item’s past accesses as well as its processing cost and storage overhead. We focus on
a cache employed at the level of the front-end machine to store the results of most frequently requested
queries. Our cache for query results can be used in combination with these multi-level cache architectures,
as well. Improving the hit rate of the query-result cache is in fact beneficial for the lower layers of the
caching system that provide an efficient processing of queries resulting in misses in the top-level cache.

The query-result cache enhances the responsiveness of the search engine and saves resources. Depending
on the space available, the cache can keep the entire HTML page (SERP cache) [20} 28, B3] or the URLs
and/or snippets used for reconstructing it (DocID cache) [39]. Caching the whole page of results requires
more space and the same page cannot be used for different but similar queries; however, it is faster because
when the query is requested, its cached SERP can be returned promptly. On the other hand, the DocID
cache allows to use the cache space in a more efficient way, but it is slower because even when we have a
cache hit, some time would be needed to reconstruct the SERP. In [2], the authors proposed two levels of
caching: first level for the SERPs and the second one for result documents of SERPs evicted from the first
level cache. This allows to reconstruct the pages missing from the first level cache on the front-end server
without processing the query on the back-end machines.

The query-result cache can be managed in a static or dynamic way. A static cache is periodically (every
day or week) populated with the results of frequent queries. Indeed, several authors observed that query
frequency follows an inverse power law, which means that most of the queries are submitted a few times
(e.g., they are long, with typos, or very rare), but a small portion of queries are requested several times
and shared by different users [20, 28] 46]. This justifies the use of a server-side static cache storing results
of these queries. The cache is updated with the results of most popular queries observed in the previous
period and for re-freshing the results. A dynamic cache changes the content of entries according to the query
stream, and it applies a replacement policy for deciding which element must be evicted when the cache is
full. This policy tries to minimize the number of misses, and a popular one is Least Recently Used (LRU)
which evicts the item not requested for the longer period of time. Markatos [33] compared the hit rates
achieved by LRU and its variations (e.g., Segmented LRU and LFU) over a query stream from the Excite
query log. He observed that the LRU policy (and its variations) is very effective in query-result caching as
it captures the temporal changes in the stream of requests. Although his work did not propose any novel

4

caching algorithm, it showed the potentiality of caching in Web search. Static and dynamic caches can be
combined to improve the hit rate. Fagni et al. in [20] presented Static-Dynamic Cache (SDC), consisting of
a static portion for storing the results of most frequent queries and a dynamic portion for which an LRU-like
approach is applied. Combined or not with prefetching strategies, SDC outperforms purely static or dynamic
caching policies. We present a further improvement of SDC by adding another layer which is made of several
topic-dependent LRU caches.

To improve cache performance, the system can apply an admission policy which accepts to the cache only
those queries with a high re-submission probability. The idea behind these policies is that caching search
results of queries that are not requested anymore or are requested after a long time (and generally after
their eviction from the cache) should be avoided. Indeed, these queries (also called “polluting” queries [5])
would only waste space in the cache, so it would be better to just ignore them and give more chance to the
results of other queries to be kept in the dynamic portion of the cache (e.g., the LRU queue). These policies
mostly rely on features extracted from the queries or from usage information [Bl 211 [27]. Baeza-Yates et al.
proposed an admission policy for restricting unfrequent and too long queries from entering the cache [5].
In [27], Kucukyilmaz et al. proposed a machine learning approach for predicting the next queries to cache.
Their approach is based on features extracted from the query, index, term frequency, query frequency, and
user session. This policy on top of SDC yields to a small improvement of the hit rate compared to the one
achieved with our novel caching model. Recent works employed machine learning to predict queries not
worthy to be cached [35] or to adjust the time-to-live values of queries [I]. Alternatively, the policy can
favor queries that are more costly to process [3]. Other works focus on predicting stale queries [25] and use
the information extracted from both queries and session features to increase the hit rate of the cache. We do
not investigate novel admission policies; rather we use them in coordination with our caching model as they
allow to enhance the input stream of queries. We followed [5] and used the stateful and stateless features
of queries for implementing the admission policy. The former is given by statistical information computed
over the past stream (e.g., the number of times the query was submitted in the past). The latter is based
on the query characteristics (e.g., the length of the query). The idea is to avoid the caching of infrequently
requested queries; long queries are typically rare and are unlikely to be resubmitted. Moreover, we computed
an upper bound of the best hit ratio that can be achieved using an admission policy with a cache of a given
size. For this reason we used the Bélddy’s optimal caching policy [10] that assumes to know the future and
evicts the results of the query not requested for the longest time (representing the best replacement policy)
and an oracle which knows the future and does not admit in the cache the singleton queries (representing
the best admission policy).

Orthogonal research works focus on caching single results (e.g., URLs and snippets) that are used for
reconstructing the final page of results of queries (SERP). Cambazoglu et al. [I3] present techniques for
computing result pages of unseen queries starting from the cached results of previously requested query.
Ceccarelli et al. investigate the problem of caching query-based snippets [I7]. In [4], the stochastic query
covering approach is presented for selecting the set of documents to store in the cache. These documents
serve many queries and can be used for fast retrieval as well as for approximating the results of a query
when the connection between the front-end server with the back-end machines is too slow or unavailable.
We do not aim at improving document caching as our strategy for query-result caching is orthogonal to it
and can be employed together with a document cache in a two-level fashion architecture as in [2]. So, the
first level caches the SERPs of queries, while the second level caches the documents used for reconstructing
the SERPs. When one of the SERP is evicted from the first level cache, the system may decide to cache its
documents in the second level cache, so that queries evicted from the first level cache have a second chance
to be served by cached documents stored in the second level cache.

Another line of research focuses on index tiering [26] as well as on document replication [19]; these tech-
niques can be employed in synergy with server-side caching with the purpose of improving the performance
of distributed search engines.

Query-Topic Distillation. Two challenging problems in query log mining are query classification and query-
topic distillation. Flat and hierarchical taxonomies were proposed for classifying the user queries, even
though these taxonomies are limited to some specific domains and provide a broad categorization 12}, 43].

5

Query-topic distillation/detection can improve quality of the Web search [9]. It allows to distill the multiple
possible topics behind an ambiguous/broad query which is beneficial for better understanding the query
intention and improving the automatic reformulation of queries [23]. Nevertheless, query-topic detection
is not easy due to the shortness and lack of context of queries. One possible approach for understanding
the topic of a query is enriching its search keywords with the content (from snippet or page) of its top
results [23]. Another solution consists of using the content of only the clicked results. As explained in
Sec. |3} we opted for this second solution since the user click is a strong indicator of the relevance of the
document to the query. Once the search queries are enriched with page content, the resulting document
collection can be used to discover the topics. Text clustering techniques or topic modeling approaches can be
applied. Topic models have been used for several years as they allow to discover the topics discussed in large
document collections [T}, [29] [38]. We opt to use a topic-model approach (e.g., LDA [I1]) as it is completely
unsupervised and domain independent, plus it leverages the word co-occurrences, providing better results
compared to a basic text clustering approach [32].

3. Methodology

We propose a new query-result caching strategy based on user search topics. We first describe our caching
architecture, including possible implementation configurations, and continue by discussing our query topic
extraction approach. We assume that the cache stores the SERPs of the queries; onward we use query results
or just results to refer to the content of a cache entry.

3.1. Topic-based Caching

Given the total number N of cache entries available for storing the results of past queries, we propose a
Static-Topic-Dynamic (STD) cache which includes the following components:

e a static cache S of size |S| = fs- N entries, used for caching the results of the most frequently requested
queries. The static cache S is updated periodically with the fresh results of the top frequent |S| queries
submitted in the previous time frame (e.g., the previous week or month). This static cache is expected
to serve very popular queries such as navigational ones (e.g., “google” and “facebook”);

e a topic cache T of size |T| = f; - N entries, which is in turn partitioned in k topic-based sections T .7,
with 7 € {t1,%a,...,t;}, where k is the number of distinct topics. Each section T.7 is considered as
an independent cache, managed with some caching policy (e.g., LRU or SDC), and aimed at capturing
the specific temporal locality of the queries belonging to a given topic, i.e., queries more frequent
in specific time intervals or with periodic “burstiness” (e.g., queries on weather forecasting, typically
issued in the morning, or queries on sport events, typically issued in the weekend);

e a dynamic cache D of size |D| = f; - N. The dynamic cache D is managed using some replacement
policy, such as LRU. It is expected to store the results of “bursty” queries (i.e., queries requested
frequently for a short period of time) that are not captured by neither S nor 7 as they are not
sufficiently popular or are unassigned to any of the k topics. Queries cannot be assigned to a topic for
two reasons: (i) the query was never seen before, hence the topic classifier fails to detect its topics, or
(ii) even though it was already submitted in the past, no topic was assigned to it due to a very low
classification confidence (see Sec. [3.3)).

