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Abstract

General recommenders and sequential recommenders are two modeling paradigms

of recommender. The main focus of a general recommender is to identify long-

term user preferences, while the user’s sequential behaviours are ignored and

sequential recommenders try to capture short-term user preferences by explor-

ing item-to-item relations, failing to consider general user preferences. Recently,

better performance improvement is reported by combining these two types of

recommenders. However, most of the previous works typically treat each item

separately and assume that each user-item interaction in a sequence is indepen-

dent. This may be a too simplistic assumption, since there may be a particular

purpose behind buying the successive item in a sequence. In fact, a user makes

a decision through two sequential processes, i.e., start shopping with a particu-

lar intention and then select a specific item which satisfies her/his preferences

under this intention. Moreover, different users usually have different purposes

and preferences, and the same user may have various intentions. Thus, differ-

ent users may click on the same items with an attention on a different pur-

pose. Therefore, a user’s behavior pattern is not completely exploited in most

of the current methods and they neglect the distinction between users’ purposes

∗Shahpar Yakhchi is the corresponding author.
Email addresses: Shahpar.Yakhchi@hdr.mq.edu.au (Shahpar Yakhchi),

SAmin.Behehsti@mq.edu.au (Amin Behehsti), seyed-mohssen.ghafari@hdr.mq.edu.au (
Seyed-mohssen Ghafari), imran.razzak@deakin.edu.au (Imran Razzak),
Mehmet.Orgun@mq.edu.au (Mehmet Orgun), Mehdi.Elahi@uib.no (Mehdi Elahi)

Preprint submitted to Journal of LATEX Templates September 15, 2021



and their preferences. To alleviate those problems, we propose a novel method

named, CAN, which takes both users’ purposes and preferences into account for

the next-item recommendation. We propose to use Purpose-Specific Attention

Unit (PSAU) in order to discriminately learn the representations of user purpose

and preference. The experimental results on real-world datasets demonstrate

the advantages of our approach over the state-of-the-art methods.

Keywords: General recommenders, Sequential recommenders, User purpose

modeling, personal preference modeling, Attention mechanism, Convolutional

neural network.

1. Introduction

Due to the information explosion, people are surrounded by too many options

and services. Therefore, there is a need for a tool to help customers with their

decision-making process, find their interested items and alleviate the informa-

tion overload problem. Recommendation systems have emerged as a platform5

which automatically recommends a small set of items in order to help users

find their desired items in online services. Based on how the users’ preferences

are modelled, there are two types of recommenders: general recommenders and

sequential recommenders[1][2][3].

General recommenders aim to learn what items a user is typically interested10

in. Matrix factorization is one of the most widely used methods in this setting,

which learns user-item interactions in a latent vector space to model the general

user preferences [4]. While sequential recommenders try to capture sequential

patterns from previously visited items. Markov Chains-based classic sequential

recommenders assume that the next visited item highly depends on the only15

most recent visited items [5].

Soon after, convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs) have become dominant paradigms in modeling complex relations

over user-item interaction sequences [6] [7] [8] [9] [10]. Lately, an attention-based

approaches such as SHAN [11] can surpass the traditional methods due to the20
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strong capability of attention mechanism in highlighting the selective parts in

a user and item interaction sequence [12].

Both the aforementioned classes of approaches have their strengths and

shortcomings [3]. Although general recommenders have been widely adopted

to capture long-term user preferences, their performance is limited due to ig-25

noring short-term user preferences. A major advantage of the sequential recom-

menders is their capability to model sequential dependencies, e.g. a customer

who has recently purchased an iPhone is more likely to buy an iWatch next.

However, sequential recommenders discard prior user-item interactions within

user behaviors, and thus failing to capture general user preferences [1].30

Based on the above observation, it is better to build a recommender sys-

tem which benefits from the advantages of both general- and sequential recom-

menders. FPMC as an example, is a combination of MC and MF, in which

instead of using the same transition matrix for all users, an individual transi-

tion matrix is used for each user [2]. FPMC can well capture both sequential35

behavior and general taste of the users and then linearly combine them [2].

HRM takes one step forward to make progress by using different types of ag-

gregation operations, especially non-linearity into its model [3]. However, users

decision-making pattern is not exploited thoroughly by the existing models as

they mainly take each user-item interaction independently and consider each40

item in a sequence as a separated entity. Hence, the current studies may fail to

capture local contexts in a session and ignore a user’s purpose which is reflected

by a set of clicked successive items in a session. The same user may have vari-

ous purposes and different users may have different purposes by clicking on the

same items. Furthermore, different items within a session may also have dif-45

ferent informativeness for revealing purposes and preferences of different users.

Therefore, the previous works neglect the hierarchical distinction between user

purposes and user preferences, which in turn makes it a challenging task to fully

exploit users’ decision-making patterns.

