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A B S T R A C T

Keyphrase prediction aims to generate phrases (keyphrases) that highly summarizes a given
document. Recently, researchers have conducted in-depth studies on this task from various
perspectives. In this paper, we comprehensively summarize representative studies from the
perspectives of dominant models, datasets and evaluation metrics. Our work analyzes up to 167
previous works, achieving greater coverage of this task than previous surveys. Particularly, we
focus highly on deep learning-based keyphrase prediction, which attracts increasing attention
of this task in recent years. Afterwards, we conduct several groups of experiments to carefully
compare representative models. To the best of our knowledge, our work is the first attempt
to compare these models using the identical commonly-used datasets and evaluation metric,
facilitating in-depth analyses of their disadvantages and advantages. Finally, we discuss the
possible research directions of this task in the future.

1. Introduction
With the rapid development of the Internet and the explosion of information, how to efficiently acquire information

from tremendous text data becomes more and more important. To do this, several information compression tasks have
been proposed, such as automatic summarization and automatic keyphrase prediction. Compared with other tasks,
automatic keyphrase prediction brings forward a higher request to the ability of information compression, since it aims
to automatically produce a few keyphrases representing the core contents of the input document. As keyphrases can
facilitate understanding documents and provide useful information to downstream tasks, such as information retrieval
(Gutwin et al., 1999), document classification (M et al., 2005; Hulth and Megyesi, 2006), document summarization
(Zhang et al., 2004; Wang and Cardie, 2013; Pasunuru and Bansal, 2018), question generation (Subramanian et al.,
2018) and opinion mining (Wilson et al., 2005; Berend, 2011), automatic keyphrase prediction has attracted increasing
attention.

Table 1 shows an example of automatic keyphrase prediction. Generally, keyphrases can be divided into two
categories: present keyphrases that continuously appear in the input document and absent keyphrases that do not match
any contiguous subsequence of the document. To achieve high-quality keyphrase prediction, early studies mainly focus
on automatic keyphrase extraction (Hulth, 2003; Mihalcea and Tarau, 2004; Nguyen and Kan, 2007; Wan and Xiao,
2008), which aims to directly extract keyphrases from the input document. Recently, the rise of deep learning prompts
researchers to focus on automatic keyphrase generation (Meng et al., 2017; Yuan et al., 2020; Ye et al., 2021b), where
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Table 1
An example of keyphrase prediction and present keyphrases that appear in the document are underlined.

Input Document: A nonmonotonic observation logic. A variant of Reiter’s default logic is proposed as a logic for
reasoning with defeasible observations. Traditionally, default rules are assumed to represent generic information
and the facts are assumed to represent specific information about the situation, but in this paper, the specific
information derives from defeasible observations represented by (normal free) default rules, and the facts represent
(hard) background knowledge. Whenever the evidence underlying some observation is more refined than the
evidence underlying another observation, this is modelled by means of a priority between the default rules
representing the observations. We thus arrive at an interpretation of prioritized normal free default logic as an
observation logic, and we propose a semantics for this observation logic. Finally, we discuss how the proposed
observation logic relates to the multiple extension problem and the problem of sensor fusion.

Keyphrases: defeasible observations; nonmonotonic logic; prioritized default logic

Table 2
Paper publications of keyphrase extraction and keyphrase generation at the main computer science conferences, and ‘–’
denotes that the conference is not held or has not been held yet.

Conf. 2017 2018 2019 2020 2021 2022

Keyphrase Extraction

ACL 2 0 1 0 0 0

EMNLP 0 0 1 1 3 0

NAACL – 1 1 – 2 1

COLING – 0 – 4 – 3

AAAI 3 0 0 0 0 0

Keyphrase Generation

ACL 1 0 3 3 2 0

EMNLP 0 2 0 3 3 5

NAACL – 0 2 – 3 2

COLING – 0 – 1 – 0

AAAI 0 0 1 0 1 2

Total. 6 3 9 11 14 13

dominant models can generate not only present but also absent keyphrases. Tables 2 shows the number of papers related
to automatic keyphrase prediction, published at the main computer science conferences. It can be said that automatic
keyphrase prediction has always been one of the research hotpots.

In this paper, we first provide a comprehensive review of automatic keyphrase prediction from the following aspects:
dominant models, datasets and evaluation metrics. Compared with previous surveys (Hasan and Ng, 2014; Siddiqi
and Sharan, 2015; Çano and Bojar, 2019; Alami Merrouni et al., 2020; Nasar et al., 2019), our work summarizes
up to 167 previous works, achieving greater coverage of this task. More importantly, our work is not only the first
attempt to thoroughly summarize keyphrase extraction based on neural networks, but also focusing highly on the recent
advancements of neural keyphrase generation on different investigated problems. Please note that neural keyphrase
generation has become the hot research topic in this community, since it is able to predict not only present keyphrases
but also absent keyphrases, which accounts a large proportion in the commonly-used keyphrase generation datasets.
Particularly, we further introduce the recent advancements in keyphrase generation, including pre-trained model based
keyphrase generation models, echoing with the development trend of natural language processing.

Then, we conduct several groups of experiments to carefully compare representative models, so as to analyze
their characteristics. Unlike previous studies generally using different datasets and metrics to evaluate models, we
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use the identical commonly-used datasets and evaluation metric to ensure fair comparions among these representative
models, and then analyze their advantages and disadvantages in different scenarios. Via our experiments, we can
reach some interesting conclusions: 1) Generally, unsupervised extraction models perform worst among all kinds of
unsupervised and supervised models. However, when it exists a serious domain discrepancy between the training set
and test set, the unsupervised extraction models may achieve comparable performance with the supervised ones. 2)
Among three commonly-used paradigms for keyphrase generation, ONE2SET surpasses the others and achieve the
best performance, while is still inferior to the extraction models in predicting present keyphrases. 3) Combining with
extraction, generation and retrieval-based methods have potential to achieve better overall results for both present and
absent keyphrase predictions.