The parameters fs, fi, and fy denote the fractions of entries N devoted to the static, topic, and dynamic
caches, respectively, so that fs + f: + f4 = 1. Note that, if f; = 0, our STD cache becomes the classical
SDC cache. The number of entries in each section 7.7 of the topic cache can be fixed, i.e., |T.7| = |T|/k,
for every 7 € {t1,...,tr}, or chosen on the basis of the popularity of the associated topic (observed in a
past query stream). In the latter case, we model the topic popularity as the number of distinct queries in
the topic, since estimating this number allows us to assign to the topic a number of entries proportional
to its requested queries. This entails a more efficient utilization of the cache space since queries belonging

to a popular topic have greater chances to be retained in the cache as their topic receives more entries as
compared to other queries belonging to unpopular topics.

In Fig. [2] we show an example of how the proposed cache can be employed in a search engine system. The
management of the STD cache is reported in Alg. [Il When a query with its topic 7 € {t1,...,tx} arrives,
the cache manager first checks if the query is in the static cache S. If so, we have a hit; otherwise, if the
query has a topic handled by the cache, the manager checks the topic-specific section of the topic cache T .7,
updating the topic cache with its specific replacement policy, if necessary, and producing a hit or a miss if
the query was cached or not. If the query was not assigned to any topic, the dynamic cache D is responsible
for managing the query and producing a hit or a miss. We note that the pseudo-code does not detail the
retrieval of the query results from the cache or its processing on the inverted index of the search engine in
case of hit or miss, respectively.

Topic
Classifier ? topic
? _— Static cache
/ Topic cache ?
., topic
Lorem .
? P ipsum Dynamic cache
. l dolor sit
/ amet Lorem
ipsum
T Frontend dolor sit
ipsum amet
\ / dolor sit
amet
User Backend

Figure 2: Example of a search engine using the STD cache. The question mark represents the user query. In case of a hit in the
cache, the results are returned to the user immediately (green arrow). Otherwise, a cache miss is encountered and the request
is sent to the back-end server (red arrows).

Algorithm 1: The STD cache management process.

Input : A query ¢ and its topic 7
Output: Hit or miss and updated STD cache

1 if ¢ in S then
2 L return hit
3 if 7in {t1,...,¢;} then
4 if ¢ in 7.7 then
5 L update 7.7 and return hit
else
6 L update 7.7 and return miss
7 if ¢ in D then
8 L update D and return hit
else
9 L update D and return miss

Note that the cache misses incur different costs since some queries are more expensive to process than
others (in term of time and resources). For our research purpose of comparing different caching architectures,
however, we simplify the performance analysis and focus on the hit rate, considering all the misses with
the same cost. In other efforts that focus on determining which element must be evicted from the dynamic
cache or admitted to the static cache, the cost of the misses is taken into account [3, 21} [35]. Anyway, these
strategies, based on how costly is the computation of query results, can be used in synergy with our caching
architecture to improve the overall performance.

3.2. STD Cache Configurations

Our proposed STD cache model can be implemented in different ways, depending on several parameters
such as the values of f,, f; and fy, the number of entries assigned to each topic in the topic cache, the
replacement policy adopted, and so on. In the following, we illustrate some of these implementations (see
Fig. , which will be part of our experimental evaluation (see Sec. .

e STD with topic cache managed by LRU with fixed size (STD[RU). This cache includes the static, topic,
and dynamic caches discussed above. The topic cache entries are divided equally among the different
topics (i.e., without taking into account the topic popularity), and each topic cache section is managed
according to the LRU replacement policy.

e STD with topic cache managed by LRU with variable size (STD{g,). This cache is similar to the
previous one with the difference that each topic has a number of entries proportional to its popularity.
We quantified this topic popularity as the number of distinct queries that belong to the topic in the
training set of the query log.

e STD with topic cache managed by SDC with variable entry size (STD¢pc). This cache is similar to the
STD) gy cache, but now the topic cache is managed by SDC instead of LRU. Each topic gets a given
number of entries proportional to its topic popularity, and all topic cache sections are split in a static
and dynamic cache. The fraction of entries allocated to the static portion of these caches is a constant
fraction of the topic cache entries and denoted with f7. The remaining entries, allocated for the topic,
are managed by LRU.

o Topic-only cache managed by SDC with variable entry size (T¢pc). This is an alternative version of
the previous implementation since the queries with no topic are managed as queries belonging to an
additional topic k + 1. This means that instead of having a predefined size for static and dynamic
caches, the number of entries would depend on the number of queries without a topic.

static topic dynamic static topic dynamic static topic dynamic topic

WL

STD + Topic LRU STD + Topic LRU STD + Topic SDC Topic-only SDC
with fixed sizes with variable sizes with variable sizes with variable sizes

Figure 3: Different Configurations of a STD cache.

3.3. Modeling Queries as Topics

Query topic categorization of user queries is well addressed within Web companies to increase effective-
ness, efficiency, and revenue potential in general-purpose Web search engines [9]. Unfortunately, we cannot
rely on the query topic characterization provided by the search engine industry since this information is
missing from the query logs we use. Thus, to distill the topics of the queries in our query logs, we rely on
LDA topic modeling.

Latent Dirichlet Allocation (LDA) [T1]. LDA is an unsupervised approach not requiring any prior knowledge
of the domain for discovering the latent topics. Given a collection of documents and the number k of
topics, it returns k lists of keywords, each representing a latent topic. Let 64 be the per-document topic
distribution, which is assumed to be drawn from a Dirichlet distribution with hyper-parameter «. The
documents are a mixture of topics, and the multinomial random variable z4, of a topic to appear in
position n of document d is conditioned on 6,;. Words appearing in a document are selected according to
another multinomial distribution with hyper-parameter 5, conditioned on the chosen topic. In this way, each
word has a probability that depends on its likelihood to appear in the document relevant to the topic. In
summary, LDA can be seen as a generative process where documents are generated sequentially as reported

in Alg.

Algorithm 2: The LDA generative process.

1 for each document d do
Draw 64 ~ Dir(a)
for each word position n do
Draw a topic 24, ~ Multinomial(6q)
L Draw a word wg,, ~ Multinomial(3|z4,,)

[SLE VR V]

By inverting the generative process, it is possible to infer the topics from the words appearing in the
documents. So, given a document d, we have to compute the posterior distribution of the hidden variables
z, and 64 as follows:

p(04,24, Wala, B)

p(wala, B)

where the vector w, represents the words observed in d, while the vector z, represents the positions of words
in d. Both vectors have the same size, equal to the length of d. Statistical inference techniques, such as
Gibbs sampling [22], are employed to learn the underlying topic distribution 64 of each document.

p(04,24|Wa,a, B) =

)

Finding Latent Topics from Query-Document Pairs. Given a training query log, we aim at learning a query
topic classifier based on LDA. Since queries are short and lack context, it is difficult to train the model
accurately. To circumvent this problem, we enrich the queries with the content of their clicked pages whose
URLs are available in the training query log. We thus create a collection of query-document samples made
of queries plus the text of their clicked results gathered from the Web. In case, for a given query, the user
did not click any results, or the clicked URL was not available any longer, we remove the corresponding
query from the set. Given a query-document pair, we use this content as a proxy of the query, and train
LDA to learn the topics discussed in the collection of query-document pairs.

The trained LDA classifier returns a distribution of topics for each query-document pair. Since we assume
that a query can be assigned to only one topic, we always choose, for the pair, the topic with the highest
probability. In our experiments, we use different query logs w.r.t. the training one, and we assume the LDA
classifier is able to classify only queries already seen in the training query log, since for new queries we will
lack the content of clicked pages.

