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Abstract

Diversification of web search results aims to promote documents with diverse content (i.e.,
covering different aspects of a query) to the top-ranked positions, to satisfy more users,
enhance fairness and reduce bias. In this work, we focus on the explicit diversification
methods, which assume that the query aspects are known at the diversification time,
and leverage supervised learning methods to improve their performance in three different
frameworks with different features and goals. First, in the LTRDiv framework, we focus
on applying typical learning to rank (LTR) algorithms to obtain a ranking where each
top-ranked document covers as many aspects as possible. We argue that such rankings
optimize various diversification metrics (under certain assumptions), and hence, are likely
to achieve diversity in practice. Second, in the AspectRanker framework, we apply LTR
for ranking the aspects of a query with the goal of more accurately setting the aspect
importance values for diversification. As features, we exploit several pre- and post-
retrieval query performance predictors (QPPs) to estimate how well a given aspect is
covered among the candidate documents. Finally, in the LmDiv framework, we cast the
diversification problem into an alternative fusion task, namely, the supervised merging of
rankings per query aspect. We again use QPPs computed over the candidate set for each
aspect, and optimize an objective function that is tailored for the diversification goal.
We conduct thorough comparative experiments using both the basic systems (based on
the well-known BM25 matching function) and the best-performing systems (with more
sophisticated retrieval methods) from previous TREC campaigns. Our findings reveal
that the proposed frameworks, especially AspectRanker and LmDiv, outperform both
non-diversified rankings and two strong diversification baselines (i.e., xQuAD and its
variant) in terms of various effectiveness metrics.
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1. Introduction

Diversification is an approach to satisfy the needs of a population of users for ambigu-
ous and/or broad queries, by ensuring that the documents addressing different possible
intents of users are surfaced to the top results. Consider the ambiguous query “apple” —
the top-ranked documents should cover both possible aspects (a.k.a., subtopics or inter-
pretations) of this query, namely, apple as a fruit and the company. For a broad query,
say, “machine learning”, there is a wide range of aspects, such as the technological as-
pects (e.g., learning algorithms, code repositories), the social aspects (e.g. ethics, jobs),
or the legal aspects (e.g. bias, fairness), which should all be represented — as much as
possible — in an unbiased result set. Therefore, given an initial retrieval result for a
query, usually called a candidate set, diversification methods are applied to generate a
final ranking, which lists top-ranked documents that are both relevant and diverse, i.e.
covering as many aspects of the query as possible.

Diversification approaches in the literature can be described as implicit or explicit, in
how they aim to understand the different possible aspects of a query (Santos et al., 2015]).
The implicit approaches solely exploit the candidate set, i.e., the features of the initially
retrieved documents, for diversification. Instead, the explicit approaches assume that the
query aspects have been inferred beforehand (say, using topical directories (Agrawal et al.,
2009) or query reformulations (Santos et al., |2010al)) and aim to prioritize the coverage
of these aspects while generating the final ranking. Earlier studies have consistently
shown that when the aspects are available, the explicit methods outperform the implicit
ones. More recently, explicit diversification methods have also emerged as a promising
approach to reduce bias and enhance fairness in various search scenarios (e.g. (McDonald
et al., [2019)), where it is reasonable to assume the availability of such query aspects
(such as gender, ethnicity and age in a job search scenario (Zehlike et al.| [2017))). Thus,
given the success of explicit diversification methods in typical search scenarios and their
usage in new application areas, we argue that exploring ways of further improving their
effectiveness is an important and timely research direction.

1.1. Research Questions

The key research question tackled in this paper can be formulated as “How can we
exploit supervised learning methods to improve the effectiveness of explicit search result
diversification?”. To this end, we identify three sub-questions as follows:

e RQ1: How can we employ supervised learning, namely, typical learning to rank
(LTR) algorithms, for explicit diversification?

e RQ2: Instead of learning a model for generating a diversified ranking, how can we
learn a model to predict the importance of query aspects, to be used in a traditional
(unsupervised) diversification method?

e RQ3: How can we cast the diversification problem into a fusion problem, and then
adapt supervised learning methods to solve the latter?

To investigate answers to these questions, we build three different frameworks, each
of which leverages supervised learning with different features and goals, as follows:



e LTRDiv: First, we devise features that capture the aggregated relevance of a can-
didate document to all query aspects to train a model via typical learning to rank
(LTR) algorithms. This framework, LTRDiv, is intended to rank higher the docu-
ments relevant to multiple aspects and thus, it aims to maximize the diversity of
the ranking (as captured with the intent-aware precision metrics (Agrawal et al.,
2009), which will be discussed later).

e AspectRanker: In our second framework, AspectRanker, we apply supervised learn-
ing methods for a sub-task of the explicit diversification process, namely, predicting
the importance of the aspects for a user query. While most diversification methods
in the literature employ aspect importance as a key component, they usually assume
a uniform distribution (i.e., all aspects are equally important) or a popularity-based
instantiation obtained from external resources (which may not match the actual
representation of aspects in the candidate document set). In our approach, we first
re-rank the candidate documents for each aspect and employ several pre- and post-
retrieval query performance predictors, QPPs (e.g., (Carmel & Yom-Tov, [2010))),
to estimate how well a given aspect is covered in the candidate set. Then, we
train models to rank the aspects for a given query. Finally, we map the aspect
rankings to importance values and exploit them in an traditional (unsupervised)
diversification method, namely, xQuAD (Santos et al., [2010a)).

e LmDiv: Inspired by the LambdaMerge (Lm) method that aims to combine rank-
ings for different query suggestions (Sheldon et al.| |2011), we train models that
merge rankings (of candidate documents) for each query aspect. In this case, the
trained model (a neural network as in (Sheldon et al., 2011)) captures both the
relationships of documents and aspects, as well as each aspect’s importance, which
is again estimated based on QPPs.

1.2. Nowel Contributions

Our novel contributions in the context of each framework can be summarized as
follows:

e Via our LTRDiv framework described above, we introduce a simple yet effective
approach to apply typical LTR algorithms in the diversification context. To the best
of our knowledge, our present paper is the first work that casts the diversification
problem as that of learning a ranking model, which is based on the aggregated
relevance of each document to all aspects of a given query. Our proposed approach
is motivated by the observation that, theoretically, a ranking where documents
are sorted with respect to the number of aspects they are relevant to (i.e., covered
aspects) will maximize the well-known intent-aware diversity metrics (under certain
assumptions that will be discussed later), and such a ranking is also likely to satisfy
the users’ diversity requirements in practic Therefore, we train models to predict

10ur LTRDiv (and LmDiv) frameworks focus on the coverage of the aspects but disregard the novelty,
i.e., they neglect the redundancy among the covered aspects. This choice is justified by an earlier
work (Santos et al.}|2012) that has shown that coverage-based approaches outperform the novelty-based
ones for diversification. Alternatively, our AspectRanker framework utilizes xQuAD, a hybrid approach
employing components for both coverage and novelty.
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the number of covered aspects per document, in isolation, while the closest works in
the literature (e.g., (Zheng et al., |2017))) assume a sequential selection model (i.e.,
considering the previous documents selected into the ranking).

e For the first time in the literature, we propose to learn the importance of aspects
by re-ranking the candidate set for each aspect and leveraging QPPs. In the closest
work to ours in the literature, |Ozdemiray & Altingovde (2014)) directly employed
such QPP estimates as the aspect importance values, but they did not explore the
idea of training a model to predict these values, as we do in the AspectRanker
framework.

e We adapt the LambdaMerge approach to search result diversification casting the
diversification problem as a fusion task, namely the supervised merging of rankings
per query aspect. Again, earlier works only considered traditional (unsupervised)
merging strategies in this context (e.g., (Ozdemiray & Altingovdel [2015)), but
did not exploit supervised learning. In our adaptation of LambdaMerge, we learn
the aspects’ importance based on the representation quality of each aspect in the
candidate set (as in AspectRanker), and we optimize an objective function that
takes into account the relevance (of a document) to multiple aspects of a query.

1.3. Summary of Key Findings

We conduct thorough experiments using both BM25 (i.e., initial retrieval results based
on the well-known BM25 matching function) and the best-performing TREC systems
(a.k.a. rumns) (i.e., employing more sophisticated retrieval methods) for four topic sets
employed in the TREC Diversity Task between 2009 and 2012. In addition to the non-
diversified initial ranking, we employ two strong baselines, namely, xQuAD (which has
been the best performing diversification method in several TREC campaigns (Santos
et al, 2015) and xQuADgy, a variant of xQuAD that employs aspect importance values
set as in (Ozdemiray & Altingovde) 2014).

Our findings over the BM25 runs reveal that the proposed frameworks, especially As-
pectRanker and LmDiv, outperform all three baselines in terms of various well-known
metrics. We further evaluate LmDiv, our most effective framework, over the best-
performing TREC runs, and again show promising strong gains over the baselines (i.e.,
up to 18.9% w.r.t. xQuAD and 11.6% w.r.t xQuADgy for a-nDCG@2). These results
suggest that learning a model for obtaining aspect importance values and scoring doc-
uments, simultaneously, is the most effective approach for applying supervised learning
in explicit search result diversification. Overall, the success of our proposed frameworks
in this paper reveal that explicit diversification performance can be considerably im-
proved using supervised learning approaches that do not require very large training sets
and/or excessive computing resources (contrary to the popular deep learning paradigm
of our day), and hence, they are applicable in real life scenarios that require diversity (or
fairness) among the results of a search system.

