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Highlights 

- MeSH	terms	and	KeyWords	Plus	terms	show	different	distributions.

- Automatic	classification	based	on	MeSH	terms	and	KeyWords	Plus	terms	is

uneven.

- Automatic	classification	of	work	on	humans	displays	better	concordance.

- Caution	must	be	exercised	when	considering	the	use	of	grey	boxes	with	KW

Plus.

- There	are	major	restrictions	on	the	use	of	KeyWords	Plus	in	the	biomedical

field.

Abstract 

KeyWords Plus and Medical Subject Headings (MeSH) are widely used in bibliometric 

studies for topic mapping.  The objective of this study is to compare the two description 

systems in documents about cannabis research to find the concordance between systems 

and establish whether there is neutrality in topic mapping.  A total of 25,593 articles from 



1970 to 2019 were drawn from Web of Science’s Core Collection and Medline and 

analyzed.  The tidytext library, Zipf’s law, topic modeling tools, the contingency 

coefficient, Cramer’s V, and Cohen’s kappa were used.  The results included 10,107 

MeSH terms and 28,870 KeyWords Plus terms.  The Zipf distribution of the terms was 

different for each system in terms of slope and specificity.  The documents were classified 

into seven topics, and the MeSH system proved better at classification.  The kappa 

coefficient between the two systems was 0.477 (for gamma ≥ 0.2); the topics related with 

human beings presented higher concordance.  The use of KeyWords Plus for topic 

analyses in biomedical areas is not neutral, and this point needs to be taken into account 

in interpreting results.  
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1.	Introduction	

Knowledge mapping can be used in the context of knowledge translation in health 

sciences to identify areas where research is being done, investigative fronts, emerging 

trends, and research gaps (Synnestvedt, Chen & Holmes, 2005; Ebener et al., 2006), and 

therefore knowledge mapping has become a challenge for scientific information 

professionals (Chen, 2016).  Bibliometric studies can be used to obtain mapping 

knowledge, hotspot maps, trend maps, main lines of research, emerging trends, and 

research gaps in a topic area (Glänzel, Moed, Schmoch & Thelwall, 2019).  

The scientific community is aware of the need for bibliometric studies.  The publication 

of bibliometric studies addressing health science knowledge is on the rise, as corroborated 

by the facts that on February 25, 2020, PubMed/Medline had 1,553 records published 

between 1995 and 2019 with the term "bibliometric *" in the title, and the number of 

records had increased from 45 in the first five years of that period to 994 in the last five 

years. Of those records, 23 contained the terms "mapping" and "knowledge" in the title, 

rising from four records in the first five years to 57 in the last five years. 

Some bibliometric topic studies are based on the topic categories assigned to journals 

(Leydesdorff, Comins, Sorensen, Bornmann & Hellsten, 2016).  However, such studies 

may have gaps, for example, when documents published in multidisciplinary journals are 

misassigned or when a document whose topic is different from the publishing journal’s 

topic is assigned to a knowledge area.  For this reason, it was decided to base our article 



content analysis on author keywords, title words, abstracts, full text, Medical Subject 

Headings (MeSH), and Web of Science’s KeyWords Plus (KW Plus), which are words 

or phrases that appear frequently in the title or in the bibliographic references (Garfield 

& Sher, 1993).  

Computational semantics methods like Latent Semantic Analysis (LSA) and topic models 

are used to analyze topics and obtain terms (Natale, Fiore & Hofherr, 2012).  For example, 

the literature on delirium has been studied through analysis of MeSH terms and 

probabilistic topic modeling of abstracts (McCoy,	2019), and Latent Dirichlet Allocation 

(LDA) has been used for unsupervised topic identification in the scientific eHealth 

literature (Drosatos & Kaldoudi, 2020).	

Furthermore, topic modeling tools are being supplemented and sometimes replaced in 

language model analysis nowadays by other tools that incorporate different approaches, 

such as the inclusion of subjectivity in language, by analyzing personal texts in social 

media and including for analysis viewpoints such as that of the emotions associated with 

the words used (Ríssola, Aliannejadi, & Crestani, 2020).  

Certain techniques known as word and document embedding are being used to 

complement analyses based on topic modeling.  While embedding techniques use neural 

network algorithms to create neural embedding models, topic modeling uses LSA, as said 

before.  Topic modeling and neural embedding differ in the context information they use; 

while topic modeling uses documents, neural embedding uses words as context.  This 

produces different semantic representation models (Sahlgren, 2015).  In topic modeling, 

semantic representation needs to be interpreted by the end user.  Furthermore, if terms 

lack semantic description, they may be incorrectly retrieved due to their ambiguity 

(Lashkari, Bagheri, & Ghorbani, 2019).  However, topics can be labeled automatically by 

means of neural embedding (Bhatia, Lau, & Baldwin, 2016), or they can help reveal 

underlying semantic representations of approaches that explore the connections between 

topic modeling and word embedding, like the neural embedding allocation (Keya, 

Papanikolaou, & Foulds, 2019).	

Our	 choice	 is	 intended	 to	 facilitate	 knowledge	 mapping	 by	 using	 unsupervised	

models,	 where	 no	 training	 data	 are	 necessary,	 inasmuch	 as	 the	 objective	 is	 to	

highlight	the	problem	created	by	choosing	to	use	one	type	of	 indexing	(KW	Plus)	

unrestrictedly	as	opposed	to	another	(MeSH).		

The	reason	for	comparing	these	two	indexing	systems	is	that	researchers	looking	

for	health	 science	documents	 for	 analysis	 commonly	use	either	databases that are 



specific to the health science area (e.g., PubMed/Medline) or multidisciplinary databases 

(e.g., Web of Science).  Pubmed/Medline is used because it includes Medical Subject 

Headings, which facilitate searching through a controlled language, providing among 

other things a powerful method of narrowing results and homing in on what the searcher 

needs (Shultz, 2007), as well as increasing search effectiveness (Liu & Wacholder, 2017). 