Usually, a user’s decision-making process is a combination of two sequen-50

tial steps; a user’s main purpose and his/her preference. Taking the shopping
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event of a user as an example, she/he starts shopping with a specific purpose

and then keeps looking into different items until she/he finds items that satisfy

her/his preference. Suppose Alice is a PhD student and her previous actions are

mostly related to her field of study such as looking for a workshop, and finding55

an article. Alice has a plan to travel overseas for presenting her work in an

international conference. She starts booking her flight and hotel and her next

action may be visiting some universities or institutions. While current systems

may recommend tourist attractions or car rental companies to her because many

users may look for them after booking a hotel and a flight, ignoring her edu-60

cational purpose of this travel which is hidden inside her long-term interacted

item set. Based on this observation, we can see that the user’s main purpose

may be hidden inside her/his very previous actions, while analysing her/his very

current actions can show her/his preferences on particular items.

The above illustrations reveal the difficulty of capturing collective depen-65

dency in a session. In the other words, the next choice of item may not be

only affected by a part of current session, but all items need to be taken into

consideration as a collective of interacted items may have a particular purpose.

Moreover, most of these works have taken user-item relationships into consider-

ation from the static views and the dynamic property of users’ preferences are70

ignored. More importantly, the users’ main purposes are not only forgotten,

but also there is no difference between the contributions of the same items in

modeling preferences of different users. Therefore, how to fully exploit users

decision-making process and completely take both the users’ motivations along

with their current interests are still largely unexplored.75

To address the above issues, we propose a novel model called CAN, A con-

volutional attention network for unifying general and sequential recommenders,

which unifies the benefits of both general- and sequential recommenders. CAN

consists of two main modules: purpose encoder and preference encoder. In the

purpose encoder we first embed users and items into low-dimensional vectors80

and then use the CNN network to identify user purposes by capturing the lo-

cal and high-level information of the long-term interacted item set. Then, we
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propose to use a Purpose-Specific Attention Unit (PSAU) to differently attend

to different items and fully exploit different informativeness of different items.

Next, at preference encoder we also utilize PSAU in order to learn the items’ in-85

formativeness in the short-term interacted item set to better understand users’

preferences. Lastly, the final user representation is learned through coupling

user long-term and short-term preferences. The model’s parameters are learned

by employing the Bayesian personalized ranking optimization criterion to gen-

erate a pair-wise loss function [13]. From the experiments, we can observe the90

superiority of our model over the state-of-the-art algorithms on two datasets.

The key contributions of the paper are summarized as follows:

• We introduce a unified framework, named CAN, integrating a CNN net-

work and attention-based PSAU module to model the users’ purposes and

personal preferences.95

• We propose a Purpose-Specific Attention Unit, PSAU, which takes user

embedding as the query vector of the purpose- and personal preference-

level attention networks to differentially attend to important items ac-

cording to user purposes and preferences.

• We use the PSAU in both the long- and short-term interacted item set to100

generate a high-level hybrid user representation.

• We conduct extensive experiments on two real-world datasets. The exper-

imental results demonstrate the superiority of our proposed model com-

pared to the state-of-the-art methods.

The rest of the paper is organised as follows: we discuss the related works105

in Section 2. The proposed methodology and our experiments are presented in

Section 3 and Section 4, respectively, before we conclude the paper in Section

5.
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2. Related Work

Based on different aspects of user behavior, there are two types of paradigms110

that are applied to recommendation tasks: general recommender and sequential

recommender. Both paradigms have strengths and weaknesses, which in the

following discussion, we will analyze each paradigms.

2.1. General Recommender

The main goal of general recommenders is to discover the users’ long-term115

preferences by exploiting their past items interactions. Early works on this

kind of recommenders mostly use Collaborative Filtering (CF) to model users’

preferences [14] [15]. Matrix factorization (MF) is one of the widely adopted

techniques in CF, which aims to learn user and item latent vectors in order

to compute a user’s preference on an item [4] [16]. Basically there are two120

different types of data with which MF-based approaches deal: explicit feedback,

e.g., given ratings, and implicit feedback, e.g., mouse clicking. The first one

treats making a recommendation as a rating prediction problem, referring to

the approaches that try to predict users’ preference scores by utilizing their

rating patterns [4]. Unlike approaches belonging to the first class, implicit125

feedback oriented methods formulate making a recommendation as a ranking

problem based on the idea of the Learning to-Rank technique [17]. Although

general recommenders may better model the long-term user preferences, their

performance is limited due to ignoring short-term user preferences.