The remainder of this paper is structured as follows: In the next section, we pro-
vide preliminaries required in some approaches in areas relevant to our work, such as
explicit diversification, query performance prediction and supervised learning for rank-
ing or merging the results. Section |3| presents our three frameworks for diversification,
namely, LTRDiv, AspectRanker and LmDiv. The experimental setup and results follow
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in Sections [ and [5] respectively. After presenting our methods and findings, in Section|6]
we provide a more general overview of the related work to highlight the difference of our
approaches from the others. Finally, we provide concluding remarks and future research
directions in Section

2. Background and Preliminaries

Our work builds on and/or incorporates various previous approaches, such as explicit
diversification (and especially, the xQuAD method), query performance predictors, and
supervised algorithms for ranking and merging. In this section, we briefly review the
methods that we employ and/or adopt in this work together with the corresponding
notations. Later in Section [6] we provide a more general literature review, and highlight
how our work differs from the previous works.

2.1. Ezxplicit Result Diversification and xQuAD

Consider a query ¢ with a set of known aspects A, = {a1,...,an,} and a candidate
set D including N documents that is initially retrieved for the main query ¢g. The goal of
diversification is to obtain a final ranking R (with |R| = k, where k is usually less than
N) that is both relevant to the query and diverse (i.e., covering as many and diverse
aspects as possible).

One of the most successful explicit diversification approaches is xQuAD (Santos et al.|
2010al), which was the top-performer in the Diversity Task of the TREC Web Track
between 2009 and 2012 (e.g., see (Santos et al.| [2015)). This is a greedy best-first
approach that selects the document d € D that maximizes Eq. in each iteration, until
k documents are inserted into R.

Score(q.d, R) = (1 - \)Pr(dlg) + A Y [Pr(a|q) Pr(dja) J] (1~ Pr(dj\a))}, (1)

a€Ay d;ER

In Eq. (1)), Pr(d|q) and Pr(d|a) denote the score of a document with respect to the
main query, or an aspect, and can be calculated using any effective document ranking
approach, such as BM25 (Santos et al., |2010al). The first summand of Eq. aims to
capture the relevance of a candidate document d to the main query ¢, while the right hand
side represents the diversity, based on the sum of the coverage of each aspect a (€ A,)
by d. In the latter computation, Pr(a|q) represents the importance of that aspect for the
query, and, by default, is uniform across all aspects (Santos et al., [2010a)). Furthermore,
xQuAD discounts the score contribution of a document for a particular aspect (i.e.,
Pr(a|q) Pr(d|a)) by the probability that the aspect has been already well-covered by the
documents selected earlier into R, represented by the product term deeR(l —Pr(d;la)).
This discounting mechanism aims to prioritize documents with high scores for the aspects
that are not yet covered in R, and hence, enhances the novelty of the final ranking. The
trade-off parameter A is used to balance the relevance and diversity in the final ranking
R.

In this paper, we employ xQuAD as a representative explicit diversification method
in our AspectRanker framework (Section and as a baseline method in our empirical
comparative experiments (Section .
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2.2. Query Performance Prediction

For a search system, it is important to be able to estimate the quality of the ranking
obtained for a query, as it opens the way for several optimizations (such as applying
more sophisticated retrieval methods, or suggesting alternative query formulations to
the user). Therefore, various query performance predictors (QPPs) have been proposed
in the literature (e.g., see (Carmel & Yom-Tov, [2010) for an overview). QPPs are broadly
categorized as pre-retrieval or post-retrieval with respect to when the estimation can be
done, i.e. before or after retrieval. Earlier works reported that both types of predictors
are useful and the overall prediction performance may further improve by using different
types of QPPs in combination (Carmel & Yom-Tov, 2010).

In this work, we exploit both pre- and post-retrieval QPPs as features to learn a model
for predicting the aspect importance values (e.g., Pr(alq) in Eq. (I)) in the AspectRanker
and LmDiv framework In the following, we briefly review the QPPs employed to
this end. In addition to the notations introduced in the previous section, we follow
the notations used in (Ozdemiray & Altingovde) 2014), where C' and s4(d) denote the
underlying document collection and the relevance score of a document d with respect to
query ¢ (i.e., Pr(d|q) or Pr(d|a) in Eq. )7 respectively; Dy represents the top-n ranking
of candidate documents D (based on the relevance scores s4(d)) for a query. Note that
we employ all the QPPs also for the top-n rankings D, (where a; € A,), i.e., for the
ranking of candidate documents w.r.t. each aspect of a query (as will be discussed in

Section .

2.2.1. Pre-retrieval Predictors
In this paper, we use the following two pre-retrieval predictors:

e maxSCQ: This predictor is motivated by the intuition that if the collection con-
tains documents that are similar to the query, then this query is more likely to have
a higher performance (Zhao et al., 2008). The similarity score (SCQ) is computed
as:

SCQ(a) = Y (1 +Inffrege, ) (1 + 37) @)

where M is the number of documents in the collection, freqc, is the frequency
of term ¢ in the collection C, and M, is the number of documents with term t.
Zhao et al.| (2008) identified a variant of SCQ called maxSCQ that was the most
effective; maxSCQ is the SCQ score for the query term ¢ that maximizes Eq. .

e 01: |Zhao et al. (2008) conjectured that as the standard deviation of the query
terms’ weights increases, the retrieval system would identify relevant documents

2QPPs have been exploited as features for other tasks in the context of result diversification, such
as classifying the aspect intent (Santos et all |2011) and predicting the trade-off parameter A (Santos
et al., |2010b)), which are clearly different from the way they are used in our AspectRanker and LmDiv
frameworks.



readily, since documents would discriminate easily. This predictor sums the de-
viations over the query terms and thus reflects the variability of the query as a
whole.

ai(g) =) ML > (way —wy)? 3)

t

teq deCy
ZdGCt Wd,t
Wy = —2+—— 4
t |Ct| ) ( )

where C; is the set of documents including the query term ¢ while wq ¢ denotes the
weight of query term ¢ in document d (calculated via tf-idf in [Zhao et al. (2008))).



2.2.2. Post-retrieval Predictors
In this paper, we use various post-retrieval predictors:

e Weighted Information Gain (WIG): This QPP estimates retrieval effectiveness
by computing the difference between the mean of relevance scores of documents in
the ranking Dy, and the relevance score of the collection. The intuition behind
this approach is that “high quality retrieval should be much more effective than
just returning the average document” (Zhou & Croft, 2007). The WIG score is
calculated as follows:

WIG(q) = niﬂmvgden; (5q(d)) — 54(C)), (5)

where s,(d) and s,(C) represent the relevance scores of documents d € Dy and the
collection C|, respectively. [ is the length of the query ¢, and n is the size of the
ranking.

e Normalized Query Commitment (NQC): [Shtok et al. (2012) stated that
using the mean of the relevance scores might be misleading, as the ranking may
include non-relevant documents. Hence they propose a technique that measures
the amount of deviation of the relevance scores of documents in the ranking w.r.t
the mean score, and further normalized it w.r.t the collection score.

E Zeny (54(d) — avgac oy (sq(d))? .
- 40 )

NQC(q)

e ScoreAvg: ScoreAvaS been used as a simpler form of WIG for fusion-based
retrieval in (Markovits et al., |2012)). Since they found that normalizing by the
query length damages the quality of the prediction when using multiple lists, they
employed sum normalization. That is, the relevance scores, s,(d), of documents in
Dy are normalized so that they sum to 1.

e ScoreDev: ScoreDev? (Markovits et al., 2012), is similar to NQC, but instead of
the normalization w.r.t the collection score, it applies sum normalization over the
document scores.

Finally, the following three query performance predictors were introduced by |Ozdemi-
ray & Altingovde| (2014).

e ScoreRatio: This predictor uses the idea that a higher score gap between the first
and last documents in a ranking may imply a higher probability of non-relevant
documents appearing in this ranking. It is calculated as follows:

ScoreRatio(q) = Z (7)

3The QPP was named this way by |Ozdemiray & Altingovde (2014).
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e VScoreAvg: For this QPP, it is assumed that there exists a virtual document
that perfectly matches the query, as in (Ozdemiray & Altingovde, 2015). This
virtual document d¥ would contain only the terms in the query and it would have
the average document length in the collection. Then, its score s,(d") is used to
normalize the scores s,(d) (of d € Dy) to obtain a predictor based on the mean
relevance of the ranked documents, as follows:

1 virtual
VScoreAvg(q) = - E syrrtuat(d) (8)
deDy
) d)
Smrtual d) _ Sq( 9)
N (

e VScoreFirst: The score of the first document in the ranking (after normalization
by the score of the aforementioned virtual document) is used as a query performance
predictor.

2.8. Supervised Learning for Ranking

Modern search engines apply a two stage ranking where first an initial retrieval result
is obtained using relatively efficient methods (such as BM25) and then a complex and
expensive machine learnt ranker is applied over the latter set. To train such specialized
models for the ranking task, several algorithms have been introduced in the last two
decades (see (Liul, [2009) for an overview).

In a nutshell, the input for a LTR algorithm is an instance vector that is created
for each document retrieved for a query, and includes features that capture the query-
document matching (e.g., tf-idf, BM25, etc. scores) as well as document-quality features
(PageRank, in/out degrees, etc.) and query features (e.g., see (Liu, [2009; Macdonald
et al.l 2012)). During training, the target label is the graded relevance judgment of a
document for the query (usually obtained from the human assessors). The LTR algo-
rithms can consider these labels on their own, in pairs or as a list, giving way to pointwise,
pairwise and listwise learning approaches.