Query Topic Assignment. Once we know the topics of the proxy query-documents, we must assign a single
topic to each query. Since the same query might appear in different query-document pairs, possibly assigned
to different topics, we must decide which one of these topics should be associated with the query. To this
end, we adopted a simple voting scheme that assigns to each query the topic of the query-document that got
more clicks by the users. In doing so, we leverage the strong signal coming from clicks about the relevance
of a document and its topic to the information need expressed by the query. Also, it allows us to estimate
the most popular topic that can be assigned to ambiguous queries (i.e., queries with more than one meaning
that have more possible topics).

16405 g : : 1e+06
100000 %o
S te+04 | 4
o 1)
C c
p [10000
5 1e+08 | 5
Q Q
o o
S) s} 1000
O qes02 | 2
2 2 100
S S
2 fes01 | E
z + 10
1 L n L 1 n) cm— 1 I L L ,
1 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e+07 1e+08 1 10 100 1000 10000 100000 1e+06 1e+07
Queries ordered by popularity Queries ordered by popularity
(a) AOL (b) MSN

Figure 4: Query logs: Distribution of the query frequencies.

Estimating Topic Popularity. In some of the implementations of our topic cache (i.e., STDYgy, STD¥pc,
Tépc), we assign to each topic an amount of cache entries proportional to the topic popularity. Similarly
to the static cache, where past popular queries are assumed popular in the future, we assume that popular
topics observed in the past remain popular in the future; so they get more entries in the topic cache 7.
We quantified this topic popularity as the number of distinct queries that belong to the topic g,. Note
that this statistic is computed over the training period. More in detail, let |7 be the size of the topic cache,
¢ be the number of distinct queries in the training set, each topic 7 will get a number of entries |7.7| equal

to T
o= 0o]
q

where the symbol |z] is the nearest integer to . For example, suppose we have a topic cache with size
|7] = 5 and 9 distinct queries observed in the training: 6 for the topic weather and 3 for education, we
will have |7 .weather| = |3.33] = 3 and |7 .education| = |1.66] = 2.

4. Dataset Description

Query logs. For our experiments, we used two real-world query logs, namely, the AOL and MSN query logs.

The AOL query log [36] consists of about 36M of query records, submitted by 650K users over a period
of three months (from March to May 2006). Each record in the dataset is made of the user ID, the query
keyword(s), the timestamp, the rank and the URL of the domain of the clicked result. The last two fields
represent a click-through event, and they are present only if the user clicked on a search result. About
19.4M records have a domain URL, and the number of distinct URLs is 1.6M. Notice that, when a user
clicked on more than one result in the same search session, there are repeated records for that query (one for
each clicked result). Hence, for our experiments, we recreated the query stream by removing the duplicated
records representing multiple clicks for the same query, and we kept only the “first query” of the sequence.
The final query stream, used for the simulation of the cache, consists of 20M queries.

The MSN query log [I8] consists of about 14.9M records storing the timestamp, the search keyword(s),
the query id, the session id, and the result count. About 8.8 M records have a clicked URL for a total of
3.4M distinct URLs.

For both datasets, we preprocessed the queries by removing special characters and converting them to
lowercase. After the preprocessing, the number of distinct queries is 9.3M and 6.2M for AOL and MSN,
respectively. The distribution of the query popularity follows a power law in both query logs as shown in
Fig.[d We plot the distribution using a log-log scale; the queries are ordered along the z-axis by popularity,
while the number of occurrences of the query (i.e., query frequency) is shown on the y-axis.

10

Table 1: Some topics and their keywords extracted from the AOL search queries and the page content of their clicked results.

Topic ‘ Topic Keywords
shopping shop, order, item, ship, gift, custom, sale, return, account, cart
university | student, program, faculti, campu, graduat, research, academ, alumni, colleg, univers
weather weather, forecast, snow, storm, rain, wind, winter, radar, flood, cold
movies movi, comic, news, star, theater, review, marvel, film, seri, comedi
cooking recip, cook, bean, chicken, chef, salad, cake, flavor, potato, rice
travelling travel, trip, destin, flight, vacat, book, deal, airlin, hotel, search

We partitioned both query logs into two portions, one for training purposes (e.g., cache initialization)
and one for testing the performance of the cache. We sorted the query logs by time and split them into two
fractions: X for the training set and 100 — X for the test set with X = 30%,50%, and 70%. We present
the results for the 70%-30% split for caching without admission policies, but we observed similar results for
the other training-test splits. In this case, the training (resp. test) set contains 6.7M (resp. 3.2M) unique
queries for AOL and 4.5M (resp. 2.1M) unique queries for MSN. We also tried different splitting of the
datasets, such as weekly splits, but the average results were not much different from the ones reported in
the next section.

Document Collections. Given the URLs from both query logs, we collected the associated pages from the
Web, and gathered 1M documents for AOL and 2.1M documents for MSN. Then, we extracted and pre-
processed the text (e.g., stop-word removal, lemmatization, and stemming). We removed overly short and
long documents (less than 5 and more than 100K words). Lastly, we enriched the documents with the
corresponding query keywords.

LDA Topics. To train the LDA model we subsampled the documents from the training period and used
500K documents from AOL and 350K documents from MSN query log. Notice that this training is only used
for learning the topics discussed in the collection (e.g., sport, politics, weather). After the topic detection,
given a query and its clicked result we use LDA to predict the topic of the query.

We removed the very frequent and rare words from the dictionary, and we set the number k of topics to
discover to 500, estimated empirically. The approach is probabilistic, hence the topic detection can change
with different collections and different number of topics. We tried other configurations, changing the subsets
of documents in the training set and using different values of k (e.g., 50, 100, and 500); we observed that
the impact on the caching performance was negligible. Some of the topic keywords, extracted from the AOL
dataset, are shown in Table

In Fig. 5] we report the distribution of topics extracted from both datasets. It is worth noting that
the topic portion of STD cache exploits the subset of queries in the test set stream having a known topic.
These queries are necessarily among those already encountered in the training set stream and successfully
classified. The test queries that were not assigned to a topic compete instead for the use of the static and
dynamic portions of the STD cache. The percentage of queries in the test set with a topic is 65% for AOL
and 58% for the MSN query log.

5. Experiments

We ran our experiments using the AOL and MSN query logs described in Sec. For the caching
simulations, we considered the scenario of storing the query results in the cache (e.g., the first SERP). We
took as input the stream of queries. If the query is found in the cache we have a cache hit; otherwise, there
is a cache miss. In case of miss, if the query is not filtered out by the admission policy implemented (if any)
and the dynamic portion of the cache is full, the eviction policy is applied to vacate space for the query
results.

11

For our experiments, we set the cache size N to different values: 64K, 128K, 256 K, 512K, and 1024K.
Given the small size of our query logs and the training period needed for learning the topics and the cache
initialization, we simulated for our experiments small- and medium-sized caches. In reality, the caches
employed by modern search engines are much bigger, but they are always too small compared to the number
of queries submitted by the users.

The data in the training set are used for three purposes: (1) learning the frequency of the queries and
loading popular queries in the static cache(s), (2) training the LDA topic classifier from the queries (and
clicked documents) and estimating their popularity for balancing the entries of the topic cache(s), and (3)
warming up the LRU cache(s). We assess the cache performance in terms of hit rate, namely the number of
cache hits in the test set divided by the number of queries in the test set.

For our experiments, we considered the following cache organizations:

e SDC: we used as baseline the traditional static and dynamic cache, where the dynamic portion is
managed by LRU. This approach is considered the state-of-the-art technique for query-result caching
as also confirmed by recent works on caching that used SDC as a principal baseline (e.g., [27]).