2.2. Sequential Recommender130

Different from general recommenders, sequential recommenders try to un-

derstand the sequential user behaviors and model the short-term user prefer-

ences [18]. Markov chain (MC) has been known as a typical solution in this

setting. For instance, SPMC exploits both sequential and social information to

make a more personalized recommendation model [19]. In the past few years,135
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deep learning methods have shown their great capability in modeling the com-

plex interactions between users and items. Among deep neural networks tech-

niques, Recurrent Neural Network (RNN) is one of the widely adopted methods

in sequential recommenders due to its capability in sequence modeling. Apart

from using basic RNN [6] [20], improved architectures like long short-term-140

memory (LSTM) [21] and gated recurrent unit (GRU) [22] have also been intro-

duced to better model dependencies in a longer sequence. Different from RNN,

Convolutional Neural Network (CNN) stores the embedding of the user-item in-

teraction sequences in a matrix and then treats this matrix as an image [7] [8].

Although the basic deep neural networks (i.e., RNN, CNN) have shown a great145

success in modeling sequential dependencies, they may have some shortcomings

in modeling complex relations between users and items. Thus, three advanced

models have been introduced to overcome this problem: (i)attention mechanism:

by more focusing on relevant and important interactions in a sequence [23] [11];

(ii) memory networks: by incorporating an external memory matrix [24] [25];150

and (iii) mixture models: by combining the strength of the current deep neural

models [26].

Inspired by the outperformance of Transformer [27] [28] [29] [9] in NLP tasks,

SRs have motivated to use self-attention technique to better capture sequential

dependency. BERT4Rec [30] for instance, has used the deep bidirectional self-155

attention algorithm to model the sequences of users’ behaviors. Except these

methods, Graph Neural Network (GNN) has emerged as a solid structure With

the strong capability of modelling complex transition patterns of items [31].

SURGE is an example of GNN-based model,in which different types of users’

preferences are modelled. The authors have also used graph network to model160

users’ dynamic behaviour.

While sequential recommender models are good at capturing the sequential

dependency, they mostly recommend items similar to those that a user currently

visited and the general user preference is ignored.
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2.3. Unified Recommender165

There are some recent attempts to combine both general- and sequential

recommenders in a unified system. For instance, FPMC is one of the pioneer-

ing works in the literature which fuse MF and MC into one model in order

to learn the both users’ long-and short-term preferences [2]. Soon after, Hi-

erarchical Representation Model (HRM) is proposed by Wang et.al [3] which170

non-linearly models both sequential behaviors and users’ general taste to make

a better recommendation. While FPMC and HRM have exploited user long-

term preferences to improve the performance of sequential recommenders, Co-

Factor benefits from integrating a co-occurrence item-to-item matrix into an

MF model [32]. BINN which is proposed by Li et al. [33], is another attempt in175

unifying both types of users’ preferences. The authors have stated that differ-

ent types of users’ actions (e.g., browse, click, collect, cart, and purchase) need

to be treated differently. Their proposed model consists of two main compo-

nents: Neural Item Embedding and Discriminative Behaviors Learning. At first

component, BINN tries to find the items’ similarities by analysing users’ sequen-180

tial behaviors. While at second component, two alignments Session Behaviors

Learning (SBL) and Preference Behaviors Learning (PBL) are introduced to

learn discriminative behaviors [33]. Although BINN can record a significant im-

provement over several state-of-the-art models, it uses LSTM for discriminative

behaviors learning part, which may limit the performance of their recommender185

system as it may not be able to capture the dynamic property of users’ prefer-

ences. Moreover, BINN only considers purchase behavior for modelling users’

historical preferences. This may not only cause in losing some useful information

by exploiting other types of users’ behaviours (e.g., click, add to cart, and etc),

but also may fail to learn latent users’ purposes which is hidden in a collection190

of successive user-item interaction

Our model falls under this category and the difference of our method over

the existing works can be seen in three different aspects. First, the main purpose

of a user’s shopping behaviour is ignored in most of the current unified recom-

menders, which in turn may lead to performance degradation as it plays an195
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important role in the user’s decision-making. Second, current methods mostly

consider the same informativeness for clicked items in the sequence of user-item

interaction, which may result in uncompleted exploited short-term users’ prefer-

ences. Third, we propose to use a PSAU component to apply in both long-and

short term interacted item set in order to dynamically recognize important items200

for recommendation based on user preferences.

3. Proposed Methodology: Convolutional Attention Network

Before introducing the details of our proposed model, we first define and

formulate the research problem and basic concepts and then we present the

optimization procedures.205

3.1. Notations and Problem Formulation

In this section, we investigate the next-item recommendation problem with

implicit feedback data. Let us consider U = {u1, u2, ..., u|u|} as the user set and