In this work, we leverage LTR approaches in two ways: First, in the LTRDiv frame-
work, we cast the diversification problem to a LTR problem with appropriate features
and a target feature that is intended to optimize the aspect coverage. Secondly, in the
AspectRanker framework, instead of ranking documents, we rank the aspects of a query
to infer their importance values. In both cases, we employ two representative LTR algo-
rithms, namely, SVMRank and Random Forests.

2.4. Supervised Learning for Result Merging

A well-explored topic in the literature is merging query results that are obtained by
using different retrieval methods (e.g. tf-idf, BM25, LTR, etc.) over the same corpora
and/or over different collections. In this work, we adopt a particular supervised strategy,
LambdaMerge, which has been proposed to merge the rankings that are obtained for a
query and its reformulations (Sheldon et al., |2011]). Next, we review LambdaMerge and a
follow-up variant, and discuss our application of this method to the result diversification
problem in Section



Assume that a list of top-N results is retrieved for a query and each of its refor-
mulations. The LambdaMerge method consists of two neural networks: the first one,
called scoring network, employs features, x};, capturing the relationship between a query
reformulation and the document; while the second network, namely a gating network,
uses features, z”, that represent the quality of each reformulation. The total score of
a document is generated by the co-operation of these two networks. The contribution
of each reformulation measured by the gating network is multiplied by the score of the
document passing through the scoring network, and adding all of them yield the final
score of a document. This process is formulated as follows:

scoreq = Z Urf(x,7) (10)

1, = softmax(z*, §) fori=1,..r. (11)

where r is a query reformulation, v represents the quality of the reformulation, which
is computed by Eq. , x!; is the feature vector of document d over the result list of
reformulation 7, v and § are the weight matrices. f is the key function of the scoring
network. While this function can be any differentiable function, Sheldon et al. (2011)
chose a fully connected two-layer neural network.

Training a neural network that optimizes an evaluation metric (such as Normalized
Discounted Cumulative Gain (nDCG)) is a challenge, due to the discontinuity of the
metric. Therefore, LambdaMerge has adopted the approach of LambdaRank (Burges
et al., |2006)), which overcomes this problem by using a smoothed version of the objective.
In particular, the gradients of the objective, namely O, for the parameters of score and
gating networks are computed by applying the chain rule. The most crucial component
is the partial derivative of O w.r.t. the score (generated by the output layer of network),

85?02%, which can be computed for various information retrieval (IR) evaluation metrics
as follows:
00 —
Tacores = 2 | B | (Tazs =1/ (1 eeoreimseerea)) (12)
i

where 7 indicates every document in the ranking, and | Ag; | is the difference value in the
metric when documents ¢ and d are swapped in the ranking; Y 4~; is an indicator that
shows which document is more relevant according to the relevance judgements. It is 1 if
the document d is more relevant than 4, and 0 otherwise. In LambdaMerge, the authors
employ the nDCG metric while computing | Ag; | (see (Sheldon et al.l |2011)) for further
details). For the other derivatives, the traditional back-propagation scheme is applied,
as for the original LambdaRank approach (Burges et al., [2006).

Finally note that [Lee et al. (2015) extended the LambdaMerge architecture by in-
creasing the number of hidden layers in the scoring neural network (as well as injecting
additional feature types). Following the naming in the latter work, we refer to our di-
versification framework that is based on the original LambdaMerge as LmDiv-Shallow,
while we denote the multi-layer version as LmDiv-Deep.
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3. Supervised Learning for Explicit Search Result Diversification

In this paper, we exploit various supervised learning methods (i.e., LTR algorithms
and neural networks) to either generate a diversified final ranking (in the LTRDiv and
LmDiv frameworks), or to obtain aspect importance values to be used in combination
with a traditional explicit diversification method (in the AspectRanker framework). In
the following, we discuss the details for each of these frameworks.

3.1. The LTRDiv Framework

In this section, to answer our first research question, RQ1 in Section we cast the
result diversification problem into a typical ranking problem to exploit the existing LTR
algorithms to obtain the final ranking. As discussed in Section in the traditional setup
for LTR, the goal is to maximize the relevance of the ranking for a given query; therefore,
during training, the model learns to predict the relevance label of each document for a
given query. In this case, the document is represented with the features that capture
the query-document matching (e.g., tf-idf, BM25, etc. scores) as well as the document-
quality (PageRank, in- and out degree, etc.).

To be able to use a LTR algorithm for diversification, we extend this setup. In
particular, we describe both the features and the learning target to capture the relevance
of a document not only to the main query, but also to its multiple aspects. To formally
define the features and target label, assume a query ¢ (i.e., the main query issued by a
user) with a set of known aspects A; = {a1,...,a,} and a candidate set D (i.e., the
top-N documents retrieved for g). We re-rank the candidate set D for each aspect a;,
using a typical retrieval mechanism (e.g., tf-idf, BM25, etc., as will be discussed later).
We denote each such ranking as Dy,, where n < N. Intuitively, a document that is
ranked at a higher position (i.e., close to the top) in many of these rankings D7, is likely
to be relevant to several aspects, and hence, would contribute positively to the diversity
of the final ranking. Therefore, we represent a document d’s coverage of the aspect set
A, with the features that compute the minimal, maximal and average rank (and score)
of d over the rankings Dy, for a; € Ay, shown as follows:

1 m
fa={(s(d,q),r(d,q), max. s(d, a;), E; s(d, a;), Himms(d a;),
1 m
1I<nf?5nr (d,a;), Eglr (d,a;), H}mmr(d a;)) (13)

where s(d, a;) is the relevance score of document d for aspect a; (sum-normalized over
Dy ), and r(d, a;) is the rank of document d in D7} . Note that the feature vector fz also
includes s(d, q) and r(d, q), i.e., the relevance score and rank of d for the main query gq.
In this manner, the feature vector for a document is capable of representing the relevance
of a document to both the main query and its aspects. The target label for a document
d is the number of covered aspects, i.e., those a document is stated to be relevant for
(with a non-zero grade in the ground truth relevance judgments).

We summarise the LTRDiv framework in Fig. For the learning component, any
LTR algorithm from the literature can be employed, and we discuss the ones employed in
this work in Section |4| Finally, we justify our choice of the learning target (the number
of covered aspects by a document) in this framework by the following observation.
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Table 1
Relevance of documents to query aspects for a toy scenario.

di de dz dys ds

a1 1 0 0 1
aa 0 1 0 0 1
a3 0 1 0 1 O

Proposition 1 Assuming all query aspects are equally important and the relevance
of each document to each aspect is binary, a ranking of N documents based on the
number of covered aspects will yield the optimum scores for the precision oriented intent
aware (IA) metrics such as Precision-TA (P-IA) and Discounted Cumulative Gain (DCG)-
TA (Agrawal et al., [2009), for any cut-off value kK < N.

Example. Let’s consider a query ¢ with the candidate set Dy, = {d1,d2,ds,ds,ds5}.
The query has 3 aspects, and the (binary) relevance (rel,(d)) of each document to each
aspect is given in Table [I} We want to retrieve the top-2 documents for q.

In this case, assuming all aspects are equally important (i.e., Pr(alg) = 1/m for a
query with m aspects), a ranking R of the documents that is based on the covered aspects,
namely, d2(3),d5(2),d1(1),d4(1),ds(0), maximizes both P-IA and DCG-IA for any rank
cut-off value, and hence, the top-2 list includes {ds, d5}. For P-TA, shown in Eq. 7 this
is easy to see, by taking the (constant) multiplication 1/m x 1/k out of the summations
and then swapping the order of summations. Then, for each rank position, covering the
maximum number of aspects would give the optimal P-TA score, and the ranking {ds, ds}
(covering 3+2 aspects) is optimal. Applying the same transformations for the DCG-TIA
metric in Eq. , we again see the optimal ranking should provide the highest gains for
each possible rank position and hence, for this example, the ranking {d3,ds} is optimal.
Note that, [Chapelle et al.| (2011 also noted that DCG-IA could be optimized by sorting
the documents w.r.t. the expected gain, and under the aforementioned assumptions, this
means a ranking with respect to the number of covered aspects, as given in Proposition
1. Since the above example conveys the intuition underlying Proposition 1, we omit a
formal proof for reasons of brevity.

a=1

m k
P-TA@k =)~ Pr(a|q)% Z Rel,(R;) (14)

k_ 9Rel.(R;)

= log(1+ j) (15)

m
DCG-IA@k =) ~ Pr(alg)

a=1
In light of the above discussion, we argue that training models to predict the number
of aspects covered by each candidate document is a meaningful and promising learning
target for our LTRDiv framewor This also means that LTRDiv is a coverage-based
approach and does not take novelty into account, i.e., it neglects the redundancy between

4We note that the model may underperform if the ground truth for the evaluation includes graded
relevance judgments and/or non-uniform aspect importance values; yet in our experiments with graded
relevance judgments, LTRDiv was still found to yield a good performance (see Section E)
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Fig. 1. LTRDiv framework to obtain a diversified ranking with a typical LTR algorithm.

the covered aspects. We note that this is a reasonable choice, since an earlier work has
shown that solely targeting for the novelty is not effective for diversification
et al., , while coverage-based methods perform very well comparatively. In our
experimental evaluation, we confirm the latter result and show that rankings obtained
via LTRDiv yield high diversity scores, not only in terms of the intent-aware metrics,
but also w.r.t. those taking novelty into account, such as a-nDCG.

