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Abstract— The quality of obtained features by representation 

learning determines the performance of a learning algorithm and 
subsequent application tasks (e.g., high-dimensional data cluster-
ing). As an effective paradigm for learning representations, Con-
cept Factorization (CF) has attracted a great deal of interests in 
the areas of machine learning and data mining for over a decade. 
Moreover, lots of effective CF-based methods have been proposed 
based on different perspectives and properties, but it still remains 
not easy to grasp the essential connections and figure out the un-
derlying explanatory factors from current studies. In this paper, 
we therefore survey the recent advances on CF methodologies and 
the potential benchmarks by categorizing and summarizing cur-
rent methods. Specifically, we first review the root CF method, and 
then explore the advancement of CF-based representation learn-
ing ranging from shallow to deep/multilayer cases. We also intro-
duce the potential application areas of CF-based methods. Finally, 
we point out some future directions for studying the CF-based rep-
resentation learning. Overall, this survey provides an insightful 
overview of both theoretical basis and current developments in the 
field of CF, which can also help the interested researchers to un-
derstand the current trends of CF and find the most appropriate 
CF techniques to deal with particular applications.  

Keywords— Survey, concept factorization; representation learning; 
traditional single-layer CF; deep/multilayer CF 

I.  INTRODUCTION 

A. Background 

Learning compact features of high-dimensional data (e.g., image, 
document or video) via representation learning (RL) is a long-
standing and challenging topic in the communities of data min-
ing, pattern recognition, computer vision and neural networks 
[45]. To be more specific, RL algorithms play an important role 
in evaluating the performance of a learning algorithm for distin-
guishing and recognizing different objects [191-192][175], since 
RL methods can effectively simplify complex input data, elimi-
nate invalid information and extract useful information (or fea-
tures) from the observed inputs [45-55][177]. The extracted fea-
tures by RL can then be applied in various application scenarios, 
such as action/face/scene recognition, image/video segmenta-
tion, video surveillance, human-computer interaction and so on, 
as shown in Fig.1. Classical RL methods include subspace learn-
ing for feature extraction (FE) [67-90], sparse dictionary learn-
ing (SDL) [56-66][181], robust low-rank coding (LRC) [91-
104], matrix factorization (MF) [1-6][105-113][158] and deep 
RL (DRL) [35-41] [114-119], etc. Specifically, MF aims to fac-
torize input data into the product of several matrices, of which 
Principal Component Analysis (PCA) [1], Singular Value Deco 
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Fig.1: Application examples of representation learning (RL), where 
the pictures are from the Internet.  

-mposition (SVD) [2], Independent Component Analysis (ICA) 
[3], Vector Quantization (VQ) [4], Nonnegative Matrix Factori-
zation (NMF) [5] and Concept Factorization (CF) [6] are repre-
sentative models. Compared with NMF and CF, existing PCA, 
SVD, ICA and VQ methods not only allow the existence of neg-
ative factors or subtractive combinations in representations, but 
also can only obtain compact features in a linear way. However, 
in reality negative values in the factorization matrices are mostly 
unexplained, such as the pixel value in image data and the word 
frequency in text data are all non-negative. To solve these issues, 
novel MF paradigms, i.e., NMF and CF, were proposed one after 
another. Given a data matrix, NMF decomposes it into a product 
of two nonnegative factors, which can obtain parts-based repre-
sentations due to the nonnegative constraints. By this way, the 
interpretability of the factorization process can be enhanced, and 
moreover NMF can perform nonlinear dimensionality reduction 
for high-dimensional data. Although NMF has obtained great 
success for image processing and document clustering, it cannot 
directly be performed in the reproducing kernel Hilbert space 
(RKHS). As a variant of NMF, CF encodes each concept as a 
linear combination of data points and then represents each data 
point by a linear combination of the concepts, so it can be oper-
ated in any data representation space, including kernel space.  

Starting from 2004, CF has been receiving much attention and 
achieving fast development in the fields of RL and high-dimen-
sional data clustering in recent decade. In spite of raising many 
CF-based algorithms, however, to the best of our knowledge, 
there is still not a comprehensive survey to grasp the essential 
connections, figure out the underlying explanatory factors and 
categorize current developments on CF. Note that there already 
existed some survey/review papers on RL, such as the review on 
LRC [50], survey on SDL [51], review on sparse representation 



(SR) [52], reviews on NMF and its extensions [53-54][184-185], 
and some other ones on RL from different perspectives [45-49] 
[55]. In addition, there also existed some surveys on MF models, 
which are more related to this work. For example, NMF-based 
methods were reviewed in [53], which mainly discussed the the-
oretical relationship between NMF and clustering. It also makes 
a gentle introduction to how the clustering problem can be inter-
preted in a matrix factorization setting; another comprehensive 
review of NMF and its variants were proposed in [54], which 
mainly focused on the theoretical research into NMF. The prin-
ciples, basic models, properties and algorithms of NMF models 
are also summarized systematically; the review in [184] mainly 
summarized the applications of NMF and its extensions in the 
recommendation systems, while [185] introduced the fundamen-
tals and properties of NMF and divided the current NMF-based 
methods into basic ones and improved ones. Some open prob-
lems in the development of NMF has also been analyzed in [185]. 
It is clear that although these review or survey papers on MF also 
discussed the nonnegative factorization problem, their main fo-
cus and major goals are clearly different from this work that fo-
cuses on reviewing current CF-based models in a comprehensive 
way. Specifically, this present work mainly provides the detailed 
theoretic analysis on comparing different CF-based algorithms, 
concludes the advantages/disadvantages of existing CF-based 
methods, analyzes the relationship of the algorithms within each 
sub-category, analyzes which kinds of CF algorithms are useful 
for specific tasks or data distributions, evaluates the performance 
of different CF methods, discusses the possible application sce-
narios of CF algorithms, and points out some future directions, 
which will be meaningful, helpful and indispensable for the re-
searchers and newcomers in the field.  

B. Contribution of this Survey 

In this work, we aim at presenting a comprehensive survey about 
current CF-based methods. Specifically, the major contributions 
of this survey paper are summarized as follows:  

1) Almost all the existing CF methods have been reviewed, cat-
egorized and summarized in this paper to help newcomers to 
obtain a holistic understanding in related fields. Specifically, 
we mainly introduce the motivation, main idea, problem for-
mulation, and advantage/disadvantage for each method;  

2) The detailed analysis about the relationships and differences 
of various types of CF algorithms are provided. In this work, 
we first divide current CF-based algorithms roughly into shal-
low and deep ones in general, and then further divide shallow 
methods into unsupervised, semi-supervised and fully-super-
vised ones. Finer divisions are also given according to differ-
ent characteristics and properties. To help the researchers, 
readers and newcomers thoroughly and easily understand, we 
clearly summarize the relationships of the methods in each 
category and the difference of methods in different categories;  

3) The trend of development of CF-based methods has been an-
alyzed. Specifically, we have shown the milestones of the CF-
based methods and moreover also summarized the major de-
velopment trends of the CF-based variants with the practical 
needs of emerging applications;  

4) Extensive experimental results over real-world databases are 
reported in this survey to compare certain representative shal-
low and deep CF models. The detailed analysis about the ex-
perimental results is also provided;  

5) We list the potential practical applications of CF-based meth-
ods, such as dimensionality reduction, high-dimensional data 
clustering, image processing, text/document processing, rec-
ommendation system, and so on. Based on the properties and 
distributions of different real data, we can potentially decide 
which kinds of CF algorithms will useful for specific tasks, 
e.g., we can choose the sparsity-constrained CF methods for 
processing document data due to the sparse properties of doc-
ument data and select the locality-preserving CF methods for 
processing the data with manifold structure and distributions, 
which may guide the related researchers to apply specific CF 
models for different practical applications;  

6) Although the field of CF-based representation learning has 
achieved rapid development, some remaining issues are still 
not solved. As such, we also point out certain future directions 
for relevant researchers, such as the problems on optimization, 
initialization, determination of rank of factorization, evalua-
tion criteria, how to incorporate task-driven characteristic into 
CF, and how to design effective deep CF structures, etc.   

C. Content Organziation of this Survey 

In this survey, we first divide current CF-based algorithms into 
two major categories, i.e., CF-based single-layer and CF-based 
deep/multilayer methods. The single-layer methods are further 
divided into unsupervised, fully-supervised and semi-supervised 
ones depending on how much supervised prior knowledge can 
be used. To grasp the intrinsic relations and property, we further 
divide the unsupervised ones into five sub-categories:  

1) Locality-preserving CF. For effective RL, retaining the lo-
cality manifold information of data in feature space is important, 
so locality-preserving CF is a major and the most popular strat-
egy to improve CF, which has received much attention in recent 
years. Note that since different locality-preserving strategies can 
be used, we further divide this category into four parts based on 
the locality-preserving strategies, i.e., graph-regularized CF, lo-
cal coordinate coding driven CF, self-representation based CF 
and other strategies, which are respectively described as follows:  
 Graph-regularized CF methods incorporate the graph Lapla-

cian regularization into the framework of CF. Therein, Lo-
cally Consistent CF (LCCF) [7] was the first method to use 
the graph Laplacian to smooth the representation and extract 
concepts with respect to the intrinsic manifold structures. In-
spired by the idea of LCCF, some other representative vari-
ants have also been recently proposed, such as Dual-graph 
Regularized CF (GCF) [8], Adaptive Dual-Graph Regular-
ized CF (ADGCF) [13], Graph-Regularized Local Coordi-
nate CF (GRLCF) [9], Graph-regularized CF with Local Co-
ordinate (LGCF1) [10] and Multiple Graph Regularized CF 
with Adaptive Weights (MCFAW) [11]. Although the local-
ity can be clearly retained by these graph-based CF methods, 
they still have one glaring flaw, i.e., it is tough to choose an 
optimal number of nearest neighbors to define the neighbor-
hood graph. To overcome this issue, researchers proposed 



optimized adaptive-graph based CF methods recently, e.g., 
CF with Adaptive Neighbors (CFANs) [12], CF with Opti-
mal Graph Learning (CF-OGL) [126], Graph-Regularized 
Local coordinate CF with CLR (GRLCFCLR) [9] and Robust 
Flexible Auto-weighted Local-Coordinate CF (RFA-LCF) 
[14-15], etc. These optimized weighting strategies avoid the 
tricky issue of choosing the optimal number of neighbors in 
constructing the neighborhood graph effectively.  

 Local coordinate coding based CF methods incorporate the 
idea of local coordinate coding (LCC) into CF to preserve 
local information in data. The first method of this category 
is Local Coordinate CF (LCF) [16-17] that incorporates the 
local coordinate coding as a locality constraint, so that it can 
exploit the sparsity and locality of samples at the same time. 
Subsequently, researchers have also incorporated the idea of 
LCC into the graph-based CF methods, for instance Graph-
based Local concept coordinate factorization (GLCF) [18], 
GRLCF [9], LGCF1 [10] and RFA-LCF [14-15].  

 Self-representation based CF methods are mainly motivated 
by the success of exploiting the self-representation of data, 
in which input data are regarded as a dictionary, which pro-
vided new idea for deriving self-expressive CF. Specifically, 
CF is regarded as a nonnegative self-expression model with 
a learning-based dictionary to reveal the global structure of 
input data. Classical methods of this kind include Self-Rep-
resentative Manifold CF (SRMCF) [20] and Joint Structured 
Graph Learning and clustering based CF (JSGCF) [21].  

 Some other locality-preserving ways for local CF can also be 
used, which are different from above-mentioned ones. For 
example, Local regularization CF (LRCF) [30] retains local 
information by introducing the local learning regularization; 
Similarity-based CF (SCF) [127] and its robust version, Ro-
bust SCF (RSCF) [127], mainly rely on a similarity matrix; 
Sparse Dual Regularized CF (SDRCF) [120] obtains the lo-
cality-preserving representations with the help of SR [160-
161]. Local Sensitive Dual Concept Learning (LSDCL) 
[183] adopts the local sensitive loss function to characterize 
the local structures of data. Another related method is called 
CF with Local Centroids (CFLCs) [186] that retains the lo-
cal data manifold with the aid of multiple local centroids.  

2) Kernel CF. To improve the clustering performance, Li et al. 
[19] first come up with a new method called Manifold Kernel 
CF (MKCF) [19] that incorporates the manifold kernel learn-
ing into CF. By the means of manifold kernel learning, the 
intrinsic structure of samples can be discovered in the warped 
RKHS. Note that GLCF [18] also applies the manifold kernel 
learning, which is also a classical method in this kind. Com-
pared with MKCF and GLCF that are all single-kernel meth-
ods, both Globalized Multiple Kernel CF (GMKCF) [136] 
and Discriminative Multiple Kernels [182] have designed the 
multiple-kernel models to solve this tough issue, i.e., how to 
choose an optimal kernel function in real applications.  

3) Robust CF. Traditional CF mainly aims at learning compact 
representation of original raw data, but real data usually have 
various noise and outliers, so their performance may be de-
graded by the negative effects of them. To deal with this issue, 

researchers have paid extensive efforts to the robust CF. For 
example, ADGCF [13] performs CF on the obtained features 
by feature selection, rather than original data. Robust and Dis-
criminative CF (RDCF) [121] considers the noise as a sparse 
component of matrix factorization and makes it apart from 
raw data. In addition, RFA-LCF [14], Robust Local Learning 
and Discriminative CF (RLLDCF) [125], RSCF [127] and 
Correntropy-based Graph-regularized CF (GCCF) [124], are 
proposed to replace the noise-sensitive Frobenius norm using 
robust norms to encode the reconstruction error.  

4) Unsupervised Discriminative CF. For the unsupervised CF, 
how to obtain the discriminant new representation is also a 
hot topic, as there is no supervised label information available. 
To learn discriminant representations in unsupervised sce-
nario, RDCF [121], RLLDCF [125] and Structured Discrim-
inative CF (SDCF2) [128] are proposed, which are able to dis-
cover the intrinsic discriminant structure of data space with-
out the supervised label information.  

5) Multi-view CF. Multi-view learning is a hot topic in machine 
learning [144-146][162-163], because multi-view data can be 
observed in various real-world applications. However, most 
existing CF methods are based on single-view, which cannot 
handle complex multi-view data. As such, researchers also 
explored several multi-view CF methods, and representative 
methods include the Multi-view Clustering via CF (MVCC) 
[122], and Adaptive Structure CF for Multiview Clustering 
(MVCF) [123], which successfully extend traditional single-
view based CF methods to multi-view scenarios.  

Based on the above categories, the involved methods will po-
tentially have abilities to learn features with different character-
istics, which will be able to satisfy the specific requirements of 
various practical applications. Generally speaking, these unsu-
pervised methods can be used to deal with specific tasks where 
label information of samples is unavailable, e.g., unsupervised 
single-view/multi-view clustering, robust feature learning, man-
ifold feature extraction, and so on. To be specific, we can choose 
appropriate CF-based methods for specific tasks according to the 
properties and distributions of data in reality. For example, lo-
cality-preserving CF methods are suitable for handling samples 
with manifold distribution, kernelized CF methods will be suit-
able to deal with the linearly-inseparable problems by nonlinear 
mapping, robust CF methods will be suitable for handling the 
raw data with noisy information, discriminative CF methods can 
be used in the cases that higher discriminant performance is re-
quired for the learned features, and multi-view CF methods are 
usually required in the cases that training samples have different 
representations in multiple views or come from different sources.  

It is noted that unsupervised CF methods cannot make use of 
any label information even though the class information of data 
is available. Although unsupervised methods can obtain the low-
dimensional representation without using supervision, the per-
formance may be degraded due to the unsupervised nature. As 
such, researchers have also investigated effective ways to extend 
CF to the fully-supervised/semi-supervised modes. One popular 
supervised CF variant called Supervised Graph Regularized Dis-
criminative Concept Factorization (SGDCF) [22] uses the full 



class information of all input data to learn discriminative repre-
sentations. Note that this kind of fully-supervised methods can 
only be used in limited application scenarios where all samples 
are labeled.  However, class label information of samples is usu-
ally limited and the labeling process is also costly, so the study 
on fully-supervised CF methods is few. Instead, much more ef-
forts have been paid to studying semi-supervised CF versions 
that can use less labeled data and a large number of unlabeled 
data for RL, which has broader application areas than supervised 
ones, such as semi-supervised image classification, text cluster-
ing, document retrieval and dimensionality reduction.  

In this survey, we further divide the existing semi-supervised 
CF models into the following three sub-categories:  

1) Joint classification based CF. The methods of this kind aim 
to learn a class indicator matrix and perform CF jointly, such 
as Discriminative CF (DCF) [23] and its variant called Hy-
per-graph regularized discriminative CF (HDCF) [24]. DCF 
and HDCF combine the data representation and data classifi-
cation into a unified model, such that the discriminability 
ability can be strengthened significantly.  