° STD[RU: the STD cache where the topic cache is managed by LRU and all topics receive the same
amount of entries.

e STDYgy: the STD cache where the topic cache is managed by LRU and the topics receive an amount
of entries which is proportional to the topic popularity, as explained in Sec. [3]

o STD¢pc: the STD cache where the topic cache is managed by SDC and whose size depends on the
popularity of the topic. Compared to the previous two configurations, this cache has another parameter
fi representing the static fraction of the SDC used inside the topic cache. In our tests, we include
two different implementations of this configuration. In the first implementation, the static cache &
stores only the frequent queries with no topic (C1) as the popular queries assigned to a topic would be
stored in the static portion of the corresponding topic cache. In the second implementation (C2), the
S stores all the top queries (with or without the topic). For popular queries with topic, the algorithm
checks if they are already in S. If not, it stores them in the f; fraction of entries of the corresponding
SDC used in topic cache.

e T¢pc: The cache entries are divided proportionally to the topic popularity and the no-topic queries
that belong to an additional topic 7 = tj41.

For the baseline SDC cache and the proposed STD cache configurations, the static parameter fs varies
from 0.0 to 1.0 with step of 0.1, while the other parameters (f; and f;) are tuned based on the remaining
size of the whole cache, e.g., N - (1 — f5). Regarding STDYp, the fraction of static of the SDC caches used
in the topic portion, f7, is the same for all the topics. We also experimented with variable f; estimates

—8— AOL
—¥— MSN

10°

Number of occurrences

0 100 200 300 100 500
Topics ordered by popularity

Figure 5: Distribution of topic popularities for AOL and MSN query logs.

12

per topic, but the overall experimental results are similar to those achieved with a fixed f7, and we do not
report them here.
We investigate the following research questions:

RQ1. For a given cache size, is our proposed STD cache able to improve the hit rate performance metric
w.r.t. SDC and, if so, adopting which configuration and optimal parameter values?

RQ2. Given the best STD competitor identified in RQ1, what is the impact of the other configuration
parameters? In particular, given a static fraction f;, what is the impact of the topic and dynamic
caches of STD w.r.t. the dynamic cache of SDC?

RQ3. How large are the hit rate improvements of the best STD configuration w.r.t. SDC, measured in term
of the distance with the hit rate of a theoretical optimal caching strategy?

RQ4. Do the query admission policies affect the caching performance? How do these policies impact
performance gains of STD over SDC?

To address RQ1, we assumed a cache with a given number of entries (e.g., N is defined by the system
administrator), and we aim to discover the best cache configuration and parameters in terms of hit rate.
Table [2 reports the best hit rates obtained with SDC (our baseline) and the other topic-caching strategies
for different cache sizes. For each caching strategy, we report also the values of the fs, f:, fq, and f{ that
achieved the best hit rates. As shown, not all parameters are used by all the cache configurations, so for those
caches where the parameter is not needed we use the symbol —. For each cache size, the best hit rates are
highlighted in bold. Our experiments showed that with both datasets the STD caches always perform better
than SDC in terms of hit rate. In particular, the STDYy. (C2) configuration performs always better than
the others. As expected, STDT_RU performs worse than STDY, as it gives to each topic the same number
of entries instead of allocating the topic cache entries proportionally to the topic popularity. Moreover,
STDYp¢ (C1) cache exhibits lower hit rates compared to STD¢y (C2) and STDyg, caches. Analyzing the
cache misses encountered with (C1), we see that this reduction of performance is due to the fact that the
static cache S of (C1) hosts only the results of no-topic queries. Some of these queries may be not very
popular;, hence storing them in the static fraction causes a lower hit rate in static with a reduction of
the overall performance. In particular, this phenomenon is more evident when fs increases, since we are
allocating more space to S and, at some point, also infrequent no-topic queries are selected just to fill in the
space. Nevertheless, (C2) does not suffer from this, since it stores in S the frequent queries (with or without
topic), allowing a better utilization of the static fraction of the whole cache. We could also observe that the
T¢pc cache has lower performance than the other STD configurations. In most of the cases it performs close
to SDC, and for small caches it does not improve the baseline. Anyway, we believe that its results allow us
to better understand the benefit of using a topic cache together with static and dynamic caches. In STDfLRU,
STD{ry, and STDYp the amount of entries dedicated to the no-topic queries is limited by the parameter
fa. Hence, there is a fair division of the cache space among the queries belonging to a topic and those that
could not be classified. On the other hand, in T¢p the no-topic queries are treated as queries belonging
to an extra topic (i.e., tg11), so the amount of entries is proportional to the popularity of the (k + 1)-th
topic, penalizing the other k topics. Since in our data most of the queries are not classified, this leads to an
unbalanced splitting of the space between the no-topic queries and the others.

We investigated the reasons why our STD cache outperforms the SDC baseline. Since the higher STD
hit rate is due to less misses encountered, we analyzed the average distance of misses in the test streams
(avg. miss distance). This distance is defined as the number of queries between two misses that were caused
by the same query, e.g., for the stream abcadafga and a cache of size 2 the misses caused by a have an
average distance of 2. For this experiment, we considered caches with 1024K entries and f; = 0.5, as it
gave the best hit rate performance for STDYp (the best configuration). We separately identified the avg.
miss distance of its dynamic cache from the avg. miss distance of topic caches in STDZp. Notice that the
static cache does not impact on the analysis since it is populated by the same top-frequent queries for both
STD and SDC caches. The results are shown in Fig.[] The curves represent the avg. miss distances for the
topic caches sorted by decreasing values, and we use it as a proxy of temporal locality. On the left we have

13

Table 2: Best hit rates for SDC and different topic-cache strategies for the AOL and MSN datasets. The parameters fs, ft,
and fy denote the fractions of the total cache devoted to the static, topic, and dynamic caches, respectively. The parameter
fi denotes the percentage of static cache in the topic cache. The best hit rates are highlighted in bold.

Cache Size Strategy AOL MSN
Hit Rate f, f, fs f/ HitRate f. f fi f
SDC 33.70% 09 - - - 45.23% 09 - - -
STDfry 36.91% 0.9 0.07 0.03 - 46.57% 0.8 0.13 o0.07 -
64K STDYry 37.34% 0.9 0.07 0.03 - 47.09% 0.9 0.05 0.05 -

STDYpc (C1) 36.21% 0.8 0.16 0.04 90% 46.00% 0.1 0.72 0.18 90%
STDYyc (C2) 37.34% 0.8 0.16 0.04 60% 47.15% 0.8 0.13 0.07 60%

Teoc 33.16% 90% 42.30% - 80%
SDC 3758% 09 - - - 4815% 09 - - -
STDf ry 40.89% 0.9 008 002 - 49.73% 09 007 003 -
128K STDVgy, 41.19% 0.9 0.07 0.03 50.04% 0.9 0.07 0.03

STDYpc (C1) 40.08% 0.8 0.16 0.04 90% 49.13% 0.1 072 018 90%
STD{pc (C2) 41.19% 09 0.08 0.02 20% 50.08% 0.8 0.16 0.04 80%

Teoc 37.49% — -~ — 90% 46.08% - - - 90%
SDC 4125% 09 - - - 50.77% 09 - - -
STD! 4457% 0.9 008 002 — 5250% 0.9 008 002 -
256K STDVry 44.80% 09 008 002 - 52.63% 09 007 003 -

STDYp (C1) 43.63% 0.7 024 0.06 90% 51.94% 0.1 0.72 0.18 90%
STD{pc (C2) 44.80% 09 0.08 0.02 20% 52.63% 09 0.07 0.03 30%

Teoc 41.70% 90% 49.46% - 90%
SDC 4.52% 09 - - - 5291% 09 - - -
STD! 47.74% 0.9 0.07 003 - 54.60% 0.9 008 002 -
512K STDVry 48.06% 0.8 0.16 004 - 54.83% 08 016 004 -

STDYy (C1) 46.93% 0.7 0.5 0.5 80% 5443% 02 064 016 90%
STDY,. (C2) 48.08% 08 0.6 004 20% 54.83% 0.8 0.16 004 10%

Teoc 45.60% - -~ — 90% 5252% - - — 90%
SDC 4737% 07 - - - 5493% 09 - - -
STD! 50.31% 08 0.3 007 - 56.57% 0.9 007 003 -
1024K STDVry 50.90% 0.6 032 008 - 56.86% 0.7 024 006 -

STDYpc (C1) 49.98% 04 040 020 80% 56.72% 0.2 0.64 016 80%
STDYpc (C2) 51.01% 05 040 010 70% 56.92% 05 040 0.10 50%
Teoc 49.33% - -~ 8% 55.16% - - -