V = {v1, v2, ..., v|v|} as the item set, where |u| and |v| are the total number of

users and items, respectively. For each user u, we define Gu = {Su
1 , S

u
2 , ..., S

u
T }210

Figure 1: The architecture of CAN, which consists of two main modules purpose encoder and

preference encoder.
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as her/his transaction history, where T is the total number of sessions and each

session Su
t ⊆ V (t ∈ [1, T ]), where Su

t represents a set of interacted items for

users u at time step t. We denote Su
t as the short-term preference of user u

(i.e., her/his sequential behaviour) at specific time step t. In addition to short-

term preference, long-term preference of user u is also important for identifying215

items that users will interact in the near future. Therefore, we consider Gu
t−1 =⋃t−1

t=1 S
u
t to reflect the long-term preference of user u (i.e., general preference),

where Gu
t−1 is a set of interacted item sets before time step t. For the rest of

this paper, we call Gu
t−1 and Su

t as the long- and short-term interacted item

sets regarding time step t, respectively. Given user u transaction history Gu,220

we aim to predict the next items which the user will likely purchase by learning

her/his long- and short-term preferences.

3.2. Modeling and Learning

The framework of CAN is illustrated in Figure 1. As shown in Figure 1,

our proposed model consists of two main modules: (1) the purpose encoder and225

(2) the preference encoder. The first module aims to learn the main purpose

of the long-term interacted item set for the users. It takes a set of user-item

interactions in the long-term item set and embeds them into low-dimensional

vector representations, and then these vectors are passed to a CNN network

to effectively capture the local contextual information of the sequence in order230

to identify a user’s main purpose. Then, we propose to use a Purpose-Specific

Attention Unit (PSAU) to differentially attend to the users’ main purposes.

The reason behind applying PSAU is that different users may have different

purposes of buying the same items. For instance, both users a and b buy item i,

while user a buys this item as a souvenir for her friend, but user b is interested235

in this item for herself. Then, we propose to use a Purpose-Specific Attention

Unit (PSAU) to differentially attend to the users’ main purposes. The reason

behind applying PSAU is that different users may have different purposes of

buying the same items. For instance, both users a and b buy item i, while

user a buys this item as a souvenir for her friend, but user b is interested in240
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this item for herself. Thus, we propose to use PSAU in order to incorporate

the informativeness of purchasing the same items for different users. The next

module is (2) the preference encoder, which aims to learn the users’ current

preferences. The same user may have different preferences and each item may

be more or less informative for that specific preference. Hence, PSAU is also245

applied here to discriminate each item informativeness.

3.3. Purpose Encoder

Our purpose encoder module has three core components: (i) embedding

look-up, (ii) convolutional neural network and (iii) Purpose-Specific Attention

Unit (PSAU). Usually users’ decision-making process consists of two sequential250

vital steps, namely, users’ main purposes and users’ preferences. Normally,

people start shopping with an intention and then view different items until they

find interesting items that satisfy their preferences. In this block, we aim to

first convert a session of items into a sequence of low-dimensional dense vectors.

Then, we use a convolutional neural network for capturing local information.255

Since local contexts within a set of interacted items may imply a user’s purpose.

For instance, Julia wants to have a Halloween party. She goes to a shopping

and puts a set of {hanging ghost, pumpkin, lollipop, plastic blood bag} together.

In this collection of items, the local combination of the “hanging ghost”, and

“plastic blood bag” may be more important to show the user’s main intention260

of this shopping. Therefore, we use a CNN network here to learn contextual

representations of a set of items. Finally, at this block, PSAU unit is applied

to distinguish the level of informativeness of different items in revealing the

users’ motivations of purchasing a set of items together. The reason behind

using PSAU unit in purpose encoder is that different items may have different265

level of contributions in presenting a user’s main purpose, and the same words

may have different informativeness for the recommendation of different users.

Based on this observation, we need to identify important items in demonstrating

shopping’s purpose of different users, and thus the personalized attention-based

network is proposed to apply in this block.270
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Embedding Look-up. First, we use embedding look-up to embed user

and item IDs (i.e., one-hot representations) into two continuous low-dimensional

spaces, where ei represents the item embedding vector of item i, and uj denotes

the user embedding vector of user j. The embedding matrix is denoted by

E = [e1, e2, ..., ei], E ∈ R|V |×D, where D and |V | represent the embedding275

dimension and the total number of items, respectively. The matrix U ∈ RD×|U |

is the user embedding matrix, where uj denotes the user embedding vector of

user j.

Convolutional Neural Network (CNN). Second, we employ CNN to

learn contextual information of user-item interactions [34]. CNN is one of the280

deep learning techniques with a great capability in capturing local informa-

tion [35]. Therefore, we use CNN to capture the user’s main purpose in the

long-term item set. Next, we perform a convolution operator on the matrix E

as the concatenation of the items’ embedding vectors. Let Kw ∈ RNf×(2K+1)D,

and bw ∈ RNf denote the parameters of CNN network, in which Kw is the285

kernel and bw represents the bias parameters. Nf is the number of CNN fil-

ters, and 2K + 1 is the window size of CNN. Then, ci illustrates the contextual

representation of item i:

ci = ReLU(Kw × ebi−kc:bi+kc + bw) (1)

, where ebi−kc:bi+kc ∈ Gu
t−1 is the combination of the embedding vectors of

items from position bi− kc to position bi+ kc. We use ReLU as our non-linear290

activation function.