The commonly used multidisciplinary databases include Science Citation Index 

Expanded and the Social Science Citation Index from Web of Science’s Core Collection, 

which indexes the world's top-quality journals based on the citations they receive and 

provides the journal impact factor, the h-index, and other bibliometric indicators (Dettori, 

Norvell, & Chapman, 2019; Moed, 2009).   

The more frequent use of PubMed/Medline and Web of Science in bibliometric studies 

is reflected by a search in Pubmed Central1 with the following equation:  "bibliometrics" 

AND (Web of Science OR Medline OR Scopus OR Embase OR Google Scholar).  The 

equation appears in 2,654 of the 4,035 PubMed/Medline records (65.8%), 2,313 of Web 

of Science’s records (57.3%), 1,351 of Scopus’s records (33.5%), 908 of Google 

Scholar’s records (22.5%), and 514 of Embase’s records (12.7%).  

Because these are the databases most often used to evaluate scientific activity in health 

sciences, the terms these databases use for indexing or describing documents are the 

words used to represent relationships in knowledge maps. However, since the 

terminological systems are different, there is a research gap concerning which system of 

terms affords a better representation of research in the health science area.  This paper 

reports an endeavor to determine accurately which of the two systems of terms, MeSH or 

KW Plus, is better for representing knowledge maps.  

 

2.	Research	questions	

 

The objective of this study is to compare two description systems, MeSH and KW Plus, 

in documents on biomedical subjects to find the level of concordance between the two 

systems and to establish empirically if there is neutrality in the use of one system or the 

other to create topic maps. 

Moreover, the following four research questions form part of the present study: 

 
1	PubMed	Central,	a	free	full-text	archive	of	biomedical	and	life	science	journal	literature	at	the	U.S.	

National	Institutes	of	Health's	National	Library	of	Medicine.	



1. Are	term	distributions	in	the	MeSH	and	KW	Plus	description	systems	similar? 

2. How	are	documents	classified	by	MeSH	and	KW	Plus	terms?	 

3. What	 is	 the	 degree	 of	 concordance	 between	 classifications	 obtained	 from	

MeSH	terms	and	classifications	obtained	from	KW	Plus	terms? 

4. Should	we	use	MeSH	terms	or	KW	Plus	terms	for	topic	mapping? 

 

This study is based on a case study of cannabis research from a multidisciplinary 

perspective that includes articles on the cannabis plant, its chemical compounds, 

cannabinoid receptors, drugs, synthetic cannabinoids, laboratory analyses, health effects, 

use prevention, and legalization. 

 

3. Related Work 

To our knowledge this is the first comparative study of the MeSH and KW Plus systems 

to ascertain which system is better for classifying topic areas.  Previous bibliometric 

studies have taken different approaches to creating global maps of science, obtaining 

comparable results at higher levels of granularity (Thijs, 2019); others have employed 

artificial intelligence to generate new sentences from Title and Abstract Terms and used 

them to find the most important scientific ideas (Jiang et al., 2019); some have used 

Author Keywords and KW Plus (Khasseh, Soheili, Moghaddam, & Chelak, 2017; Tran 

et al., 2018).  Still others have added the keywords from Title to determine the main topics 

of social networks (Maltseva & Batagelj, 2020). Meanwhile, other studies have used 

Wos’ Topic Subject and PubMed’s Title and MeSH terms for thematic analysis and to 

trace the evolution of the use of social media in the field of healthcare research (Chen, 

Lun, Yan, Hao, & Weng, 2019). Another approach is to analyze an area’s MeSH terms 

using a search in Web of Science (WoS), and afterward to use the documents’ DOI or 

PMID to download the related Medical Subject Headings. Some studies in the 

neuroscience disciplines and related areas thus utilize the elaborate MeSH indexing 

system of individual publications in the PubMed database to identify potentially relevant 

publications (Kocak, García-Zorita, Marugán-Lázaro, Çakır, & Sanz-Casado, 2019).  

These studies may present limitations, however, when it comes to classification.  It has 

not yet been determined which of the systems would best classify topic areas.  If only 

KW Plus is used, it may overestimate aspects that the article does not really deal with.  

For example, in the case of the present study, an article on the analysis of cannabis 

addiction could be based on studies of other substances, such as opioids or cocaine; then 



“opioids” and “cocaine” would appear frequently in the bibliography and therefore in 

KW Plus.  In addition, a percentage of the documents in the Web of Science do not have 

KW Plus and author keywords, so a large proportion of documents would be 

underrepresented.  In fact, in previous studies only 37% of the documents had both terms 

(Khasseh et al., 2018), and approximately 50% of the records did not have one or the 

other (Tripathi, Kumar, Sonker, & Babbar, 2018).  There may also be cases where the 

authors fail to select the best keywords for their paper and so cause the terms to become 

distorted in the classification process.  A recent study has observed that searching by title, 

abstract and keywords would not be a good enough method for retrieving epidemiological 

research papers (de Vries, van Smeden, Rosendaal, & Groenwold, 2020).   