3.2. The AspectRanker Framework

In this section, we propose the AspectRanker framework, as an answer to our second
research question, RQ2 raised in Section In the AspectRanker framework, our goal
is to exploit the supervised learning methods, i.e., the LTR algorithms again, to estimate
the aspect importance values that are employed in traditional (unsupervised) explicit
diversification methods proposed in various earlier works (Agrawal et al., 2009; |Santos|
et al., |2010a; Dang & Croft| |2012; |Ozdemiray & Altingovde, [2015). In Algorithm 1,
we specify the overall approach, in three stages, to obtain a diversified ranking. First,
we train a model to rank the aspects for a given query. Next, we map each rank to
a fixed importance value. Finally, we employ these importance values in a traditional
diversification method. In the following, we describe in detail each stage.

For the ranking stage, we need to represent each query aspect with a feature vector
and define a target label that would capture the importance of an aspect for a given
query. To address this goal, we are inspired by an earlier work (Ozdemiray & Altin-
, which suggests that rather than relying on external resources for inferring
aspect importance, one should consider to what extent an aspect is represented in the
candidate set. For instance, for a given query “java”, if the aspect “java island” is not
covered adequately by any of the documents in the candidate set (i.e., all candidates
are either relevant to the “programming language” or “coffee” aspects), then assigning
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Algorithm 1: AspectRanker
Input : Qtrein : the query set for training
Qtest - the query set for test
{D1,..,Dq} : candidate set retrieved for ¢; € Qtrain U Qtest

{A1,..,Ag} : aspect set for ¢; € Qirain U Qrest
Output: R : set of diversified rankings R; for g;

for each training query ¢ € Qtrqin do
for each aspect a; € A, do
Generate the ranking Dy, based on s(d, a;) for d € D,
Construct feature vector f,, = (WIG(a;), NQC(a;)...)
Feed (g, fa,,target) triplets to train a LTR model
end
end
for each test query ¢ € Qiest do
Obtain the aspect ranking A, using the LTR model
10 for each aspect a; € A, do
11 Compute the importance of the a; w.r.t its rank in A,
12 end
13 Run xQuAD with computed aspect importance values
14 end

© o N4 O O A W N e

uniform importance values to all three aspects (following the common practice in the lit-
erature (Santos et al., 2010a))) would not help, but might even mislead the diversification
process. To further justify our approach, in Fig. 2| we provide the percentage of aspects
that have a given number of relevant documents in the top-100 candidate set, for the
BM25 and TREC runs over 198 queries (described in detail in Sec. [4)). Remarkably, a
considerable percentage of aspects do not have even a single relevant document retrieved
in the candidate set. Similarly, as the plot shows, the number of relevant documents does
fluctuate: for a large fraction of aspects there are 1 to 10 relevant documents; but aspects
with much larger numbers of relevant documents also exist. Therefore, as in (Ozdemiray
& Altingovde| [2014), we employ the QPPs to capture the retrieval effectiveness of the
top-ranked documents (in the candidate set) for each aspect. However, different from
the work of |(Ozdemiray & Altingovde| (2014), we do not directly employ the estimates of
a single QPP as the aspect importance values, but instead learn a model to combine the
estimates of several QPP

Formally, following the notations in the previous section, we again obtain the re-
rankings Dy, of the candidate set D for each aspect a; of a query ¢q. For each such
ranking, we compute the QPPs described in Section [2.2] namely, WIG, NQC, ScoreAvg,
ScoreDev, ScoreRatio, VScoreAvg, VScoreFirst, maxSCQ, and o1. As the target label
for each aspect, we calculate the well-known Precision metric over Dy , as follows:

5Note that the combination of QPPs has been explored independently in earlier works (Carmel &
Yom-Tov, |2010), but we are not aware of any application in the context of result diversification for aspect
ranking.
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Fig. 2. Percentage of aspects (y-axis) with a given number of relevant documents (x-axis) in the
candidate document sets (BM25 and TREC runs) for 198 queries.
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Precision,, p = (16)

n
where n (< N) is the size of the ranking for a; and Rel,, is the set of documents judged
relevant for the aspect a; of the given query. Note that such a target label is an approx-
imation, i.e., it is not guaranteed that using the target value as the aspect importance
would maximize the diversification performance. However, the other alternative, trying
all importance values (within a given range) for all aspects is prohibitively expensive,
especially for queries with more than a few aspects. Hence, we opt to employ Eq. (16)
as a proxy for the aspect importance to be predicted. These training instances are then
fed to a LTR algorithm to learn a ranker for aspects.

During testing, once we obtain a ranking of aspects for a given query, we apply a
simple procedure to map the ranks to actual importance values. We assign an aspect
the importance value that is inversely proportional to its rank, i.e., for m aspects, the
top-ranked one has the importance value m and the last one has 1. Note that one could
also train a model, say using regression, to predict the Precision,, p value directly, but
as discussed above, the target value in the model is a proxy for the actual aspect im-
portance and hence, ranking aspects may produce more generalizable results than trying
to predict an exact importance value. In our reported evaluation, we show that such
an approximation yields indeed a very good performance. Finally, we use the estimated
aspect importance values (after sum normalization) in an explicit diversification method
to obtain a diversified ranking for a test query.

3.8. The LmDiv Framework

Our third research question, RQ3 raised in Section [L.1] is addressed in this section.
We tailor the LambdaMerge approach (Sheldon et al.,[2011)) to search result diversifica-
15
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tion casting the diversification problem as a fusion task, namely, the supervised merging
of rankings per query aspect. Similar to LambdaMerge (reviewed in Section , our
LmDiv framework simultaneously trains two neural networks, a scoring network that
creates a score for each document-aspect pair, and a gating network that generates an
importance value for each aspect (Fig. [3). The final score of a document is the weighted
sum of the document-aspect scores with the corresponding aspect importance values,
computed as follows:

score(d) = 3" o hl(faanr) (17)
a;EA
a; = softmax(zq,,0) for a; € A. (18)

where a; is a query aspect, 1 is the aspect importance, which is computed by Eq. 7 5y
and § are the weight matrices and h() is the scoring neural network. In the following, we
describe fgq,, the feature vector of document d for aspect a;, and z,,, the feature vector
of aspect a;, in detail.

Different from the LTRDiv framework, in this case, the feature vectors (fq,q,) are
created for each (d,a;) pair where d € D, and a; € A for a given query. Note that, in
this case, we treat the original query ¢ as an aspect and create all these features for ¢, as
well. As before, D} denotes a ranking of candidate documents w.r.t. a;. Then, following
the practice in (Sheldon et al., [2011)), we compute the following features for (d, a;):

e s(d,a;): The raw relevance score of the document d for a;
e r(d,a;): The rank of the document d in D7,

e SumNormScore: The relevance score s(d, a;) after applying sum normalization over
all d € Dy,
16



e VirtualNormScore: The relevance score after applying virtual normalization (see
Section for the description of VScoreAvg (Ozdemiray & Altingovde, 2014)).

e StandardScore: The relevance score after applying z-score normalization.

e IsInTop: A binary indicator denoting whether the document is in D (i.e., when
n < N, some candidate documents would not appear among the top-ranked docu-
ments for a;).

For the gating network, we again represent each aspect a; using a feature vector, z,,,
based on QPP scores over Dy, namely, WIG, NQC, ScoreAvg, ScoreDev, ScoreRatio,
VScoreAvg, VScoreFirst, maxSCQ, and o1, as in the previous section. Hence, the net-
work would learn the aspect importance values, which reflect the quality of each aspect’s
representation in the candidate result set.

During training, for each candidate document and aspect pair (d,a;), the feature
vectors fqq, and z,,, are obtained and fed simultaneously to the scoring and gating
networks, respectively, for each aspect a; of the query; and their results are combined
to obtain the final document score using Eq. . Once all documents for a query are
scored, the LambdaRank gradients of the objective function is computed for the back-
propagation.

The original LambdaMerge method aims to optimize the nDCG metric, as shown
in Eq. , where the ground truth is simply based on the query-document relevance
judgments. In this work, we define a different representation of the ground truth that is
more appropriate for the diversification task. As in Section for each document, we
use the number of covered aspects as its target label. In this case, the T4~; parameter
in Eq. returns 1 when a document d is relevant to a larger number of aspects than
document i. Note that, such a formulation would learn a model to generate rankings in
descending order of the number of covered aspects per document, as in the case of the
LTRDiv framework, albeit using different features for the documents and aspects, and a
neural network model optimizing a list-wise metric, i.e., nDCG. In this sense, LMDiv is
also a coverage-based approach w.r.t. the categorization in (Santos et al., [2011)).

As a further extension, we modify Eq. to allow direct optimization of a metric
specifically proposed for evaluating diversity, namely, nDCG-IA (Agrawal et al. [2009).
In our adaptation, we compute the impact of swapping two documents for each aspect,
separately, and then average over the aspects, as follows:

00

dscoreq

S Pr(ale) 3 A | (Tas = 1L+ o)) (19)

a

In Eq. (19), Pr(alq) denotes the aspect importance in the ground truth (if available),
i indicates every document in the ranking, | Ay | is the difference value in the nDCG
metric when documents ¢ and d are swapped in the ranking, and Y4, is an indicator
that shows which document is more relevant (to an aspect a) according to the relevance
judgements (which may be binary or graded). It is 1 if the document d is more relevant
than ¢, and 0 otherwise.