Purpose-Specific Attention Unit (PSAU). The last component in the

purpose encoder is the Purpose-Specific Attention Unit (PSAU), to differentially

attend to important items according to user purposes. In a sequence of user-

item interactions, each item may be more or less informative for learning users’295

purpose representation. For instance, imagine {pizza bread, pepperoni, cheese}

as a set of purchased items together for making a pizza. In this shopping bas-

ket, pizza bread is more informative to represent the users’ purposes than cheese.
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Furthermore, different users may purchase the same items for a different pur-

pose. Therefore, based on these observations, identifying the contributions of300

different items for different users play an important role in personalized rec-

ommendation. However, most of the current approaches use a classic attention

network which computes attention score as a weighted sum over the embeddings

of items and a fixed attention query vector, ignoring users’ main purposes. To

learn the informativeness of each item for different users, we propose to employ305

the PSAU cell to identify the most informative items related to the users’ main

purpose within a user-item interaction sequence. PSAU first takes the embed-

ded user-ID vector u
′

j ∈ RDu , where Du is the user embedding dimension. Then,

we use a dense non-linear layer to transform the embedding vector u
′

j to the

purpose-level user preference vector pj , which is formulated as:310

pj = ReLU(W1 × u
′

j + b1), (2)

where W1 ∈ RDu×Dp and b1 ∈ RDp×1 are model parameters, and Dp is the

preference vector dimension. Next, we denote αj as the attention score of item j,

which can extract the level of informativeness of each item according to the users’

main purpose. The attention score αj , is calculated based on the interaction

between the user preference vector and the contextual item representations,315

which is shown as :

ai = cTi tanh(W2 × pj + b2), (3)

αi =
exp(ai)∑

i∈Gu
t−1

exp(ai)
(4)

, where W2 ∈ RDp×Nf and b2 ∈ RNf×1 are model parameters. Next, the user’s

main purpose representation mi is modeled as a weighted sum of the contextual

representation of item i with their attention scores. Formally, this representation320

can be formulated as follows:

mi =
∑

i∈Gu
t−1

αici (5)
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3.4. Preference Encoder

As it is clear from Figure 1, PSAU is also employed in the preference encoder

module in order to learn an informative user short-term preference representa-

tion. Different users may have different preferences by clicking on the same325

items and different items are more or less informative for modeling user prefer-

ences. Hence, we use PSAU here as well to model the different informativeness

of the same items for different users. Hence, we first take the item embedding

ei ∈ Su
t in a short-term interacted item set to model a user preference vector

pd, which is shown as:330

pd = ReLU(W3 × ei + b3), (6)

where W3 ∈ RDu×Dq and b3 ∈ RDq×1, and Dq is the preference query size.

Next, the attention weight α
′

i represents the level of informativeness of item i

in the short-term user preference, which can be computed by the interactions

between the user’s purpose representation and user preference vector. Then, the

softmax function is used to normalize the attention weight, which is calculated335

as follows:

a
′

i = mT
i tanh(W4 × pd + b4), (7)

α
′

i =
exp(ai)∑

i∈Su
t
exp(ai)

(8)

where W4 ∈ RDq×Nf and b4 ∈ RNf×1 are model parameters. Finally, the

contextual user representation uj is computed as follows:

uj =
∑
i∈Su

t

a
′

imi (9)

3.5. Prediction Layer340

After the final user representation uj has been learned, we calculate the inner

product of it and item representation vi in order to compute the user preference

score Rij as follows:
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Rij = ujvi (10)

Next, followed by [13], we utilize a pair-wise loss function in order to train our

model. We aim to provide a ranked list of the next items to be recommended,345

where observed items should have higher score than unobserved ones. Let D =

{(u, vi, vj) : u ∈ U, vi ∈ Gu, vj ∈ V/Gu} denote the set of pair-wise training

instances. Then we train our model by maximizing a posterior (MAP) as follows:

arg min
Θ

∑
(u,vi,vj)∈D

− lnσ(Ru
i −Ru

j ) + λuv||θuv||2 + λa||θa||2 (11)

where θuv ={U, V} is the set of user and item embedding parameters, θa =

{W1,W2,W3,W4} is the set of weights of attention networks, λuv and λa are350

the regularization parameters, and σ is a logistic function.

4. Experiments

In this section, we present experimental evaluation of proposed recomender

and compare the performance with state-of-the-art baseline methods such as

BPR [13],FOSSIL [36], Caser [7], FPMC [2], HRM [3], GRU4Rec [6], NARM [37],355

SHAN [11], and MEANS [25].