14

AOL

,_.
=
<

~®— STD Topic cache
~¥+ STD Dynamic cache
~M - SDC Dynamic cache

IS}
<

,_.
1S
<

Avg. Miss Distance
(o)) o
< <

IS
<

bl - - B --B—-E-- BB - - -

2M,' ' ‘ v ’ ' ‘ v ' ' ' v
Topics
MSN
TM -
—®— STD Topic cache
6M - ¥+ STD Dynamic cache
3 ~M - SDC Dynamic cache
c
gsm-
&)
Bam-
=
03 M-
<
1 -

Figure 6: Per-topic average miss distances for AOL and MSN query logs.

large distances, which means that a miss occurred only when the repeated requests of that query were far
away from each other. Notice that the number of topics can be lower than 500 since for some topics there
are no misses. The avg. miss distances for the dynamic caches in SDC and STD are constant as they are
topic-independent. These two avg. miss distances are lower when compared to those reported for most of the
topic caches. It confirms that a LRU dynamic cache captures the repeated requests only if they are are close
to each other (small avg. miss distance). On the other hand, topic caches have large avg. miss distances.
So, the advantage of a topic cache with space divided in a proportional way among the topics is that it even
serves requests distant from each other on a per-topic base, i.e., with different temporal localities.

To conclude on RQ1, the experimental results confirmed that, on equal cache sizes, the STD approach
can improve SDC, resulting in an improvement of the hit rate up to ~3.6% for AOL and ~2% for MSN.
As confirmed by simulations on two real-world query logs, the best configuration is STDY (C2), although
STD{ry performs close. Moreover, this performance improvement is justified by the analysis of the avg.
miss distances. In fact, in STD the misses occurring in the topic caches are caused by repeated requests
that are much more distant in the query stream as compared to the misses that are encountered in SDC.

To address RQ2, and see if the improvement of STDYp (C2) over SDC is consistent, we compared their
hit rates varying the cache size and the value of fs. Since the size of the static portion changes with fs, we
split the remaining N - (1 — f) entries between the topic and dynamic caches using different proportions.
Here, we report the results obtained with 80% for the topic cache and 20% for the dynamic cache, while the
1§ parameter was set to 40%. Consistent results were observed for other parameter values.

In Fig.[7} we illustrate the hit rates for the two approaches, using dashed lines for SDC and solid lines for
STDYpc (C2). Notice that we omit the hit rates for f; = 0.0 and f; = 1.0 as they correspond to completely
dynamic and static caches, and the performance among the approaches are the same. If we observe the red
curves for N = 64K, SDC hit rates (dashed lines) are always lower than STDYy hit rates (solid line). The
gap of hit rates between these two caching approaches goes from ~7% for f; = 0.1 to ~3% for f, = 0.9
for AOL and ~5% for f; = 0.1 to ~2% for f, = 0.9 for MSN. As expected, the maximum improvement
is registered for lower values of f,, since the impact of a topic plus a dynamic cache of STD over the only
dynamic cache of SDC is more evident. We observed similar results for the other cache sizes. Regarding

15

©- SDC (64.0 K) -“¥- SDC (128.0 K) SDC (256.0 K) B SDC (512.0 K) SDC (1024.0 K)
—e— STDipc (640K) _y— STDY (128.0 K) STDYpc (256.0K) —m— STDipe (512.0 K) STDEpc (1024.0 K)

AOL MSN

0.50 -

Hit rate

0.450 -

0.425 -

0.30 -

0.400 -

0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9
Static cache parameter f, Static cache parameter f

Figure 7: Hit rates of SDC and STD¢ for different values of N and of fs, for the AOL (left) and MSN (right) query logs.

RQ2, we can conclude that the STDYp cache always outperforms the SDC cache, with an average gap of
5% for AOL and 3% for MSN, and a maximum gap of more than 5% on both query logs.

To answer to RQ3, we compared the best hit rates achieved with STD and SDC against the best hit rate
that can be achieved with an optimal cache policy. We used the Bélddy’s optimal algorithm (also known
as the clairvoyant algorithm), which always evicts the element that will not be requested for the longest
time. It is not feasible in practice as it assumes to know the future requests, but it optimizes the number
of hits [10], and it gives us an upper bound of the performance over which no other caching strategy can
improve. We computed the gaps between Bélddy hit rates and the ones achieved with the best SDC and
STD configurations. The results are reported in Table As we can see, the hit rates of STD are always
higher than those of SDC. We report the gap between STD and SDC in the 7th column of the table and the
average gap is 3.6% for AOL and 1.9% for MSN (averaged over the size of the cache). Moreover, the hit
rates of STD are very close to Bélady hit rates for all cache sizes (the gap is reported in the 6th column of
Table [3]). The average gap between the hit rates of STD and Bélady is 6.70% for AOL and 5.06% for MSN
(averaged over the size of the cache). On the other hand, the distance between SDC hit rate and Bélady hit
rate is bigger (see the 5th column). The average gap between them is 10.30% for AOL and 6.98% for MSN.
To quantify the gap reduction, we computed the relative delta between the two gaps (see the 8th column).
It gives us an indication on how much STD improves SDC w.r.t. Bélady hit rate. To conclude on RQ3, STD
hit rates achieve a significant gap reduction w.r.t. SDC from the theoretical optimal hit rate, which is up to
36.51% for AOL and up to 31.04% for MSN.

Lastly, we addressed RQ4 by implementing two admission policies to be used in conjunction with the
SDC cache and the different STD configurations. The first admission policy tries to predict queries that
are not worthy, namely should not be cached, also known as polluting queries [5]. The second one uses an
oracle to determine the singleton queries that are not going to be requested in the future, hence they are not
admitted in the cache. This allows to have an upper bound of the performance as no other admission policy
can do better than the oracle which is able to see the future and determine no longer requested queries.

Caching Without Polluting Queries. Some queries are not worthy to be cached as they are not requested
again or they are requested after a long period, generally after their eviction from the cache. To improve
caching algorithms, researchers have tried to predict the singleton/polluting queries which are not admitted
in the cache, with the purpose of preserving space for other, more promising, queries. Baeza-Yates et al. [5]
analyzed stateless and stateful features for admitting queries in the cache. The stateless features do not
require statistics from previous queries and can be computed on-the-fly based on the query characteristics
(e.g., the query length as the number of words or characters). The assumption is that too long queries are
not requested by many users, so very likely they will not appear in the future and are not worth caching.
The stateful features are based on historical statistics computed over the query log, such as the number

16

Table 3: Gap between the best hit rates achieved with SDC and STD caches w.r.t. Béldady and each other, plus the gap
reduction w.r.t. Bélady for the best hit rates achieved with SDC and STD caches.

. 1z Gap SDC Gap STD Gap STD Gap
Cache Size Bélady Best SDC Best STD w.r.t. Bélady w.r.t. Bélddy w.r.t. SDC Reduction
AOL
64K 43.67% 33.70% 37.34% 9.97% 6.33% 3.64% 36.51%
128K 47.68% 37.58% 41.19% 10.10% 6.49% 3.61% 35.74%
256K 51.67% 41.25% 44.80% 10.42% 6.87% 3.55% 34.06%
512K 54.88% 44.52% 48.08% 10.36% 6.80% 3.56% 34.36%
1024K 58.06% 47.37% 51.01% 10.69% 7.05% 3.64% 34.05%
MSN
64K 51.54% 45.23% 47.15% 6.31% 4.39% 1.92% 30.42%
128K 54.73% 48.15% 50.08% 6.58% 4.65% 1.93% 29.33%
256K 57.98% 50.77% 52.63% 7.21% 5.35% 1.86% 25.80%
512K 61.33% 52.91% 54.83% 8.42% 6.50% 1.92% 22.80%
1024K 61.34% 54.93% 56.92% 6.41% 4.42% 1.99% 31.04%

of times the query has been already requested. Other more sophisticated admission policies are based on
machine learning (e.g., regression models) that predict the next query request [27]. They rely on several
features of queries (e.g., query length, presence of typos), index (e.g., length of posting lists of most common
or uncommon terms), query and term frequencies as well as user’s sessions (e.g., user logged in, clickthrough
rate). The intent is to admit to the static cache only those queries with high expected frequency and to
the dynamic cache the queries with high probability to be resubmitted. The authors tried different cache
configurations and showed an improvement of 0.66% for static cache and of 0.47% for SDC when their
admission policy is used. We did not implement this admission policy as we lack information for index and
session features, but our improvement was higher even with the admission policy based on query features
(e.g., [A]). Besides, in the next paragraph, we show hit rates of STD and SDC using an oracle that prevents
singleton queries from entering the cache, and this can be seen as a performance upper bound for admission
techniques.