Finally note that, any target metric used in this context must be consistent (Dincer
et al) |2014), i.e. an improving swap (where a document with a higher label moves above
one with a lesser label) must result in a positive or 0 change in the metric. nDCG-TA
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is also usable as the training objective for LmDiv, as it reduces to nDCG per aspect
(captured in the inner summation of Eq. ) and nDCG is known to be consistent
(e.g., (Dinger et al., [2014)).

4. Experimental Setup

Dataset and runs. We employ query (topic) sets that have been developed for the
the Diversity Task of the Text REtrieval Conference (TREC) Web Track between 2009
and 2012. Each set includes 50 queries (except for 2010, which has 48) along with their
aspects and relevance judgments at the query and aspect levels. The candidate sets (i.e.,
the initial retrieval results per query, or shortly, run) are obtained over the ClueWeb09
Category B dataset, which consists of about 50 million English web pages (Clarke et al.|
2009)). For all diversification methods (those proposed and the baselines), we employ the
official query aspects to isolate the evaluation of the diversification method from that of
the aspect inference stage (as in several previous works, such as (Santos et al., |2010a;
Dang & Croft| |2012; |Ozdemiray & Altingovde, [2015))).

We present the performance of the proposed frameworks on two types of runs. BM25
runs are obtained by processing each query over the collection using our own retrieval
system implementing the traditional BM25 model. We opt for BM25 because it is still
the most widely used IR model in practical settings, and it does not require additional
features (as in the LTR algorithms), enabling others to replicate our experiments. The
parameters of BM25, namely k; and b, are set experimentally to 1.2 and 0.5, respectively.
The documents with a spam percentile-score of 60 or lower according to the Waterloo
Spam Rankings are eliminated from the results, following |Cormack et al.| (2011). We re-
trieve the top-100 documents for each query as the candidate set (i.e., N=100). Whenever
needed, we apply sum normalization over the BM25 scores.

To be able to evaluate the diversification performance when the initial retrieval stage
employs more sophisticated approaches beyond BM25, we also select the best runs sub-
mitted to previous TREC campaigns, which we refer to as TREC runs. While doing
so, we only consider runs submitted to the ad hoc track (i.e., without any diversifica-
tion method applied) over the ClueWeb09 Category B collection (following the practice
in (Kharazmi et al., |2016; |Akcay et al.,[2017))). The best performing run is the one that
yielded the highest a-nDCG@20 score for a given year. The ids of the selected runs for
each year are as follows: Ucdsiftinter (2009), uogTrB67 (2010), Srchvrsllb (2011) and
Qutparabline (2012). As in the previous case, we focus on the top-100 results from each
run for diversification.

Note that, for the TREC runs, we do not have access to the retrieval methods em-
ployed to generate each of these runs. Therefore, for s(d, ), i.e., the relevance score of
a candidate document d for the main query ¢, we employ the score provided in the cor-
responding run (after normalization). To compute s(d, a;), the relevance of a document
to an aspect a;, we use BM25, following the practice in (Kharazmi et al., |2016; |Akcay
et al., [2017).

LTR algorithms. For the LTRDiv and AspectRanker frameworks, we experiment
with two LTR algoritms, namely, SVMRankﬁ and Random Forests (RF). The former is

Shttp://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
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a well-known pairwise LTR algorithm that optimizes the pairwise-loss over the training
instances. We choose the second algorithm, RF, as a representative for the RankLib
software packag as it has been shown to be the best LTR method among various
competitors in a recent study (Deveaud et al., [2019). Our preliminary experiments also
revealed that it is the best performing RankLib method in our setting.

Setup for the supervised learning frameworks. For all supervised methods,
we apply 5-fold cross-validation to evaluate the performance. For LTRDiv, we train the
LTR algorithms using the top-100 candidate documents for the training queries. In As-
pectRanker, we calculate the aspect features (i.e., QPPs) using the top-20 documents of
the re-rankings, i.e., set n = 20 for D} (since (Ozdemiray & Altingovde, 2014) suggested
that considering only the top-ranked documents is adequate to determine the aspect
representation quality in the candidate set). The diversification stage in AspectRanker
employs xQuAD (Santos et al., [2010a)), which is applied again over a candidate set of
100 documents. Finally, the LmDiv framework is trained with the re-rankings of the
top-25 candidate documents per query aspect.

For the shallow version of the LmDiv framework, we train a fully connected two-
layer neural network with four neurons in the hidden layer and a linear combination
function as the output, as in (Sheldon et al.| 2011). The multi-layer version (referred to
as deep following|Lee et al. (2015)) employs four hidden layers, each with fifteen neurons.
Both neural networks are trained by stochastic gradient descent. In our preliminary
experiments, the number of epochs and learning rate are determined as 25 and 5-1073,
respectively, over the BM25 run for the TREC 2010 topic set, and the same values are
employed for all the other runs and topic sets. We supply the training queries in a random
order for each epoch. We batch the parameter updates by query for faster training as
in (Burges et al., 2006]). The neural networks optimize the nDCG and nDCG-IA metrics,
as discussed in Section [3.3]

Baselines. In addition to reporting performance for the non-diversified (NonDiv)
ranking, we apply two strong baselines. First, we use xQuAD with uniform aspect im-
portance valuesﬁ (as commonly employed in the literature (Santos et al., [2010a; Dang &
Croft, 2012} |Ozdemiray & Altingovde, 2015). Secondly, we employ an xQuAD variant
where the aspect importance values are based on the estimations of a single QPP. In
particular, we use the variant that employs the ScoreRatio predictor (see Section ,
as it is found to be the best-performing one in (Ozdemiray & Altingovde| 2014)). We
refer to the latter baseline as xQuADgg. For both of these baselines, the probabilities
P(d|q) and P(d|a) are based on the respective sum-normalized relevance scores s(d, q)
and s(d,a), of which computations are specified where the BM25 and TREC runs are
described; and the trade-off parameter \ is determined using a 5-fold cross-validation.

Evaluation. We report results in terms of the widely used diversification metrics
(see (Santos et al.| 2015) for an overview), namely, a-nDCG, ERR-IA, Precision-IA, ST-
recall, and MAP-IA, at the cut-off value of 20. Furthermore, we provide a more detailed
picture for the a-nDCG metric at different cut-off values (2, 10 and 20), since this metric
is capable of assessing both diversity and novelty in the results. Note that while certain

“https://sourceforge.net/p/lemur/wiki/RankLib/

8Note that, in our preliminary experiments, we also employed an alternative, popularity-based im-
portance values (computed using the estimated number of results for each aspect from a major search
engine) as in (Santos et al. [2010a), and verified that uniform values yield superior results.
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Table 2

Diversification performance of the LTRDiv framework for the BM25 runs (over TREC 2009-2012 topic
sets). The superscripts with (1) and (%) denote a statistically significant difference from NonDiv and
xQuAD at 0.05 level, respectively. For LTRDiv variants, % gains w.r.t. xQuADgg are shown in
parentheses.

BM25 Runs
Method ERR-IA@20 «a-nDCG@20 P-IA@20 ST-Recall@20 MAP-IAQ20
NonDiv 0.2626 0.3567 0.1558 0.5705 0.0351
xQuAD 0.3061 0.4089 0.1751 0.6199 0.0447
xQuADggr 0.3309 0.4294 0.1813 0.6211 0.0462

LTRDivgynm 0.31881(-3.7%) 0.41837(-2.6%) 0.1908"*(5.2%) 0.6146(-1.0%) 0.0491%*(6.3%)
LTRDivgrr 0.2984%(-9.8%) 0.40207(-6.4%) 0.18127(-0.1%) 0.6168(-0.7%) 0.0430%(-6.9%)

methods try to learn and exploit aspect importance during the diversification stage, the
evaluation stage assumes that all aspects are equally important, which is the common
practice in the literature. All metrics are computed using the ndeval softwareﬂ We use
the Student’s two-tailed paired t-test (at 95% confidence level) for analyzing statistical
significance.

5. Experimental Results

In this section, we first provide the evaluation results for all three frameworks using
the BM25 runs. Next, for the best performing framework, LmDiv, we provide further
results using the TREC runs.

5.1. Diversification Performance of Supervised Learning for the BM25 Runs

LTRDiv Framework. We begin with presenting the performance of our first framework,
LTRDiv, presented in Section Table [2| reports the performance of LTRDiv with two
typical LTR algorithms, i.e., SVMRank and RF, in terms of diversity-aware metrics. As
a first observation, we see that LTRDiv provides a notable improvement over the non-
diversified BM25 baseline for all metrics. For instance, while NonDiv yields an a-nDCG
score of 0.3567, LTRDiv with SVMRank yields 0.4183 and with RF it yields 0.4020.

For the majority of metrics, we observe that using SVMRank in LTRDiv is better than
using RF. LTRDiv with SVMRank also outperforms the xQuAD baseline for all metrics
except ST-recall, and performs better than the most-effective baseline, xQuADgg, for
the P-IA and MAP-TA metrics. In the latter case, the improvements w.r.t. P-IA and
MAP-TA metrics reach up to 5.2% and 6.3%, respectively, over xQuADggr. In short,
we conclude that LTRDiv is better than NonDiv and a strong diversification baseline,
xQuAD; but it can beat the strongest baseline, xQuADgg, for only two of the evaluation
metrics. These results indicate that taking the aspect importance values into account
is important for diversification (as the most effective approach in Table [2] xQuADgg,
employs the ScoreRatio predictor for this purpose), and justify our motivation for the
AspectRanker and LmDiv frameworks, both of which aim to predict such importance
values via supervised learning.