4.1. Datasets and Experimental Setting

We conduct our experiments on two widely used datasets Tmall 1 and

Gowalla 2. The Tmall dataset records the user’s consumption and browsing

behavior during the user’s shopping process. It has too many interactions of360

424,170 users on 1,090,390 items within six months. In this dataset there are

four kinds of activities: click, collect, add-to-cart and purchase. Following the

settings in [11] and [38] we only consider the users’ purchase activities in our

experiment. The Gowalla aggregates the users’ check-in information from the

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=53
2https://snap.stanford.edu/data/loc-gowalla.html
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Table 1: Statistics of our datasets

Dataset Users Items Sessions length Training sessions Testing sessions Interactions

Tmall 20,716 25,143 2.81 71,998 3565 85,432

Gowalla 15,254 13,052 2.99 128,115 3611 94,654

location-based social networking website, Gowalla from February 2009 to Octo-365

ber 2010. Gowalla consists of 6,442,890 number of total check-ins, where each

record consists of user id, timestamp, GPS location and POI id. We follow the

same preprocessing procedure as in SHAN [11] and we treat user transactions

or check-ins in one day as a session. Sessions with only one item and items with

less than 20 time observations are removed from datasets. We randomly select370

the sessions in the last week as a test set, and the rest are used for training.

In addition, we randomly keep one item in each session as the next item to

be predicted. The statistics of the datasets after the preprocessing stage are

illustrated in Table 1.

Baselines: To demonstrate the effectiveness of our method, we compare375

it with the following representative state-of-the-art recommender systems built

on various frameworks including RNN, CNN, attention models and memory

networks:

• TOP: This method identifies the top popular items based on the number

of occurrences in each session in the training data, and then recommends380

those items in test data.

• BPR [13]: This is a state-of-the-art baseline for binary implicit feedback

through pairwise learning to rank.

• FOSSIL [36]: This method integrates factored item similarity with a

Markov chain to model the user’s long- and short-term preferences.385

• Caser [7]: This is a state-of-the-art model, which uses CNN for sequence

embedding.
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• FPMC [2]: This is a combination of MF and MC model in order to learn

user preferences.

• HRM [3]: This model non-linearly learns both sequential behavior and390

users’ general taste to make a better recommendation.

• GRU4Rec [6]: This is a state-of-the-art sequential recommender, which

applies modern recurrent neural network (GRU) to be able to model the

whole session.

• NARM [37]: This is a sequential recommender which combines a recurrent395

neural network with an attention network.

• SHAN [11]: This is a state-of-the-art sequential recommender, which em-

ploys a two-layer hierarchical attention network to learn long- and short-

term preference.

• MEANS [25]: This model first operates a max-pooling technique on the400

most recent sessions and the results are stored into an external memory.

Then the attention mechanism is applied to learn long-term user prefer-

ence. Finally, at prediction layer a recommendation is made by learning

a mixture of long- and short-term preference.

Evaluation Metrics. Similar to the previous work [11], we also adopt405

several widely used evaluation metrics AUC, Recall@N, and Precision@N to

evaluate the performance of our model, where N ∈ {5, 10, 20}. Recall measures

the proportion of the right ranked items overall top-k recommendation items

in a list, while Precision measures the proportion of results which are relevant.

Different from both above metrics, AUC computes how highly predicted items410

are ranked over all items. The larger metric scores show better model perfor-

mance. Due to the space limitation, we name Recall and Precision as Re and

Pre in the rest of the paper, respectively.

Parameter Settings. We set the item embedding and user embedding

dimensions, D, to 100, which is a trade-off between the performance of rec-415

ommendation and the computation cost for both datasets. Similar to the [39],
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Table 2: Impact of different regularization at Recall@20

Dataset λuv λα 0 1 10 50

Tmall 0.01 0.085 0.126 0.143 0.146

0.001 0.079 0.124 0.138 0.139

0.0001 0.073 0.111 0.129 0.133

Gowalla 0.01 0.250 0.344 0.355 0.372

0.001 0.321 0.397 0.423 0.432

0.0001 0.342 0.421 0.452 0.461

we set the number of CNN kernels Nf and the window size to 400 and 3, re-

spectively. We apply dropout strategy [40] to each layer of CNN in order to

avoid overfitting. The dropout rate is set to 0.2, the batch size is empirically

set to 50, the sizes of both the user purpose query Dp and preference query420

Dq are set to 200. The learning rate η is 0.01. Items and users dimensions

are randomly initialized with normal distribution N(0, 0.01) and then learned

during the training process. The attention parameters are initialized with the

U(−
√

3
k ,

√
3
k ).