Finally, we point out the future research directions of keyphrase prediction task, which will play a positive role in
guiding the follow-up studies. Note that we propose some directions that were not considered in previous surveys, such
as multi-modality keyphrase prediction, and multilingual keyphrase prediction.

2. Automatic Keyphrase Extraction
Figure 1 shows the taxonomy of representative studies on automatic keyphrase extraction. This line of research

mainly focuses on how to directly extract keyphrases from an input document. Usually, it consists of three steps: 1)
applying hand-crafted rules to obtain candidate phrases, such as removing stop words (Liu et al., 2009), applying POS
tagging (Mihalcea and Tarau, 2004), extracting n-grams (Witten et al., 1999), and using knowledge bases (Nguyen and
Phan, 2009), 2) designing various hand-engineered features to represent candidate keyphrases, and 3) determining the
final keyphrases based on features using unsupervised or supervised models.

In the following subsections, we will first briefly introduce the hand-engineered features, and then describe the
unsupervised and supervised models using these features in detail.

2.1. Hand-engineered Features
There are mainly four kinds of the internal document-based features used (Witten et al., 1999; Turney, 2002; Hulth,

2003; Zhang et al., 2006; Campos et al., 2018; Ohsawa et al., 1998): statistical features (phrase length, TF-IDF, the
number of sentences containing phrases, co-occurrence frequency, etc.), positional features (occurrence positions,
sentence boundaries, etc.), linguistics features (POS tags, case information, surrounding words, etc.), and logical
structure features (the hierarchy, title, author list of the input document, etc.).

In addition, many features are proposed using the external documents, such as the similarity based on Wikipedia,
candidate frequency based on the external documents, citation and web linkage.

2.2. Unsupervised Keyphrase Extraction
Generally, unsupervised models for keyphrase extraction can be roughly divided into statistical models, graph-based

models and deep learning-based models, which will be briefly introduced below.

2.2.1. Unsupervised Statistical Models
These models are directly conducted based on the abundant hand-engineered features. Among these features, the

most important one is TF-IDF (Salton and Buckley, 1988), which can quantify the importance of each candidate phrase
and thus becomes the basis of many follow-up models. For example, El-Beltagy and Rafea (2009) consider the position
of each candidate in the input document and introduce a length-related weight to adjust its TF-IDF value. Furthermore,
Campos et al. (2018) propose YAKE involving five hand-engineered features: case information, phrase position, term
frequency, the frequency of phrase appearing within different sentences, and the number of surrounding words. Based
on these features, Won et al. (2019) further determine the number of keyphrases according to the length of the input
document.

2.2.2. Unsupervised Graph-based Models
KeyGraph (Ohsawa et al., 1998) is the first graph-based model for keyphrase extraction. In this model, frequently

co-occurrent phrases are connected to form a graph, which is then partitioned into subgraphs via clustering. Finally, the
importance of each candidate phrase is quantified according to the subgraph based statistical information. Grineva
et al. (2009) firstly calculate edge weights as the phrase-level semantic relatedness based on Wikipedia, and then apply
the community detection algorithm (Newman and Girvan, 2004) to obtain dense subgraphs, where phrases from the
most important subgraphs are considered as keyphrases. Similarly, Liu et al. (2009) construct a word graph and cluster
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(Mihalcea and Tarau, 2004; Wan and Xiao, 2008;
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(Zhang et al., 2021; Joshi et al., 2022)

Attention
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Information

(Ding and Luo, 2021; Gu et al., 2021)
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Labeling (Zhang, 2008; Gollapalli et al., 2017)
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(Witten et al., 1999; Frank et al., 1999; Turney, 2002;
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et al., 2014; Xie et al., 2017; Wang and Li, 2017)

Ranking (Jiang et al., 2009; Zhang et al., 2017a)
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(Zhang, 2008; Gollapalli et al.,

2017; Lu and Chow, 2021)
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(Yih et al., 2006; Shi et al., 2008;
Haddoud and Abdeddaïm, 2014)
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Nguyen and Kan, 2007; Nguyen and Luong,
2010; Caragea et al., 2014; Xie et al., 2017)

SVM (Zhang et al., 2006; Jiang et al., 2009)

Bagged De-
cision Trees

(Turney, 2002; Medelyan et al.,
2009; Lopez and Romary, 2010)

Other Ensem-
ble Models

(Hulth, 2003; Wang and Li, 2017)
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based Models
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Approaches
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(Zhang et al., 2016, 2018; Saputra et al., 2018;
Zhang and Zhang, 2019; Chowdhury et al., 2019;
Sahrawat et al., 2019; Mahfuzh et al., 2020; Garg

et al., 2020; Wang et al., 2020b; Santosh et al., 2020b;
Gero and Ho, 2021; Nikzad-Khasmakhi et al., 2021)

Binary Clas-
sification

(Wang et al., 2005; Xiong et al.,
2019; Prasad and Kan, 2019)

Ranking (Sarkar et al., 2010; Mu et al., 2020;
Sun et al., 2021; Song et al., 2021)

Data Utilization
(Luan et al., 2017; Lai et al., 2020; Lei

et al., 2021; Kontoulis et al., 2021)

Figure 1: The Taxonomy of Representative Studies on Automatic Keyphrase Extraction.

words according to the semantic distances based on the word co-occurrence frequency or Wikipedia statistics. Then,
the noun phrases expanded from cluster centers are chosen as keyphrases.