2) Label constraint based CF. This kind of methods generally 
design a label constraint matrix to represent label information 
and then incorporate it into CF. As a result, learned compact 
representation can be consistent with the known label infor-
mation of data. Some classical methods of this type include 
Class-Driven CF (CDCF) [34], Constrained CF (CCF) [29] 
and its extensions like Local Regularization CCF (LRCCF) 
[30], Robust Semi-Supervised CF (RSSCF) [31], CCF with 
Graph Laplacian (CCF-GL) [32], Graph-based Discrimina-
tive CF (GDCF) [44] and Semi-supervised Discriminative 
CF (SDCF1) [44]. Particularly, the recently proposed Robust 
Semi-Supervised Adaptive CF (RS2ACF) algorithm [33] pro-
vides a new and more effective way to design the label con-
straint matrix by not only using the labeled data, but also pre-
dicting the label information of unlabeled samples.  

3) Pairwise constraint based CF. Pairwise must-link and can-
not-link constraints as used as additional constraints for semi-
supervised CF, where the pairwise constraints are clearly de-
fined based on the class information of labeled data. Classical 
semi-supervised CF methods consist of Pairwise Constrained 
CF (PCCF) [25] and its variants, including Semi-Supervised 
CF (SSCF) [26], Constrained Neighborhood Preserving CF 
(CNPCF) [27] and Regularized CF (RCF) [28].  

It is worth noting that all aforementioned CF-based methods 
utilize the single-layer structure, i.e., the factorization process is 
performed only once. As a result, these single-layer CF methods 
can only discover “shallow” features, i.e., they cannot mine the 
deep information hidden in the data. With the fast development 
and great success of deep learning for the representation leaning 
and vision computing [165-169], researchers have also turned to 
study the deep/multi-layer CF methods to uncover the deep fea-
tures and hierarchical structures embedded in data. Due to the 
huge challenge and difficulty of such research topic on the deep 
or multi-layer CF methods, there are only a few models that are 
proposed recently. To figure out the optimization strategies, we 
break the discussion down into two cases:  

1) Traditional feeding-style deep/multi-layer CF. This kind 
of deep CF models is usually accumulating the layers simply. 
Because the most commonly-used approach of extending the 
single-layer CF models to deep ones is to feed the represen-
tation of previous layer as the input of the next layer directly. 
Several representative methods include Multilayer CF (MCF) 
[35], Graph Regularized MCF (GMCF) [36] and Dual-graph 
regularized MCF (DGMCF) [164]. However, such a strategy 
may be invalid in practice, since in fact the learned represen-
tation of the first layer decides the representation abilities of 
the whole framework by this way. However, existing models 
cannot ensure the output of the last layer to be a good repre-
sentation, so directly feeding it to the next layer may degrade 
the performance of subsequent layers directly.  

2) Optimized deep/multi-layer CF. Different from traditional 
feeding-style deep methods, these optimized methods clearly 
design novel hierarchical factorization architectures by using 
the multiple layers of linear transformations or updating the 
basis concepts/new representations in each layer to obtain the 
latent features through a progressive way. For this type of op-
timized deep CF methods, Deep Self-representative CF Net-
work (DSCF-Net) [37] and Deep Semi-Supervised Coupled 
Factorization Network (DS2CF-Net) [38] are two most fron-
tier methods. Compared with DSCF-Net that updates the set 
of basis concepts to indirectly improve the representation re-
sult, DS2CF-Net clearly designs a new deep coupled factori-
zation architecture that can jointly update the basis concepts 
and new representation in each layer.  

We outline the remainder of this survey paper as follows. Sec-
tion II briefly reviews the root method of CF. We summarize the 
CF-based single-layer methods in Section III. In Section IV, we 
mainly describe the deep/multi-layer structures for CF. Section 
V conducts experiments to compare different CF methods. Sec-
tion VI discusses the different applications of CF-based methods. 
Finally, the paper is concluded in Section VII, and we also pro-
vide some future directions for the research on CF.  

II. NOTATIONS AND REVIEW OF CF 

A. Important Notations 

To facilitate the presentation and introduce the methods in this 
paper, we first list the important notations in Table I.  

B. Concept Factorization 
CF, as a new variant of NMF, was proposed to characterize the 
possible nonlinear structure of samples. The regular CF method 
aims to represent each concept as a linear combination of data 
points and represent each data point as a linear combination of 
concepts. Given a data matrix  1 2, ,..., D N

NX x x x   , where
 ,  1,2,..,ix i N  is a sample vector. Let D rU  and N rV 

be two nonnegative matrix factors whose product T D NUV   
is the approximation to X . By representing each basis by a lin-
ear combination of ix , i.e., 

1

N

ij ii
w x

 , where 0ijw  , CF pro-
poses to solve the following minimization problem:  

2
,   . .  , 0T

CF F
O X XWV s t W V   ,                   (1) 

where 
2

F
  represents the squared Frobenius norm of a matrix,  



Table I. Descriptions of Used Important Notations. 
Symbol Description Symbol Description 
  Operating space r The rank of matrix factorization 
X The original data matrix  1 2, ,..., D N

NX x x x    S Graph weight matrix 
XL Labeled data matrix DS Diagonal matrix or degree matrix over S 
XU Unlabeled data matrix L Graph Laplacian matrix 
l The number of labeled samples I Identity matrix with compatible dimension 
u The number of unlabeled samples 1 All-ones column vector 
xi The i-th sample vector of X E  All-ones matrix 
D The original dimensionality of X b Bias vector 
N The number of samples in X M Number of layers in deep network models 
U One of CF factors: base matrix p  Number of nearest neighbors of each xi 
V One of CF factors: new representation Np(xi) The nearest neighbor set of each xi 

XW Base matrix O Objective function 
Z Auxiliary matrix VT The transpose of matrix V 
A Label constraint matrix   Kernel width or kernel parameter 
E Sparse error term   A small constant 

X W V
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Fig.2: The framework of the standard CF algorithm. 

N r
ijW w      , XW approximates the bases and VT denotes the 

new representation of X , which can be used for clustering. Note 
that CF solves Eq.(1) by the following updating rules:  

 
 

 
 

1 1,  jkt t t tik
ik ik jk jkT T

ik jk

KWKV
w w v v

KWV V VW KW
   ,          (2) 

where TK X X  is inner product matrix. After the convergence, 
the new representation TV of original data can be obtained. The 
framework of CF is shown in Fig.2. We also summarize the op-
timization procedures of the root CF method in Algorithm 1.  
 

Algorithm 1: CF algorithm 
Input: Data matrix D NX   , rank r, a small constant. 
Initialization: Construct the kernel matrix TK X X ; Initial-
ize W and V to be random matrices.  
While not converged do 

1. Update 
1t

ikw 
 by    t T

ik ik ik
w KV KWV V ;  

2. Update 
1t

jkv 
 by    t T

jk jk jk
v KW VW KW ;  

3. Convergence check: if    1t t

CF CF
F

O O    , stop; else, 
return to step 1.  
Output: New low-dimensional representation V  of X.  
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Fig.3: Comparison between the standard CF and locality-pre-

serving CF methods.   

III. SINGLE-LAYER CF-BASED METHODS 

The CF-based single-layer methods are discussed in this section. 
According to how much prior class label information is used, 
we divide these shallow CF methods into three categories: i.e., 
unsupervised, supervised and semi-supervised ones.   

A. Unsupervised CF Variants 

Based on the basic CF method, lots of unsupervised methods 
have been proposed to improve the data representation and clus-
tering powers. Specifically, researchers have made great efforts 
to improve the learnt new representations based on the follow-
ing characteristics, i.e., locality, robustness, sparseness, operat-
ing space, discriminability and multiple-views. Accordingly, 
these CF methods are summarized as the locality-preserving CF 
methods, robust CF methods, kernel CF methods, discrimina-
tive CF methods and multi-view CF methods, respectively.  

1. Unspervised Locality-Preserving CF Methods 

We know that the root CF method is a global model which can 
only preserve the global Euclidean geometry, however it cannot 
preserve the local manifold geometry [159]. To inherit the mer-
its of CF and preserve the locality structure of data, many local-
ity-preserving variants were proposed in recent years. Locality-



preserving CF methods aim to keep the local structures in the 
original high-dimensional space during matrix decomposition, 
such that the learnt low-dimensional representation can have a 
more separable distribution than that of CF, which is benefit for 
subsequent clustering or recognition tasks. Fig.3 shows the dif-
ference between CF and locality-preserving variants in the 
working space. To retain the local information, we summarize 
the widely-used locality-preserving strategies in Fig.4. The first 
way is to incorporate the graph regularization into CF. Second, 
the local coordinate coding is also a popular way to extend CF 
to local scenario. The third one is to incorporate the self-repre-
sentation learning into regular CF framework. Next, these lo-
cality-preserving strategies will be introduced.  
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Fig.4: Different locality-preserving strategies and methods.  

1.1 Graph-regularized CF methods 

1.1.1 Artificial graph construction based CF variants:  

We first review on the traditional graph regularization on CF. 
For the data matrix X, one can construct a graph with N vertices 
where each vertex corresponds to a sample. Then one can obtain 
the weight matrix ijS S   ,  , 1, 2,...,i j N  over the edges by the 
following five commonly-used ways:  

1) 0-1 weighting:  

   1 if    or  

0 otherwise

i p j j p i
ij

x N x x N x
S

   


,                (3) 

where  p iN x denotes the p-nearest neighbor-set of sample ix . 

2) Cosine similarity weighting:   

   if    or  

0 otherwise

T
i j

i p j j p i

ij i j

x x
x N x x N x

S x x


 

 



,         (4) 

where ix  denotes the l2-norm of the sample vector ix .  
3) Heat kernel weighting:  

   
2

22exp if    or  

0 otherwise

i jx x

i p j j p iij
x N x x N xS 





   



,      (5) 

where   denotes the kernel width or kernel parameter.  
4) Dot-product weighting:  

   if    or  

0 otherwise

T
i j i p j j p i

ij

x x x N x x N x
S

   


.              (6) 

Note that when the data point is normalized to 1, the dot-
product weight of two normalized data points is identical to the 
cosine similarity weight.  

5) Reconstruction weight learning: This weighting way is 
motivated by the Locally Linear Embedding (LLE) [138] that 
is a classical nonlinear dimensionality reduction method. LLE 
clearly provides a weighting scheme to preserve the neighbor-
hood relationship. Specifically, LLE-style weighting method 
firstly assigns p nearest neighbors for each sample ix , and then 
computes the reconstruction weights ijS  by solving the follow-
ing constrained least-squares problem:  

   

2

min ,   . . 1
j p i j p iij

i ij j ijx N x x N xS
i

x S x s t S
 

    .          (7) 

It is worth noting that the above artificial weighting methods 
have been proved to be effective to retain the local manifold 
structures of data, which have been widely-used in graph-regu-
larized CF methods. In what follows, we will review the related 
graph-regularized CF methods clearly.  

LCCF [7]. Locally Consistent CF (LCCF) [7] was proposed 
in 2011, which is the first work to incorporate the graph regu-
larization into CF. More specifically, LCCF defines the graph 
weight matrix S using the cosine similarity weights over the p-
nearest neighbor graph. After S is obtained, one can obtain the 
graph Laplacian matrix sL D S  , where sD  is a diagonal ma-
trix with its entries being  s ijii j

D S  . The graph regulariza-
tion can then be written as  Ttr V LV . Finally, LCCF solves the 
following minimization problem:  

 2

. .  , 0

T T
LCCF LCCFF

O X XWV tr V LV

s t W V

  


,               (8) 

where LCCF is an nonnegative regularization parameter. In this 
way, LCCF can extract the locality-preserving concepts and en-
hance the representation learning power over CF. The optimi-
zation procedure of LCCF is summarized in Algorithm 2. Note 
that LCCF is actually a general framework for graph-regular-
ized CF, since we can use different artificial weighting schemes 
to compute the weight matrix, besides the cosine similarities.  

  GCF [8]. Note that LCCF only considers one-sided clustering 
problem, i.e., it clusters data only depending on the similarities 
along features [7]. However, the co-clustering methods have 

Algorithm 2: LCCF algorithm 
Input: Data matrix D NX    , rank r, a nonnegative param-
eter LCCF  and a small constant  .  
Initialization: Construct kernel matrix TK X X  ; Initialize 
W  and V  to be random matrices; Construct the weight ma-
trix S  and the diagonal matrix  s ijii j

D S  .  
While  not converged do 

1. Update 
1t

ikw 
 by    t T

ik ik ik
w KV KWV V  ;  

2. Update
1t

jkv 
by  

   t T
jk LCCF LCCF sjk jk

v KW SV VW KW D V    ; 

3. Convergence check: if    1t t

LCCF LCCF
F

O O    , stop; 
else, return to step 1.  
Output:  New low-dimensional representation V  of X.  



been shown to be superior to traditional one-sided clustering. 
Thus, a new dual-graph regularized CF method termed GCF [8] 
was recently proposed for co-clustering. Specifically, GCF in-
cludes the graph regularizers of both the data manifold and fea-
ture manifold into CF simultaneously by constructing a p-near-
est neighbor data graph VG  and a p-nearest feature graph UG . 
Then, GCF adopts the binary weighting scheme for construct-
ing the dual-graphs VG  and UG  , and then defines the weights 

VS  and US using binary weights as follows:  

   

   

1 if  
;   , 1,2,...,

0 otherwise

1 if  
;   , 1,2,...,

0 otherwise

V j p i

ij

U j p i

ij

x N x
S i j N

x N x
S i j D

 
 

 

 


.            (9) 

The graph Laplacian matrices over VG  and UG can then be 
defined as V V VL D S   and U U UL D S  , where VD  and UD  
are diagonal matrices with entries being    V V

jii ij
D S  and 

   U U

jii ij
D S . The objective function of GCF is defined as 

   2T T V T W
GCF GCF GCFF

O X XWV tr V L V tr W L W     ,   (10) 

where W T UL X L X denotes an auxiliary matrix, GCF and GCF  
are two nonnegative trade-off parameters.  

   ADGCF [13]. Most real data have noise, outliers and irrele-
vant features, so directly building the affinity graph based on 
the original input space as LCCF and GCF may be inaccurate 
due to the interference, which is in fact suffered by almost all 
the traditional graph regularized models. To alleviate this defi-
ciency, the recently proposed ADGCF unifies the feature selec-
tion and dual-graph learning into the CF framework for joint 
optimization. Specifically, ADGCF performs feature selection 
and then uses the Gaussian kernel weighting scheme to con-
struct the p-nearest neighbor data graph with the selected fea-
tures in each iteration. By this way, it can successfully obtain 
optimized weights and can also ensure the optimized weights to 
be optimal for CF, but it still cannot avoid the tricky issue of 
determining the value of p when choosing neighbors.  

 MCFAW [11]. MCFAW employs a linear combination of 
multiple graphs to construct a graph regularizer and learns an 
optimal weight set for all graphs adaptively without introducing 
any additional parameter. The objective function of MCFAW is  

 

  

2

1

. . , 0,  1 2

q
T AW T AW

MCFAW MCFAW i iF
i

T AW
i i

O X XWV tr V L V

s t W V tr V L V

 





  

 


,    (11) 

where q denotes the number of neighborhood graphs, AW
i is the 

weight of the i-th Laplacian graph. Clearly, MCFAW is a multi-
graph regularized algorithm and can adaptively determine the 
weights for these q graphs but for each graph, it still employs 
the traditional strategy as LCCF to build the weight matrix. As 
a result, it will suffer from the same problem as the traditional 
graph-based methods for the choice of p.  

Besides the above mentioned methods, lots of graph-regular-
ized CF methods have been recently proposed one after another. 
Wherein, GRLCF [9], LGCF1 [10], RDCF [121], GCCF [124], 
Constrained Graph CF (CGCF) [129] and Sparse Constrained 

Manifold Regularized CF (SMCF) [135] that used the graph 
Laplacian in the same way as LCCF. Specifically, LGCF1 and 
RDCF utilize the cosine similarity weighting to construct the 
weight matrix, while CGCF and SMCF define the weight ma-
trix by ‘0-1’ weighting. Structured discriminative CF (SDCF2) 
[128] and Neighborhood Preserving CF (NPCF) [130] use the 
LLE-style weighting to preserve the neighborhood structures.   

Remarks. It is noteworthy that all these artificial weighting 
strategies have an obvious drawback, i.e., there is a very tough 
issue to choose the optimal number of nearest neighbors (i.e., p) 
for different datasets. Moreover, the performance of graph reg-
ularized methods was verified to be sensitive to the choice of p 
in experiments. Therefore, how to build the adjacency graph 
and define the weight matrix using a parameter-free way is un-
doubtedly a problem to be solved. In addition, these traditional 
graph-regularized methods usually learn the graph regularizer 
independently of the matrix factorization phase, however such 
operation cannot ensure the pre-obtained weights to be joint-
optimal for subsequent representation learning [13-15] [125]. 
As such, the adaptive weighting strategy that does not to select 
the number of nearest neighbors has received some attention in 
the recent years. Specifically, several optimized adaptive graph 
regularized CF methods have been proposed.  