4.2. Impact of Hyper-parameters425

In this subsection, we investigate the impact of hyper-parameters on the

performance of CAN. We consider λuv = {0.01, 0.001, 0.0001} as our user and

Figure 2: Impact of different embedding dimension on Gowalla and Tmall datasets. In each

figure, we have shown the impact of different embedding sizes on three evaluation metrics

AUC, Precision and Recall.
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item embedding regularization, and λa = {0, 1, 10, 50} as our attention network

regularization. Based on the Table 2, the performance of CAN is gradually

increased when λa > 0 in both Tmall and Gowalla datasets, which indicates430

the effectiveness of applying attention mechanism in our model. We also test

the impact of different embedding dimensions, D, related to the user, item and

hidden layer parameters in attention network. As it is clear from Figure 2,

the higher embedding dimension can result in better AUC, Recall@20, and

Precision@20 as it can learn more latent features form user and item as well435

as their interactions through attention mechanism. From this figure, a slight

improvement is recorded while the embedding dimension is increased from 100,

and thus we set the embedding size to 100.

4.3. Impact of Different Sessions Lengths

We examine the performance of CAN under different sequence lengths as the440

local features captured by CNN network may be different. Table 3 demonstrates

the results of our investigation. We consider sessions with less than 3 items as

a short session and treat sessions with more than 3 items as a long session. The

percentage of short and long sessions are 90%, 10% and 83%, 17% in both Tmall

and Gowalla datasets, respectively. In Table 3, CAN-S refers to a situation445

Table 3: Impact of different session lengths
Tmall

Methods AUC Re@20 Pre@20

CAN-S 0.745 0.196 0.213

CAN-L 0.889 0.221 0.282

Gowalla

Methods AUC Re@20 Pre@20

CAN-S 0.814 0.219 0.263

CAN-L 0.916 0.298 0.342

Table 4: Impcat of CAN modules
Tmall width=0.95

Methods AUC Re@20 Pre@20

CAN-PurEn 0.817 0.256 0.278

CAN-PreEn 0.781 0.210 0.264

CAN 0.915 0.317 0.322

Gowalla width=0.95

Methods AUC Re@20 Pre@20

CAN-PurEn 0.924 0.284 0.312

CAN-PreEn 0.899 0.256 0.299

CAN 0.989 0.392 0.401
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where short sessions are modelled, while only long sessions are considered in

CAN-L. From this table, we can have several observation. First, the performance

of both CAN-L and CAN-S are too close. Second, CAN-L performs slightly

better than CAN-S with respect to AUC, Pre@20, and Re@20 in both Tmall and

Gowalla datasets. This is probably because of capturing the more contextual450

features through long sessions. Third, the performance of CAN-L is still too

close to the overall performance of our model.

4.4. Impact of CAN Modules

In this experiment, we aim to test the performance of two modules, i.e., pur-

pose encoder and preference encoder in Table 4. CAN-PurEn means only user455

purpose module is used, while CAN-PreEn only considers a user’s preference.

According to the Table 4, we can have several observations. First, the CAN-

PurEn can effectively improve the performance of our approach, as it can help

our model CAN to achieve the higher performance compared to the state-of-the-

art models. This may be due to the capturing the local patterns in a long-term460

interacted item set through CNN and highlighting the important items accord-

ing to user preferences by PSAU cell. Second, the CAN-PreEn is also another

effective module in our model, which indicates a significant improvement in the

performance of CAN. This is probably because items in a short-term interacted

item set usually have different informativeness and recognizing the important465

items can help better modeling user representations. Third, generally CAN per-

forms better than two single modules. It demonstrates that combing these two

modules is helpful in learning user representation and predicting next items.

4.5. Impact of PSAU component

In order to verify the effectiveness of the PSAU component in our model,470

we compare the performance of our model in the presence and absence of the

PSAU cell. As it is clear from Figure 3, we have different findings: (1) applying

attention mechanism can show better performance compared to the model with-

out attention. The reason behind this observation may be because of assigning
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Figure 3: Impact of PSAU on Gowalla and Tmall datasets. W/O attention means no attention

mechanism is used.

different weight to different items, and attention mechanism can discover the475

important items in a user-item interaction; (2) our model CAN consistently out-

performs the model without attention mechanism and vanilla attention. The

reason behind this observation may be because of assigning different score to the

same items for modeling different users, while vanilla attention assigns a fixed

score and thus is not able to differentiate the importance of the same items in480

modeling the different user preferences. Attention mechanism pays same atten-

tion to each item by computing the attention weights only based on the input

representation sequence via a fixed vector, and thus the user preferences are

not incorporated. While in contrast to vanilla attention, the attention scores

in PSAU are computed based on the interaction between the user preference485

vector and the contextual item representations. Therefore, our model can high-

light important items in user’s purpose according to her/his personal preference,

which in turn can help in better user representation learning. Based on these

results, we can validate the effectiveness of the PSAU cell in our approach.