9nttp://trec.nist.gov/data/web10.html
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Table 3

Diversification performance of the AspectRanker framework for the BM25 runs (over TREC 2009-2012
topic sets). The superscripts with (f) and (*) denote a statistically significant difference from NonDiv
and xQuAD at 0.05 level, respectively. For the AspectRanker variants, % gains w.r.t. xQuADgR are
shown in parentheses.

BM25 Runs
Method ERR-IA@20 a-nDCGQ@20 P-IA@20 ST-Recall@20 MAP-IA@20
NonDiv 0.2626 0.3567 0.1558 0.5705 0.0351
xQuAD 0.3061 0.4089 0.1751 0.6199 0.0447
xQuADggr 0.3309 0.4294 0.1813 0.6211 0.0462

AspectRankersyy 0.33087:%(0.0%) 0.4328:*(0.8%) 0.18497*(2.0%) 0.6314%(1.7%) 0.0482%:*(4.3%)
AspectRankergrp  0.32977%(-0.4%) 0.43207:%(0.6%) 0.1852%:%(2.2%) 0.62907(1.3%) 0.04707(1.7)%

Table 4

Diversification performance of the LmDiv framework for the BM25 runs (over TREC 2009-2012 topic
sets). The superscripts with () and (%) denote a statistically significant difference from NonDiv and
xQuAD at 0.05 level, respectively. For the LmDiv-S (Shallow) and LmDiv-D (Deep) variants, % gains
w.r.t. xQuADggr are shown in parentheses.

BM25 Runs
Method ERR-TA@20 a-nDCGQ20 P-IAQ20 ST-Recall@20 MAP-IA@20
NonDiv 0.2626 0.3567 0.1558 0.5705 0.0351
xQuAD 0.3061 0.4089 0.1751 0.6199 0.0447
xQuADsr 0.3309 0.4294 0.1813 0.6211 0.0462

LmDiv-S  0.3344"*(1.1%) 0.4358"*(1.5%) 0.1845"*(1.8%) 0.62261(0.2%) 0.0462%(0.0%)
LmDiv-D  0.3454"(4.4%) 0.4410"*(2.7%) 0.17487(-3.6%) 0.62507(0.6%) 0.0442(-4.3%)

AspectRanker Framework. Table |3| presents the performance of our second framework,
AspectRanker, where our goal is to predict the aspect importance values to be used in a
traditional (unsupervised) diversification algorithm, namely, xQuAD. Again, we employ
the SMVRank and RF algorithms with AspectRanker. Our findings show that Aspec-
tRanker, with any of these LTR algorithms, outperforms (significantly) both the NonDiv
and xQuAD baselines for all metrics (yielding relative gains of up to 26% (0.2626 —
0.3308) and 8% (0.3061 — 0.3308), over NonDiv and xQuAD, respectively, for ERR-IA).
We also observe that employing SVMRank in AspectRanker yields a better performance
than employing RF, for most of the metrics. More crucially, AspectRanker (with SVM-
Rank or RF) can also beat the strongest baseline, xQuADgr. Specifically, AspectRanker
(with SVMRank) yields relative improvements of 0.8%, 2%, 1.7%, and 4.3% for a-nDCG,
P-TA, ST-Recall and MAP-TA metrics, respectively, in comparison to xQuADgr. These
findings indicate that the supervised learning of aspect importance values provides higher
performance improvements to the xQuAD method, in comparison to estimating these im-
portance values using a single estimator, as in xQuADgg.

LmDiv Framework. In our last framework, LmDiv, we evaluate the impact of exploiting
supervised learning for both determining the aspect importance values and generating
the final document scores for ranking, simultaneously. In Table 4l we report the diver-
sification performance of deep and shallow neural network architectures (described in
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the experimental setup), referred to as LmDiv-Shallow and LmDiv-Deep, respectively.
Note that we experimented with optimizing both of the nDCG & nDCG-IA metrics (as
discussed in Section for both cases; and found out that the results with the former
metric are slightly better. As a consequence, we only report the latter results for the
sake of saving space.

Table {4| shows that LmDiv-Shallow outperforms the baselines for all metrics but
MAP-TA (for which the same score is obtained as xQuADgg), albeit with relative im-
provements less than 2%. LmDiv-Deep is not as effective as the diversification baselines
for P-TA and MAP-IA, but yields the highest scores for the ERR-TA, a-nDCG and ST-
Recall metrics; providing relative improvements of 12.8%, 7.8%, 0.8% over xQuAD, and
4.4%, 2.7%, 0.6%, over xQuADgg, respectively. Note that the gains of the LmDiv-Deep
method over xQuAD (and also over NonDiv) are statistically significant. In comparison
to xQuADgg, the gains are not identified as significant using a paired t-test, yet they are
still numerically impressive, i.e., up to 4.4%.

We also note that the LmDiv-Deep approach is the overall winner for the ERR-IA and
a-nDCG metrics (cf. Tables] [Bland[4). These two metrics address both the diversity and
novelty of a ranking (as they have the diminishing return property, i.e., submodularity)
and hence, they are seen as a better fit for assessing diversification effectiveness (Chapelle
et al.| [2011). Therefore, in what follows, we choose to provide results for a-nDCG, as
a representative for the family of submodular metrics — which are used extensively in
earlier works as well as in the Diversity Task of the TREC campaigns — at additional
cut-off values for further insights.

Table |5| demonstrates the diversification performance of the LmDiv-Shallow and
LmDiv-Deep methods for the a-nDCG evaluation metric at cut-off values of 2, 10 and 20
(the last column is repeated from Table [4| to facilitate comparisons). We see that both
versions of LmDiv (i.e. Shallow or Deep) in Table [5| outperform xQuAD and xQuADggr
at all rank cut-off values. In particular, LmDiv-Deep achieves the best performance and
provides a relative improvement of 7.2%, 3.2%, and 2.7% for a-nDCG@2, 10, and 20,
respectively, over the strongest baseline, xQuADgg.

Next, we provide a gain/loss analysis to identify under what circumstances the LmDiv
approach is more useful, i.e., provides gains over the baselines xQuAD and xQuADgg.
To this end, since LmDiv aims to learn aspect importance values based on the evidence
in the candidate document set D, we partition the query set according to the coverage
of aspects there, as in (Dang & Croft} |2012). Specifically, we compute the ST-Recall
scores over the BM25 runs (for our 198 queries), and split them into two groups, i.e., the
queries for which the candidate set covered more than 50% of their aspects, and those
covering less than 50%.

In the top two rows of Table [6] for each of these ST-Recall ranges, we present the
percentage of queries that LmDiv (Shallow or Deep version) helps and hurts (shown as
“Impr. Q.”and “Hurt Q.”, respectively), in terms of the a-nDCG scores, with respect
to our first baseline, xQuAD. For each group of queries, we also present the overall
improvement of the a-nDCG score, again over xQuAD (i.e., to show the total effect of
the improved and hurt queries on the performance).

Our results show that, generally, a larger percentage of queries are improved than
being hurt by LmDiv. We further observe that the percentages of both improved and hurt
queries increase as the ST-Recall goes up. However, the increase for the improved queries
is much higher, i.e., using our best performing LmDiv-Deep approach, the percentage
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Table 5

Diversification performance (at different rank cut-off values) of the LmDiv framework for the BM25
runs (over TREC 2009-2012 topic sets). The superscripts with (1) and (%) denote a statistically
significant difference from NonDiv and xQuAD at 0.05 level, respectively. For the LmDiv variants, %
gains w.r.t. xQuADgg are shown in parentheses.

BM25 Runs
Method a-nDCG@2 a-nDCGQ10 a-nDCG@20
NonDiv 0.2563 0.3214 0.3566
xQuAD 0.3117 0.3776 0.4089
xQuADsggr 0.3444 0.3997 0.4294

LmDiv-S  0.34847*(1.2%) 0.40671*(1.7%) 0.4358"*(1.5%)
LmDiv-D 0.3693*(7.2%) 0.4125*(3.2%) 0.4410"*(2.7%)

Table 6

The percentage of queries improved and hurt (in terms of a-nDCG) by the LmDiv variants over the
baselines, xQuAD and xQuADgpg, when queries are grouped by ST-Recall of the initially retrieved
documents (BM25 runs over TREC 2009-2012 topics). The Score Impr. column presents the relative
a-nDCG score improvement wrt. the corresponding baseline.

ST-Recall ranges | [0-0.5) | [0.5, 1]
No of queries | 65 | 133

‘Impr. Q Hurt Q Score Impr. ‘ Impr. Q Hurt Q Score Impr.

LmDiv-S vs. xQuAD 32.31% 27.69% 5.14% 62.41% 34.59% 6.81%
LmDiv-D vs. xQuAD 30.77% 30.77% 2.85% 63.16% 34.59% 8.64%

LmDiv-S vs. xQuADgg | 32.31% 27.69% 2.85% 52.63% 45.86% 1.27%
LmDiv-D vs. xQuADgg | 26.15% 33.85% 0.61% 54.89% 42.86% 3.01%

of improved queries against xQuAD goes from 30.77% to 63.16% (more than doubled),
while the percentage of hurt queries shows a small increase (from 30.77% to 34.59%).
We also observe that for the queries with higher ST-recall, the score gains are higher
(e.g., again for LmDiv-Deep, the relative score improvements against xQuAD is 2.85%
for low-recall queries and 8.64% for high-recall queries). These findings indicate that the
LmDiv approach is more useful when the candidate result set covers a reasonable number
of query aspects.