On the topic of classification comparison, some studies have compared cluster viewing 

of MeSH term co-occurrence and time-zone viewing of WoS document-term cocitation 

(Synnestvedt et al., 2005), and others have compared KW Plus and author keywords to 

find research trends in patient adherence to the treatment, finding that both systems show 

similar research trends, although KW Plus emphasizes research methods and techniques 

more than Author Keywords do (Zhang et al., 2016).  Some studies have analyzed cited 

references and Medical Subject Headings as two different knowledge representations 

(Leydesdorff et al., 2016).  Nentidis et al. (2020) have tried to add semantic value to the 

descriptive capacity of MeSH terms so as to better satisfy the information needs of experts 

in certain areas of biomedicine, but they use a method with (admittedly weak) 

supervision.  Also, some authors have analyzed the Medline database, the MeSH index 

tree, and the various options for static mapping from different perspectives and at 

different levels of aggregation use, in order to investigate the translations and interactions 

and thus to gain a bibliometric perspective on the dynamics of medical innovations 

(Leydesdorff, Rotolo, & Rafols, 2012).  Other authors have used bicluster high-frequency 

MeSH terms based on their co-occurrence of distinct semantic types in a MeSH tree to 

ascertain the structure of a scientific field (Fang, Zhou, & Cui, 2020).  Nevertheless, no 

studies have tackled the question of which method does a better job of classifying by topic 

areas. 

Generally speaking, the work described above focuses on using the terms mentioned to 

obtain mapping knowledge, main lines of research, emerging trends, and research gaps 

in a topic area.  Little work has compared the various terms that can be used to ascertain 

which yield a better representation in health sciences.  Nor are there studies on the 



advisability of using MeSH terms or KW Plus terms in the light of the possibility that the 

resulting studies may be rendered unsuitable or biased by the term system used. 

4.	Materials	and	method	

4.1.	Search	strategy		

The bibliographic search was run in the Core Collection of Clarivate Analytics’ Web of 

Science, using the connection registered to Carlos III University of Madrid, and in the 

National Library of Medicine’s Medline database, over the PubMed interface.  All 

searches were conducted on the same day (February 21, 2020) to rule out the effect of 

database updates.  The specific search profiles for each of the databases are presented in 

supplementary material appendix 1.  The search was limited to the fifty years between 

1970 and 2019.  Ethical approval was not needed, since this was a bibliographic study.  

4.2.	Record	sample	

Figure 1 shows the record selection and downloading procedure.  Only documents 

considered articles or reviews were selected, and the selection of articles and reviews 

from each of the databases was made considering the document types shown in 

supplementary material appendix 2.  After selection those documents that bore the same 

PubMed Identifier (PMID) and three or more KW Plus terms and two or more MeSH 

terms were included in the study.  The definitive sample contained 25,593 records. 

 
Figure 1.  Record selection and downloading procedure. 

 

Term frequency and distribution in each of the two systems were obtained from this 

sample.  The tidytext package (Silge & Robinson, 2016) was used for calculations 



concerning the terms’ frequency distribution.  Term frequency distributions were 

analyzed using the classic version of Zipf’s law and the relative frequency (tf) of each 

term in relationship with the total terms of each distribution (Silge & Robinson, 2020). 

𝑡𝑓 ≈
𝐶

𝑟𝑎𝑛𝑘! 	
Distributions can be estimated in logarithm form using simple regression: 

𝑙𝑜𝑔10(𝑡𝑓) = 𝑙𝑜𝑔10(𝐶) − 𝛼 ∙ 𝑙𝑜𝑔10(𝑟𝑎𝑛𝑘)	
4.3.	Automatic	document	classification	

For automatic document classification, probabilistic topic models (PTMs) were applied 

separately to both the MeSH terms and the KW Plus terms.  We used the Latent Dirichlet 

Allocation (LDA) algorithm (Blei, Ng, & Jordan, 2003). This kind of algorithm has been 

used to classify scientific documents on a wide range of occasions, including:  analysis 

of the abstracts of publications indexed in PubMed on “rectal cancer” (Wang et al., 2020) 

to identify the five areas where the most progress has been made in the last 25 years; 

combined use with MeSH terms to enhance the performance of biomedical document 

retrieval tasks (Yu, Bernstam, Cohen, Wallace, & Johnson, 2016); identification of the 

evolution of  research topic popularity over time (Savov, Jatowt, & Nielek, 2020); and 

development of	prediction models that recognize future highly-cited papers (Hu, Tai, Liu, 

& Cai, 2020).  The LDA algorithm has also been used to compare classifications drawn 

from astrophysics documents in two different sources (Hu et al., 2015). 

A number of R statistics packages were used for the calculations, particularly topic 

models (Grün & Hornik, 2011), for fitting by LDA with Gibbs sampling, and the “tm” 

package (Feinerer, Hornik, & Meyer, 2008), for building terminological corpora.  After 

some testing, a seven-topic classification was chosen as the best solution.  

The MeSH terms and the KW Plus terms were pre-processed to eliminate certain symbols 

and punctuation marks, such as “;” used as a term separator, single and double quotation 

marks, and apostrophes.  It was not necessary to eliminate empty words.  However, some 

neutral words (“male” and “female”) did have to be deleted from the MeSH terms, as did 

commas in the “inverted” terms (e.g., “receptor, opioid delta”), but ampersands and 

dashes between words were kept.  R-packages were not used to build n-grams, but spaces 

were replaced by dashes in multiple-word terms in both groups to preserve the terms’ 

semantic meaning.  In all cases, the LDA algorithm’s own parameters were those shown 

in supplementary material appendix 3. 

The PTMs classify all the processed documents automatically, and without supervision, 

into different topics or bags of words. This is one of their main advantages (Chen, 2017).   



For this purpose, each document is assigned a probability (gamma parameter, g) in each 

topic.  Each of the lists of KW Plus or MeSH terms containing each of the records 

obtained by our search strategy was considered a document, using the g parameter as a 

threshold for selecting only those documents or lists with a higher estimated likelihood 

of belonging to one or two topics. 

In our analysis, the same group of documents was classified in two different systems, KW 

Plus and MeSH.  At the same time, two groups of documents were selected using different 

gamma parameter thresholds (g ≥ 0.2 for one group and g ≥ 0.25 for the other). 