4.6. Overall Performance Comparison490

In this subsection, we compare the results of our model with the other state-

of-the-art approaches in both Tmall and Gowalla datasets, which is summarized

in Tables 5 and 6. This table illustrates that:

1. According to Tables 5 and 6, where the best result in each row is high-

lighted in boldface, our proposed model significantly and consistently out-495
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Table 5: The performance of different methods regarding the evaluation metrics in Tmall

dataset.

Datasets Tmall

Metrics Re5 Re10 Re20 Pre5 Pre10 Pre20 AUC

Top 0.021 0.052 0.084 0.051 0.062 0.074 0.392

BPR 0.024 0.090 0.122 0.062 0.069 0.074 0.481

Fossil 0.110 0.120 0.125 0.083 0.088 0.092 0.691

Caser 0.041 0.049 0.052 0.100 0.108 0.115 0.701

FPMC 0.050 0.055 0.061 0.118 0.125 0.130 0.742

HRM 0.060 0.065 0.070 0.121 0.129 0.133 0.751

GRU4Rec 0.062 0.065 0.069 0.138 0.145 0.149 0.762

NARM 0.063 0.068 0.073 0.141 0.149 0.159 0.781

SHAN 0.071 0.076 0.079 0.155 0.160 0.166 0.789

MEANS 0.074 0.079 0.082 0.163 0.172 0.177 0.790

CAN 0.201 0.278 0.317 0.200 0.260 0.322 0.915

performs all state-of-the-art models in terms of Precision@N, Recall@N

and AUC in different Ns in both Tmall and Gowalla datasets. Specifi-

cally, compared to MEANS which is the best baseline in terms of all eval-

uation metrics, CAN has shown 14% and 16% improvements with respect

to the AUC on Tmall and Gowalla datasets, respectively.This indicates500

the effectiveness of CAN, which can recognize important items in users’

purposes according to their preferences through CNN network and PSAU

component.

2. Deep learning methods using attention network (CAN, MEANS, SHAN,

and NARM) show better performance compared with the methods with-505

out attention mechanism. The reason may be due to the capability of

attention mechanism in recognizing the most important items in user and

item interaction.

3. Overall, all unified approaches (CAN, MEANS, SHAN, NARM, HRM,

22



Table 6: The performance of different methods regarding the evaluation metrics in Gowalla

dataset.

Datasets Gowalla

Metrics Re5 Re10 Re20 Pre5 Pre10 Pre20 AUC

Top 0.038 0.048 0.059 0.061 0.066 0.071 0.711

BPR 0.069 0.074 0.081 0.077 0.082 0.089 0.800

Fossil 0.215 0.298 0.312 0.091 0.095 0.099 0.810

Caser 0.075 0.083 0.089 0.114 0.119 0.124 0.815

FPMC 0.115 0.129 0.138 0.127 0.133 0.142 0.820

HRM 0.119 0.125 0.145 0.150 0.157 0.161 0.824

GRU4Rec 0.121 0.135 0.141 0.155 0.160 0.165 0.828

NARM 0.130 0.136 0.140 0.156 0.159 0.163 0.830

SHAN 0.135 0.140 0.144 0.163 0.169 0.175 0.832

MEANS 0.142 0.150 0.158 0.170 0.175 0.180 0.840

CAN 0.250 0.312 0.392 0.360 0.399 0.401 0.989

FPMC, and Fossil) outperform the best general- and sequential recom-510

menders such as BPR and GRU4Rec, respectively.

4. Among all unified approaches, after CAN, MEANS outperforms others

like SHAN, NARM, HRM, FPMC, and Fossil. While the performance of

MEANS and SHAN are too close, MEANS can achieve around 5% and

9% improvement compared to SHAN at Recall@20 in Tmall and Gowalla515

datasets, respectively. This indicates the effect of using external memory

to store long-term user and item interaction after a max-pooling oper-

ation. However, MEANS cannot effectively model the local contexts in

the long term user preference, and is not able to find important items for

revealing purposes and preferences of different users. Moreover, although520

MEANS uses attention mechanism, it can not model the informativeness

of different items. Different from all mentioned approaches, our proposed

model can dynamically find important items according to user purposes
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and preferences.

5. Conclusion525

In this paper, we propose a novel unified recommendation approach which

consists of a Purpose-Specific Attention Unit (PSAU). In our approach, CAN,

we learn the users’ purposes in long-term interacted item set by using CNN. We

use PSAU cell to recognize important items in users’ purposes according to their

preferences. Since same items may have different informativeness for different530

users, we use PSAU in short-term interacted item set as well to model users’ pref-

erences. The extensive experimental results on the real-world datasets validate

the effectiveness of our approach compared to other state-of-the-art methods.

As our future work, we aim to take contextual information into sequential rec-

ommenders in order to make a more accurate recommendation. Furthermore,535

modelling different heterogeneous actions can be another direction for our future

work.
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