Following [B], we implemented an admission strategy that accepts a query in the cache based on stateless
and stateful features. In particular, the query is cached only if it satisfies the following conditions:

e it has been requested in the training period at least X times (stateful feature);
e the number of terms in the query is less than Y (stateless features);

e the number of characters is less than Z (stateless features);

For the experiments discussed in this paper, we set X = 3, Y =5, and Z = 20. Similar results were
achieved with other threshold values proposed in [5]. For these experiments with the admission policy, we
decide to use the split 30% — 70% of data in order to have more queries in the test set for the evaluation.
Indeed, we observed that in the absence of polluting queries, using only 30% for test set results in a number
of test queries which is too small for assessing the larger caches (e.g., 512K or 1024K entries). The results
of these experiments are reported in Table @] As we can see, the admission policy improves the hit rates of
both SDC and STD caches. Note that for all configurations of cache sizes and datasets, STD outperforms
SDC.

Table [5| reports the gaps between hit rates achieved by SDC and by the best STD configuration with
respect to the hit rates of Bélddy algorithm. In all these experiments, we restrict polluting queries from
entering the cache. We also computed the gap between SDC and STD (see 7th column of the table) and the
gap improvement w.r.t. Bélddy (see 8th column of the table). We observe that STD continues to improve
SDC with larger gaps compared to the caches without admission policy (see the 7th column of Table |3)),

17

Table 4: Hit rates achieved with SDC and STD caches with an admission policy that does not admit the polluting queries into
the cache. The best hit rates are highlighted in bold.

Cache Size SDC STDf, STDVp, STDYpc (C1) STDYpc (C2) Tipe

AQOL
64K 37.98% 41.53% 41.85% 40.07% 41.87% 37.05%
128K 40.40% 44.08% 44.38% 43.28% 44.45% 41.21%
256K 41.48% 44.86% 45.52% 44.96% 45.51% 43.84%
512K 42.58% 45.74% 46.72% 46.39% 46.59% 45.74%
1024K 43.91% 46.69% 48.02% 47.82% 47.88% 47.43%
MSN
64K 48.35% 49.85% 50.27% 49.06% 50.29% 45.47%
128K 48.83% 50.82% 51.01% 50.57% 50.97% 48.70%
256K 49.22% 51.16% 51.63% 51.40% 51.61% 50.45%
512K 49.86% 51.58% 52.45% 52.33% 52.39% 51.56%
1024K 50.84% 52.21% 53.27% 53.19% 53.20% 52.84%

Table 5: Caching with an admission policy that removes the polluting queries: gap between the best hit rates achieved with
SDC and STD caches w.r.t. Bélddy and each other, plus the gap reduction w.r.t. Bélady hit rate for the best hit rates achieved
with SDC and STD caches.

. 14 Gap SDC Gap STD Gap STD Gap
Cache Size Bélady Best SDC Best STD w.r.t. Bélady w.r.t. Bélddy w.r.t. SDC Reduction
AOL
64K 46.37% 37.98% 41.87% 8.39% 4.50% 3.89% 46.36%
128K 49.13% 40.40% 44.45% 8.73% 4.68% 4.05% 46.39%
256K 50.90% 41.48% 45.52% 9.42% 5.38% 4.04% 42.88%
512K 51.29% 42.58% 46.72% 8.711% 4.57% 4.14% 47.53%
1024K 51.30% 43.91% 48.02% 7.39% 3.28% 4.11% 55.61%
MSN
64K 52.81% 48.35% 50.29% 4.46% 2.52% 1.94% 43.49%
128K 54.40% 48.83% 51.01% 5.57% 3.39% 2.18% 39.13%
256K 55.11% 49.22% 51.63% 5.89% 3.48% 2.41% 40.91%
512K 55.11% 49.86% 52.45% 5.25% 2.66% 2.59% 49.33%
1024K 55.11% 50.84% 53.27% 4.27% 1.84% 2.43% 56.90%

reaching peaks of 4.14% for AOL and of 2.59% for MSN. The gap improvement w.r.t. Bélady is more than
55% for both datasets.

In Fig. [8) we show the hit rates for SDC and STD with the admission policy that does not allow caching
of polluting queries. We remind the reader that the dashed lines are for SDC and solid lines for STDYy -
(C2), and we show results for the static fraction f, varying from 0.1 to 0.9. Each pair of curves represent a
different size of the cache. As we can see, for the same cache size and f, value, the STDYp (C2) hit rate
curve is always higher than the SDC curve.

Caching Without Singleton Queries. Since STD uses topical information to better cache query results, one
could surmise that the STD cache capitalizes on non-singleton queries as they were observed in the training
period and consequently have a topic assigned. To show that the advantage encountered with STD is
irrespective of non-singleton queries, we experimented with an admission policy that restricts singleton
queries from entering the cache.

A singleton query, by definition, is requested only once; hence, caching its results wastes space as the

18

- SDC (64.0 K) - SDC (128.0 K) /- SDC (256.0 K) 8- SDC (5120 K) SDC (1024.0 K)
—@— STDpc (640K) —y— STDZpe (128.0 K) STDZpc (256.0 K) —m— STDZpc (512.0 K) STDZpc (1024.0 K)

AOL MSN

0.50 -

Hit rate

0.44 -

0300- & 042- O
0.1 02 03 0.4 05 0.6 07 0.8 0.9 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Static cache parameter f; Static cache parameter f;

Figure 8: Hit rates of SDC and STDYp, using the admission policy that removes polluting queries, for different values of N
and of fs, for the AOL (left) and MSN (right) query logs.

Table 6: Hit rates achieved with SDC and STD caches with a perfect admission policy that does not allow the singleton queries.
The best hit rates are highlighted in bold.

Cache Size SDC STDf, STDVp, STDYpc (C1) STDYpc (C2) Tipe

AQOL
64K 57.27% 59.88% 60.47% 58.47% 60.48% 54.31%
128K 63.47% 65.72% 66.38 % 65.01% 66.39% 61.05%
256K 70.28% 71.27% 72.81% 71.92% 72.83% 68.03%
512K 77.80% 76.32% 79.87% 79.45% 79.84% 75.84%
1024K 86.66% 82.27% 87.73% 87.62% 87.69% 84.49%
MSN
64K 67.85% 68.85% 69.41% 68.06% 69.44% 63.54%
128K 71.64% 72.83% 73.24% 72.37% 73.22% 68.49%
256K 75.60% 76.16% 77.41% 76.80% 77.35% 73.14%
512K 80.89% 79.54% 82.80% 82.55% 82.72% 78.72%
1024K 87.18% 83.70% 87.90% 87.75% 87.85% 85.33%

query will not be requested again. We implemented an oracle (i.e., an algorithm that knows the future)
which, given as input the query stream, returns the singleton queries (i.e., queries that appear only once in
the stream). This is obviously not feasible in practice but does provide an optimal environment to compare
STD and SDC. Then, we ran our experiments not admitting in the caches these singleton queries.

As we did for the experiment on polluting queries, also for this experiment we decided to use the split
30% — 70% to have more queries in the test set. We show the results in Table @ Again, the STD approach
always improves SDC in terms of hit rates. Overall, the hit rates obtained without singleton queries are
much higher as compared to those of Table |2] since not caching singleton queries spares space for future
worthy queries.

In Table [7] we report the gaps between the hit rates of SDC and best STD caches with respect to Bélady
as well as the gap between SDC and best STD (see the 7th column of the table). We observe that the gaps
are smaller compared to the gaps of caches without admission policies (see the 7th column of Table ,
especially for large caches. This is expected, as both caches are advantaged by removing singleton queries.
The gap reduction is also smaller than the one observed in the other experiments as SDC and STD perform
close to the optimum. Nevertheless, this experiment proved that STD still has higher hit rates as compared

19

Table 7: Caching with an admission policy that removes the singleton queries: Gap between the best hit rates achieved with
SDC and STD caches, plus the gap reduction w.r.t. Bélady hit rate for the best hit rates achieved with the admission policy.