4.4.	Association	and	concordance	between	the	resulting	classifications	

To evaluate the association and the degree of concordance between the two description 

systems, based on the results of the LDA analysis, contingency tables were calculated for 

each of the grouping levels (g), with the number of documents classified in each system. 

The independence between the two classifications was checked with chi-squared tests, 

and the results were displayed using mosaic graphs.  In addition, the degree of association 

was measured using the contingency coefficient and Cramer’s V.  For these calculations, 

the vcd library in R was used (Meyer, Zeileis, & Hornik, 2006; Zeileis, Meyer, & Hornik, 

2007). 

Cohen’s kappa was used (as was the vcd library) to measure agreement.  For this purpose, 

the contingency tables had to be redone using the topics’ equivalences.  Semantic 

correspondence between topics was found by an expert in addictions, working with the 

content of the bags. 

   

5.	Results	

5.1.	Descriptive	analysis:	Term	frequency	

The method described above yielded 10,107 MeSH terms and 28,870 KW Plus terms.  

Seventy-seven MeSH terms and 15 KW Plus terms had more than 1,000 occurrences.  

 

The distributions and their estimates are plotted in figure 2.  The statistics for the linear 

estimates are given in supplementary material appendix 4. 

 



Figure 2.  Zipf’s Law for MeSH terms and KW Plus terms 

 

The KW Plus terms and the MeSH terms have different distributions (figure 2), with a 

steeper slope in the case of the MeSH terms (intercept = 0.68, slope = -1.58, R-

squared = 0.9669) than in the case of the KW Plus terms (intercept = -0.62, slope = -1.01, 

R-squared = 0.9631).  

As can be observed in figure 2, early on in the relative frequency positions, the MeSH 

terms show a higher distribution than the KW Plus terms. This is due to the greater 

presence of common MeSH terms among the most frequent terms.  Contrariwise, in the 

tails the distribution of the KW Plus terms “outdoes” that of the MeSH terms, because 

the KW Plus terms do not constitute a controlled language, and thus they contain a higher 

number of used terms that appear infrequently.  

Table 1 shows the first 25 MeSH and KW Plus terms appearing in the documents we 

analyzed, in order of absolute frequency (freq).  It also gives the relative frequency (tf) 

and inverse frequency (tf-idf) of the terms. 

 

Table 1.  Frequency of term appearance in the documents. 
MeSH terms  KW Plus terms 

Word freq tf tf-idf rank Word Freq tf tf-idf 

humans 17177 0.0383 0.0000 1 endocannabinoid-system 2095 0.0091 0.0063 

animals 11295 0.0252 0.0000 2 alcohol 1675 0.0073 0.0050 

metabolism 10296 0.0229 0.0000 3 brain 1668 0.0072 0.0000 



drug-effects 9206 0.0205 0.0142 4 anandamide 1593 0.0069 0.0048 

pharmacology 9006 0.0201 0.0000 5 drug-use 1585 0.0069 0.0048 

adult 6647 0.0148 0.0000 6 activation 1562 0.0068 0.0047 

adolescent 5933 0.0132 0.0000 7 substance-use 1457 0.0063 0.0044 

physiology 5791 0.0129 0.0000 8 expression 1425 0.0062 0.0043 

epidemiology 5341 0.0119 0.0000 9 abuse 1334 0.0058 0.0040 

psychology 4979 0.0111 0.0000 10 cannabinoid-receptor 1263 0.0055 0.0038 

rats 4529 0.0101 0.0000 11 acid-amide-hydrolase 1179 0.0051 0.0035 

receptor-cannabinoid-

cb1 
4350 0.0097 0.0067 12 risk 1169 0.0051 0.0000 

substance-related-

disorders 
4274 0.0095 0.0066 13 prevalence 1108 0.0048 0.0000 

endocannabinoids 4249 0.0095 0.0000 14 rat-brain 1102 0.0048 0.0033 

cannabinoids 3993 0.0089 0.0000 15 inhibition 1059 0.0046 0.0032 

mice 3771 0.0084 0.0000 16 united-states 999 0.0043 0.0000 

young-adult 3746 0.0083 0.0000 17 marijuana-use 949 0.0041 0.0000 

drug-therapy 3723 0.0083 0.0000 18 
delta-9-

tetrahydrocannabinol 
944 0.0041 0.0028 

antagonists-&-

inhibitors 
3685 0.0082 0.0057 19 marijuana 905 0.0039 0.0027 

genetics 3483 0.0078 0.0000 20 cannabis-use 889 0.0039 0.0027 

chemistry 3412 0.0076 0.0000 21 dependence 853 0.0037 0.0026 

middle-aged 3160 0.0070 0.0049 22 mice 847 0.0037 0.0000 

marijuana-abuse 3049 0.0068 0.0047 23 
delta(9)-

tetrahydrocannabinol 
782 0.0034 0.0023 

methods 3028 0.0067 0.0047 24 system 779 0.0034 0.0023 

dronabinol 2888 0.0064 0.0000 25 endogenous-cannabinoids 773 0.0033 0.0023 

 

The MeSH terms with the highest frequency are terms that appear in many records due 

to the hierarchical structure of the thesaurus that supports the system (MeSH Tree).  The 

MeSH Tree is divided into 16 branches, which in turn are divided into a varied number 

of levels and sublevels.  For example, branch B refers to the organisms involved in the 

analyses, such as animals (which includes humans, rats, and mice).  Branch M (Named 

Groups) includes terms about the groups of individuals involved; these include the age 

groups of persons (such as adult, adolescent, and middle-aged). Other terms called 

“qualifiers” or “subheadings” are included with the headings. They provide extra 

information in addition to the descriptors and include terms such as “metabolism,” “drug-

effects pharmacology,” and “physiology.” 