Inspired by PageRank (Page et al., 1999), Mihalcea and Tarau (2004) propose TextRank that iteratively conducts
importance propagation on a co-occurrent word graph. Along this line, Danesh et al. (2015) extend TextRank by
using phrases as graph nodes. Then, many features are explored to adjust edge weights, including statistical features
(phrase frequency and length (Danesh et al., 2015), word co-occurrence frequency (Wan and Xiao, 2008)) and position

Binbin Xie et al.: Preprint submitted to Elsevier Page 4 of 25



From Statistical Methods to Deep Learning, Automatic Keyphrase Prediction: A Survey

information (Florescu and Caragea, 2017). Besides, to exploit more contexts, Wan and Xiao (2008), Gollapalli and
Caragea (2014) extend the single-document word graph with similar documents and citation network, respectively.
In addition to the PageRank-based centrality measure, Vega-Oliveros et al. (2019) consider other commonly-used
centrality measures,and then propose an optimal combination of centrality measures to extract keywords from an
undirected and unweighted word graph.

Intuitively, ideal keyphrases should be consistent with the topics of the input document. Thus, researchers introduce
the topic information to refine graph-based models. Typically, Liu et al. (2010) propose TPR that adopts LDA (Blei
et al., 2003) to obtain topic information and then separately performs PageRank for each topic. To alleviate the
huge computational cost of TPR, researchers extend TPR into Single Topical PageRank (Sterckx et al., 2015) and
SalienceRank (Teneva and Cheng, 2017), both of which perform PageRank once for each document. Compared to the
former, the latter can extract not only topic-specific but also corpus-correlated keyphrases. Unlike the above studies
based on LDA, Bougouin et al. (2013) propose TopicRank, which firstly clusters similar phrases to form topics and
then constructs a topic graph for PageRank. Afterwards, they select the most representative phrases from each topic as
keyphrases. To refine TopicRank, Boudin (2018) represents candidate phrases and topics in a single graph and exploits
their mutual reinforcement to improve candidate ranking.

2.2.3. Unsupervised Deep Learning-based Models
With the prosperous development of deep learning, researchers introduce neural networks to learn semantic

representations of input documents and candidate phrases for ranking, of which studies can be roughly divided into the
following four categories: Phrase-Document Similarity. The common practice is to measure the importance of each
candidate phrase according to the phrase-document representation similarity. To do this, EmbedRank (Bennani-Smires
et al., 2018) uses Sent2Vec (Pagliardini et al., 2018) and Doc2Vec (Le and Mikolov, 2014) to represent candidates and
input documents as vectors. As an extension, EmbedRank+ additionally considers the similarities between candidates
to generate diverse keyphrases. Unlike EmbedRank using Sent2vec and Doc2vec, SIFRank (Sun et al., 2020) defines
the vector representations of candidates, sentences and input documents as weighted averages of their corresponding
ELMo embeddings (Peters et al., 2018), respectively. Further, SIFRank+ considers the positions of candidates within
the document. Subsequently, Li and Daoutis (2021) improve SIFRank by incorporating domain relevance and phrase
quality into ranking scores. Papagiannopoulou and Tsoumakas (2018) use entire documents to learn Glove (Pennington
et al., 2014) embeddings, and then rank candidates according to the sum of word-document similarities.

Graph-based Ranking. Besides, researchers apply deep learning to refine the unsupervised models based on
phrase graphs. For example, Key2Vec (Mahata et al., 2018) directly trains FastText to learn representations of candidate
phrases and document themes, and then uses candidate-theme similarities to adjust the edge weights of PageRank.
Similarly, Liang and Zaki (2021) consider the co-occurrence and similarities between candidates for more accurate edge
weighting of PageRank. Using embedding-based graph, Asl and Banda (2020) apply PageRank or centrality algorithm
to obtain the importance of candidates for ranking. Liang et al. (2021) find that the phrase-document representation
similarity (i.e. EmbedRank) is insufficient to capture different contexts for keyphrase extraction. To address this issue,
they define a boundary-aware centrality to capture local salient information and positional information of candidates
for ranking.

Semantic Importance of Keyphrases. Keyphrases play an important role in the representation learning of the
input document. Thus, the representation of the input document will change if any keyphrase is missing. To model this
intuition, Zhang et al. (2021) alternatively mask each candidate phrase and evaluate its importance according to the
representation difference between the original document and the masked one. Recently, Joshi et al. (2022) adopt a
similar strategy that mainly focuses on the change of topic distributions.

Attention Mechanism Information. Different from the above studies based on deep learning similarities, (Ding
and Luo, 2021) use self-attention weights to quantify the importance of each candidate phrase within the sentence and
measure its semantic relatedness to the document according to its cross-attention weights. Additionally, Gu et al. (2021)
generate pseudo keyphrases for unlabeled documents using unsupervised statistic models or an existing knowledge
base, and then train a keyphrase classifier fed with the self-attention map from RoBERTa (Zhuang et al., 2021).

2.3. Supervised Keyphrase Extraction
Usually, supervised models for keyphrase extraction can be divided into statistical and deep learning-based models.
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Figure 2: The Taxonomy of Representative Studies on Automatic Keyphrase Generation.