. 14 Gap SDC Gap Best STD Gap SDC Gap
Cache Size Bélady Best SDC Best STD w.r.t. Bélady w.r.t. Bélady and Best STD Reduction
AOL
64K 68.76% 57.27% 60.48% 11.49% 8.28% 3.21% 27.93%
128K 75.04% 63.47% 66.39% 11.57% 8.65% 2.92% 25.23%
256K 81.09% 70.28% 72.83% 10.81% 8.26% 2.55% 23.59%
512K 85.26% 77.80% 79.87% 7.46% 5.39% 2.07% 27.74%
1024K 87.88% 86.66% 87.73% 1.22% 0.15% 1.07% 87.70%
MSN
64K 75.10% 67.85% 69.44% 7.25% 5.66% 1.59% 21.93%
128K 79.69% 71.64% 73.24% 8.05% 6.45% 1.60% 19.87%
256K 83.76% 75.60% 77.41% 8.16% 6.35% 1.81% 22.18%
512K 85.21% 80.89% 82.80% 4.32% 2.41% 1.91% 44.21%
1024K 88.21% 87.18% 87.90% 1.03% 0.31% 0.72% 69.90%

~©- SDC (64.0 K) --¥- SDC (128.0 K) SDC (256.0 K) ~E- SDC (512.0 K) SDC (1024.0 K)
—@— STDYpc (64.0K) —— STDZyc (1280K) —4— STDZpc (2560 K) —m— STDZpc (512.0 K) STDZpc (1024.0 K)
AOL MSN

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Static cache parameter f, Static cache parameter f

Figure 9: Hit rates of SDC and STDY, using the admission policy that does not allow singleton queries, for different values
of N and of fs, for the AOL (left) and MSN (right) query logs.

to SDC. We remind the reader that this admission policy is unfeasible in practice since the oracle assumes
to know the future. Anyway, we included these results to show how STD improves SDC even in extreme
cases where the caching approaches have the advantage of not storing singleton queries. Moreover, STD
does not benefit by not storing the non-singleton queries more than SDC could do. Finally, this result is a
good indication that SDC even with the best admission strategy (i.e., the oracle in our case) on the top of
it cannot perform better than STD.

In Fig. [0] we show the hit rates for SDC and STD with the admission policy that does not allow caching
of singleton queries. Also, for this comparison we can see that the performance of STDYy. (C2) are always
better than SDC, although the gap is lower because both remove all singleton requests getting a huge
advantage for both caching strategies.

6. Conclusions

We presented a novel cache model, Static-Topic-Dynamic (STD) cache, which leverages query topics to
better utilize cache space, yielding improved hit rates. Compared to the traditional SDC cache, the STD
cache stores queries belonging to a given topic in a dedicated portion of the cache where for each topic the

20

number of entries available is proportional to the topic popularity. This allows to capture queries that are
frequently requested at large intervals of time and would be evicted in a cache only managed by the LRU
policy. Extensive experiments conducted with two real-world query logs show that STD increases the cache
hit rate by more than 3% over SDC. Such improvements result in a hit rate gap reduction w.r.t. Bélddy’s
optimal caching policy [10] of up to ~36% over SDC, depending on the query log and the total size of
the cache. The improvement is even higher when an admission policy for not storing polluting queries is
employed.

It is worth noting that the greater hit rate achieved by the proposed query-result cache does not require
specific investments by the search engine companies. The query topic classification service is in general
already deployed for other purposes [9], while our caching solution is managed entirely by software and can
be easily implemented and deployed in existing Web search systems.

In the future, we would like to investigate if and how query topic classification performance impacts
the cache hit ratio. We assigned topics to queries by means of a LDA classification technique trained on a
portion of the query logs. We believe that improving coverage and accuracy of query classification might be
beneficial for the STD cache hit ratio. As future work, we plan to employ other topic-modeling techniques
which are tailored for short text [38]. We would also like to use this cache in synergy with other caches, e.g.,
those storing posting lists of frequently requested terms.

References

References

[1] Sadiye Alici, Ismail Sengor Altingévde, Rifat Ozcan, Berkant Barla Cambazoglu, and C)zgiir Ulusoy. Adaptive time-to-live
strategies for query result caching in web search engines. In Proceedings of the 34th European Conference on Advances
in Information Retrieval, ECIR ’12, pages 401-412, Berlin, Heidelberg, 2012. Springer-Verlag.

[2] Ismail Sengér Altingovde, Rifat Ozcan, Berkant Barla Cambazoglu, and Ozgiir Ulusoy. Second chance: a hybrid approach
for dynamic result caching in search engines. In Proceedings of the 33rd European Conference on Information Retrieval
Research, ECIR '11, pages 510-516, Berlin, Heidelberg, 2011. Springer-Verlag.

[3] Ismail Sengor Altingovde, Rifat Ozcan, and Ozglir Ulusoy. A cost-aware strategy for query result caching in web search
engines. In Proceedings of the 31th European Conference on Information Retrieval Research, ECIR ’09, pages 628-636,
Berlin, Heidelberg, 2009. Springer-Verlag.

[4] Aris Anagnostopoulos, Luca Becchetti, Ilaria Bordino, Stefano Leonardi, Ida Mele, and Piotr Sankowski. Stochastic query
covering for fast approximate document retrieval. ACM Transactions on Information Systems, 33(3):11:1-11:35, 2015.

[5] Ricardo Baeza-Yates, Flavio Junqueira, Vassilis Plachouras, and Hans Friedrich Witschel. Admission policies for caches
of search engine results. In Nivio Ziviani and Ricardo Baeza-Yates, editors, String Processing and Information Retrieval,
pages 74-85, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[6] Ricardo Baeza-Yates and Felipe Saint-Jean. A three level search engine index based in query log distribution. In Mario A.
Nascimento, Edleno S. de Moura, and Arlindo L. Oliveira, editors, String Processing and Information Retrieval, pages
56—65, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[7] Luiz André Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: The Google cluster architecture. IEEE Micro,
23(2):22-28, 2003.

[8] Steven M. Beitzel, Eric C. Jensen, Abdur Chowdhury, David Grossman, and Ophir Frieder. Hourly analysis of a very large
topically categorized web query log. In Proceedings of the 27th International Conference on Research and Development
in Information Retrieval, SIGIR 04, pages 321-328, New York, NY, USA, 2004. ACM.

[9] Steven M. Beitzel, Eric C. Jensen, Ophir Frieder, David Grossman, David D. Lewis, Abdur Chowdhury, and Aleksandr
Kolcz. Automatic web query classification using labeled and unlabeled training data. In Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 05, pages 581-582,
New York, NY, USA, 2005. ACM.

[10] Laszlo A. Béladdy, Randolph A. Nelson, and Gerald S. Shedler. An anomaly in space-time characteristics of certain
programs running in a paging machine. Communications of the ACM, 12(6):349-353, June 1969.

[11] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation. Journal on Machine Learning Research,
3:993-1022, 2003.

[12] Andrei Z. Broder, Marcus Fontoura, Evgeniy Gabrilovich, Amruta Joshi, Vanja Josifovski, and Tong Zhang. Robust
classification of rare queries using web knowledge. In Proceedings of the 30th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’07, pages 231-238, New York, NY, USA, 2007. ACM.

[13] Berkant Barla Cambazoglu, Ismail Sengor Altingdvde, Rifat Ozcan, and Ozgiir Ulusoy. Cache-based query processing for
search engines. ACM Transactions on the Web, 6(4):14:1-14:24, 2012.

[14] Berkant Barla Cambazoglu and Ricardo A. Baeza-Yates. Scalability Challenges in Web Search Engines. Synthesis Lectures
on Information Concepts, Retrieval, and Services. Morgan & Claypool Publishers, 2015.