1.1.2 Optimized graph construction based CF variants:  

   CFANs [12].  CFANs was proposed in 2016, which used an 
adaptive neighbor weighting strategy to build the graph weight 
matrix  A N sS . Specifically, CFANs learns the neighbor connec-
tivity of data by solving the following minimization problem:  
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1
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2

. .  0,  1, 0

ANs

N N
ANs ANs

i j ij ANs ij
S i j

TANs ANs ANs
i ii

x x S S

s t S S S


 

      
   

  

 

1

,            (12) 

where ANs is a regularization parameter and 1 is a column vec-
tor with all ones. Note that if 0ANs  , it will lead to a trivial 
solution of Eq.(12), i.e., only the nearest data point can be a 
neighbor of ix with weight 1. If ANs is infinite, then the optimal 
solution of Eq.(12) is that all of the data points are neighbors of 

ix with the weight 1 N . That is, the neighbors can be assigned 
adaptively by tuning ANs  according to [42]. After the weights 
are obtained, CFANs can obtain the graph Laplacian matrix by

   2
TANs ANs ANs ANsL D S S   , where  ANs ANs

ijjii
D S  . Finally, by 

combining the neighbor graph regularization constraint and 
adaptive neighbor weights learning into CF as a united frame-
work, CFANs solves the following problem:  
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. .  , , 0,  1, 0

N N
T ANs ANs

CFANs i j ij ANs ijF
i j

T ANs T
ANs ANs

TANs ANs ANs
i ii

O X XWV x x S S

tr V L V V V I

s t W V S S S



 

 

         
   

  

  

 

1

,

(13) 
where ANs , ANs are nonnegative parameters and the penalty 
term TV V I  is to relax the orthogonal constraint TV V I .  

It is worth noting that although CFANs can learn the weight 
matrix by adaptively assigning neighbors, it is still not parame-
ter-free, since it needs to tune the number of neighbors when 



updating the regularization parameter ANs  [12][42].  

   CF-OGL [126] and GRLCFCLR [9]. To optimize the graph 
learning for CF, CF-OGL [126] and GRLCFCLR [9] were re-
cently proposed. Where the Constrained Laplacian Rank (CLR) 
[43] is a new graph learning method proposed in 2016. Specifi-
cally, GRLCFCLR employs CLR to build the weight matrix, since 
CLR can learn a graph with exactly   connected components, 
where   is the number of clusters. Note that the weight matrix 

CLRS  is obtained by solving the following problem:  

     

2

0min ,  

. . 1,  0,  =

CLR

CLR CLR

S

CLR CLR CLR

j ij ij

S S

s t S S rank L N 



  
,     (14) 

where 0
CLRS  is an initial matrix,    2

TCLR CLR CLR CLRL D S S   , 
C LRD  is a diagonal matrix with its diagonal entries defined as 

   CLR CLR

jii ij
D S  . Note that although the CLR based meth-

ods can avoid choosing the value of p, it needs to determine the 
value of, which also involves a tough selecting issue.  

    RLLDCF [125]. To obtain a robust adaptive weight matrix 
for improving the representation ability, RLLDCF was recently 
proposed in 2018. Specifically, by denoting the all-ones matrix 
by E , RLLDCF seeks the weight matrix RLLS  by minimizing 
the following problem for robust local learning:  

 
2,1

T T RLL RLL
RLLV V S tr S  E ,                  (15) 

where RLL is a regularization parameter and the 2,1L -norm 
2,1


can ensure the reconstruction error to be robust to outliers and 
noise. Then, RLLDCF repeats learning the representation TV
and the sparse weight matrix RLLS  iteratively to capture the true 
geometrical structure of the data distribution adaptively. Be-
sides, minimizing  RLLtr SE can enhance the sparsity of the so-
lution. However, the above formulation may suffer from a triv-
ial solution RLLS I , resulting in meaningless solution.  

   RFA-LCF [14-15]. In order to realize the real parameter-free 
adaptive weight learning and avoid the trivial solution on the 
weight matrix, a novel auto-weighting mechanism was intro-
duced in RFA-LCF [14-15]. Note that this weighting strategy 
differs from the other existing ones that: 1) it uses a L2,1-norm 
based sparse projection D DP   to map the original data into 
noise-removed clean data TP X  and then factorizes data based 
on TP X ; 2) to encode the neighborhood information and pair-
wise similarities accurately, it retains the manifold structures 
jointly over TP X , basis vectors XW and new coordinates TV in 
an adaptive manner by minimizing the joint reconstruction error 

2 2 2T T SA SA T T SA

F F F
P X P XS W WS V V S     , where S AS  de-

notes a shared adaptive reconstruction weight matrix. Different 
from RLLDCF, RFA-LCF avoids the trivial solution SAS I by 
forcing   0SA

ii
S  . In this way, RFA-LCF can update SAS adap-

tively in each iteration without specifying additional parameter. 
By incorporating the joint reconstruction error into CF, the ob-
jective function of RFA-LCF can be defined as follows:  
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Fig.5: Difference between traditional graph and hyper-graph.  

where RFA LCF  , RFA LCF  and RFA LCF  are nonnegative parame-
ters. Tb1 is added to relax the reconstruction error for avoid the 
overfitting. v is the robust adaptive locality and sparsity con-
straint term, which will be introduced later in this paper.  

1.1.3 Hyper-graph construction based CF variants:  

In real applications, the information among samples is critical, 
so the traditional weighting may be inaccurate. To overcome 
this issue and extract multi-geometry information, recent works 
add the weighted hyper-graph Laplacian regularization into CF.  
   The difference between the traditional graph and hyper-graph 
is shown in Fig.5. Specifically, in the traditional graph, an edge 
connects only two vertices, but in hyper-graph a hyper-edge can 
connect any number of vertices. Thus, hyper-graph can be used 
to describe more complex relationships than traditional graph. 
Representative hyper-graph methods consist of HDCF [24], 
Hyper-graph regularized CF (HRCF) [133], Hyper-graph Dual 
Regularization CF (DHCF) [134], and Local and global regu-
larized CF (LGCF2) [139]. In general, these hyper-graph based 
CF methods define the graph Laplacian as hyper hyper hyperL D S  , 
where hyperD  is a diagonal matrix with entries being the vertex 
degree. The weight matrix hyperS  is defined as 1ˆ ˆ ˆhyper T

eS FBD F , 
where F̂  is the incidence matrix of the hyper-graph, B̂  is a 
weight matrix with îjB  being the weights between any two ver-
tices in hyper-graph and eD  denotes a diagonal matrix whose 
entries denote the degrees of hyper-edges.  

1.2 Local coordinate coding based CF methods 

It is worth noting that the graph-regularized CF methods can 
obtain locality-preserving representations successfully, but may 
not always satisfy the sparsity conditions in certain practical ap-
plication scenarios. To obtain both the locality and sparsity sim-
ultaneously, one category of CF methods based on local coor-
dinate coding (LCC) has been developed.  

LCF [16-17]. LCF firstly incorporates the idea of local coor-
dinate coding into CF. Specifically, LCF takes the locality con-
straint into account, considers the anchor points j ij ii

u w x    
and the coordinates for the sample ix  over each column of TV  
with respect to the anchor points. Then, LCF defines the follow-
ing constraint term to measure the locality and sparsity penalties 
between the anchor point ru  and the sample ix :   

22

1 1 1

r r N

i i i j j ij
v u x v w x x      

     .        (17) 

Finally, LCF minimizes the following objective function:  

22

LCF 1 1 1

N r N

LCF i j j iF i j
O X XWV v w x x 


  

      ,  (18) 
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Fig.6: Difference between LCF and RFA-LCF. 

where LCF 0  is a weighting parameter. Based on Eq.(17), LCF 
can represent each sample ix by using only a few nearby anchor 
points so that the sparsity and local structure can be retained.  

However, LCF fails to preserve the manifold structure in the 
data space and its locality constraints fail to reveal the intrinsic 
data structure as well. To address this issue, recent methods also 
are developed to jointly consider the local geometric structures 
of the data manifold and the local coordinate coding as addi-
tional constraints. Several representative methods include GLCF 
[18], LGCF1 [10], GRLCF [9], GRLCFCLR [9], and RFA-LCF 
[14-15], etc. Specifically, GLCF adds the manifold kernel 
learning into LCF model to reveal the semantic structure in the 
warped RKHS. LGCF1, GRLCF and GRLCFCLR are all based 
on the combinations of the graph-regularization and local coor-
dinate coding, which aims at addressing the following minimi-
zation based optimization problem:   
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N r NT T T
ri j j ii jF
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   , 

(19) 
where   and   denote two tunable trade-off parameters.  

It is noted that the only difference between LGCF1, GRLCF 
and GRLCFCLR is that they construct the graph weights by using 
different approaches. Specifically, LGCF1 and GRLCF define 
the weight matrix similarly as LCCF based on the p-nearest-
neighbor adjacency graph, while GRLCFCLR clearly encodes 
the graph weights by using the CLR algorithm [43].   
   RFA-LCF improves LCF in three aspects: 1) RFA-LCF per-
forms the CF on the recovered clean data TP X  as mentioned 
above; 2) RFA-LCF includes the auto-weighting scheme into 
CF to better preserve the local geometrical structures by mini-
mizing the joint neighborhood preserving error; 3) RFA-LCF 
optimizes the local coordinate coding term by a robust locality 
and sparsity constraint term  ,f W V , and uses it in the objec-
tive function in Eq.(9), which is defined as follows:  

 
2

1 1 1
, =

N R NT T T
ri jr j ii r j

f W V v w P x P x
  

   .         (20) 

 

That is, the local coordinate coding process of RFA-LCF is 
operated in a recovered clean feature space rather than in the 
original data space that usually contains various noise. Note that 
this is clearly different from LCF that directly encodes the local 
coordinates in the original data space. The difference between 
LCF and RFA-LCF has been illustrated in Fig.6.  

1.3 Self-representation based CF methods 
Different from the graph regularized and LCC based CF meth-
ods, the self-representation based CF methods constructs the af-
finity matrix using the new representation rather than the origi-
nal raw data X. Specifically, they consider TWV  as a coefficient 
matrix based on the dictionary of data X, which is also regarded 
as a meaningful representation of X. Representative methods of 
this kind include SRMCF [20] and JSGCF [21].  

SRMCF [20]. SRMCF incorporates the self-representation 
with the adaptive neighbor structure as [12][42] to assign the 
neighbors for all samples. By integrating the adaptive neighbor 
structure and manifold regularizer into CF, the objective func-
tion of SRMCF is defined as follows:  
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where ANs
ijS denotes the probability of xj (excluding itself from X) 

being connected to xi as a neighbor, SRMCF and SRMCF denote the 
regularization parameters. The constraints  . 1

TANs
iS 1  and 

.1 0ANs
iS   can ensure the probability property of .

ANs
iS . L is a 

predefined graph Laplacian matrix by using the ‘0-1’ weighting 
based on the Euclidean distances of samples LCCF [7].  

 JSGCF [21].  JSGCF is motivated by the fact that jointly per-
forming the structured graph learning and clustering can avoid the 
suboptimal solutions caused by the two-stage strategy in the tradi-
tional graph learning. Suppose that the data points have   clusters, 
JSGCF aims to build a graph to guide the data points to be divided 
into   clusters without any post-processing. Thus it imposes the 
rank constraint on the graph Laplacian matrix TWV

L  of TWV  as 
 TWV

rank L N   . The rank constraint can be converted to an 
equivalent mathematical expression:  

 
,

min T
N T

T

WVF F F I
tr F L F

 
,                             (22) 

where each row if  of F can be seen as a vector connected to data 
point ix  on the graph TWV . For the convenience of optimiza-
tion, JSGCF introduces an auxiliary matrix   to approximate 

TWV and finally solves the following problem:  

 2 2

. . , , 0,  1,  ,  

T T T
JSGCF JSGCF JSGCFF F

N T

O X XWV tr F L F WV

s t W V F F F I

 



     

     1 
,    

(23) 
 where JSGCF and JSGCF are two tunable trade-off parameters.  

1.4 Other Locality-preserving CF methods 
In additional to the above-mentioned locality-preserving meth-
ods, there are also some other techniques to preserve the locality 
of samples during the concept factorization process.  



LRCF [30]. LRCF preserves the local information by incor-
porating the local learning regularization. That is, LRCF parti-
tions the input data space into some local regions and minimizes 
the predicting cost over each region. Suppose that input data has 
c classes, LRCF defines a predicting function  l

if x  in  iN x  to 
estimate the cluster label of   j i

j x N x
x


, where1 l c   and  iN x

is the neighborhood of ix . Then, the minimization of the overall 
local prediction costs can be defined as follows:  

  2

1 1
min

D N l l
i i il i

f x v
 

  ,                      (24) 

Then, the local learning regularization can be defined in ma-
trix trace form as  T

LRCFtr V M V , where    T

LRCFM S I S I    . 
ijS is equal to 

ij  if  j ix N x , and otherwise 0. Finally, LRCF 
solves the following minimization problem:  

 2
, . . , 0T T

LRCF LRCF LRCFF
O X XWV tr V M V s t W V    ,    (25) 

where 
LRCF denotes a nonnegative trade-off parameter.  

SCF [127] and RSCF [127]. To enforce the reconstructed 
samples by CF to be close to that of original samples, two simi-
larity-based models, i.e., SCF and RSCF, are proposed, which 
include a similarity matrix into CF. Denote the similarity matrix 
by SK of N samples, this similarity reconstruction can be repre-
sented as S TK V V . SCF constructs SK using classical p-near-
est neighbor to encode the similarity as [140]. To combine the 
data reconstruction and similarity reconstruction into a unified 
reconstruction error term, SCF finally solves the following cou-
pled optimization problem:  

 , . . , 0S T S T
SCFO K VW K WV s t W V   .              (26) 

Note that RSCF is just the robust extension of SCF, which 
will be depicted later in this paper.  

SDRCF [120]. SDRCF is inspired by the sparse representa-
tion (SR) [56-66], which simultaneously incorporates the local 
geometrical structures of both the data and features into CF, and 
obtain a weight matrix. For a sample x and a matrix D N
containing the dictionary atoms in its columns, SR represents x
using as few entries of  as possible, defined as follows:  

1
min ,   . . 

SR

SR SR

s
s s t x s ,                         (27) 

where SRs  is the sparse coefficient and 
1
  is the 

1L -norm of a 
vector. In this way, SDRCF can obtain a sparse weight matrix 

SRS . Then, the graph Laplacian matrices VL  and WL  can be sim-
ilarly obtained as GCF [8] based on SRS . Finally, the objective 
function of SDRCF can be formulated as follows:  

   2

. .  ,  0

T T V T W
SDRCF SDRCF SDRCFF

O X XWV tr V L V tr W L W

s t W V

    


,(28) 

where SDRCF and SDRCF are parameters trading-off the graph-
regularization on the data and features, respectively. Note that 
though SDRCF learns the graph weight matrices by SR, it is 
essentially a graph-based CF model.  

LSDCL [183]. Due to the fact that Correntropy Induced Met-
ric (CIM) is more suitable to characterize the locality of sam-
ples than the traditional L2-norm used in LLE-style weighting, 

LSDCL introduces CIM as a generalized metric based on infor-
mation-theoretic learning (ITL), which is defined as 
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 ,                              (29) 

where  is the kernel width as in the Gaussian function, and e 
denotes reconstruction error. Then LSDCL adopts the local sen-
sitive loss function, which can be formulated as follows:  

  2 2

1 1

min 1 exp /
N N

T T
ij i j

V
i j

S V x V x 
 

   ,              (30) 

where ijS is the 0-1 weight for ix and jx . The local sensitive loss 
function emphasizes more on most similar pairs with small er-
rors to better characterize the local structure of data [183].  

CFLCs [186]. From the perspective of clustering data, the 
columns of basis vectors U=XW can be seen as clustering cen-
troids in CF-based methods. Based on the fact that in real world, 
each class of data may contain several sub-classes, CFLCs sup-
poses that there are r ( c r N  ) local centroids. First, CFLCs 
considers ijw as the probability that ix is associated with the lo-
cal centroid ju , thus it can preserve the locality information by 
minimizing 

2

1 1 2

N r

ij i ji j
w x u

 
   with the constraint 1iji

w  . 
Second, to obtain clear clustering structure, CFLCs denotes a 
bipartite graph as [ ; ]TW W W 0 0 . To make the bipartite 
graph have exact c components, the rank of the Laplacian ma-
trix WL must be N+r-c. To enforce the rank of WL to be N+r-c, 
CFLCs includes a minimization term  min T

Wtr L   into the 
standard CF framework, where  N r c   is the auxiliary ma-
trix and T I  . In this way, the optimal W is able to connect 
the samples with appropriate local centroids and the bipartite 
graph W can indicate the clustering results directly [186].  
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Fig.7: Visual comparison of performing CF in the original Eu-
clidean space and kernel feature space.  

2. Unspervised Kernel CF Methods 

Kernel CF is mainly motivated by the fact that original linearly-
inseparable samples may be linearly-separable if after being 
mapping a higher-dimensional RKHS using the kernel trick. As 
a result, the performance of data reconstruction, clustering or 
recognition tasks can be potentially improved for the linear sep-
arability. Similarly, kernel CF assumes that the factorization 
process in kernel feature space will also be more accurate. Note 



that Fig.7 is the visual comparison of performing CF in original 
Euclidean space and kernel feature space.  