2.3.1. Supervised Statistical Models
Similar to unsupervised keyphrase extraction, abundant supervised statistical models leverage well-designed

features, including statistical features (Witten et al., 1999; Turney, 2002; Kelleher and Luz, 2005; Haddoud and
Abdeddaïm, 2014; Xie et al., 2017), positional features (Frank et al., 1999; Medelyan and Witten, 2006; Zhang, 2008;
Jiang et al., 2009), linguistic features (Hulth, 2003; Gollapalli et al., 2017), logical structures (Yih et al., 2006; Zhang
et al., 2006; Nguyen and Kan, 2007; Nguyen and Luong, 2010), and external document-based features (Shi et al., 2008;
Medelyan et al., 2009; Lopez and Romary, 2010; Gollapalli and Caragea, 2014; Wang and Li, 2017; Zhang et al.,
2017a).

Based on these features, researchers model keyphrase extraction as a sequence labeling task (Zhang, 2008; Gollapalli
et al., 2017), a binary classification task or a ranking task (Jiang et al., 2009; Zhang et al., 2017a) with various machine
learning algorithms, such as conditional random field (Zhang, 2008; Gollapalli et al., 2017), logistic regression (Yih
et al., 2006; Shi et al., 2008; Haddoud and Abdeddaïm, 2014), Naive Bayes (Witten et al., 1999; Frank et al., 1999;
Kelleher and Luz, 2005; Medelyan and Witten, 2006; Nguyen and Kan, 2007; Nguyen and Luong, 2010; Caragea et al.,
2014; Xie et al., 2017), SVM (Zhang et al., 2006), bagged decision trees (Turney, 2002; Medelyan et al., 2009; Lopez
and Romary, 2010) and other ensemble models (Hulth, 2003; Wang and Li, 2017).

2.3.2. Supervised Deep Learning-based Models
Wang et al. (2005) first propose a feedforward neural network based classifier for supervised keyphrase extraction.

Henceforth, deep learning-based supervised keyphrase extraction has gradually become one of the hot topics.

Binbin Xie et al.: Preprint submitted to Elsevier Page 6 of 25



From Statistical Methods to Deep Learning, Automatic Keyphrase Prediction: A Survey

Sequence Labeling. Supervised keyphrase extraction is often modeled as a deep learning-based sequence labeling
task. Typically, Zhang et al. (2016) propose Joint-Layer RNN to extract keyphrases at different discrimination levels:
judging whether the current word is a keyword and employing BIOES tagging scheme to identify keyphrases. Based on
Joint-Layer RNN, Zhang et al. (2018) introduce conversation context to enrich the vector representations of microblog
posts. To simulate the human attention of reading during keyphrase annotating, Zhang and Zhang (2019) integrate an
attention mechanism into Joint-Layer RNN. Meanwhile, researchers also explore more features for this model, such as
medical concepts from an external knowledge base (Saputra et al., 2018), phonetics, phonological features (Chowdhury
et al., 2019), and syntactical features (Mahfuzh et al., 2020).

Also, applying pre-trained models to supervised keyphrase extraction has become dominant. For example, on
the basis of SciBERT (Beltagy et al., 2019), (Sahrawat et al., 2019) and (Garg et al., 2020) stack BiLSTM+CRF
and LSTM+CRF to identify keyphrases, respectively. Using the same model, (Santosh et al., 2020a) introduce a
document-level attention and a gating mechanism to refine representation learning. Wang et al. (2020b) separately
leverage BERT and Transformer to encode the document and multi-modal information in web pages for keyphrase
extraction. Gero and Ho (2021) use BERT-LSTM or BioBERT-LSTM to obtain the topic representations of input
documents, encouraging the extraction of topic-consistent words.

Different from these studies, Santosh et al. (2020b) utilize graph encoders to separately incorporate syntactic
and semantic dependency information for better encoder representation. On the basis of the input document and
the co-occurence graph, Nikzad-Khasmakhi et al. (2021) adopt BERT and graph embedding techniques to learn the
word-level textual and structure representations, which are combined and fed into a sequence labeling tagger.

Binary Classification. Researchers also explore supervised keyphrase extraction as a binary classification task.
Xiong et al. (2019) integrate the visual representation of the input document into ELMo word embeddings, and then
use a convolutional Transformer to model interactions among candidate phrases for keyphrase classification. Besides,
they introduce query prediction as a pre-training task. Prasad and Kan (2019) propose Glocal, an improved GCN,
which incorporates the global importance of each node relative to other nodes to learn word representations from a
word graph. Based on these representations, keywords are identified via classification and finally used to reconstruct
keyphrases via re-ranking.

Ranking. Sarkar et al. (2010) first apply a deep learning-based ranking model to achieve supervised keyphrase
extraction. Mu et al. (2020) use BERT stacked with BiLSTM to model semantic interactions among candidate phrases,
and then rank them according to the binary classification score and the hinge loss between the considered phrase and
others. Sun et al. (2021) propose JointKPE that learns to rank candidate phrases according to their document-level
informativeness. Particularly, it is jointly trained with keyphrase chunking to guarantee the phraseness of candidates.
Song et al. (2021) investigate three kinds of features for ranking: the syntactic accuracy of the candidate phrase, the
information saliency between the candidate and input document, and the concept consistency between the candidate
and the input document.

Data Utilization. Based on a word graph, Luan et al. (2017) employ label propagation together with a data selection
scheme to leverage unlabeled documents. Lai et al. (2020) propose a self-distillation model for keyphrase extraction. In
this approach, a teacher model is trained on labeled examples, while a student model is trained on both labeled examples
and pseudo examples generated by the teacher model. During the subsequent training procedure, the teacher model is
re-initialized with the student model and repeats the above procedure. To address the issue of incomplete annotated
training data, Lei et al. (2021) introduce negative sampling to adjust the training loss on unlabeled data. From a different
perspective, Kontoulis et al. (2021) believe that full-texts can provide richer information while containing more noise
than the input abstract. Thus, they leverage summaries induced from full-texts to refine keyphrase extraction.