21

(15]

[16]

(17)

(18]

19]

20]

21]
22]
23]

[24]

[25]

[26]
27]
(28]
29]

(30]

(31]
(32]

33]
(34]

(35]
(36]

37]

(38]

39]

[40]

[41]

42]

Matteo Catena, Craig Macdonald, and Nicola Tonellotto. Load-sensitive cpu power management for web search engines.
In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’15, pages 751-754, New York, NY, USA, 2015. ACM.

Matteo Catena and Nicola Tonellotto. Energy-efficient query processing in web search engines. IEEE Transactions on
Knowledge and Data Engineering, 29(7):1412-1425, 2017.

Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio Silvestri. Caching query-biased
snippets for efficient retrieval. In Proceedings of the 14th International Conference on Extending Database Technology,
Uppsala, Sweden, March 21-24, 2011, EDBT ’11, pages 93—-104, 2011.

Nick Craswell, Rosie Jones, Georges Dupret, and Evelyne Viegas, editors. Proceedings of the 2009 workshop on Web
Search Click Data, WSCD@WSDM 2009, Barcelona, Spain, February 9, 2009. ACM, 2009.

Caio Moura Daoud, Edleno Silva de Moura, Andre Carvalho, Altigran Soares da Silva, David Fernandes, and Cristian
Rossi. Fast top-k preserving query processing using two-tier indexes. Information Processing & Management, 52(5):855
— 872, 2016.

Tiziano Fagni, Raffaele Perego, Fabrizio Silvestri, and Salvatore Orlando. Boosting the performance of web search engines:
Caching and prefetching query results by exploiting historical usage data. ACM Transactions on Information Systems,
24(1):51-78, 2006.

Qingqging Gan and Torsten Suel. Improved techniques for result caching in web search engines. In Proceedings of the 18th
International Conference on World Wide Web, WWW °09, pages 431-440, New York, NY, USA, 2009. ACM.

Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the National Academy of Sciences,
101(suppl 1):5228-5235, 2004.

Xuefeng He, Jun Yan, Jinwen Ma, Ning Liu, and Zheng Chen. Query topic detection for reformulation. In Proceedings of
the 16th International Conference on World Wide Web, WWW ’07, pages 1187-1188, New York, NY, USA, 2007. ACM.
Bernard J. Jansen and Amanda Spink. How are we searching the World Wide Web? A comparison of nine search
engine transaction logs. Information Processing & Management, 42(1):248 — 263, 2006. Formal Methods for Information
Retrieval.

Simon Jonassen, Berkant Barla Cambazoglu, and Fabrizio Silvestri. Prefetching query results and its impact on search
engines. In Proceedings of the 35th International ACM SIGIR conference on research and development in Information
Retrieval, SIGIR ’12, Portland, OR, USA, August 12-16, 2012, pages 631-640, 2012.

Enver Kayaaslan, Berkant Barla Cambazoglu, and Cevdet Aykanat. Document replication strategies for geographically
distributed web search engines. Information Processing & Management, 49(1):51-66, January 2013.

Tayfun Kucukyilmaz, Berkant Barla Cambazoglu, Cevdet Aykanat, and Ricardo Baeza-Yates. A machine learning ap-
proach for result caching in web search engines. Information Processing €& Management, 53(4):834-850, July 2017.
Ronny Lempel and Shlomo Moran. Predictive caching and prefetching of query results in search engines. In Proceedings
of the 12th International Conference on World Wide Web, WWW 03, pages 19-28, New York, NY, USA, 2003. ACM.
Ximing Li, Ang Zhang, Changchun Li, Jihong Ouyang, and Yi Cai. Exploring coherent topics by topic modeling with
term weighting. Information Processing & Management, 54(6):1345 — 1358, 2018.

David Lo, Liqun Cheng, Rama Govindaraju, Luiz A. Barroso, and Christos Kozyrakis. Towards energy proportionality
for large-scale latency-critical workloads. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pages 301-312, June 2014.

Xiaohui Long and Torsten Suel. Three-level caching for efficient query processing in large web search engines. In Proceedings
of the 14th International Conference on World Wide Web, WWW ’05, pages 257-266, New York, NY, USA, 2005. ACM.
Yue Lu, Qiaozhu Mei, and ChengXiang Zhai. Investigating Task Performance of Probabilistic Topic Models: an Empirical
Study of PLSA and LDA. Information Retrieval, 14(2):178-203, 2011.

Evangelos P. Markatos. On caching search engine query results. Computer Communications, 24(2):137-143, 2001.

Rifat Ozcan, Ismail Sengor Altingovde, Berkant Barla Cambazoglu, Flavio P. Junqueira, and Ozgiir Ulusoy. A five-level
static cache architecture for web search engines. Information Processing and Management, 48(5):828 — 840, 2012.

Rifat Ozcan, Ismail Sengor Altingévde, Berkant Barla Cambazoglu, and Ozgiir Ulusoy. Second chance: A hybrid approach
for dynamic result caching and prefetching in search engines. ACM Transactions on the Web, 8(1):3:1-3:22, 2013.

Greg Pass, Abdur Chowdhury, and Cayley Torgeson. A picture of search. In Proceedings of the 1st International Conference
on Scalable Information Systems (InfoScale ’06), New York, NY, USA, 2006. ACM.

Vijay V. Raghavan and Hayri Sever. On the reuse of past optimal queries. In Proceedings of the 18th International
Conference on Research and Development in Information Retrieval, SIGIR ’95, pages 344-350, New York, NY, USA,
1995. ACM.

Junaid Rashid, Syed Muhammad Adnan Shah, and Aun Irtaza. Fuzzy topic modeling approach for text mining over short
text. Information Processing €& Management, 56(6):102060, 2019.

Patricia Correia Saraiva, Edleno Silva de Moura, Rodrigo C. Fonseca, Wagner Meira Jr., Berthier A. Ribeiro-Neto, and
Nivio Ziviani. Rank-preserving two-level caching for scalable search engines. In Proceedings of the 24th International
Conference on Research and Development in Information Retrieval, SIGIR 01, pages 51-58, New York, NY, USA, 2001.
ACM.

Fethi Burak Sazoglu, Berkant Barla Cambazoglu, Rifat Ozcan, Ismail Sengor Altingovde, and Ozgﬁr Ulusoy. A financial
cost metric for result caching. In Proceedings of the 36th International Conference on Research and Development in
Information Retrieval, SIGIR ’13, pages 873-876, 2013.

Craig Silverstein, Hannes Marais, Monika Henzinger, and Michael Moricz. Analysis of a very large web search engine
query log. SIGIR Forum, 33(1):6-12, September 1999.

Fabrizio Silvestri. Mining query logs: Turning search usage data into knowledge. Foundations and Trends in Information

22

[43]

[44]

[45]

[46]

(47]

Retrieval, 4(1-2):1-174, 2009.

Amanda Spink, Dietmar Wolfram, Major B. J. Jansen, and Tefko Saracevic. Searching the web: the public and their
queries. Journal of the American Society for Information Science and Technology, 52(3):226—234, 2001.

Amin Teymorian, Ophir Frieder, and Marcus A. Maloof. Rank-energy selective query forwarding for distributed search
systems. In Proceedings of the 22Nd ACM International Conference on Information € Knowledge Management, CIKM
’13, pages 389-398, New York, NY, USA, 2013. ACM.

Gabriel Tolosa, Esteban Feuerstein, Luca Becchetti, and Alberto Marchetti-Spaccamela. Performance improvements for
search systems using an integrated cache of lists 4 intersections. Information Retrieval Journal, 20(3):172-198, 2017.
Yinglian Xie and David O’Hallaron. Locality in search engine queries and its implications for caching. In Proceedings of
the 21st Joint Conference of the IEEE Computer and Communications Societies (Infocom ’02), pages 1238-1247. IEEE,
2002.

Wanwan Zhou, Ruixuan Li, Xinhua Dong, Zhiyong Xu, and Weijun Xiao. An intersection cache based on frequent itemset
mining in large scale search engines. In Proceedings of the 8rd IEEE Workshop on Hot Topics in Web Systems and
Technologies, HotWeb 2015, Washington, DC, USA, November 12-18, 2015, pages 19-24, 2015.

23

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Topic-based Caching
	3.2 STD Cache Configurations
	3.3 Modeling Queries as Topics

	4 Dataset Description
	5 Experiments
	6 Conclusions