MKCF [19]. The main advantages of CF over NMF is that it 
can be kernelized for discovering the nonlinear structures hid-
den in data. By considering the manifold kernel learning into 
CF, MKCF was recently proposed. First, the objective function 
of CF can be rewritten in the form of matrix trace as 

    TT T T
CFO tr I WV X X I WV   ,                (31) 

where TX X  is the inner product of matrices. Then, a general-
ized formulation of kernel CF (KCF) can be expressed as 

   

        
2

,

T
KCF F

TT T

O X X WV

tr I WV X X I WV

 

 

 

  
,        (32) 

where the inner product        ,
T

X X X X    can be de-
noted by a kernel  .  X   is a function which maps X into a 
high-dimensional kernel space. By involving manifold learning 
into Eq.(32), MKCF finally solves the following problem:  

    
 2

TT T
MKCF MK

T T T
MK MK MK

O tr I WV I WV

tr VW VW WV

  

  



  



  
,            (33) 

where   1T
MK MK MKI L L

        and MKL  is the graph La-
placian matrix defined similarly as that of LCCF. Note that 
MKCF constructs the adjacency graph by p-nearest neighbor 
search and defines the weights of the neighborhood graph by 
using the binary weights. That is, MKCF also suffers from the 
tricky issue of selecting the optimal number of p.  

GLCF [18]. To further enhance the locality and sparsity of 
the learnt representations, GLCF also incorporates the local co-
ordinate coding into kernel CF model. Thus, the objective func-
tion of GLCF can be formulated as follows:  

      
      

:,:

, :, :,:
1

2

TT T
GLCF M

N
T T T T

GLCF i i iMK i i MK i MK
i

O tr I WV I WV

tr W W W


  

       1 1 1



  



  
,(34) 

where the parameter 0GLCF  ,  1 2, ,..., r r
i i i irdiag v v v    . 

  GMKCF [136]. Although both MKCF and GLCF involves 
the kernel trick for nonlinear representation learning, they are 
single-kernel methods. Note that in the unsupervised scenario, it 
is a tough problem to select proper kernel function for a specified 
dataset in practical applications. To solve this problem, a Glob-
alized Multiple Kernel CF (GMKCF) [136] was proposed in 
2019. GMKCF mainly aims to provide multiple candidate kernel 
functions at the same time and performs concept factorization 
learning based on global linear fusion. Specifically, suppose 
there are n  kernels, then GMKCF defines the global kernel as 

1 1
,   . . 1,  0

n ni
i ii i

s t 

  
 

     . Then, GMKCF addresses 
the following objective function:  

 
2

1
,  . . ,  0,  1,  0

nT T
GMKCF i iiF

O WV s t W V 

   


      .  (35) 

DMKCF [182]. To alleviate the problem of kernel selection, 
DMKCF also employs the multiple-kernels strategy. Similar to  
GMKCF [136], DMKCF also assumes that there are n kernel 
functions, and for each kernel function  , it assigns a weight 

 for  . Finally, the combined kernel function can be defined 
as    2

1
, ,

n i
i j i i ji

x x x x 


  . Then, DMKCF solves the mul-
tiple kernel concept factorization problem by replacing the sin-
gle kernel in Eq. (32) with the combined kernel.  

3. Unsupervised Robust CF Methods 

Noise and outliers are common in most real data in emerging 
apllications, as shown in Fig.8, which may degrade subsequent 
tasks. Therefore, performing CF directly on original raw data 
may not be a good choice, since the included noise may lead to 
abnormal data distribution resutling in unreliable representation 
results. Toward this issue, researchers have explored effective 
strategies to enhance the robustness of the CF variants to noise, 
i.e., recovering the underlying subspace prior to performing the 
factorization process. Representative methods include:  

Noisy data

Traditional CF method Robust CF method

Noisy data

Noise-removed data

Learnt featuresLearnt features   
Fig.8: Traditional CF model vs. robust CF model.  

ADGCF [13]. To handle noisy and irrelevant data, ADGCF 
adopts a the feature selection (FS) to assign different weights 
for various features, so that the samples can be represented in a 
more proper way than directly applying the original features. 
Specifically, CF with FS (CFFS) can be formulated as 

   2

FS

T
CF

F
O diag X XWV  ,                     (36) 

where  diag   is a D D diagonal matrix with the entries be-
ing the feature weight vector  . Then, ADGCF constructs two 
graphs adaptive to the selected features based on the new fea-
ture space defined by the feature weight vector .  

RFA-LCF [14] and RLLDCF [125]. Tradtional CF-based 
methods usually make use of the Frobenius-norm to encode the 
reconstruction error of the matrix factorization. However, the 
Frobenius-norm is very sensitive to noisy data. Note that 2,1L -
norm has been proven to be robust to noise and outliers [153-
155], so it can be used to replace the Frobenius-norm to improve 
the robustness. Specifically, RLLDCF defines the robust CF 
model as 

2,1 2,1
min T TX XWV V  , where the first term is the 

2,1L -norm constrained reconstruction error and the second term 
can make TV sparse in rows. RFA-LCF [14] introduces a 2,1L -
norm regularized projection P to recover the underlying sub-
spaces and remove noise from data. Specifically, the sub-prob-
lem of the robust subspace recovery in RFA-LCF can be defined 
as 

2,12,1
min T T TX P VW X P  . Besides, RFA-LCF also learns 

the adaptive reconstruction weights based on the removed clean 
data TX P   rather than original input data, so that the robustness 
and locality of the model can be further enhanced.  



RDCF [121]. Movited by the robust PCA (RPCA) [142] that 
decomposes a data matrix to a low-rank part and a sparse part, 
RDCF also assumes that the reconstruction TXWV  is low-rank 
and the sparse part contains noise. Denote the sparse error by  , 
the robust sub-problem of RDCF is formulated as follows:  

2

1, ,
min T

FW V
X XWV


     ,                     (37) 

where 
1 ijij

    is to guarantee the sparseness of  . In this 
way, the sparse error can be separated from the raw data.   

RSCF [127]. RSCF is a robust version of SCF. Different from 
SCF using the Frobenius-norm to measure the difference 
between the similarities of original data and reconstructed data, 
RSCF employs the Chebyshev norm L  [143] to replace the 
Frobenius-norm. Formally, RSCF proposes to minimize


 , 

where S T S TK VW K WV   in Eq.(26), and   is the vector-
ized representation of the matrix .   

GCCF [124]. To imrpove the robustness of resulted model 
to noise, GCCF provides another way to replace the tradtional 
Euclidean norm. Since correntropy has been proved to be able 
to deal with  the non-Gaussian noise and outliers, GCCF uses 
correntropy as the similarity measure to calculate the distance 
between the original data and its recosntruction. Specifically, 
based on the maximum corrent criterion (MCC), GCCF solves 
the following maximization problem:  

    
2

, 1 1

max

. .  , 0

D N
T T

GCCF ij GCCFijW V i j

O X XWV tr V LV

s t W V

 
 

 
    

 


  , (38)  

where 0GCCF  is a tunable parameter,    2 22exp a ba b      .   

4. Unspervised Discriminative CF Methods 

Most unsupervised CF methods mainly focus on retaining the 
neighborhood structures of samples, but usually neglects the 
discriminative information. But discriminative information is 
very important for improving the clustering and representation 
learning performance of CF methods, especially in the absence 
of label information. The related models are discussed below:  

  RDCF [121]. To improve the discriminative ability of the 
learned representation V, RDCF first introduces a N r  group 
indicator matrix , where 1ij   if the i-th sample belongs to 
the j-th group and otherwise 0ij  . The scaled indicator matrix 
with respect to   is defined as   1 2T 

    . Although we 
did not know  in prior as we have no label information, we 
can still find that T I  . To make the representation V to 
characterize the discriminative structure in  , RDCF forces 
them to be close to each other, i.e., minimizing the difference 
between them. Since  is orthogonal, RDCF enforces V  to be 
approximately orthogonal as TV V I   , where  is a small 
value. By using this approximate orthogonal constraint, RDCF 
can effectively capture the discriminative information in data.  

  RLLDCF [125]. To discover the discriminant structure of 
the data space, RLLDCF constructs the local predictors and de-
rives a local regression function. Briefly, the local regression 
function is mainly to obtain the relation by modeling iX to the 
new representation iV , which is formulated as 

2 2

,

1
min

i
i i

T T
i i i i n RLLDCF i FFG b

i

V G X b G
n

  1  ,             (39) 

where RLLDCF is a positive parameter, in is the number of data 
points in each local region of iX . That is, RLLDCF jointly 
solves problem in Eq.(39) and the matrix decomposition task, 
so that the learnt new representation can contain much discri-
minant structure information, so that the representation learning 
performance can be potentially improved.  

SDCF2 [128]. To solve the problem that the distant repulsion 
property of data is usually neglected resulting in distorted em-
bedding maps, SDCF2 includes the distant repulsion constraints 
into CF. Specifically, the dissimilar data points in original high-
dimensional data space can be kept far apart in the learnt low-
dimensional feature space, which leads to the following distant 
repulsion constraint for SDCF2:  

 2

1 1

1
min exp

2

N N

ij i j
V

i j

V V
 

   ,                     (40) 

where 
2

ij i jX X    is the repulsive weight. Note that Eq. (40) 
is added into CF to make full use of the repulsive property of 
data, which can clearly force the dissimilar samples to be far 
away in the low-dimensional representation space.  

5. Unspervised Multi-view CF Methods 

In real-world emerging applications, multi-view data can be 
encountered, since real data may have different representations 
in multiple views or come from different sources [194-196]. For 
example, Zhang et al. [194] proposed the first binary multi-view 
clustering algorithm, which provides a feasible solution to the 
challenging large-scale data clustering problem in an efficient 
manner. While most existing CF-based methods perform matrix 
decomposition and clustering only relying on individual view, 
which has obvious limitations when dealing with multi-view 
datasets. To overcome this problem, both MVCC [122] and 
MVCF [123] explore extending the traditional individual-view 
CF methods to the multi-view scenario. Note that the general 
multi-view CF framework has been presented in Fig.9.  
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Fig.9: Multi-view CF method.  

MVCC [122].  MVCC jointly incorporates the CF, the local 
manifold regularization and the consistency constraint into a 
unified framework. MVCC differs from the other multi-view 
learning methods that treat each view equally, MVCC assigns 
different weights for each view and then drives a consensus 
solution across all the views. For a given n -view dataset 

     1 2, ,..., nX X X X     , where D NX    denotes the samples 
of the  -th view and D  is the dimension of the  -th view, 
then MVCC minimizes the following reconstruction error:  



                 
2
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, , . . , 0
n T

F

g W V X X W V s t W V


       

 

   . (41) 

Then, MVCC incorpoartes the local manifold regularization 
for each view similarly as LCCF using heart kernel weights and 
minimizes the multi-view regularization       T

tr V L V    
 

. 
To further explore the relationship among all views and derive 
the common consensus representation matrix, MVCC clearly 
minimizes the consistency loss punishment function

2

F
V V   , 

where V  is the common consensus matrix. Finally, MVCC 
solves the following joint minimization problem:  
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(42) 
where MVCC  and MVCC  are two trade-off parameters and   de-
notes the weights of the  -th view among all views.  

MVCF [123]. MVCF is also a multi-view clustering method. 
The main difference between both MVCC and MVCF is that 
MVCC applies the heat kernel weighting and pre-computes the 
weights, while MVCF adoptes an adaptive weighting scheme 
like CFANs [12]. In detail, MVCF explots the local geometry of 
data distribution by optimizing the graph matrix in a global view. 
Finally, MVCF minimizes the following criterion:  
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, (43) 
where MVCF  is the trade-off parameter. For the parameter   
tuning the weight of the  -th view, MVCF adds an extra term  

 2

1

n



  to avoid the trivial solution, i.e., only the weight of 

one view is learned as 1 and the others are 0.  

B. Supervised CF variants 

Unsupervised CF variants mainly focus on learning representa-
tions, but they cannot utilize any supervised prior information 
of samples, such as class label information, even though the la-
bels of samples are available. Therefore, to make full use of the 
available label information and further improve the discrimina-
tive abilities of the obtained feature representations, supervised 
CF methods have also been explored, which can be further di-
vided into fully-supervised ones and semi-supervised ones.  

SGDCF [22]. SGDCF is a classical supervised CF method. 
For the training data D NX  with labels, SGDCF first defines a 
class indicator matrix SGD C F c NC   using label information:  

 1, if ,  1,2,..., ,  1,...,

0, otherwise
SGDCF
ij

label j i j N i c
C

   
 


,       (44) 

where  label j  is the class label of jx . Then, the label con-
straint term can be defined as

2T

F
C V  , where   denotes a 

nonnegative auxiliary matrix which can be initialized randomly. 
In addition to using label information, SGDCF also unifies the 
graph regularization in terms of 

2T T

F
V LV   so that the local 

geometry structure can be retained, where the graph Laplacian  
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Fig.10: Semi-supervised learning strategies for CF.  

matrix SL D S    and SGDCF defines the weight matrix S by 
using the ‘0-1’ weighting approach.  

By combining the concept factorization term, the graph reg-
ularization term and the label constraint term, we can obtain the 
objective function of SGDCF as follows:  

 

2 2

, . . , , 0

T SGDCF T
SGDCF SGDCFF F

T
SGDCF

O X XWV C V

tr V LV s t W V





   

  
 ,      (45) 

where SGDCF and SGDCF are nonnegative trade-off parameters.  

C. Semi-supervised CF variants 

Based on using all the labeled data, fully-supervised CF meth-
ods have significantly enhanced the representation ability, but 
in real applications, it is usually hard and costly to obtain the 
labels of data. As a result, the applications of fully-supervised 
methods may be restricted. Under this circumstance, the semi-
supervised learning methods that can utilize a small number of 
labeled data and a large amount of unlabeled data tend to out-
perform the fully-supervised methods in terms of performance 
and application scenario [156-157]. As such, researchers also 
investigated the semi-supervised CF-based methods to enhance 
quality and ability of the representation learning.  
   As shown in Fig.10, there are three popular strategies to ex-
tend CF to semi-supervised scenario, i.e., adding the label con-
straint into factorization, joint representation learning and clas-
sification, and adding pairwise constraints into CF framework. 
Next, we will introduce the three strategies in detail.   

1. Joint Classification based CF Methods 

We first introduce the unified CF frameworks that aims to im-
prove the representation learning ability through performing 
joint representation and classification. Several classical meth-
ods of this kind are described as Fig.10.  

DCF [23]. DCF is the first work of extending CF to semi-
supervised scenario, which combines the representation learn-
ing with the task of classification. To make full use of the partial 
labeled data, DCF jointly optimizes the representation issue and 
trains a classifier. In particular, for a given partial-labeled data 
matrix    , D l u

L UX X X    , where LX  denotes a labeled set 



and UX  is an unlabeled set, l  and u  are the numbers of la-
beled and unlabeled samples respectively. Assume that the label 
set of LX  is  1 2, ,..., c l

lY y y y   , DCF trains a linear function
  DCFv B vf  for classification from sample-label pairs  ,T

i iv y , 
where T

iv is the new representation of ix ,  1,2,...,i l , DCFB is a 
c r  coefficient matrix. The procedure of training this function 
 vf  can be mathematically formulated as follows:  

2 2

1

min
DCF

l
T

i DCF i DCF DCF FFB
i

y B v B


   ,               (46) 

where DCF is a nonnegative parameter and 
2

DCF F
B is added to 

avoid the overfitting. Using the obtained classifier  vf , DCF 
can compute  i iy vf  and assign class label for each unlabeled 
data point ix  as arg max j ijy . Since Y is a c l  matrix and TV is 
a  r l u  matrix, to make a relationship between both Y and 

TV , DCF defines a selection matrix  1 2, ,..., N l
DCF lC e e e    , 

where  , 1,2,...,ie i l  denotes an N-dimensional vector with 
the i -th entry being 1 and the other entries being 0. Finally, the 
minimization based objective function of DCF is defined as 

 2 2 2T T T
DCF DCF DCF DCF DCF DCF FF F

O X XWV Y B V C B      . 

(47) 
HDCF [24]. Although DCF can obtain the discriminative rep-

resentations, it still fails to uncover the intrinsic geometrical 
structure of data. To obtain both the discriminative and locality-
preserving representations, HDCF incorporates hyper-graph 
regularizer into DCF, which can clearly preserve the geometrical 
structures. Note that the strategy of making full use of the prior 
label information is the same for both HDCF and DCF.  

2. Label Constraint based CF Methods 
Different from the joint classification based CF methods, label 
constraint based CF methods utilize the prior label information 
of the labeled data as an additional constraint to guide the semi-
supervised factorization. Several representative label constraint 
based CF methods are described as follows:  

CCF [17]. CCF is the most representative method of this kind. 
To improve the discriminating power of learnt representations, 
CCF clearly extends CF to semi-supervised scenario and guides  
the constrained CF by defining a label constraint matrix A. Let 

l c
LA   be the class indicator matrix defined on labeled data 
LX . The element  L ij

A   is defined as 1 if ix is labeled as the j-
th class, and 0 otherwise. Note that CCF did not define an ex-
plicit class indicator for UX  and simply used an identity matrix  

u uI  of dimension u u   for UX . Thus, CCF defines the overall 
label constraint matrix A as follows:  

     0

0
l u c uL l c

u u

A
A

I
  



 
  
 

 .                 (48) 

To ensure the samples sharing the same label can be mapped 
into the same class in low-dimensional space (i.e., same iv ) [17], 
CCF imposes the label constraint by an auxiliary matrix Z:  

V AZ  .                                     (49) 

By substituting V AZ  into CF, CCF computes a nonnega-
tive matrix N RW  and an auxiliary matrix  c u rZ    from 

2
,  . . , 0T T

CCF F
O X XWZ A s t W Z    .                (50) 

 
The optimization procedure of CCF is shown in Algorithm 3.  