3. Automatic Keyphrase Generation
Unlike the studies on keyphrase extraction, keyphrase generation models can produce absent keyphrases that do

not appear in the input document. In this respect, Meng et al. (2017) propose the first keyphrase generation model,
CopyRNN, which inspires many subsequent models. Usually, these models are based on an encoder-decoder framework,
where the encoder learns the semantic representation of each input document, and then the decoder equipped with a
copying mechanism (Gu et al., 2016) automatically produces keyphrases.

In the following subsections, we summarize representative advancements of keyphrase generation according to
different investigated problems. The taxonomy of representative studies on automatic keyphrase generation is shown in
Figure 2.

Binbin Xie et al.: Preprint submitted to Elsevier Page 7 of 25



From Statistical Methods to Deep Learning, Automatic Keyphrase Prediction: A Survey

…

Input 
Document

Keyphrase 1

Keyphrase 2

Keyphrase 3

Keyphrase K-1

...

Beam Search 

Keyphrase K
Keyphrase n:
prioritized default logic

Keyphrase 2:
nonmonotonic logic

Input Document: 
A nonmonotonic observation 
logic. A variant of Reiter’s … 

Keyphrase 1:
defeasible observations

ℒCE

Input Document: 
A nonmonotonic observation 
logic. A variant of Reiter’s … 

Model

Model

ℒCE

Input Document: 
A nonmonotonic observation 
logic. A variant of Reiter’s … 

ℒCE
Model

Model

Training Inference

(a) ONE2ONE

Input Document: 
A nonmonotonic observation 
logic. A variant of Reiter’s … 

Keyphrase Sequence:
<s>defeasible 
nonmonotonic logic<sep>
… <sep>
prioritized default logic</s>

Model
Input 
Document

<s>Keyphrase
1<sep>
Keyphrase 2 
<sep>…<sep>
Keyphrase m</s>

Model

Training Inference

ℒCE

(b) ONE2SEQ

nonmonotonic 
logic
defeasible 
observations

Ø

Ø

…

prioritized default 
logic

Training Inference

Input Document: 
A nonmonotonic observation 
logic. A variant of Reiter’s 
… 

Input 
Document

Keyphrase 1 or  Ø

Keyphrase 2 or  Ø

Keyphrase N or  Ø

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

ℒCE

Keyphrase 3 or  Ø

Keyphrase 4 or  Ø

…

ModelModel

(c) ONE2SET

Figure 3: The three dominant paradigms for keyphrase generation.

3.1. Paradigms
Generally, paradigms of dominant keyphrase generation models can be classified into ONE2ONE (Meng et al.,

2017), ONE2SEQ (Yuan et al., 2020) and ONE2SET (Ye et al., 2021b), as shown in Figure 3.
ONE2ONE. Typically, during model training, each training instance contains an input document and only one

corresponding keyphrase from the splitted target keyphrases. During inference, ONE2ONE models adopt beam search
to produce candidate phrases and then pick the top-K ranked ones as the final keyphrases.

As the earliest paradigm, it has a far-reaching impact but neglects the correlation among keyphrases, limiting the
potential of keyphrase generation models.

ONE2SEQ. To deal with the above issue, the ONE2SEQ paradigm models keyphrase generation as a sequence
generation task. To this end, target keyphrases are sorted in a predefined order and concated as a sequence with
delimiters. Usually, present keyphrases are firstly sorted according to their occurrence, while absent keyphrases are
then randomly sorted (Meng et al., 2019, 2021).

Due to the advantage of exploiting the semantic interdependence between keyphrases, ONE2SEQ has become the
most commonly-used paradigm. However, its premise of a predefined order introduces a bias into model training,
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especially when the order of generated keyphrases is inconsistent with the predefined one. Besides, ONE2SEQ models
tend to generate duplicated keyphrases (Chen et al., 2020; Ye et al., 2021b).

ONE2SET. Furthermore, to address the above bias defect of ONE2SEQ, Ye et al. (2021b) propose ONE2SET,
where the keyphrase generation is modeled as a set generation task. Typically, its decoder utilizes different learnable
control codes to generate a set of keyphrases in parallel. During model training, the training loss is calculated according
to the one-to-one alignments between the predicted keyphrases and target ones determined by the Hungarian Algorithm
(Kuhn, 1955).

3.2. Document Encoding
Typically, CopyRNN (Meng et al., 2017) adopts RNN as its encoder and thus suffers from low efficiency when

handling long documents. To solve this problem, Zhang et al. (2017b) replace RNN with CNN to boost encoding
efficiency.

Besides, some researchers argue that sentences should be treated differently due to their unequal importance in
document encoding. Chen et al. (2019b) design Title-Guided Network, which additionally uses the title as a query
to gather the information of title-relevant words in the input document. Kim et al. (2021b) takes into account useful
structures of web documents such as title, body, header, query, to build a word graph representing both position-based
proximity and structural relations. Luo et al. (2020) use a selection network to filter unimportant sentences, while
Ahmad et al. (2021) apply this network to adjust the weights of the decoder copying mechanism.

Meanwhile, researchers also focus on incorporating more information into the encoder. For instance, Zhao and
Zhang (2019) explore linguistic information for document encoding. To alleviate data sparsity in social media, Wang
et al. (2019) apply a variational neural network to incorporate topic information into the model.