As can be seen in table 1, some of the most commonly mentioned MeSH terms have a tf-

idf value equal to zero. This happens when the idf is zero, that is, when the term (e.g., 



“mice”) is repeated in all the documents to be considered (in our case, the two 

classifications we are analyzing). The condition of tf-idf = 0 identifies the terms as generic 

terms, as opposed to what we might identify as uncommon or specific terms, whose 

importance increases inversely to their frequency of appearance, and which therefore 

have higher tf-idf values. Thus, the tf-idf value identifies those terms that are more 

significant to the analysis due to their infrequent appearance in the documents and in the 

two classifications.  A term that is very common in one of the classifications but appears 

rarely or not at all in the other classification must have a non-zero tf-idf.  This is what 

happens in the example of the MeSH terms “drug-effects” and “receptor-cannabinoid-

cb1” and the KW Plus terms “endocannabinoid-system” and “alcohol.” 

As can be observed in table 2, the KW Plus terms are generally more specific than the 

MeSH terms (tf-idf ≠ 0).  This would explain why there are 18,763 terms more in KW 

Plus than in MeSH and why the MeSH terms display a higher frequency than the KW 

Plus terms.  Because the KW Plus terms are not configured in a controlled language, they 

open the door to spelling variants and combinations of generic and specific terms.  One 

of the spelling variants is the main psychoactive component of cannabis, “delta-9-

tetrahydrocannabinol,” which appears with and without parentheses.  However, in MeSH 

this particular term does not appear at all, as delta-9-tetrahydrocannabinol falls under the 

term “dronabinol,” a psychoactive compound extracted from the resin of Cannabis sativa.  

Furthermore, generic and specific terms may be combined. For instance, KW Plus 

contains both the generic term “system” and more specific terms such as 

“endocannabinoid-system;” this constitutes an additional restriction of the KW Plus 

description system. 

 

Table 2.  Number of records analyzed in each of the systems with g ≥ 0.2 and g ≥ 0.25 

 Number of documents (%) 

g KW Plus MeSH 
KW Plus 

MeSH 

g ≥ 0.2 
13,553 

(52.2%) 

22,962 

(89.7%) 

10,270 

(40.1%) 

g ≥ 0.25 
2,302 

(9.0%) 

8,954 

(35.0%) 

1,175 

(45.9%) 

 



Figure 3 shows the 25 most significant terms in the description of the documents in both 

systems, listed in order by their tf-idf value. 

Figure 3.  Twenty-five most significant terms for describing the records in each 

classification system 

 

Comparison of the two lists suggests the following considerations: 

- The	term	“alcohol”/”alcohol-use”	is	a	significant	word	in	KW	Plus,	but	not	in	

MeSH.	 	KW	Plus	may	contain	 terms	related	with	alcohol	due	 to	 the	use	of	

bibliographic	references	that	include	the	term	“alcohol”	for	various	reasons,	

including	the	existence	of	extensive	research	into	the	effects	of	alcohol	on	the	

nervous	system	and	the	addiction	process	that	have	served	as	a	model	for	

basic	 research	 studies	 into	 cannabis;	 or	 the	 concomitant	 consumption	 of	

alcohol	 and	 cannabis,	 due	 to	 which	 papers	 on	 alcohol	 would	 be	 cited	 in	

cannabis-related	studies	of	mental	health,	toxicology,	and	public	health. 

- The	 chemical	 compounds	 related	 to	 the	 endocannabinoid	 system	 and	

cannabinoid	receptors	are	on	both	lists,	but	the	specific	receptors	cb1	and	

cb2	appear	only	among	the	MeSH	terms.		Other	chemical	compounds	appear	

in	MeSH	 as	 well,	 such	 as:	 	 a)	piperidine,	 a	 component	 of	 the	 hemp	 plant	

whose	 derivatives	 include	 rimonabant,	 an	 antagonist	 of	 the	 selective	 cb1	

cannabinoid	receptor,	and	b)	arachidonic	acid,	which	may	be	related	with	the	

link	between	 the	endocannabinoid	system	and	 the	arachidonic	cascade	or	



the	fact	that	endocannabinoids	(like	anandamide,	which	does	appear	in	KW	

Plus)	 are	 synthesized	 from	 omega-6	 polyunsaturated	 fatty	 acid	 and	

arachidonic	acid.	 

- Qualifiers	 or	 subheadings,	 such	 as	 “drug-effects,”	 “methods,”	 “statistics-&-

numerical	data,”	and	“analysis”	are	a	feature	of	the	MeSH	term	list	only.		They	

do	not	appear	in	the	KW	Plus	terms,	because	they	are	not	terms	that	usually	

appear	 in	papers’	 titles,	although	 for	MeSH	they	are	descriptive	of	papers’	

contents. 

- The	use	of	rats	in	in-vivo	experiments	is	a	source	of	important	descriptors	in	

both	lists,	although	in	KW	Plus	experimental	rat	use	appears	generically	as	

“rat”	 or	 in	 connection	 with	 “brain,”	 while	 the	 strains	 used	 (Wistar	 and	

Sprague-Dawley)	appear	in	MeSH. 

- Both	 lists	 include	 terms	 related	 with	 substance	 abuse.	 	 MeSH	 contains	

“substance-related-disorders”	 and	 “marijuana-abuse,”	 while	 KW	 Plus	 has	

“cannabis-use,”	“marijuana,”	and	“substance-use.” 

5.2. Topic modeling analysis 

Applying the gamma parameter (g) as a filter yields two groups, presented in table 2.  

With g ≥ 0.2, 10,270 records common to both classifications were found, while, with 

g ≥ 0.25, 1,175 records were found. 