Although CCF can obtain the discriminative representations 
using the label constraints, it still has several drawbacks: 1) it 
may be sensitive to noise and outliers by performing represen-
tation learning directly in original data space and using the Fro-
benius norm to encode the reconstruction error; 2) it fails to pre-
serve the local manifold information during decomposition; 3) 
it aims to map the intra-class data points into the same concept, 
but note that this is infeasible if there is only one labeled sample 
to rely on; 4) it simply defines the label indicator for the unla-
beled samples as an identity matrix, that is, CCF may not fully 
utilize the unlabeled samples and moreover fails to predict the 
class label for unlabeled samples. As such, several subsequent 
studies have been done to address these issues.  

RSSCF [31]. To inherit the merits of CCF and further im-
prove the robustness properties to noise and outliers of CCF, 
RSSCF has been recently proposed. For the consideration of ro-
bustness, different from CCF that uses the Frobenius norm to 
measure the reconstruction error, RSSCF replaces it by -
norm due to the fact that -norm was proven to be robust to 
noise and outliers [152-153]. Besides, to encode the reconstruc-
tion error jointly, RSSCF minimizes a -norm based recon-
struction error 

2,1

T TX XWZ A  and -norm is also regular-
ized on Z, i.e., 

2,1
Z , to obtain the sparse representation. Over-

all, RSSCF solves the following minimization problem as 

2,12,1
, . . , 0T T

RSSCF RSSCFO X XWZ A Z s t W Z    ,     (51) 

where RSSCF denotes a nonnegative trade-off parameter.  

CGCF [129], SLCF [137], LRCCF [30], CCF-GL [32] and 
HCCF [132]. These extensions are proposed to compute the lo-
cality-preserved discriminative representations by using the la-
bel constraints and considering the geometrical structures. Spe-
cifically, CGCF combines CCF and LCCF into a unified model 
to enhance the locality of CCF. SLCF incorporates the idea of 
LCF into CCF. LRCCF includes a local regularization con-
straint based on the representation T TZ A . CCF-GL not only in-
corporates the graph Laplacian over T TZ A , but also utilizes the 
label information of data by building the cannot-link pairwise 
constraints on T TZ A , where the graph Laplacian is able to pre-
serve the geometrical information of data and the cannot-link 
pairwise constraints can impose the restrictions on inter-class 

2,1L

2,1L

2,1L

2,1L

Algorithm 3: CCF algorithm 
Input: Partial labeled data [ , ] D N

L UX X X   , rank and a 
small constant .  
Initialization: Construct the kernel matrix ; Initial-
ize and to be random matrices; Construct the label con-
straint matrix A  by Eq.(46).  
While  not converged do 

1. Update  by    t T T
ik ik ik

w KAZ KWZ A AZ ; 

2. Update 
1t

jkz 
 by    t T T T

jk jk jk
z A KW A AZW KW ;  

3. Convergence check: if    1t t

CCF CCFO O    , stop; else, 
return to step 1.  
End while 
Output:  New low-dimensional representation V 

of X.  

r


TK X X

W V

1t
ikw 



data points. It is worth noting that HCCF differs from CGCF, 
SLCF, LRCCF and CCF-GL that it extends CCF to the hyper-
graph scenario, i.e., it incorporates the hyper-graph regulariza-
tion into CCF so that it can better handle more complex data 
distribution with multivariate relationships.  

CDCF [34]. CDCF addresses the drawback that CCF cannot 
process the case that there is only one labeled data point to train 
in each class. Specifically, CDCF associates the class labels of 
samples with their representations by introducing a class-driven 
constraint as  

j

T T
y jj

d v tr V  , where iy  is the label of sam-
ple ix  and 

1 2
, ,...,

N

T

y y yd d d     is the indicator matrix for the in-
homogeneous representation. Therefore, CDCF has the poten-
tial to force the representations of data points to be more similar 
within one class, but different between classes.  

RS2ACF [33]. Inspired by the idea of label propagation for 
semi-supervised learning [147-152], RS2ACF includes the label 
prediction into CCF. Different from CCF that simply defines 
the label constraint sub-matrix for unlabeled data by an identity 
matrix, RS2ACF explicitly learns a label indicator for UX  so 
that it can also make sure the unlabeled data with the same pre-
dicted labels to be mapped to be close in feature space. To be 
specific, RS2ACF designs the label constraint matrix as 

 
 

  20

0
L l u cl c

U u c

A
A

A
 



 
  
  

 ,                 (52) 

where UA is the class indicator for unlabeled data UX , which is 
learned by solving a label predictor D cP  from:  

2 2

2,1,
min

U

T T
L L U UF FA P

A X P A X P P    ,             (53) 

from which one see that RS2ACF clearly propagates the label 
information from LX to UX  by P . Note that to make the pre-
dicted results reasonable, P  is initialized as a label predictor 
explicitly based on the labeled data [33]. Furthermore, RS2ACF 
also involves the adaptive weight learning to retain the manifold 
structures of the original data space, new representation space 
and the label space at the same time.  

SDCF1 [44] and GDCF [44]. SDCF1 and GDCF provide an-
other way for doing semi-supervised CF. Specifically, SDCF1 
expects that the classes of dataset can be placed in a clear sepa-
rated cluster in the resulting representation space V. The label 
matrix c N of SDCF1 is defined as follows:  

1 if sample  is labeled as class 

0 otherwise


  


j

ij

x i
.           (54) 

With the constructed  , the label constraint is defined as 
2TV 


, where  1,..., ,0,...,0

T N r
lV v v  


  and the label ma-

trix c r  . The label matrix   can linearly transform and 
scale the vectors in V  to best fit the label matrix   [44]. Fi-
nally, the objective function of SDCF1 is formulated as 

22
, . . , 0T T

SDCF SDCFF
O X XWV V s t W V     


.   (55) 

Note that SDCF1 fails to extract the latent concepts consistent 
with the manifold geometry, so GDCF incorporates the LCCF-
style graph Laplacian regularizer into the SDCF1 model to pre-
serve the local manifold structures of data.  

MCC-Based Robust Semi-supervised CF (MRSCF) [131]. 
Motivated by [141], MRSCF utilizes the label information by 
the following minimization term:  

   TT Ttr V V    
 ,                      (56) 

where   is the indicator matrix of size c N , which is defined 
in Eq.(54).   is a diagonal matrix with 1ii   if ix is la-
beled and 0ii   otherwise. Note that MRSCF includes this 
term to measure the distance between the representation and in-
dicator matrices of the labeled samples and encourage them 
close to each other in the representation space.  

Remarks. Incorporating the label information as a hard con-
straint is the most common way to extend CF to the supervised 
or semi-supervised cases. However, the hard label information 
is always hard to obtain in reality. Thus, to fully utilize the small 
number of labels, pairwise constraints (PCs) based semi-super-
vised CF methods have also been developed, since PCs can be 
achieved with minimal human efforts and can provide more su-
pervision information compared with the traditional label infor-
mation. Moreover, PCs are more flexible in regulating the su-
pervised information than the hard label information.  

3. Pairwise Constraints based CF Methods 

It is noted that the PCs also offer advantages over the traditional 
label information, since the supervised prior knowledge can be 
enriched by constructing the pairwise constraints, i.e., must-link 
(ML) and cannot-link (CL) constraints, based on the limited la-
bel information [86-87]. In addition, the label constrained semi-
supervised CF methods also neglect the intra-class variance, 
which may lead to the decreased results. Next, we introduce the 
representative pairwise constraints based CF methods:  

PCCF [25]. To obtain discriminative representations, PCCF 
encourages the samples under pairwise ML constraints should 
have the same label and the samples under CL constraints to 
have different labels as much as possible. PCCF firstly defines 
a ML constraints symmetric matrix N N

ijm       and a CL 
constraints symmetric matrix N N

ijc       as follows:  

 1 if ,  have the same class label

0 otherwise
i j

ij

x x i j
m

 
 


,         (57) 

 1 if ,  have different class label

0 otherwise
i j

ij

x x i j
c

 
 


.        (58) 

After combining the cost function of CF, the cost function for 
the violation of pairwise ML and CL constraints, PCCF solves 
the following minimization problem:  

2

1 : 1 1 1, : 1 1ij ij

N r r r
T

PCCF PCCF jc ih jc qcF
j i m c h h c i c c

O X XWV v v v v
      

 
     

 
      , 

(59) 
where 0PCCF   denotes a non-negative trade-off parameter.  

 SSCF [26]. Different from PCCF that imposes a constant 
penalty for all pairwise constraints, an optimized method called 
SSCF provides a dynamic penalty mechanism. More specifi-
cally, SSCF mainly aims at allowing the dissimilar data points 
of the same label to be mapped farther than the similar ones so 
that the intra-class variance can be well accounted.  
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Fig.11: Comparison of shallow and deep CF models.  

CNPCF [27] and RCF [28]. Although PCCF can compute 
the discriminant representations using the pairwise constraints, 
it still has a shortcoming that it only utilizes prior knowledge 
but neglecting the proximity information of the whole distribu-
tion in datasets. By handling this issue, CNPCF also considers 
retaining the local structures of whole dataset to guide cluster-
ing, in addition to using supervised prior knowledge. Note that 
CNPCF utilizes the prior information by the ML constraints to 
modify the graph. But if the prior knowledge is few, only using 
this information to modify the graph is in fact not effective to 
preserve the geometric structure of data. To solve this issue, a 
regularized CF (RCF) [28] firstly propagates the limited dual 
connected constraints to whole dataset, and then constructs a 
novel weight matrix which can be seen as a penalty term used 
to make the intra-class data points more compact and the inter-
class sample more separable in the feature space.  

IV. DEEP/MULT-LAYER CF-BASED METHODS 

By considering the characteristics of locality, robustness, oper-
ating space, discriminability and multiple-views, existing unsu-
pervised CF variants have obtained obvious performance im-
provement over standard CF method, but they still suffer from 
a serious drawback, i.e., they cannot uncover hidden deep fea-
tures from complex real data. It should be noted that in recent 
years deep learning-based methods have achieved great success 
in the area of visual representation learning, speech recognition 
and natural language processing, therefore the related research-
ers have also paid a lot of attention to exploring how to extend 
the traditional shallow (or single-layer) CF models to the deep 
(or multi-layer) scenario. As illustrated in Fig.11, the shallow 
model directly maps the visual features into latent space while 
deep model can learn the hierarchical feature representations 
from visual features. In this paper, we will divide the existing 
deep CF methods into two major categories, i.e., traditional 
deep CF models and optimized deep CF models.   

A. Traditional Feeding-style Deep CF Models 

The deep CF models of this kind usually performs the standard 
CF process to obtain the intermediate new representation, and  
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Fig.12: The simple factorization structure of the traditional 

multi-stage deep CF models.   

Algorithm 4: MCF algorithm 
Input: Data matrix D NX  , a fixed number M of layers, 
rank and a small constant .  
Initialization: Initialize 1X X in the first layer; Initialize 

and to be random matrices.  
For m=1 to M do 

Construct the kernel matrix T
m mK X X ;  

While not converged do 

1. Update  1t
ik m

w   by        t T
ik ikm ikm m

w KV KWV V ; 

2. Update  1t
jk m

v   by        t T
jk jkm jkm m

v KW VW KW ; 

3. Convergence check: if    1t t

CCF CCFO O    , stop; 
else, return to step 1.  

End while 
1

T
m mX V  ;  

End 
Output: New low-dimensional representation V  of X.  

then feed the intermediate representation of the previous layer 
directly as the input of the next layer for further decomposition, 
as shown in Fig.12. That is, these traditional deep models did 
not consider how to solve the representation by the optimized 
strategies. Classical traditional deep CF models include:  

MCF [35]. The first work that extends the standard CF model 
to deep scenario is called MCF [35], proposed in 2015. Inspired 
by the multilayer NMF method [39], MCF adopts a kind of sim-
ple deep hierarchy and performs the decomposition sequentially. 
Suppose that the hierarchical structure has M layers, MCF per-
forms the matrix decomposition as CF in the first layer, that is, 

1 1 1
TX X WV . Then MCF considers the new representation learnt 

in the first layer, i.e., 1
TV , as the input of the second layer, and 

performs the similar factorization as 1 1 2 2
T T TV V W V . Similarly, in 

the following layers, MCF directly uses the low-dimensional 
representation of the previous layer as the input of the next layer, 
which is formulated as follows:  

1 1 1 1 2 2 1 1,   ,...,   T T T T T T T
M M M MX XWV V V W V V V W V    ,       (60)  

i.e., 1 1 2 2 ... T T T
M MX XWV W V W V , 1 1 2 2 ... T T

MW WV W V W and T T
MV V . The 

simple hierarchical structure of this kind is shown in Fig.12, and 
the objective function of MCF is defined as 

r 

W V



2
,   . .  , 0,   1,2,...,T

MCF m m m m m mF
O X X W V s t W V m M    ,    (61) 

where m mX W and T
mV  denote the basis vectors and the learnt new 

representations in the m-th layer, respectively. We summarize 
the optimization procedure of MCF in Algorithm 4.  

GMCF [36]. Although MCF can obtain the deep hierarchical 
information by the designed deep structure, it fails to retain the 
local manifold structure of samples. As such, GMCF [36] was 
then proposed to improve MCF by integrating the geometrically-
based graph regularization into MCF to discover the local geo-
metrical information of data, which can also be seen as a deep 
version of LCCF. Note that the deep factorization principle of  
GMCF is similar in sprit to that of MCF. However, in the m-th 
layer, GMCF needs to construct a p-nearest neighbor graph over 
input data      1 2, ,...,m Nm m m

X x x x     , then define a weight ma-
trix mS  using the cosine similarity, and finally obtain the graph 
Laplacian as m m mL D S  , where mD  is a diagonal matrix with 
   m mii ijj
D S . The objective function of GMCF is defined as 

 2

. .  , 0,   1,2,...,

T T
GMCF m m m m GMCF m m mF

m m

O X X W V tr V L V

s t W V m M

  

 
,       (62) 

where GMCF  is nonnegative parameter to trade-off the recon-
struction error and local manifold preservation.  

DGMCF [164]. Since GMCF only considers preserving the 
locality information in data space, DGMCF improves it by con-
sidering keep locality information both in data and feature space 
at the same time. In other words, DGMCF is can be regarded as 
a deep extension of GCF [8]. In each layer, it constructs p-near-
est neighborhood data and feature graphs using binary weights.  
Finally, it solves the following joint objective function:  

 
 

2

. .  , 0,   1, 2,...,

T T V
DGMCF m m m m DGMCF m m mF

T W
DGMCF m m m

m m

O X X W V tr V L V

tr W L W

s t W V m M





  



 

 ,   (63) 

where DGMCF and DGMCF are two nonnegative parameters, V
mL ,  

W
mL are the graph Laplacian matrices of data graph and feature 

graph respectively in the m-th layer.  

  Remarks. The deep factorization models of MCF, GMCF and 
DGMCF provide a simple feeding-style way to extend single-
layer CF to deep versions. This simple factorization structure in 
Fig.12 can also be extended for the other shallow CF methods 
to deep methods. Thus, we summarize the simple deep methods 
in this category as traditional feeding-style deep CF models. 
However, it should be noted that the simple “feeding” strategy 
may be ineffective and even unreasonable in reality, since we 
cannot strictly ensure that the previous representation is optimal 
and also effective for subsequent layers. Note that the learned 
representations in the first layer may be inaccurate and may lose 
important feature information, which will cause the reconstruc-
tion errors to be larger and larger with the increase of layers.  

B. Optimized Deep CF Models 

Toward the shortcomings of the traditional multi-stage deep CF 
models, researchers also investigated to refine the deep network 
models to discover the hidden deep information by optimizing  
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Fig.13: The deep factorization structure of DSCF-Net.  
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Fig.14: The deep factorization structure of DS2CF-Net.  

the basis concepts or new representations in each layer, rather 
than using the simple “feeding” strategy. Note that two classical 
optimized deep matrix factorization models are called Deep 
Semi-NMF (DSNMF) [40] and Weakly-supervised Deep MF 
(WDMF) [41]. Both DSNMF and WDMF have provided new 
ways to optimize the deep factorization models, which can un-
cover the hidden deep features using multiple layers of linear 
transformations and updating the basis concepts or new repre-
sentations in each layer. But note that DSNMF is a two-stage 
method: in the first stage, DSNMF adopts the traditional “feed-
ing” deep factorization strategy as MCF; in the second stage, it 
refines the new representation and basis vectors directly based 
on the outputs of each layer in the first stage by an independent 
step. As a result, DSNMF will also suffer from the same perfor-
mance-degrading issue as the above traditional multi-stage deep 
CF models. In addition, DSNMF and WDMF cannot encode the 
local geometry structure of the learned representations in each 
layer, especially in an adaptive manner. Moreover, they directly 
decompose data in the original space that usually has noise and 
corruptions, which may decrease the performance. In more re-
cent years, more optimized strategies have been proposed to ad-
dress the above drawbacks, which will be introduced below:  

DSCF-Net [37]. DSCF-Net proposed in 2019 designs a novel 
deep network structure for deep CF, which is illustrated in Fig.8, 
where 

2,1
E  is the sparse error by 2,1L -norm regularization and 

X-E is the noise-removed clean data. To improve the robustness 
to noise, DSCF-Net incorporates the subspace recovery process 
into the process of CF and factorizes data in the recovered clean 
space. Specifically, DSCF-Net factorizes the recovered data ma-
trix X E  into 1M   factors, i.e., 1,  ,...,T

MV U U , where the out-
put of the first layer is transformed from the visual space, i.e., 

 1 1U W X E  . To discover deep hidden information, DSCF-
Net uses M layers of linear transformations and the mathemati-
cal representation of the deep structure is formulated as follows  
[37], which is also illustrated in Fig.13.  