In Table[6] the bottom two rows present a similar analysis against xQuADgg. Since
the latter is a stronger baseline, the percentage of improved queries is lower for both query
groups (in comparison to the xQuAD case), but the trend is similar, i.e., for LmDiv-Deep,
the percentage of improved queries is again more than doubled (from 26.15% to 54.89%)
comparing the low- and high-recall ranges.

Another question we seek to answer in this section is the impact of QPPs in the
trained models, since several QPPs are employed as features to represent the aspects for
the gating network component of the LmDiv framework (Fig. . In Table (7] we present
the QPP features’ weights in the best-performing LmDiv model trained for our BM25
run (over TREC 2009-2012 topics). As we have applied a 5-fold CV during training,
for each year’s query set, a feature’s weight is the average weight over those obtained
from the LmDiv models built for five different training folds. We also provide the overall
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Table 7
The weights of QPP features in the LmDiv framework for the BM25 runs (over TREC 2009-2012 topic

sets).

QPP Feature 2009 2010 2011 2012 Average

maxSCQ -0.046 0.040 -0.062 0.003 -0.016
sigma 0.037 0.315 -0.083 0.173  0.111
WIG 0.362 0.414 0.145 -0.213 0.177
NQC -0.116 -0.064 -0.003 0.062 -0.030
ScoreAvg -0.031 -0.062 -0.014 0.200 0.023

ScoreDev 0.290 -0.046 0.033 0.315 0.148
ScoreRatio -0.045 0.104 -0.056 0.083 0.021
VScoreAvg 0.373 0.274 0.100 0.307 0.263
VScoreFirst  0.440 0.401 0.213 0.260 0.328

average weight of a feature (over these 4 query sets) in the last column of the table.

Table [7] reveals that all features are likely to contribute positively in most of the
cases. Specifically, the last two post-retrieval features, VScoreAvg and VScoreFirst, are
consistently weighted higher, implying that they are more useful for the LmDiv models.
Having said that, we also observe that the other features are found to be useful, and
even the features that have negative weights on the average (maxSCQ and NQC) have
positive weights for certain query sets. For this reason (and due to the fact that our
models indeed have a moderate number of features, in comparison to the LTR models,
which include hundreds of features), we prefer to keep all of them in our models. Note
that this choice does not incur a significant efficiency overhead for diversification during
the run-time, as we discuss next.

While our results up to this point demonstrate the superiority of the LmDiv frame-
work in terms of diversification effectiveness, as we aim to propose approaches that are
applicable in practical scenarios, we also provide a comparison of the algorithmic com-
plexity of LmDiv and the baseline xQuAD approach.

To begin with, as discussed in Sec. xQuAD constructs the final top-k ranking
iteratively, by selecting the document that maximizes Eq. , which is computed for each
document in the candidate set D in each iteration. Hence, the complexity of xQuAD is
O(Nk), where N = |D|.

For the LmDiv framework, during diversification, the first step is preparing the feature
vectors over the candidate set, which requires computing the QPP features. At this
point, we would like to emphasize that xQuAD (like many other unsupervised methods,
such as TA-Select, PM2, etc.) computes each candidate document’s relevance score for
each aspect (i.e., s(d;,a;)), hence the overhead of computing the post-retrieval QPPs
(in comparison to xQuAD) is very low, and essentially amounts to obtaining the top-n
ranking D7, of these documents for each aspect (note that, as n = k in our setup, we use
k for simplicity in this analysis). Since k is smaller than N (by an order of magnitude, in
some cases), we can obtain the rankings Dfi efficiently, by extracting the top-k documents
of an aspect in O(klog N) time using a size-N max-heap. Thus, the complexity of
generating aspect rankings (to compute QPP features) for |A| aspects is O(|A|klog N).
During the final score computation, LmDiv takes the feature vectors generated for each
document and aspect pair as the input, implying O(N|A|) time complexity. Thus, the
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Table 8

Diversification performance of the LmDiv framework for the TREC Runs (averaged over the four
best-performing runs corresponding to TREC submissions between 2009-2012). The superscripts with
(1), (), (1) denote a statistically significant difference from NonDiv, xQuAD, xQuADgg at 0.05 level,
respectively.

TREC Runs
Method ERR-IA@20 a-nDCGQ@20 P-IA@20 ST-Recall@20 MAP-IA@20
NonDiv 0.3380 0.4452 0.1868 0.6564 0.0416
xQuAD 0.3709 0.4829 0.2091 0.6886 0.0511
xQuADsgr 0.3851 0.4936 0.2137 0.6879 0.0528

LmDiv-S 0.39507"(2.6%) 0.5018"*(1.7%) 0.21267(-0.5%) 0.68507(-0.4%) 0.05227(-1.1%)
LmDiv-D 0.3913"*(1.6%) 0.5041"*(2.1%) 0.20407(-4.5%) 0.7086"#(3.0%) 0.0517" (-2.1%)

overall complexity of LmDiv is O(N|A|)+O(|A|klog N); which is comparable to and
even better than that of xQuAD, for practical values of N (between 50 and 1000), |A|
(at most 10) and k (at most 20), as also employed in the literature. In our experiments,
we also observed that the run-time processing efficiency of LmDiv is better than that of
xQuAD.

To summarize, our findings in this section indicate that learning a model for obtaining
aspect importance values and scoring documents, simultaneously, is the most effective
approach (especially, in terms of the ERR-TA and a-nDCG metrics addressing both diver-
sity and novelty) for applying supervised learning in explicit search result diversification.
Furthermore, as reported in other scenarios (Lee et al., |2015), a deeper neural network
(i.e., with a larger number of hidden layers) is likely to yield a better performance than a
shallow one. Overall, we conclude that our best-performing framework, LmDiv, is both
effective and efficient for diversification.

5.2. Diversification Performance of the LmDiv Framework for the TREC Runs

To demonstrate the robustness of the best-performing framework, namely, LmDiv,
we conduct additional experiments. To this end, we use the submitted runs that exhibit
the highest a-nDCG@20 score in the ad hoc retrieval track of TREC between 2009 and
2012. Note that since these runs are not diversified, they can safely serve as the candi-
date sets (generated with various ranking methods beyond BM25), following the practice
in (Akcay et al., [2017; Kharazmi et al., |2016).

In Table (8], we present the effectiveness of the LmDiv framework against the baselines
by averaging the metric scores over the four different TREC runs (listed in Sec. . We
observe that both LmDiv versions outperform all the baselines for the ERR-IA and a-
nDCG metrics, while their performance is inferior to the strongest baseline, xQuADgg,
for P-TA and MAP-TA (but again, better than NonDiv and/or xQuAD). In this case,
there is no clear winner between the two LmDiv versions, yet LmDiv-Deep yields the
highest relative improvements for the a-nDCG and ST-Recall metrics.

Next, as in the previous section, we focus on the a-nDCG metric at different rank
cut-offs, and present results for each of the selected TREC runs in Tables

Table [9] presents the diversification performance of LmDiv for the best-performing
TREC 2009 run (Ucdsiftinter). In this case, LmDiv-Deep yields the highest scores for
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Table 9

Diversification performance of the LmDiv framework for the best-performing TREC 2009 run,
Ucdsiftinter. The superscripts with (f) denote a statistically significant difference from NonDiv at 0.05
level. For the LmDiv variants, % gains w.r.t. xQuADgR are in parentheses.

TREC 2009 Run (Ucdsiftinter)
Method a-nDCG@2 a-nDCGQ10 a-nDCG@20

NonDiv 0.2061 0.2534 0.2802
xQuAD 0.2519 0.2810 0.3010
xQuADggr 0.2833 0.2888 0.3116

LmDiv-S  0.29967(5.7%) 0.29837(3.3%) 0.3209(3.0%)
LmDiv-D  0.28167(-0.6%) 0.30867(6.9%) 0.3265'(4.8%)

Table 10

Diversification performance of the LmDiv framework for the best-performing TREC 2010 run,
wogTrB67. The superscripts with () denote a statistically significant difference from NonDiv at 0.05
level. For the LmDiv variants, % gains w.r.t. xQuADgR are in parentheses.

TREC 2010 Run (uogTrB67)
Method a-nDCG@2 a-nDCGQ10 a-nDCG@20

NonDiv 0.3378 0.3717 0.4178
xQuAD 0.3400 0.4146 0.4584
xQuADggr 0.3682 0.4325 0.4734

LmDiv-S  0.3979(8.1%) 0.4434%(2.5%) 0.48227(1.9%)
LmDiv-D  0.3714(0.9%) 0.43597(0.8%) 0.4754%(0.4%)

the top-10 and top-20 results, and again provides gains that reach up to 37% (0.2061
— 0.2816), 12% (0.2519 — 0.2816), 6.9% (0.2888 — 0.3086) over NonDiv, xQuAD and
xQuADgR, respectively.

In Table we report the results for wogTrB67 from TREC 2010. The findings
in this case are slightly different in that LmDiv-Shallow outperforms its Deep version.
In particular, LmDiv-Shallow provides a relative improvement of 8.1%, 2.5% and 1.9%
over xQuADgg, for cut-off values 2, 10 and 20, respectively. Nevertheless, both LmDiv
approaches still outperform all the baselines for almost all cut-off values.