The classifications obtained with each of the g values show that a higher percentage of 

documents is classified with MeSH terms than with KW Plus terms.  Where g ≥ 0.2, the 

MeSH number is 37.5 percentage points higher, and where g ≥ 0.25, it is 26 percentage 

points higher.  In addition, the documents classified correctly with each of the terms are 

not the same, because the percentage of documents common to both classifications when 

g ≥  0.2 is 40.1%, and when g ≥ 0.25 it is 45.9%.  

 

Figures 4 and 5 present, in bags of 20 words apiece, the seven topics into which the 

documents of each of the terminological models are classified.  The name of each topic 

and the semantic correspondence among the topics obtained through each of the 

description systems are shown in table 3.  To facilitate interpretation of the results, in this 

table the identifiers of each MeSH topic have been recoded using the same topic number 

as the KW-Plus equivalent. The beta parameter measures the estimated likelihood of a 

term’s belonging to a given topic. 



 

 
Figure 4.  Record classification topics on the basis of MeSH terms with equivalent ID* 

 

 



 
Figure 5.  Record classification topics on the basis of KW Plus terms 

Table 3.  Semantic correspondence between the two classifications 

KW Plus 

Topic subject 

KW Plus 

Topic 

number 

MeSH 

Topic 

number 

MeSH-

equivalent 

ID* 

MeSH 

Topic subject 

Biochemistry, Genetics, & 

Molecular Biology 
1 5 1* 

Biochemistry, Genetics, & 

Molecular Biology 

Pharmacology & Pharmacy 2 3 2* Pharmacology & Pharmacy 

Neurosciences 3 1 3* Neurosciences 

Miscellaneous** 4 2 4* Miscellaneous 

Psychiatry & Mental Health 5 6 5* Psychiatry & Mental Health 

Toxicology & Legal Medicine 6 4 6* Toxicology & Legal Medicine 

Public Environmental & 

Occupational Health 
7 7 7* 

Public Environmental & 

Occupational Health 

* MeSH ID in equivalent KW-Plus topic number. 

**Considered miscellaneous because it covers a large quantity of terms from diverse 

topics. 

 



The seven topics cover the following subject areas: 

1-1*: Biochemistry, Genetics, Molecular Biology, & Immunology:  This topic 

includes terms such as “cells” in KW Plus and “cells-cultured” and “cell-line” in MeSH, 

and “gene-expression” in KW Plus and “genetics” in MeSH.  In KW Plus it includes 

terms such as “in-vivo” and “in-vitro” studies, “nitric-oxide,” “inflammation,” and 

“oxidative-stress,” while in the MeSH classification it contains “immunology,” 

“arachidonic-acids,” “amidohydrolases,” “glycerides,” and “signal-transduction.” 

2-2*: Pharmacology & Pharmacy: This topic includes the terms “pharmacology” and 

“cannabinoid-receptor-agonists.” The term “rimonabant” figures prominently; 

rimonabant is a selective cb1 cannabinoid receptor antagonist used as an appetite 

suppressant, and for that reason terms like “obesity” and “food-intake” appear.  Another 

term associated with this topic is “dose-response-relationship-drug.” 

3-3*: Neurosciences:  This topic includes terms such as “physiology,” “metabolism,” 

“drug-effects,” “cannabinoid-receptor,” “endocannabinoids,” “brain,” “neurons,” 

“hippocampus,” and “central-nervous-system.” The term “synaptic-transmission” 

appears in both classifications. 

4-4*: Miscellaneous:  This is the topic that presents the highest number of terms that fall 

within other topics as well.  The MeSH classification includes terms like “drug-therapy,” 

“therapeutic-use,” “physiopathology,” “administration-&-dosage,” and “complications,” 

while KW Plus includes terms already encompassed by other topics, like “brain,” 

“agonist,” “antagonist,” “pharmacology,” “cb1,” and “receptors.”  

5-5*: Psychiatry & Mental Health:  Both classifications include terms related with 

substance use, “abuse,” and “dependence,” “psychology,” “schizophrenia,” 

“comorbidity,” “psychotic-disorders,” “depression,” “mental health,” and “mental 

disorders,” and follow-up studies of pathologies and treatments are plentiful.  These 

studies focus on humans. 

6-6*: Toxicology & Legal Medicine:  These include active ingredients like “delta-9-

tetrahydrocannabinol” and “metabolites,” as well as terms related with laboratory 

analysis techniques or methods, such as “identification,” “substance-abuse-detection,” 

and “gas-chromatography-mass-spectrometry,” and terms from the field of laboratory 

analysis, like “chemistry,” “analysis,” “blood,” and “urine.” 

7-7*: Public Environmental & Occupational Health:  Both classifications include 

terms related with epidemiology, like “prevalence.” This topic focuses on young groups 

and addresses fundamental issues in prevention, like risks and behavior. 



Of the seven topics, three are associated more with humans than with animals.  These are 

the topics of Psychiatry & Mental Health, Public Environmental & Occupational Health, 

and Toxicology & Legal Medicine.  

5.3.	Statistical	analysis	

The 10,270 documents assigned in both systems with a threshold of g ≥ 0.2 and the 1,175 

documents assigned with a threshold of g ≥ 0.25 are presented in contingency tables 

(tables 4a and 4b). 