3.3. Decoding Strategies
Unlike the conventional decoder that can predict both present and absent keyphrases, Sun et al. (2019) propose a

diversified Pointer Network decoder for the ONE2ONE paradigm, which only copies a set of diverse present keyphrases.
Meanwhile, more researchers focus on refining the decoding manners under ONE2SEQ paradigm. For example,

Chen et al. (2020) propose an exclusive hierarchical decoder that involves two levels of decoding to exploit the
phrase-level and word-level correlation for keyphrase generation. Similarly, Santosh et al. (2021b) model the above-
mentioned hierarchical structure by incorporating a conditional variational autoencoder. Besides, Zhang et al. (2022)
propose a hierarchical topic-guided variational neural network by integrating the hierarchical topic information to
guide the keyphrases generation. Some researchers argue that uniformly modeling the generation of present and absent
keyphrases is unreasonable, since their prediction difficulties are significantly different. Zhao et al. (2021) propose
a Select-Guide-Generate decoding strategy, which firstly selects present keyphrases from the input document and
then exploits these keyphrases to guide the generation of absent ones. Similarly, Liu et al. (2021) first fine-tune a
BERT-based model to identify present keyphrases from the input document, and then utilize the BERT, which fully
encodes the knowledge of present keyphrases, to benefit the generation of absent ones. Wu et al. (2021) jointly train
present keyphrase extraction and absent keyphrase generation, exploiting their mutual relation via stacker relation layer
and bag-of-words constraints. Very recently, Wu et al. (2022b) propose a mask-predict decoder to explore constrained
and non-autoregressive generation for absent keyphrase generation.

3.4. Model Training Strategies
Chan et al. (2019) propose a reinforcement learning (RL) approach with an adaptive reward for keyphrase generation.

If the model does not generate enough keyphrases, the reward is defined as the recall score that encourages the model to
generate enough keyphrases. Otherwise, the F1 score is used as the reward to prevent the model from over-generating
incorrect keyphrases. To ease the synonym problem, Luo et al. (2021) further improve the RL reward function by
considering word-level F1 score, edit distance, duplication rate, and generation quantity.

Besides, researchers apply generative adversarial networks to the keyphrase generation task (Swaminathan et al.,
2020a,b; Lancioni et al., 2020), where the generator is trained to produce accurate keyphrases and the discriminator is
expected to distinguish machine-generated and human-curated keyphrases.

Many researchers apply multitask model to the keyphrase generation task (Chen et al., 2019a; Ahmad et al., 2021).
Typically, Ye and Wang (2018) jointly train keyphrase generation and title generation to improve the generalization
ability of the model. Similarly, Zhao and Zhang (2019) introduce POS tagging as an auxiliary task of keyphrase
generation.
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3.5. Exploitation of External Information
Inspired by the studies of other NLP tasks (Liu et al., 2018; Wang et al., 2018; Zhang et al., 2019), researchers

explore the information beyond input documents to generate better keyphrases.
In this regard, Diao et al. (2020) employ a cross-document attention to leverage similar documents for better

document encoding. Garg et al. (2021) explore numerous ways to incorporate additional data for keyphrase generation
and find that the summary of the article is the most beneficial. Besides, researchers consider the keyphrases of similar
documents. Chen et al. (2019a) leverage the retrieved keyphrases from similar documents to guide the keyphrase
generation and re-ranking. Santosh et al. (2021a) also collect additional keyphrases from similar documents to
automatically form a gazetteer, which is used to enrich the vocabulary for improving keyphrase generation. To exploit
both similar documents and their keyphrases, Ye et al. (2021a) construct a heterogeneous keyword-document graph
model, which is equipped with a reference-aware decoder to copy words from the input document and its similar ones.
To deal with the data without title, Kim et al. (2021a) construct a structure graph using the input document and its
related but absent keyphrases retrieved from other documents. This graph can provide structure-aware representations
for better keyphrase generation. Besides, Wang et al. (2020c) utilize the rich features embedded in the matching images
to explore the joint effects of texts and images for keyphrase prediction.

3.6. Solving Duplication and Coverage Issues of Generated Keyphrases
Chen et al. (2018) point out that the ONE2ONE paradigm neglects the correlation among keyphrases, leading to

duplication and coverage issues of generated keyphrases. To solve these issues, they propose CoryRNN that reviews
preceding keyphrases to eliminate duplicates, and utilizes the coverage mechanism (Tu et al., 2016) to improve the
coverage for keyphrases.

The ONE2SEQ paradigm has the same issues, which become more serious when generating long keyphrase
sequences. To deal with this defect, Yuan et al. (2020) employ orthogonal regularization to explicitly distinguish the
delimiter-generated hidden states, so as to improve the diversity of generated keyphrases. Bahuleyan and Asri (2020)
use an unlikelihood training loss to produce diverse keyphrases. Along this line, Chen et al. (2020) explore not only an
training strategy with an exclusive loss, but also an exclusive search strategy to avoid generating duplicate keyphrases.
In this way, the model is encouraged to generate keyphrases with different first words.

3.7. Low-resource Keyphrase Generation
The performance of keyphrase generation models deeply depends on the quantity and quality of training data.

Unfortunately, the commonly-used labeled datasets are often relatively small, making low-resource keyphrase generation
a realistic and valuable research direction

Ye and Wang (2018) propose a semi-supervised model that first generates pseudo keyphrases for unlabeled
documents and then use them as incremental training data. Besides, Shen et al. (2022) use unsupervised extraction
models to collect keyphrases and then draw pesudo keyphrases for each document based on lexical and semantic level
similarities. Finally, the pesudo absent keyphrases are used to train and update the model.