Table II. Overall summarization of existing CF-based representation learning methods.  

Categories of current CF-based methods Methods 
Properties 

Publication 
Local Robust Kernelized Discriminant 

Single-
layer CF 
methods 

Unsupervised 
CF 

Local-
ity-pre-
serving 

CF 

Graph 
Regularized CF 

LCCF √    Cai et al. 2011 [7] 
GCF √    Ye et al. 2014 [8] 

RDCF  √ √   Guo et al. 2015 [121] 
HRCF  √    Li et al. 2015 [133] 
SMCF √    Li et al. 2016 [135] 
LGCF1 √    Li et al. 2017 [10] 
LGCF2 √    Qian et al. 2017 [139] 
GRLCF √    Ye et al. 2017 [9] 

GRLCFCLR √    Ye et al. 2017 [9] 
DHCF √    Ye et al. 2017 [134] 

ADGCF √ √   Ye et al. 2017 [13] 
HDCF √    Ye et al. 2018 [24] 

RLLDCF  √ √  √ Jiang et al. 2018 [125] 
MCFAW √    Shu et al. 2018 [11] 
CFANs √    Pei et al. 2018 [12] 

CF-OGL  √    Shu et al. 2019 [126] 
RFA-LCF √ √   Zhang et al. 2019 [14] 

Local  
coordinate cod-
ing based CF 

LCF √    Liu et al. 2011 [16] 
GLCF √  √  Li et al. 2015 [18] 
LGCF1 √    Li et al. 2017 [10] 
GRLCF √    Ye et al. 2017 [9] 

GRLCFCLR √    Ye et al. 2017 [9] 
RFA-LCF √ √   Zhang et al. 2019 [14] 

Self-representa-
tion based CF 

SRMCF √    Ma et al. 2018 [20] 
JSGCF √    Peng et al. 2019 [21] 

Other locality-
preserving ways 

for CF 

SDRCF √    Du et al. 2013 [120] 
LRCF √  √  Shu et al. 2015 [30] 
SCF √    Shen et al. 2020 [127] 

RSSCF √    Shen et al. 2020 [127] 
LSDCL √    Zhao et al. 2020 [183] 
CFLCs √    Chen et al. 2020 [186] 

Kernel CF 

MKCF √  √  Li et al. 2012 [19] 
GLCF √  √  Li et al. 2015 [18] 

GMKCF   √  Li et al. 2019 [136] 
DMKCF √  √ √ Mu et al. 2020 [182] 

Robust CF 

RDCF √ √  √ Guo et al. 2015 [121] 
ADGCF √ √   Ye et al. 2017 [13] 
GCCF √ √   Peng et al. 2018 [124] 

RLLDCF √ √  √ Jiang et al. 2018 [125] 
RSCF √ √   Shen et al. 2020 [127] 

Discriminant CF 
RDCF √ √   Guo et al. 2015 [121] 
SDCF2 √   √ Shu et al. 2017 [128] 

RLLDCF √ √  √ Jiang et al. 2018 [125] 

Multi-view CF 
MVCC √    Wang et al. 2016 [122] 
MVCF √    Zhan et al. 2018 [123] 

Semi-supervised 
CF 

Joint classification based 
CF 

DCF    √ Hua et al. 2011 [23] 
HDCF √   √ Ye et al. 2018 [24] 

Label constraint based CF 

CCF    √ Liu et al. 2014 [29] 
CGCF √   √ Shi et al. 2014 [129] 
HCCF √   √ Li et al. 2015 [132] 

CCF-GL √   √ Lu et al. 2016 [32] 
CDCF    √ Li et al. 2016 [34] 
SDCF1    √ Li et al. 2016 [44] 
GDCF √   √ Li et al. 2016 [44] 
RSSCF √ √  √ Yan et al. 2017 [31] 
RS2ACF √ √  √ Zhang et al. 2019 [33] 
MRSCF √ √  √ Zhou et al. 2020 [131] 
SLCF √   √ Li et al. 2020 [137] 

LRCCF √  √ √ Shu et al. 2015 [30] 

Pairwise constraints based 
CF 

PCCF    √ He et al. 2014 [25] 
SSCF    √ Lu et al. 2016 [26] 

CNPCF √   √ Lu et al. 2016 [27] 
RCF √  √ √ Yan et al. 2017 [28] 

Supervised CF Label information driven SGDCF √   √ Long et al. 2018 [22] 

Deep/ 
multi-

layer CF 
methods 

Traditional  
feeding-style 

deep CF model 

- MCF     Li et al. 2015 [35] 
- GMCF √    Li et al. 2017 [36] 
- DGMCF √    Zhang et al. 2018 [164] 

Optimized 
deep CF model 

Single-channel DSCF-Net √ √   Zhang et al. 2019 [37] 
Dual-channel DS2CF-Net √ √  √ Zhang et al. 2020 [38] 
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Then, the total reconstruction error between X E and its re-
construction is     2

1 1... M
T

M F
W WX E E VWX    , where the deep 

basis is   0 1... M MX E W W W  and the learned deep representation 
is TV . Inspired by the self-expression of SRMCF [20], DSCF-
Net also takes 1 1... M M

TW W W V  as the self-expressive weights and 
adds the locality constraint  1

2 2

1... T

F
M

T

FM MW W WV V WV V   
into the CF framework. Finally, the objective function of DSCF-
Net is defined as the following joint minimization problem:  
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,    (65) 

 1,2,..., 0. ,. 0m M ms W Vt    , where the auxiliary variable S  is to 
facilitate the optimization, DSCF Net  , DSCF Net  and DSCF Net  are 
three nonnegative parameters, and the 2,1L -norm constrained 
term 

2,1
E  can make the error term E column sparse. It is clear 

that DSCF- Net can automatically learn the intermediate hidden 
representations and aim at updating the intermediate basis vec-
tors in each layer. Since the basis vectors can capture the higher-
level features and each sample is reconstructed by a linear com-
bination of the bases, optimizing the basis vectors can improve 
the representation indirectly in each layer.  

DS2CF-Net [38]. Different from DSCF-Net that aims at opti-
mizing the basis vectors to improve the representation indirectly 
in each layer, DS2CF-Net coupled updates the basis vectors and 
new representations in each layer. To enhance the representation 
and clustering abilities, DS2CF-Net designs a hierarchical and 
coupled factorization framework that has M layers, which is for-
mulated for learning M updated pairs of representation matrices 
and basis vectors 1 MXW W , and M updated label constraint ma-
trices A. The deep factorization process of DS2CF-Net is exhib-
ited in Fig.14, which is performed as follows:  

1 1

2 1 2 2 1 2
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  ,                (66) 

where  1,2,...,mU m M  is the set of basis vectors of the m-th 
layer,  1,2,...,T

mV m M  is the low-dimensional representation, 
 1,2,...,mW m M  is the intermediate matrix for updating the ba-

sis vectors and  1,2,...,mZ m M  is the intermediate auxiliary 
matrix for updating the low-dimensional representation. Matrix 
A denotes the label constraint matrix. Finally, the hierarchical 
model of DS2CF-Net minimizes the objective function:  
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where  0 0

2

... ...
T T

M
F

MW W Z Z AX X  is a deep reconstruction er-
ror, 1J  is the label propagation function for enriching the prior, 

2J  is the enriched prior based structure constraint, 3J  is the self-
weighted dual-graph learning function to obtain the locality pre-
serving representations, 2DS CF Net




, 2DS CF Net



 and 2DS CF Net




 are 
three nonnegative trade-off parameters. Note that both 0W  and 

0Z  are added to facilitate the description, which are fixed to be 
the identity matrices. The structure of the overall label constraint 
matrix A is similarly defined as RS2ACF [33].   

To enrich the supervised prior information and make full use 
of both labeled and unlabeled data, DS2CF-Net clearly incorpo-
rates the dual constraints, i.e., label constraint and structure con-
straint. Specifically, the function 1J  is defined as 

   2

1

2

0 0 2,1
... ...

TT T T T
L L M MF F

J A X P P X P X W W Z Z A P    ,  

    (68) 
where  0 0... ...

T T
M MW W Z Z A  can be regarded as the meaningful 

coefficient matrix self-expressing X, based on the self-expres-
sion on the coefficient matrix [20]. Since the learned robust la-
bel predictor P over LX  can map each xi into label space by PTxi, 
i.e., the supervised information can be enriched by estimating 
the soft label of each unlabeled sample i Ux X  as T

ix P . Then, 
we obtain AU using the normalized soft labels that are described 
as      1

cT T
U U Uij jij ij

A X P X P


  . Then, the enriched prior based 
structure constraint function 2J  can be defined as  

   0 0

2

0

2

02 ... ... ... ...
F F

T TT T
M M M MW W Z Z A W W Z ZJ A      

.(69) 

where the structure-preserving matrix   is defined as follows:  
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0 0 0 0
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c

 

 
                

 

  .  (70) 

where LQ  and UQ  are the structure constraint matrices defined 
based on LX and UX , respectively. LQ  is a strict block-diago-
nal matrix, where each block  1, 2,...,iQ i c  is a matrix of all 
ones, defined according to the labeled data. The self-weighted 
dual-graph learning function 3J  is defined as follows:  

2 2

3
T T U T T V
M M M MF F

J U U S V V S      
,                (71) 

where 0=M MXW WU     and  0.= ..M MV A Z Z  are auxiliary matrices. 
Clearly, 3J  can effectively retrain the local neighborhood infor-
mation of the deep basis vectors 0 MXW W    and representations 
 0...

T T
MZ Z A  in an adaptive manner simultaneously.  

Remarks. In addition to the factorization model, DS2CF-Net 
also differs from DSCF-Net in several aspects: 1) DSCF-Net is 
an unsupervised model, but DS2CF-Net is a semi-supervised 
method that incorporates the optimized label constraint and la-
bel propagation into a unified framework; 2) DS2CF-Net also 
includes a structure constraint to enforce the deep self-expres-
sion weight to be structured and to have a good block-diagonal 
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Fig.15: Milestone of representative CF methods in each period and their variants.   
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Fig.16: Examples of evaluated databases.   

structure, so that each sample can be reconstructed more accu-
rately by the samples of the same class as much as possible; 3) 
DSCF-Net preserves the manifold structure information only in 
data space while DS2CF-Net can not only retain the local man-
ifold information in the data space but also in the resulting fea-
ture space by introducing the adaptive dual-graph constraints.  

Summarization. Finally, we summarize all the current CF-
based methods in Table II, and also show the milestones of CF-
based methods in Fig.15. In Table II, we mainly show the cate-
gorization of CF methods and also describe their characteristics. 
In Fig.15, we mainly show the development trend of CF-based 
methods, where we clearly illustrate the timeline of representa-
tive methods in each period. From the timeline, it is clear that 
there is an obvious trend in the development of CF methods, i.e., 
from shallow to deep. From year 2011, many CF variants have 
begun to be put forward, and in the year 2015 deep CF method 
was first proposed. From year 2015 till now, deep frameworks 
have gradually become the mainstream trend.   

V. EXPERIMENTAL RESULTS AND ANALYSIS 

We conduct simulations to examine the data representation and 
clustering performance of some representative CF methods, in-
cluding the root CF [6], four unsupervised single-layer models 
(LCCF [7], LCF [16], GCF [8], and RFA-LCF [14]), two semi-
supervised single-layer methods (CCF [29] and RS2ACF [33]) 
and four deep/multi-layer methods (MCF [35], GMCF [36], 
DSCF-Net [37] and DS2CF-Net [38]). In this study, 12 public 
real-world databases are involved, including three face data-
bases (i.e., CMU PIE [178], MIT CBCL [172] and AR [171]), 

Table III. List of used datasets and dataset information.  

Dataset Data Type #Points #Class #Dim 

CMU PIE [178] 

Face images 

11554 68 1024 

MIT CBCL [172] 3240 10 1024 

AR [171] 2600 100 1024 

COIL100 [173] 
Object images 

7200 100 1024 

ETH80 [176] 3280 80 1024 

USPS [187] 

Handwritten digits 

3000 10 256 

Hnd-D [170] 550 10 1024 

Hnd-C [170] 2860 52 1024 

Fashion MNIST [188] Fashion products 70000 10 784 

HP2 [189] Bearing faults 800 10 15 

TDT2 [193] Text 10212 96 36771 

SCC [190] Time series 600 6 60 

  
two object databases (COIL100 [173] and ETH80 [176]), three 
handwritten databases (USPS [187], Hand-drawn-digits called 
Hnd-D [170], and Hand-drawn-characters termed Hnd-C [170]), 
one fashion product database (Fashion MNIST [188]), one roll-
ing bearing fault dataset (HP2 [189]), one text dataset (TDT2 
[193]), and one synthetic control chart time series dataset from 
UCI (SCC) [190]. Since the dimensionality of the text data in 
TDT2 [193] is too high, we reduce the dimensionality to 1000 
by PCA [1] for efficiency. For the face, object and handwritten 
digit datasets (Hnd-D and Hnd-C), the images are down-sam-
pled into 32*32 pixels, corresponding to 1024-dimensional vec-
tors. Some samples of evaluated datasets are shown in Fig.16, 
and the detailed information of the databases is shown in Table 
III, where we show the total number of samples, dimension and 
number of classes. We perform all experiments on a PC with 
Intel Core i5-4590 CPU @ 3.30 GHz 3.30 GHz 8G. 
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(a) CMU PIE dataset                                                                 (b) MIT CBCL dataset                                                 

     
(c) AR dataset                                                                          (d) COIL100 dataset                                                      

    
(e) ETH80 dataset                                                                     (f) USPS dataset 

    
(g) Hnd-D dataset                                                                        (h) Hnd-C dataset 

       
                              (i) Fashion MNIST dataset                                                                        (j) HP2 dataset 



    
        (k) TDT2 dataset                                                                          (l) SCC dataset 

Fig.17: Comparison of data clustering performance under varied numbers of K based on 12 popular datasets.  
 

A. Clustering Evaluation Process and Metrices 

Clustering Evaluation Process. For the quantitative clustering 
evaluations, we perform K-means with cosine distance on the 
new representations obtained by each method. Following the 
common procedures in [7-8][16][14][29][33], for each number 
K of clusters, we randomly choose K categories from each set 
and use the data of K categories to form the matrix X. To avoid 
randomness, we average the highest five times numerical re-

sults over 20 random selections of K categories for each evalu-
ated algorithm. Note that the rank r of the matrix is set to K+1 
according to [174] for all the evaluated CF models for fair com-
parison. For semi-supervised methods CCF [29] and RS2ACF 
[33], the proportion of labeled samples is set to 25%.  
Evaluation Metrics. We employ two widely-used quantitative 

evaluation metrics, i.e., Clustering Accuracy (AC) and F-meas-
ure [179-180]. AC is the percentage of the cluster labels to the 

Table IV. Averaged clustering accuracies (AC) of each algorithm based on the evaluated real databases.  