Table 4a.  Number of documents classified in both models (g ≥ 0.2) 

 MeSH-ID* topic number 

(a) 1* 2* 3* 4* 5* 6* 7* Total 

ID-KW 

Plus 

topic 

number 

g ≥ 0.20 

1 915 142 122 202 6 78 0 1,465 

2 122 601 323 334 121 16 6 1,523 

3 359 397 821 163 8 24 1 1,773 

4 408 518 222 93 3 186 0 1,430 

5 4 7 4 188 1,222 17 720 2,162 

6 11 66 4 69 139 934 78 1,301 

7 1 0 0 10 472 21 2,508 3,012 

Total 1,820 1,731 1,496 1,059 1,971 1,276 3,313 12,666** 

** A document may be assigned to more than one topic. 
 

Table 4b.  Number of documents classified in both models (g ≥ 0.25) 

 MeSH-ID* topic number 

(b) 1* 2* 3* 4* 5* 6* 7* Total 

KW Plus 

topic 

number 

g ≥ 0.25 

1 62 1 0 2 0 1 0 66 

2 4 36 6 20 3 0 0 69 

3 26 22 112 3 0 0 0 163 

4 10 16 3 3 0 4 0 36 

5 0 0 0 12 107 0 18 137 

6 0 1 0 0 0 227 0 228 

7 0 0 0 0 5 0 471 476 



Total 102 76 121 40 115 232 489 1,175 

 

It should be borne in mind that, where g is lower, some of the documents are ascribed to 

more than one topic in one of the two classifications. As a result, the total in the 

corresponding contingency table is higher than the total number of documents considered.  

However, in the case of g ≥ 0.25, each document is assigned to a single topic in each of 

the description systems. 

 

Tables 4a and 4b present an initial comparison of the equivalences between the two 

classifications shown in table 3 (the recoded MeSH topic numbers have been used).  

While in table 3 equivalence was found through expert review of the bags of words to 

invest the words with semantic content, now the expert’s opinion is supported by 

statistical analysis. 

5.4.	Measurements	of	association	
The first step is independence testing and calculation of the usual measurements of 

association linked to the chi-squared test in simple contingency tables. The results of these 

measurements are shown in table 5. 

Table 5.  Statistics measuring independence and association between the two models (g ≥ 

0.2, g ≥ 0.25) 

 g ≥ 0.2 g ≥ 0.25 

Pearson’s chi-squared test 
23392 

(df = 36, p-value < 0.05) 

4119.9 

(df = 36, p-value < 0.05) 

Contingency coefficient 0.805 0.882 

Cramer’s V 0.555 0.764 

 

In both cases (g ≥ 0.2 and g ≥ 0.25), it must be accepted (p-value < 0.05) that the two 

classifications are not independent and do have some association between them.  The 

contingency coefficient furthermore reveals that overall this relationship is intense and 

grows greater in the case of the more demanding criterion.  The values of Cramer’s V 

corroborate the higher degree of association in the case of the higher threshold. 

Mosaic plots are used to visualize the associations among the seven topics of each of the 

classifications.  The seven KW Plus topics are ranged along the vertical axis (topic.x), 

and the corresponding MeSH-ID* topics are ranged along the horizontal axis (topic.y.).  



The areas of the rectangles represent the joint co-occurrence frequencies (length is MeSH 

and width is KW Plus).  Those cells where the frequencies are higher than expected are 

colored blue, while the cells where the reverse is the case are colored red. 

For example, in figure 6, which graphs the data in table 4a, many documents classified 

into topic 1 in KW Plus may be expected to be classified into topic 1* (topic number 5 in 

fig. 4) by MeSH, and few of them may be expected to be classified into MeSH topics 2* 

or 6* (3 and 4 in fig. 4).  

 
Figure 6.  Mosaic plots of the contingency tables of KW Plus terms and MeSH terms, 

with g ≥ 0.2  

 

Let us observe the graph in figure 7, plotted from the data in table 4b, where the 

correspondence between classifications is established on the basis of the documents most 

likely to be properly assigned to a given topic (highest gamma).  The results match the 

expert’s observations fairly well.  For example, the documents classified by KW Plus into 

topic number 7 may be expected to be classified by MeSH into topic 7 (7*) as well. The 

same applies to the combinations KW Plus-1/MeSH-5 (1*), KW Plus-3/MeSH-1 (3*), 

KW Plus-5/MeSH-6 (5*), and KW Plus-6/MeSH-4 (6*).  



 
Figure 7.  Mosaic plots of the contingency tables of KW Plus terms and MeSH-ID* 

terms, with g ≥ 0.25 

 

There are two major discrepancies between the statistical results and the semantic 

assignment.  The first is the assignment of KW Plus-2 as being compatible with not only 

MeSH-3 (2*), but also MeSH-2 (4*).  The second discrepancy is in KW Plus-4, which 

we have identified semantically as “Miscellaneous,” and which the statistical analysis 

assigns, in varying degrees, to the first five MeSH topics, with a larger number of 

documents classified in MeSH-3 (2*) than in MeSH-2 (4*).  These discrepancies grow 

greater when we consider a lower gamma value, which indicates greater ambiguity in 

document classification in both models. 

Lastly, we can use our analysis to find the concordance between the two classification 

models using Cohen’s kappa coefficient.  This coefficient measures how closely the two 

systems agree when assigning documents to topics.  It is calculated from the values of the 

diagonal of a matrix where the rows and columns represent the same groups.  Because 

this is not the case in our analysis, since the groups are assigned a number randomly, the 

topics have been recoded according to the list established in table 3 and to a certain extent 

corroborated by table 4b and figure 7. 

The values found for the matches between the two models, by gamma level, were 

kappa = 0.477 (for g ≥ 0.2) and kappa = 0.8236 (for g ≥ 0.25).  As can be seen, while the 

concordance between the two description systems is moderate for the first level, when 



documents with a higher probability of being unequivocally classified (higher gamma) 

are compared, however, the concordance between the two systems is much greater. 