In Tables|11|and we present our findings for the TREC 2011 and 2012 runs (with
ids Srchurs11b and Qutparabline, respectively). LmDiv-Deep is again the best-performing
approach for diversification of both of these runs. According to Table LmDiv-Deep
provides relative gains of 11.6%, 4.3%, 4.1% over xQuADgsg, for cut-off values 2, 10
and 20, respectively. Table also reveals improvements, reaching up to 1.42% over
XQHADSR.

Our findings in this section are important. In earlier works (Akcay et al., [2017;
Kharazmi et al., |2016|), it has been shown that providing an impressive diversification
performance is more challenging when the initial retrieval results (i.e., NonDiv) are pro-
duced via sophisticated methods. Contrary to this, here we demonstrate that the Lm-
Div framework considerably improves the diversification performance (especially for the
ERR-TA and a-nDCG metrics) over stron§ éaaselines (improvements being statistically



Table 11

Diversification performance of the LmDiv framework for the best-performing TREC 2011 run,
Srchurs11b. The superscripts with (1) and (%) denote a statistically significant difference from NonDiv
and xQuAD at 0.05 level, respectively. For the LmDiv variants, % gains w.r.t. xQuADgR are presented
in parentheses.

TREC 2011 Run (Srchvrsllb)
Method a-nDCGQ2 a-nDCGQ10 a-nDCGQ20

NonDiv 0.4356 0.5312 0.5546
xQuAD 0.4630 0.5510 0.5747
xQuADggr 0.4657 0.5606 0.5872

LmDiv-S  0.5101%(9.5%) 0.5715(1.9%)  0.6033*(2.7%)
LmDiv-D 0.5198(11.6%) 0.58487(4.3%) 0.6111"*(4.1%)

Table 12

Diversification performance of the LmDiv framework for the best-performing TREC 2012 run,
Qutparabline. The superscripts with (1) denote a statistically significant difference from NonDiv at
0.05 level. For the LmDiv variants, % gains w.r.t. xQuADgg are in parentheses.

TREC 2012 Run (Qutparabline)
Method a-nDCGAQ2  o-nDCG@10 a-nDCG@Q20

NonDiv 0.4013 0.4943 0.5269
xQuAD 0.5011 0.5710 0.5963
xQuADggr 0.4971 0.5680 0.6014

LmDiv-S  0.50217(1.0%) 0.5744%(1.1%) 0.60017(-0.2%)
LmDiv-D 0.5024'(1.1%) 0.5761%(1.4%) 0.60227(0.1%)

significant for NonDiv and/or xQuAD) and using the best-performing ad hoc runs from
different years and research groups. Therefore, the findings in this section justify our
goal of employing supervised learning in explicit diversification, and further reveal that
a particular framework, LmDiv, is the most effective and robust approach to achieve this
goal.

6. Related Work

In this paper, we leverage supervised learning to improve the performance of explicit
search result diversification. In what follows, we position our work with respect to the
literature on explicit diversification (and refer readers to the literature (e.g., (Santos et al.|
2015))) for a detailed review of the implicit diversification methods (e.g., (Carpineto et al.,
2012; [Yu et al., 2018; Meng et al., |2018])) and in particular, supervised learning for the
latter (e.g., (Yue & Joachims, 2008; Liang et al.,|2014; [Zhu et al.| 2014} [Xu et al., [2017)).
The discovery of explicit aspects (as in (Kim & Lee, 2015))) is also a related research
direction that is not discussed here, as our methods are evaluated using the ideal aspects
to isolate the effects of the discovery process.

The earliest work that devised a technique to exploit known query aspects is IA-Select,
proposed by (Agrawal et al.,|2009)), which is similar to its successor xQuAD (Santos et al.|
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2010a)) but it lacked the relevance component in Eq. . The xQuAD method (described
in Section was reported to be the best method across several TREC campaigns,
which motivated various optimizations over the original formulation (e.g., (Ozdemiray
& Altingovde, |2015])). A more recent approach, PM-2, employs a strategy based on the
allocation of seats to political parties in elections (Dang & Croft, 2012)). |Ozdemiray &
Altingovde (2015) employed the aggregation of rankings (obtained for each query aspect)
using unsupervised techniques, such as the well-known CombSum. All of these techniques
are unsupervised, as they do not involve any training stage to learn a scoring function
for diversification. Instead, the frameworks proposed in our work either directly learn a
model (as in LTRDiv and LmDiv) to produce a diversified ranking, or learn a model to
predict the aspect importance, which are used in all these prior approaches.

The LambdaMerge method adopted here is introduced by [Sheldon et al. (2011) to
improve the relevance of query results, and it merges rankings that are obtained over the
entire collection for a query and its reformulations. In a follow-up study (Lee et al.|{2015)),
LambdaMerge is also exploited for the fusion of results obtained over different collections
or via different retrieval methods. However, to the best of our knowledge, LambdaMerge
has not been applied for merging the re-rankings of the candidate documents for different
query aspects, as we propose in this paper, for the purpose of diversification. Note that
the LmDiv framework is close to a particular prior work, (Ozdemiray & Altingovde|
2015, since both are based on the idea of ranking aggregation; but the latter work
employs unsupervised merging methods, whereas the LmDiv framework aims to learn a
function to merge rankings.

All the aforementioned methods in the literature (namely, TA-Select, xQuAD, PM-2,
CombSum based, etc.), require the aspect importance during diversification; however,
most of the earlier works assume either a uniform probability distribution (Santos et al.|
2010a; (Ozdemiray & Altingovde, 2015)) or set the aspects’ importance using their pop-
ularity (say, in a collection (Santos et al., |2010a))). In a recent study, (Ozdemiray &
Altingovde, 2014) proposed setting the aspects’ importance values based on the score of
a single QPP. Our AspectRanker framework extends the latter one in several ways: we
use several QPPs at the same time as features, and learn a model to produce a ranking
of the aspects, which is then mapped to the actual importance values.

Some earlier works showed that the normalization of relevance scores is important for
the effectiveness of the unsupervised explicit diversification methods, and proposed alter-
natives, such as the so-called Virtual (Ozdemiray & Altingovde, 2015) and R60 (Zhang
et al., 2018) normalization techniques. While we essentially employ the typical sum-
based normalization here, our supervised methods may also benefit from incorporating
such alternatives, which is a direction not further explored in this paper.

We are aware of only two works that have attempted to use supervised methods for
explicit diversification. In the first one,|Zheng et al.|(2017)) proposed a supervised method,
L-HSRD, for hierarchical search result diversification. In this method, features are based
on the relevance between aspects in each level of hierarchy and the candidate documents,
and the model is trained using a sequential selection model (i.e., considering the previous
documents in the ranking), as in (Zhu et al.|[2014). Instead, the ranking functions learnt
in the LTRDiv and LmDiv frameworks do not apply such a sequential selection process;
i.e., they consider each document on its own during training and testing.

In the second work, |Jiang et al.| (2018]) proposed a framework deploying a recur-
rent neural network with an attention mechanism. In particular, while scoring a new
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document, the attention mechanism emphasizes the aspects that are not covered by the
previously selected documents (i.e., following the sequential selection model discussed for
L-HSRD). This is again different from the supervised learning employed in our proposed
frameworks. In particular, both AspectRanker and LmDiv model the importance of an
aspect based on its retrieval quality (over the candidate set) captured via QPPs, while
the latter work weighs aspect(s) to “attend” at each iteration based on the previously
selected documents.

7. Conclusions

In this paper, we sought an answer to the following key question: How can we exploit
supervised learning methods to improve the effectiveness of explicit search result diversi-
fication? We identified three directions to achieve this goal, leading to three frameworks
leveraging supervised learning with different features and goals. In the LTRDiv frame-
work, we formulated the diversification problem as that of learning a ranking model,
which is based on the aggregated relevance of each document to all aspects of a given
query, and used well-known LTR algorithms, such as SVMRank and Random Forests. In
our second framework, AspectRanker, we addressed a critical sub-task for result diver-
sification and trained models (using various query performance predictors as features)
to predict the importance of each query aspect. Then, these predicted values are ex-
ploited by a traditional (unsupervised) explicit diversification method. Finally, in the
LmDiv framework, we adapted the LambdaMerge approach (Sheldon et al., 2011) for
the supervised merging of rankings per query aspect.

Our exhaustive experiments over the standard TREC diversification topic sets (be-
tween 2009-2012) and using initial retrieval results generated by our group and other
TREC participants justified the necessity and success of using supervised learning in
this context. We found that all three frameworks can outperform a well-known diversi-
fication method, xQuAD, used as the baseline. Furthermore, determining the aspects’
importance turned out to be a key factor, since only the AspectRanker and LmDiv frame-
works that do so could outperform the strongest diversification baseline, i.e., a variant
of xQuAD that also sets the aspect importance in an ad hoc manner. Overall, we found
that learning a model for obtaining the aspect importance values and scoring documents,
simultaneously, as in the LmDiv framework, is the most effective approach (especially,
in terms of the metrics addressing both diversity and novelty) for applying supervised
learning for the diversification problem.

The success of the proposed frameworks in this paper revealed that explicit diver-
sification performance can be considerably further improved using supervised learning
approaches that do not require very large training sets and/or excessive computing re-
sources (contrary to the popular deep learning paradigm of our day), and hence, they
are applicable in real life scenarios that require diversity (and even fairness, as in (Gao &
Shah! 2020} [McDonald et al., 2019)) among the results of a search system. In our future
work, we plan to investigate ways of employing alternative diversification metrics as the
objective function in the LmDiv framework. We also aim to adapt and evaluate our
proposed frameworks in related yet different scenarios, such as in recommender systems.
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