Methods 
CMU PIE MIT CBCL AR COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

Single-
layer 

methods 

CF 0.5021±0.0820 0.6153 0.5598±0.0769 0.6909 0.4366±0.1431 0.6595 0.6023±0.1189 0.7453 
LCCF 0.5222±0.0765 0.6357 0.5772±0.0847 0.7303 0.4611±0.1477 0.6919 0.7229±0.1127 0.8938 
LCF 0.5191±0.0871 0.6508 0.5652±0.0816 0.7120 0.4540±0.1442 0.6821 0.6687±0.1327 0.8498 
GCF 0.5383±0.0859 0.6538 0.5688±0.0812 0.7136 0.4650±0.1404 0.6882 0.7711±0.1082 0.9455 

RFA-LCF 0.5588±0.0984 0.7033 0.6253±0.1219 0.8380 0.4837±0.1355 0.6937 0.7929±0.1163 0.9872 
CCF 0.5487±0.1070 0.7210 0.6349±0.1255 0.8662 0.4701±0.1327 0.6692 0.7571±0.1183 0.9350 

RS2ACF 0.5781±0.1060 0.7340 0.6748±0.1336 0.8925 0.5261±0.1242 0.7325 0.8076±0.1234 0.9728 

Multi-
layer 

methods 

MCF 0.5330±0.0779 0.6430 0.5905±0.0956 0.7655 0.4672±0.1415 0.6907 0.7006±0.1480 0.9420 
GMCF 0.5443±0.0838 0.6658 0.6139±0.1173 0.8315 0.4870±0.1501 0.7285 0.7740±0.1134 0.9532 

DSCF-Net 0.5656±0.0942 0.6918 0.6676±0.1385 0.9111 0.5077±0.1460 0.7462 0.7984±0.1156 0.9550 
DS2CF-Net 0.5957±0.1049 0.7500 0.6991±0.1392 0.9267 0.5424±0.1335 0.7566 0.8305±0.1244 0.9899 

 ETH80 USPS Hnd-D Hnd-C 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

Single-
layer 

methods 

CF 0.5616±0.1052 0.7552 0.6439±0.1127 0.8210 0.3366±0.1284 0.5561 0.3417±0.1316 0.5720 
LCCF 0.6538±0.1217 0.8671 0.6655±0.1160 0.8485 0.3518±0.1429 0.6022 0.3574±0.1371 0.5924 
LCF 0.6007±0.1465 0.8698 0.6652±0.1162 0.8428 0.3448±0.1314 0.5672 0.3512±0.1341 0.5859 
GCF 0.5930±0.1455 0.8730 0.6752±0.1188 0.8529 0.3470±0.1293 0.5609 0.3722±0.1449 0.6244 

RFA-LCF 0.6756±0.1485 0.9513 0.6871±0.1210 0.8633 0.4137±0.1678 0.7102 0.4235±0.1427 0.6580 
CCF 0.6410±0.1412 0.8855 0.6823±0.1072 0.8522 0.4119±0.1088 0.6033 0.4231±0.1296 0.6621 

RS2ACF 0.7141±0.1369 0.9584 0.6987±0.1147 0.8796 0.4924±0.1221 0.7189 0.5116±0.1257 0.7300 

Multi-
layer 

methods 

MCF 0.6282±0.0902 0.7778 0.6694±0.1065 0.8367 0.3585±0.1228 0.5630 0.3702±0.1318 0.6084 
GMCF 0.6671±0.1121 0.8744 0.6833±0.1121 0.8660 0.3922±0.1416 0.6391 0.3985±0.1289 0.6295 

DSCF-Net 0.6852±0.1220 0.9148 0.6966±0.1105 0.8729 0.4417±0.1309 0.6752 0.4473±0.1253 0.6662 
DS2CF-Net 0.7322±0.1335 0.9623 0.7147±0.1123 0.8833 0.4984±0.1182 0.7203 0.5249±0.1277 0.7503 

 Fashion MNIST HP2 TDT2 SCC 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

Single-
layer 

methods 

CF 0.7357±0.0920 0.8812 0.7470±0.0893 0.8825 0.4205±0.1768 0.6820 0.6149±0.0968 0.7352 
LCCF 0.7586±0.0919 0.9026 0.7710±0.0975 0.9255 0.4577±0.1775 0.7102 0.6420±0.1118 0.7844 
LCF 0.7583±0.0987 0.9183 0.7639±0.1022 0.9310 0.4288±0.1837 0.7045 0.6291±0.1088 0.7612 
GCF 0.7605±0.0938 0.9055 0.7899±0.0955 0.9346 0.4375±0.1866 0.7153 0.6358±0.0970 0.7679 

RFA-LCF 0.7735±0.0982 0.9282 0.8068±0.0915 0.9463 0.4652±0.1757 0.7233 0.6629±0.1110 0.8075 
CCF 0.7719±0.0979 0.9284 0.7978±0.1067 0.9550 0.4621±0.1832 0.7358 0.6543±0.0997 0.7762 

RS2ACF 0.7851±0.0966 0.9375 0.8223±0.1034 0.9742 0.5427±0.1420 0.7557 0.6713±0.0986 0.7922 

Multi-
layer 

methods 

MCF 0.7605±0.0953 0.9152 0.7846±0.0945 0.9205 0.4454±0.1823 0.7145 0.6489±0.1076 0.7731 
GMCF 0.7753±0.1011 0.9381 0.8116±0.0873 0.9422 0.4845±0.1689 0.7338 0.6709±0.1120 0.7980 

DSCF-Net 0.7870±0.0968 0.9431 0.8303±0.0954 0.9693 0.5004±0.1593 0.7260 0.6834±0.1075 0.8091 
DS2CF-Net 0.8028±0.0955 0.9525 0.8425±0.0951 0.9820 0.5649±0.1283 0.7540 0.6965±0.1029 0.8168 



 

Table V. Averaged F-scores of each algorithm based on the evaluated real databases.  

Methods 
CMU PIE MIT CBCL AR COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

Single-
layer 

methods 

CF 0.5482±0.0964 0.6905 0.6545±0.1174 0.8633 0.4010±0.1307 0.6075 0.6700±0.0892 0.7971 
LCCF 0.5661±0.0960 0.6935 0.6889±0.0993 0.8643 0.4326±0.1336 0.6429 0.7624±0.1231 0.9455 
LCF 0.5650±0.1019 0.6986 0.6737±0.1210 0.8951 0.4156±0.1309 0.6292 0.7469±0.1265 0.9233 
GCF 0.5790±0.0992 0.7080 0.6764±0.1091 0.8702 0.4293±0.1357 0.6582 0.8109±0.1122 0.9436 

RFA-LCF 0.5940±0.1037 0.7437 0.7135±0.1181 0.8953 0.4618±0.1269 0.6694 0.8466±0.1107 0.9944 
CCF 0.5808±0.1114 0.7522 0.7123±0.1260 0.9138 0.4388±0.1293 0.6579 0.7508±0.0872 0.8870 

RS2ACF 0.6070±0.1071 0.7669 0.7471±0.1158 0.9250 0.4949±0.1104 0.6867 0.8599±0.1019 0.9820 

Multi-
layer 

methods 

MCF 0.5647±0.0979 0.6977 0.7011±0.0963 0.8677 0.4311±0.1250 0.6291 0.7677±0.1215 0.9655 
GMCF 0.5933±0.1137 0.7535 0.7155±0.1132 0.9105 0.4560±0.1338 0.6679 0.8151±0.1163 0.9866 

DSCF-Net 0.6139±0.1150 0.7878 0.7406±0.1220 0.9466 0.4890±0.1188 0.6860 0.8396±0.1153 0.9887 
DS2CF-Net 0.6300±0.1099 0.7922 0.7705±0.1241 0.9648 0.5154±0.1131 0.7091 0.8752±0.1051 0.9935 

 ETH80 USPS Hnd-D Hnd-C 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

Single-
layer 

methods 

CF 0.6060±0.0962 0.7850 0.6345±0.1690 0.9115 0.2844±0.1420 0.5328 0.2861±0.1439 0.5393 
LCCF 0.7031±0.1141 0.8869 0.6533±0.1783 0.9456 0.3001±0.1640 0.5921 0.2942±0.1445 0.5436 
LCF 0.6435±0.1268 0.8761 0.6513±0.1803 0.9488 0.2915±0.1463 0.5430 0.2905±0.1354 0.5191 
GCF 0.6322±0.1313 0.8842 0.6613±0.1766 0.9510 0.3002±0.1493 0.5593 0.2876±0.1349 0.5206 

RFA-LCF 0.7070±0.1463 0.9710 0.6728±0.1797 0.9626 0.3806±0.1656 0.6476 0.3839±0.1334 0.5968 
CCF 0.6817±0.1298 0.8920 0.6602±0.1783 0.9511 0.3609±0.1577 0.6410 0.3547±0.1605 0.6467 

RS2ACF 0.7427±0.1183 0.9405 0.6753±0.1777 0.9628 0.4691±0.1253 0.6605 0.4211±0.1390 0.6460 

Multi-
layer 

methods 

MCF 0.6758±0.0824 0.7998 0.6614±0.1762 0.9561 0.3159±0.1431 0.5548 0.3048±0.1524 0.5744 
GMCF 0.7126±0.1172 0.9250 0.6791±0.1784 0.9696 0.3445±0.1517 0.6046 0.3391±0.1564 0.6060 

DSCF-Net 0.7215±0.1146 0.9310 0.6894±0.1789 0.9795 0.3943±0.1422 0.6377 0.3727±0.1160 0.5473 
DS2CF-Net 0.7561±0.1266 0.9821 0.7012±0.1749 0.9820 0.4797±0.1258 0.6710 0.4539±0.1400 0.6622 

 Fashion MNIST HP2 TDT2 SCC 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

Single-
layer 

methods 

CF 0.7495±0.1211 0.9411 0.7756±0.0974 0.9210 0.3672±0.1621 0.6088 0.6268±0.1059 0.7730 
LCCF 0.7716±0.1224 0.9582 0.7912±0.1004 0.9386 0.3879±0.1643 0.6295 0.6522±0.1128 0.8023 
LCF 0.7659±0.1228 0.9524 0.7959±0.1001 0.9268 0.3767±0.1627 0.6177 0.6534±0.1169 0.8155 
GCF 0.7782±0.1211 0.9682 0.8040±0.1058 0.9453 0.3812±0.1703 0.6291 0.6574±0.1154 0.8239 

RFA-LCF 0.7897±0.1209 0.9755 0.8247±0.1061 0.9622 0.3985±0.1622 0.6363 0.6803±0.1163 0.8462 
CCF 0.7892±0.1199 0.9644 0.8098±0.1024 0.9525 0.4050±0.1608 0.6622 0.6701±0.1089 0.8222 

RS2ACF 0.7996±0.1220 0.9768 0.8348±0.1055 0.9735 0.4558±0.1470 0.6669 0.6974±0.1045 0.8437 

Multi-
layer 

methods 

MCF 0.7840±0.1264 0.9706 0.8254±0.0874 0.9422 0.4156±0.1572 0.6577 0.6639±0.1085 0.8028 
GMCF 0.7950±0.1210 0.9738 0.8345±0.0926 0.9615 0.4286±0.1439 0.6402 0.6839±0.1072 0.8243 

DSCF-Net 0.8043±0.1214 0.9766 0.8509±0.0974 0.9835 0.4442±0.1404 0.6524 0.6988±0.1045 0.8316 
DS2CF-Net 0.8145±0.1185 0.9798 0.8631±0.0969 0.9959 0.4782±0.1234 0.6622 0.7117±0.1040 0.8443 

true labels provided by the original data corpus:    

   1
, /
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i ii
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 ,                    (72) 

where N is the number of samples, and the function  imap p  
denotes the permutation mapping function that maps the cluster 
label ip   obtained by the clustering method to the true label ir  
provided by the original data corpus.   
 The F-measure metric for clustering is defined as follows:  
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where we set the parameter 1   in the following simulations. 

B. Quantitative Clustering Results and Analysis 

Clustering with different values of K. We first discuss the clus-
tering performance of each evaluated CF model under varied K 
numbers. In this study, the number of layers for all multi-layer 
methods MCF, GMCF, DSCF-Net and DS2CF-Net is set to 3. 
Since the SCC database only contains 6 categories, we vary the 

value of K from 2 to 6 over SCC, and for other evaluated data-
bases we vary the value of K from 2 to 7 with step 1. The clus-
tering curves over each database are shown in Fig.17. Note that 
the averaged values of AC and F-measure according to the 
curves in Fig.17 are summarized in Tables IV-V, respectively. 
From the results, we see that: (1) the values of AC and F-meas-
ure of each algorithm go down as the number of categories in-
creases, which is easy to understand, because clustering data of 
less categories is easier than clustering more; (2) in most cases, 
semi-supervised single-layer methods can deliver better cluster-
ing performance than those unsupervised single-layer methods, 
which is also easy to understand, since semi-supervised also use 
partial labeled data. RS2ACF obtains the best records among all 
the semi-supervised methods; (3) MCF and GMCF can respec-
tively perform better than CF and LCCF in investigated cases, 
which indicates that deep models can indeed improve the rep-
resentation and clustering power than traditional shallow meth-
ods. DS2CF-Net obtains the highest AC and F-measure in most 
cases, compared with other competitors, which can be benefited 
by its coupled deep factorization structure and semi-supervised   
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 Fig.18: Clustering performance in terms of AC under varied number of layers, with K=3, for multi-layer CF methods.  

Table VI. Averaged clustering accuracies (AC) of each algorithm based on the evaluated real databases (K=3). 

Methods 
CMU PIE MIT CBCL AR COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 
MCF 0.4596±0.1006 0.6022 0.5785±0.0436 0.6323 0.4952±0.0535 0.5523 0.7239±0.0582 0.7950 

GMCF 0.5068±0.0746  0.6120 0.6202±0.0403 0.6628 0.5719±0.0386 0.6208 0.7557±0.0583 0.8250 
DSCF-Net 0.6346±0.0279 0.6767 0.7128±0.0361 0.7522 0.5978±0.0289 0.6302 0.8673±0.0306 0.9020 
DS2CF-Net 0.6553±0.0271 0.6850 0.7698±0.0483 0.8062 0.6133±0.0274 0.6410 0.9206±0.0268 0.9466 

 ETH80 USPS Hnd-D Hnd-C 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.6380±0.0326 0.6828 0.6943±0.0381 0.7364 0.3877±0.0269 0.4308 0.3806±0.0218 0.4210 
GMCF 0.6639±0.0353 0.7150 0.7193±0.0266 0.7453 0.3977±0.0333 0.4478 0.4152±0.0255 0.4510 

DSCF-Net 0.7283±0.0288 0.7618 0.7443±0.0177 0.7661 0.4396±0.0331 0.4828 0.4729±0.0231 0.5022 
DS2CF-Net 0.8072±0.0449 0.8336 0.7718±0.0154 0.7955 0.4836±0.0346 0.5222 0.5300±0.0232 0.5728 

 Fashion MNIST HP2 TDT2 SCC 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.8012±0.0229 0.8359 0.7897±0.0453 0.8510 0.5628±0.0387 0.6111 0.7151±0.0221 0.7448 
GMCF 0.8196±0.0307 0.8556 0.8113±0.0448 0.8710 0.6054±0.0195 0.6330 0.7420±0.0279 0.7743 

DSCF-Net 0.8450±0.0137 0.8631 0.8390±0.0291 0.8829 0.6252±0.0206 0.6495 0.7696±0.0128 0.7886 
DS2CF-Net 0.8626±0.0172 0.8821 0.8633±0.0332 0.9068 0.6459±0.0184 0.6668 0.7810±0.0131 0.7961 

 



 
(a) CMU PIE                               (b) MIT CBCL                                   (c) AR                                      (d) COIL100  
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Fig.19: Clustering performance in terms of F-measure under varied number of layers, with K=3, for multi-layer CF methods.  

Table VII. Averaged F-scores of each algorithm based on the evaluated real databases (K=3).  

Methods 
CMU PIE MIT CBCL AR COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 
MCF 0.5544±0.0882 0.6540 0.7035±0.0404 0.7530 0.4341±0.0443 0.4922 0.7710±0.0543 0.8462 

GMCF 0.5735±0.0906  0.6870 0.7270±0.0435 0.7805 0.4845±0.0476 0.5326 0.8055±0.0556 0.8789 
DSCF-Net 0.6715±0.0296 0.7143 0.7949±0.0267 0.8252 0.5344±0.0303 0.5655 0.8977±0.0285 0.9400 
DS2CF-Net 0.6879±0.0308 0.7360 0.8418±0.0340 0.8789 0.5566±0.0273 0.5962 0.9360±0.0218 0.9615 

 ETH80 USPS Hnd-D Hnd-C 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.7081±0.0284 0.7444 0.7180±0.0415 0.7752 0.3445±0.0258 0.3802 0.3424±0.0110 0.3668 
GMCF 0.7262±0.0310 0.7685 0.7563±0.0327 0.8030 0.3817±0.0386 0.4328 0.3687±0.0249 0.4105 

DSCF-Net 0.7544±0.0309 0.7877 0.8059±0.0215 0.8384 0.4547±0.0250 0.4825 0.4912±0.0104 0.5102 
DS2CF-Net 0.7969±0.0310 0.8305 0.8257±0.0264 0.8520 0.5296±0.0249 0.5668 0.5334±0.0218 0.5687 

 Fashion MNIST HP2 TDT2 SCC 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.8367±0.0372 0.8880 0.8440±0.0466 0.9105 0.4814±0.0402 0.5286 0.7121±0.0189 0.7335 
GMCF 0.8531±0.0360 0.9025 0.8629±0.0495 0.9255 0.5093±0.0380 0.5515 0.7416±0.0203 0.7692 

DSCF-Net 0.8936±0.0216 0.9226 0.8917±0.0344 0.9335 0.5424±0.0209 0.5716 0.7619±0.0158 0.7805 
DS2CF-Net 0.9083±0.0238 0.9382 0.9115±0.0308 0.9531 0.5611±0.0247 0.5932 0.7809±0.0200 0.8061 
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Fig.20: Clustering performance in terms of AC under varied number of layers, with K=6, for multi-layer CF methods.  

Table VIII. Averaged clustering accuracies (AC) of each algorithm based on the evaluated real databases (K=6).  