As may be observed in tables 4a and 4b and figures 6 and 7, the topics associated more 

with humans, like “Psychiatry & Mental Health” (KW Plus-5, MeSH-6/5*), “Public 

Environmental & Occupational Health” (KW Plus-7, MeSH-7/7*), and “Toxicology & 

Legal Medicine” (KW Plus-6, MeSH-4/6*), are the topics presenting the greatest 

concordance between the two systems.  However, in the data obtained when g ≥ 0.25, 

some of the documents classified by KW Plus as “Psychiatry & Mental Health” (KW 

Plus-5) are unexpectedly classified by MeSH as “Public Environmental & Occupational 

Health” (MeSH-7/7*).   

 

6. Conclusions and discussion. 

An	 analysis	 was	 performed	 comparing	 the	 use	 of	 the	 MeSH	 and	 KW	 Plus	

classification	 systems	 for	 automatic	 document	 classification	 and	 the	 use	 of	 each	

system	to	map	knowledge	in	the	health	sciences	area.	

The	 terms	 in	 each	 system	were	 studied	 to	determine	whether	 they	 followed	 the	

same	model.		The	distributions	of	MeSH	and	KW	Plus	terms	were	found	to	behave	

differently.	 	 Behavior	 is	 clearly	 linked	 to	 the	 documentary	 nature	 of	 each	 of	 the	

systems.	 	 The	MeSH	 system	uses	 hierarchical,	 controlled	 language	 and	 therefore	

tends	to	use	fewer	terms	to	describe	documents	(10,107	MeSH	per	28,870	KW	Plus).	

For	this	same	reason,	among	the	most	frequent	terms	(i.e.,	terms	ranking	lower	than	

100),	there	is	a	larger	number	of	documents	that	use	the	MeSH	terms.		However,	the	

opposite	 occurs	 for	 highly	 ranked	 terms	 (i.e.,	 ranking	 above	 1,000);	 then	 the	

uncontrolled	nature	of	 the	KW	Plus	descriptors	makes	a	 larger	number	of	 terms	

necessary	to	describe	documents.	

One	significant	point	of	this	work	is	that	automatic	classification	of	documents	on	

the	seven	defined	 topics	on	 the	basis	of	MeSH	and	KW	Plus	 terms,	using	g	≥	0.2,	

shows	 that	 nearly	 50%	 of	 the	 documents	 included	 in	 Web	 of	 Science	 are	 not	

included	in	the	seven	topics.		Therefore,	they	are	not	well	classified.		In	addition,	the	

concordance	 found	between	 the	 two	systems’	 classification	of	documents	 for	 the	

less	demanding	gamma	(g	≥	0.2)	is	kappa=0.477.		This	means	that,	if	gamma	is	made	

less	demanding,	a	very	weak	degree	of	 concordance	will	be	 found.	 	One	possible	

reason	for	the	low	concordance	in	topic	categories	is	the	wide	dispersion	of	KW	Plus	



terms.		Another	point	to	note	is	that	the	three	topics	concerning	studies	with	human	

beings	 (“Psychiatry	 and	 Mental	 Health,”	 “Public	 Environmental	 &	 Occupational	

Health,”	 and	 “Toxicology	 and	 Legal	 Medicine”)	 are	 the	 topics	 that	 displayed	 the	

highest	degree	of	concordance	in	document	classification.	 	This	fact	suggests	that	

differentiating	 between	 studies	 in	 human	 beings	 and	 other	 studies	 (primarily	

laboratory	studies	and	basic	research)	could	prove	an	advantageous	strategy	when	

topic	mapping	in	the	biomedicine	area.	

Furthermore,	 grey-box	 tools	 like	 VOSviewer	 and	 CiteSpace,	 or	 more	 recently	

Bibliometrix,	frequently	offer	KW	Plus-based	topic	maps	as	outputs.		As	the	use	of	

grey-box	 tools	 spreads	 and	 becomes	 increasingly	 accepted	 (due	 to	 researchers’	

relative	ability	to	intervene	in	the	calculation	systems),	this	paper’s	findings	become	

more	germane	to	the	interpretation	of	their	outputs.		This	is	especially	so	since	topic	

analyses	based	on	the	categories	into	which	WoS	(or	Scopus)	classifies	journals	are	

being	questioned	more	and	more,	yet	the	need	to	run	article-level	topic	analyses	is	

becoming	clearer	and	clearer.		Therefore,	the	main	practical	application	of	this	study	

is	 that	 it	 shows	 that	 the	 use	 of	 WoS	 subject	 delimiters	 for	 topic	 analyses	 in	

biomedical	documents	is	not	neutral.	Our	findings	determine	that	this	is	particularly	

significant	when	WoS’s	KW	Plus	terms	are	used,	because,	compared	to	the	medical	

descriptive	standard	(MeSH),	the	KW	Plus	description	system	is	effective	only	in	a	

small	 portion	 of	 highly	 specialized,	 unequivocally	 classified	 documents—	 in	 our	

case	just	4.6%	of	the	documents	processed.		Therefore,	MeSH	terms	should	be	used	

instead	of	KW	Plus	terms	in	the	study	of	topic	areas	in	biomedicine.	

One	limitation	of	the	work	reported	here	is	that	we	did	not	differentiate	MeSH	terms	

by	 their	 hierarchical	 levels	 of	 classification.	 	 Therefore,	we	 included	 generic	 and	

specific	terms	from	the	same	branch	in	the	corpus	we	analyzed.		This	could	produce	

a	 certain	 amount	 of	 classification	 redundancy.	 	 Furthermore,	 due	 to	 the	 lack	 of	

standardization	in	KW	Plus	terms,	the	same	term	could	be	included	with	different	

terminological	variations	in	different	topics.		Nevertheless,	this	posed	no	obstacle	to	

the	automatic	assignment	of	the	terms	to	the	document	topics.		

One	possible	line	of	further	research	in	this	area	is	comparative	study	of	automatic	

document	 classification	 between	 MeSH	 terms	 and	 abstracts,	 for	 more	 accurate	

classification	in	medical	research	fields.	
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