Recently, due to pre-trained models contain abundant knowledge that may benefit keyphrase generation, keyphrase
generation based on pre-trained models have received a rising interest. In this respect, Wu et al. (2021) first introduce
the pre-trained model UniLM (Dong et al., 2019) into keyphrase generation. Additionally, Garg et al. (2021) utilize
Longformer (Beltagy et al., 2020) to deal with the keyphrase generation for long documents. Besides, BART (Lewis
et al., 2020), a denoising self-supervised autoencoder, is extensively applied due to its great potential in text generation
tasks. For instance, Chowdhury et al. (2022) directly construct an ONE2SEQ model based on the fine-tuned BART.
Kulkarni et al. (2022) propose KeyBART, which uses boundary tokens and position embeddings to predict the masked
keyphrase and then determine whether a keyphrase is replaced or retained. In addition to the above masked keyphrase
prediction, Wu et al. (2022a) introduce salient span recovery to fine-tune BART for learning better intermediate
representations. Wu et al. (2022b) apply a prompt-based learning approach for constrained absent keyphrase generation.
They firstly define overlapping words between absent keyphrase and document as keywords, and then use a mask-predict
decoder to generate the final absent keyphrase under the constraints of prompt.

3.8. Keyphrase Ranking
Due to the property of beam search, ONE2ONE models tend to select short phrases. To deal with this issue, Ni’mah

et al. (2019) introduce word-level and ngram-level attention scores to boost the ranking scores of long keyphrases.
Besides, Shen et al. (2022) combine the TF-IDF relatedness and embedding-based keyphrase-document cosine similarity
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Table 3
The commonly-used datasets for keyphrase predictions.

Dataset Domain Language Docs
Inspec (Hulth, 2003) Papers EN 2.0K
NUS (Nguyen and Kan, 2007) Papers EN 211
PubMed (Schutz et al., 2008) Papers EN 1.3K
Krapivin (Krapivin et al., 2009) Papers EN 2.3K
Citeulike-180 (Medelyan et al., 2009) Papers EN 181
SemEval-2010 (Kim et al., 2010) Papers EN 244
TALN (Boudin, 2013) Papers EN/FR 521/1.2K
KDD (Gollapalli and Caragea, 2014) Papers EN 755
WWW (Gollapalli and Caragea, 2014) Papers EN 1.3K
TermLTH-Eval (Bougouin et al., 2016) Papers FR 400
KP20k (Meng et al., 2017) Papers EN 567.8K
LDPK3K (Mahata et al., 2022) Papers EN 96.8K
LDPK10K (Mahata et al., 2022) Papers EN 1.3M
DUC (Wan and Xiao, 2008) News EN 308
110-PT-BN-KP (Marujo et al., 2011) News PT 110
500N-KPCrowd (Marujo et al., 2012) News EN 500
Wikinews (Bougouin et al., 2013) News FR 100
PerKey (Doostmohammadi et al., 2018) News PER 553.1K
KPTimes (Gallina et al., 2019) News EN 279.9K
Twitter (Zhang et al., 2016) Tweets EN 112.5K
Weibo (Wang et al., 2019) Tweets ZH 46.3K
Text-Image Tweets (Wang et al., 2020c) Tweets EN 53.7K
NZDL (Witten et al., 1999) Reports EN 1.8K
Blogs (Grineva et al., 2009) Web pages EN 252
StackExchange (Wang et al., 2019) QA EN 49.4K

to rank phrases. When reranking phrases, Chen et al. (2019a) also consider phrases retrieved from similar documents
and phrases extracted from documents. In addition, Ye and Wang (2018) apply beam search into an ONE2SEQ
paradigm based model, which generates multiple candidate phrase sequences and then collect unique keyphrases from
the top-ranked beams in descending order.

4. Datasets
The commonly-used datasets for keyphrase prediction are shown in Table 3. According to domains, they could be

divided into reports, News, tweets, web pages, QA and scientific articles. Most of these datasets are in English, a few
are in French, Persian, Chinese, and Portuguese.

As the most widely-used dataset, KP20k consists of articles in computer science from various online digital libraries.
Overall, these datasets are relatively small, which is not applicable to industrial applications. Hence, it is urgent to
construct large-quantity and high-quality multilingual datasets, so as to further promote the development of keyphrases
prediction.

Considering the tradeoff between cost and quality of expert annotations, Chau et al. (2020) explore multiple
annotation strategies, including self review, peer review, and so on.

5. Evaluation Metrics
Let Ŷ =(ŷ1, ŷ2, ..., ŷm) and Y =(y2, y2, ..., yn) to be the predicted and target keyphrases, respectively. The common

practice is to use only top k predictions with the highest scores for evaluation, where k is a pre-defined constant (usually
5 or 10). Particularly, to eliminate the influence of morphology, the predicted keyphrases are stemmed by applying
Porter Stemmer1 (Meng et al., 2017).

The commonly-used metrics include precision, recall and F1 scores. Early studies use F1@5 and F1@10 to evaluate
the quality of generated present keyphrases, and R@5 and R@10 to measure the quality of generated absent keyphrases

1https://github.com/nltk/nltk/blob/develop/nltk/stem/porter.py
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(Meng et al., 2017; Chen et al., 2018, 2019b). Formally, these metrics are defined as follows:

P@k =
|Ŷ∶k ∩ Y |
|Ŷ∶k|

, (1)

representing the correct proportion of keyphrases in predictions.

R@k =
|Ŷ∶k ∩ Y |

|Y |
, (2)

measuring the correct rate of the predicted keyphrase in references.

F1@k = 2P@kR@k
P@k + R@k

, (3)

which is a tradeoff between P@k and R@k.
Considering the fact that a model often predicts varying numbers of keyphrases, Yuan et al. (2020) argue that the

metrics with the pre-defined constant k cannot accurately evaluate the quality of predicted keyphrases. Thus, they
extend F1@k to two metrics: 1) F1@O: this metric sets k as the number of target keyphrases instead of a pre-defined
constant; 2) F1@M : this metric takes all predictions into account. Futhermore, Chan et al. (2019) improve F1@M by
filling target keyphrases with blanks when their number is less than the number of predicted keyphrases.