Methods 
CMU PIE MIT CBCL AR COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 
MCF 0.4059±0.0979 0.4655 0.4808±0.0443 0.5299 0.3369±0.0300 0.3760 0.5292±0.0311 0.5722 

GMCF 0.4282±0.1137  0.4710 0.5011±0.0423 0.5473 0.3548±0.0263 0.3853 0.6332±0.0417 0.6813 
DSCF-Net 0.4608±0.1150 0.4962 0.5442±0.0219 0.5664 0.3692±0.0249 0.4020 0.6738±0.0218 0.7010 
DS2CF-Net 0.5111±0.1099 0.5422 0.5609±0.0249 0.5833 0.3988±0.0285 0.4350 0.7127±0.0251 0.7405 

 ETH80 USPS Hnd-D Hnd-C 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.5048±0.0245 0.5330 0.5341±0.0289 0.5736 0.2230±0.0108 0.2428 0.2385±0.0199 0.2710 
GMCF 0.5580±0.0294 0.5943 0.5524±0.0351 0.5941 0.2310±0.0156 0.2588 0.2658±0.0296 0.3055 

DSCF-Net 0.5800±0.0247 0.6100 0.5757±0.0189 0.6038 0.3119±0.0103 0.3224 0.3593±0.0149 0.3762 
DS2CF-Net 0.6142±0.0237 0.6435 0.5933±0.0222 0.6234 0.4026±0.0446 0.4474 0.4007±0.0291 0.4511 

 Fashion MNIST HP2 TDT2 SCC 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.6367±0.0204 0.6771 0.6261±0.0307 0.6716 0.2383±0.0271 0.2800 0.4832±0.0376 0.5230 
GMCF 0.6538±0.0263 0.6862 0.6699±0.0208 0.7025 0.2778±0.0309 0.3246 0.5241±0.0278 0.5535 

DSCF-Net 0.6929±0.0321 0.7221 0.6854±0.0176 0.7122 0.3432±0.0106 0.3568 0.5457±0.0263 0.5784 
DS2CF-Net 0.7179±0.0354 0.7402 0.6997±0.0204 0.7230 0.4266±0.0122 0.4452 0.5697±0.0230 0.5982 

 



 
(a) CMU PIE                               (b) MIT CBCL                                    (c) AR                                     (d) COIL100  

 
(e) ETH80                                   (f) USPS                                     (g) Hnd-D                                    (h) Hnd-C 

 
(i) Fashion MNIST                                (j) HP2                                     (k) TDT2                                       (l) SCC 

Fig.21: Clustering performance in terms of F-measure under varied number of layers, with K=6, for multi-layer CF methods. 

Table IX. Averaged F-scores of each algorithm based on the evaluated real databases (K=6).  

Methods 
CMU PIE MIT CBCL AR COIL100 

Mean±std Best Mean±std Best Mean±std Best Mean±std Best 
MCF 0.4139±0.0624 0.4833 0.5259±0.0457 0.5782 0.3195±0.0458 0.3782 0.6071±0.0339 0.6533 

GMCF 0.4351±0.0581  0.4962 0.5745±0.0512 0.6291 0.3467±0.0339 0.3885 0.6412±0.0304 0.6819 
DSCF-Net 0.4746±0.0268 0.5025 0.6147±0.0249 0.6401 0.3683±0.0265 0.4028 0.7249±0.0233 0.7526 
DS2CF-Net 0.5003±0.0338 0.5313 0.6365±0.0268 0.6702 0.4012±0.0278 0.4388 0.7534±0.0202 0.7816 

 ETH80 USPS Hnd-D Hnd-C 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.5429±0.0327 0.5908 0.5080±0.0299 0.5407 0.1695±0.0038 0.1746 0.1720±0.0102 0.1895 
GMCF 0.5932±0.0358 0.6372 0.5238±0.0248 0.5523 0.1778±0.0043 0.1834 0.1909±0.0161 0.2226 

DSCF-Net 0.6144±0.0250 0.6421 0.5384±0.0202 0.5670 0.2558±0.0198 0.2820 0.2442±0.0175 0.2700 
DS2CF-Net 0.6425±0.0233 0.6742 0.5566±0.0185 0.5833 0.3801±0.0317 0.4196 0.3026±0.0179 0.3294 

 Fashion MNIST HP2 TDT2 SCC 
Mean±std Best Mean±std Best Mean±std Best Mean±std Best 

MCF 0.5987±0.0416 0.6540 0.6759±0.0282 0.7112 0.2144±0.0367 0.2622 0.5099±0.0374 0.5550 
GMCF 0.6181±0.0353 0.6563 0.6883±0.0241 0.7228 0.2807±0.0382 0.3332 0.5405±0.0297 0.5740 

DSCF-Net 0.6524±0.0250 0.6852 0.7128±0.0172 0.7362 0.3258±0.0153 0.3423 0.5579±0.0244 0.5855 
DS2CF-Net 0.6771±0.0150 0.6985 0.7337±0.0173 0.7582 0.3409±0.0204 0.3691 0.5699±0.0214 0.5968 

 
 
 



characteristic; (4) for unsupervised single-layer methods, RFA-
LCF achieves the best record, since it improves the representa-
tion learning in threefold, i.e., robustness against noise, flexible 
reconstruction error, and enhancing the locality and sparsity by 
integrating the adaptive reconstruction weighting.  

Clustering with different numbers of layers for multilayer 
CF methods. For the deep/multilayer algorithms, MCF, GMCF, 
DSCF-Net and DS2CF-Net, the number of layers varies from 1 
to 10 with interval 1. And we test clustering performance in two 
cases, i.e., the value of K is set to 3 and the value of K is set to 
6 for each database. The obtained AC and F-measure curves 
under the setting of K=3 over tested databases are shown in 
Figs.18-19 respectively. The AC and F-measure curves under 
the setting of K=6 over are shown in Figs. 20-21. Note that the 
averaged values of AC and F-measure according to the curves 
in Figs.18-21 are summarized in Tables VI-IX, respectively. 
From the results, we can find that: 1) the increase of the number 
of layers can generally improve the clustering results, which 
implies that discovering hidden deep features can indeed im-
prove the representation learning and clustering performance. 
However, when the number of layers grows more than 3, the 
performance of each method tends to decline, which implies not 
the case that the more number of layers the better, since exces-
sive decomposition may lose important information; 2) the 
clustering results of MCF and GMCF go down apparently as 
the number of layers passes 3 in most cases, which maybe be-
cause MCF and GMCF cannot ensure the intermediate repre-
sentation from previous layer to be a good representation for 
subsequent layers. This observation result indicates that the 
multi-layer structures of directly feeding learnt representation 
from the last layer to the next layers is not reasonable; (3) 
DS2CF-Net performs better than all the other methods, which is 
mainly because it designs a novel deep coupled factorization 
model, and incorporates the dual structure and label constraints 
into CF, in addition to utilizing the partial labeled data.  

VI. CF-BASED APPLICATIONS 

As a hot and fundamental research topic in the fields of machine 
learning and data mining, CF and its variants have been widely 
used in broad application areas. In what follows, we will sum-
marize the application areas of the CF-based methods.  

1) Dimensionality reduction. Real-world emerging applica-
tions usually suffer from the curse of dimensionality, so feature 
extraction and dimensionality reduction are fundamental prob-
lems in the areas of pattern recognition and machine learning. 
Note that CF and its variants have been extensively used as fea-
ture extractors for handling high-dimensional data to learn low-
dimensional compact features. Specifically, for a high-dimen-
sional D N data matrix X, CF methods can learn a low-dimen-
sional d N representation matrix VT to represent X, where d is 
the number of reduced dimension, d<<D. Therefore, CF can be 
clearly used as a preprocessing step for subsequent application 
tasks like data classification and clustering, which can poten-
tially improve the performance than directly using original raw 
data, since the dimensionality reduction process can effectively 
remove redundant information and unfavorable features.  

Original data points

Cluster centroids (W)

Data points

Clustering
centroids

Cluster membership indicators (VT)  
Fig.22: CF in data clustering task.  

2) Data clustering. For representation learning, all CF-based 
methods aim at decomposing the data matrix X into the product 
of X, W and VT, where XW forms the basis vectors and VT can 
also be called coefficients. Note that the coefficients have a sim-
ilar effect to the similarity weight matrix or adjacent matrix in 
graph representation learning, i.e., measuring the grouping ef-
fects of vertices. As such, we can consider the basis vectors as 
the cluster centroids and consider the coefficients as the indica-
tors for cluster membership. In this way, CF and its variants can 
also be used as the clustering methods, which is shown in Fig. 
22. However, different from the traditional clustering algorithm 
K-means that can be seen as a “hard” clustering method, CF-
based methods can be regarded as a kind of “soft” clustering 
algorithm. That is, K-means algorithm clearly groups each sam-
ple into only one category, while CF and its variants can group 
each sample into different categories by giving the matrix VT to 
guide clustering since the entries of VT can be seen as the possi-
bilities of a data point belong to a cluster. Hence, CF-based 
methods will be more flexible than the traditional hard cluster-
ing methods in dealing with practical applications.  

Representation VT

≈ ×

Basis images XWImage data matrix X

Fig.23: CF in image processing scenario.  
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Fig.24: CF in text processing scenario.  

3) Image processing. When input is image, CF-based meth-
ods can also be used for dealing with image processing tasks. 
Based on original image data matrix, where each column vector 
contains the vectorized representation of images, i.e., stacked 
pixel values, CF-based methods similarly decompose it into the 



basis vectors and representation matrix, which is exhibited in 
Fig.23. Due to the nonnegative constraints, the basis vectors can 
also be seen as the basis images containing the local parts-based 
information of the original images. For example, for a face im-
age, the basis vectors can contain the nose, eye or mouth parts 
in the face images. Then, based on the learnt parts-based fea-
tures and low-dimensional representation, CF-based algorithms 
can perform various image processing tasks, for instance image 
recognition, image reconstruction, image segmentation, image 
restoration and image fusion, etc.  

4) Text/document processing. Document data processing 
plays an important role in the area of text data mining. Since the 
textual data is not only informative but also generally un-struc-
tured, the data processing tasks are usually difficult in reality. 
In order to obtain required useful information from a large pool 
of document data quickly and accurately, recent years have wit-
nessed lots of efforts on document data processing, such as doc-
ument clustering. In addition, typical document data is usually 
stored in the form of matrix, where each sample is always char-
acterized by a high-dimensional and sparse vector and each el-
ement indicate the frequency of occurrence of a certain word or 
character. Note that the root CF algorithm was originally pro-
posed to tackle the issue of document clustering [6], as shown 
in Fig.24. Specifically, for the document clustering tasks, the 
input is just the document data matrix. In such cases, the ob-
tained base matrix XW contains r concept centers (or topics in 
this task). Note that CF-based methods can not only obtain the 
concepts, but also obtain the new representation of document 
data, which can be used for various processing tasks, e.g., doc-
ument clustering, retrieval and categorization.  

5) Recommendation system. Matrix factorization methods, 
including the CF-based methods, can also be used in the recom-
mendation system scenario. Note that in practical situations the 
input data is usually a rating matrix, which represents the users’ 
evaluations on movies, style of dress, quality of papers, review 
and publication speed, books, visual effects and so on. For ex-
ample, users can be recommended to submit their feedback in a 
form of rating numbers, e.g., 1 to 5, for movies they have seen, 
as shown in Fig. 25. Then we can obtain two association matri-
ces by decomposing the rating matrix using CF-based methods, 
where the first one is the “User-Type” matrix that indicates the 
users’ preference for different movies and the other one is called 
“Type-Movie” matrix that indicates the connects of movies and 
the movie types. Based on jointly referring to these two matri-
ces obtained by CF algorithms, we can then recommend movies 
to the users according to their favorite movie type.  

 Rating matrix X

≈ ×

Type     1       2       3

    
1

2

3
Type

Fig.25: CF in recommendation system scenario.   

  6) Other applications. Due to the enhanced semantic inter-
pretability based on the nonnegativity and ensured sparsity, CF 
and its extensions can also be potentially used in many other 
application areas, such as spectral data analysis, speech recog-
nition, temporal segmentation, signal processing, microarray 
analysis, robot control, hypergraph analysis, gene sequence 
analysis and chemical engineering. However, these applications 
will not be introduced in detail due to the page limitation.   

VII. CONCLUSION AND FUTURE DIRECTIONS 

A. Conclusion Remarks 

Concept factorization is a classical and popular matrix factori-
zation technique for representation learning and data clustering, 
which has attracted considerable attention and broad interests 
in the areas of intelligent information processing and data min-
ing. However, it is still lack of a comprehensive summarization 
of the existing CF-based methods. As such, this paper contrib-
utes a review to introduce the existing CF methods from differ-
ent perspectives, which we hope to be able to benefit the begin-
ners and young researchers in this field. To be specific, we dif-
ferentiate current CF-based methods from two perspectives: 1) 
shallow vs. deep/multilayer; 2) unsupervised, fully-supervised 
vs. semi-supervised. The relationship and difference of methods 
in each category are also analyzed for better understanding. Be-
sides the theoretical analysis, extensive experimental results are 
reported to compare the representation learning performance of 
different CF algorithms including both shallow and deep mod-
els. From the investigated cases, we find that deep models can 
generally deliver higher performance than corresponding shal-
low models, which verify that discovering hidden deep features 
can indeed improve the representation performance.  Some pos-
sible applications of CF-based methods are also discussed.  
   Based on the analysis and investigation of this study, we can 
also conclude that CF-based methods have close relations to the 
graph representation learning [191-192], from the aspects of 
representing the nodes in graph and encoding the similari-
ties/grouping effects. Firstly, from the framework of standard 
CF algorithm in Fig.2, we can conclude that: 1) when construct-
ing the bases U by XW, the coefficient W can play a role as the 
graph adjacency matrix in graph representation learning to en-
code the local geometry structures and preserve the geometric 
relations within the samples of X; 2) from the reconstruction 
XWVT, we can similarly conclude that both WVT and VT can be 
regarded as the coefficient matrix to encode the similarities/lo-
cal geometry structures within the data X and bases XW, respec-
tively. Secondly, the columns of the new representation VT can 
be seen as the low-dimensional embedding, which is similar to 
the node embedding in graph representation learning. Note that 
in graph representation learning node embedding mainly aims 
at encoding nodes as low-dimensional vectors that summarize 
their graph positions and the structures of their neighborhoods. 
As such, by corresponding each node to the sample in data ma-
trix X for feature learning, shallow CF methods definitely have 
close relations to the graph representation learning in terms of 
edge weighting and node embedding. Thirdly, deep CF models 
can mine hidden hierarchical information in data, so deep CF 



models will be able to similarly act as the deep graph represen-
tation learning for learning deep structure information of graphs, 
e.g., calculating the edge weights and representing nodes to ob-
tain the deep embedding in deep subspace.  

B. Future Work  

However, there is still a lot of space to be explored on the topic 
of CF-based methods in future. We simply put forward some 
future directions for further research on the study of CF:  

(1) Research on the optimization problem. Existing CF-based 
methods suffer from one common drawback, i.e., their optimi-
zation problems can obtain a local minimum, but cannot guar-
antee the global optimal. Thus, it is worth studying more effec-
tive optimization methods for CF to obtain global optimal solu-
tions, so that the numerical CF stability can be improved;  

(2) Research on the initialization of W and V. For the moment, 
there is still lack of optimal solution to initialize the basis vec-
tors W and coefficient matrix V for the representation learning, 
since they both are often initialized to be random matrices [105-
113]. In other words, it is still an open issue to initialize the two 
nonnegative matrices W and V optimally. Thus, finding a more 
reliable approach to initialize W and V will have the potential to 
speed up the convergence of CF-based methods and more im-
portantly improve the representation ability of features;  

(3) Research on the selection of rank r. The rank r of the fac-
torization is undoubtedly the core parameter of each CF-based 
model, which directly determines the representation ability and 
the dimension of the resulting feature space. Similar to the num-
ber of the reduced dimension in dimensionality reduction and 
feature extraction, how to select an optimal value of r is also an 
open problem that needs further investigation. In addition, ex-
ploring the theoretical guarantee and interpretable factors on the 
relationship between the rank r and the performance of CF-
based methods is also an important future work;  

(4) Research on incorporating task-driven characteristic into 
CF. Since the CF-based methods have broad application areas 
in reality, to address the practical application problems, maybe 
we need to consider the task-driven application requirements, 
and include more targeted and useful constraints into CF-based 
methods, so that we can obtain satisfactory representation learn-
ing results that can meet the actual needs;  

(5) Research on more powerful CF-based deep neural net-
works. It is clear that most existing CF-based methods are “shal-
low” models that fail to reveal the deep hidden information and 
hierarchical structure information from the observed input. Alt-
hough certain efforts have been made to improve the represen-
tation ability by CF, the performance improvement is still not 
significant. Inspired by the success of deep learning and deep 
neural networks [165-169], to enable the CF-based methods to 
have a strong representation learning ability as them to well dis-
cover hidden deep features and to deal with real-world large-
scale tasks, it will be useful and important to explore how to 
appropriately integrate the frameworks of the CF and deep neu-
ral networks, such as Convolution Neural Network (CNN), for 
making a breakthrough. Thus, how to design more effective 
deep learning architectures and structures for the deep/multi-
layer CF-based methods should be investigated in future;  

(6) Research on the evaluation criteria. Although a lot of CF-
based variants have been put forward continuously in the recent 
decade based on different perspectives and merits, it is still lack 
of the systematic evaluation metrics or quantitative indicators 
to compare their performance in terms of a uniform standard. 
As such, it is also necessary to build a uniform evaluation met-
ric to measure the performance of the CF-based methods.  
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