However, conventional metrics, such as F1, which assess the prediction quality at the phrase level, do not take
into account the partially matched predictions. To deal with this issue, Luo et al. (2021) propose Fine-Grained (FG)
evaluation score that considers prediction orders and qualities at the token level, and prediction diversity and numbers
at the instance level.

Besides, Habibi and Popescu-Belis (2013) introduce �-nDCG (Clarke et al., 2008) to measure the diversity
of predicted keyphrases, where nDCG represents Normalized Discounted Cumulative Gain measure (Järvelin and
Kekäläinen, 2002) and the parameter � is a trade-off between relevance and diversity. Chan et al. (2019) measure
the mean absolute error (MAE) between the number of predicted keyphrases and the number of target keyphrases. In
addition, Chen et al. (2020) define DupRatio to evaluate the duplication rate of the predicted keyphrases.

5.1. Implementation Details
In the experiments of keyphrase extraction, we consider the following typical unsupervised models: statistical

models including TF-IDF (Salton and Buckley, 1988), YAKE (Campos et al., 2018), graph-based models consisting
of TextRank (Mihalcea and Tarau, 2004), SingleRank (Wan and Xiao, 2008), TopicRank (Bougouin et al., 2013),
PositionRank (Florescu and Caragea, 2017), MultipartieRank (Boudin, 2018), and deep learning-based models such as
EmbedRank (Bennani-Smires et al., 2018), SIFRank (Sun et al., 2020), SIFRank+ (Sun et al., 2020), UKERank (Liang
et al., 2021), and JointKPE (Sun et al., 2021). Please Note that JointKPE is the current SOTA supervised model. In
the experiments of keyphrase generation, we compare the typical generation models under three kinds of common
paradigms: 1) ONE2ONE, CopyRNN (Meng et al., 2017) and KG-KE-KR-M (Chen et al., 2019a), 2) ONE2SEQ,
CatSeq (Yuan et al., 2020), catSeqTG-2RF1 (Chan et al., 2019) and Transformer (Ye et al., 2021b), and 3) ONE2SET,
SetTrans (Ye et al., 2021b) and WR-SetTrans(Xie et al., 2022). Besides, we compare the performance of large language
models in keyphrase prediction, including BART (Lewis et al., 2020), T5 (Raffel et al., 2020), KeyBART (Kulkarni
et al., 2022) and ChatGPT2.

During model training, we strictly use the same experiment settings as their original papers. For the model involving
multiple variants, we only report the performance of its variant with the best performance. Particularly, following Yuan
et al. (2020), we use two experimental settings for ONE2SEQ paradigm models. When using ChatGPT, we explore
three commonly-used settings, including zero-shot3, 1-shot, and 5-shot. Specifically, we retrieve the most relevant
training instances for the given input document according to the cosine distance of the MiniLM (Wang et al., 2020a)
embedding. These pertinent training instances are concatenated at the beginning of the input document and then fed
into the ChatGPT to obtain the ultimate predictions for keyphrases. Particularly, to alleviate the instability of neural
networks, we run the generation models for 3 times with different seeds and report the average results. Finally, we
evaluate the present keyphrase and absent keyphrase predictions, respectively.

2https://chat.openai.com/chat
3We use the official released prompt (https://platform.openai.com/examples/default-keywords) for keyphrase prediction.
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Table 4
Results of present keyphrase prediction using extraction models. To ensure fair compar-
sions, we only use the target present keyphrase to evaluate the performance of extraction
models, while the previous studies use all target keyphrases.

Model
Inspec NUS Krapivin SemEval KP20k

F1@5F1@M F1@5F1@M F1@5F1@M F1@5F1@M F1@5F1@M

Unsupervised Statistical Extraction Models

TF-IDF (Salton and Buckley, 1988) 0.132 0.175 0.214 0.213 0.145 0.131 0.151 0.190 0.172 0.146
YAKE (Campos et al., 2018) 0.183 0.193 0.221 0.212 0.188 0.131 0.202 0.204 0.189 0.145

Unsupervised Graph-based Extraction Models

TextRank (Mihalcea and Tarau, 2004) 0.321 0.363 0.092 0.169 0.118 0.144 0.093 0.200 0.091 0.120
SingleRank (Wan and Xiao, 2008) 0.325 0.362 0.151 0.195 0.152 0.147 0.146 0.212 0.134 0.131
TopicRank (Bougouin et al., 2013) 0.266 0.301 0.210 0.154 0.168 0.118 0.201 0.163 0.167 0.114
PositionRank (Florescu and Caragea, 2017) 0.306 0.338 0.228 0.208 0.186 0.143 0.245 0.229 0.183 0.138
MultipartiteRank (Boudin, 2018) 0.269 0.322 0.244 0.188 0.181 0.132 0.227 0.206 0.185 0.132

Unsupervised Deep Learning-based Extraction Models

EmbedRank (Bennani-Smires et al., 2018) 0.333 0.376 0.166 0.199 0.167 0.150 0.185 0.233 0.153 0.135
SIFRank (Sun et al., 2020) 0.368 0.385 0.143 0.193 0.164 0.151 0.165 0.213 0.138 0.133
SIFRank+ (Sun et al., 2020) 0.348 0.384 0.246 0.203 0.194 0.153 0.244 0.223 0.195 0.138
UKERank (Liang et al., 2021) 0.350 0.384 0.238 0.202 0.187 0.162 0.250 0.228 0.178 0.138

Supervised Deep Learning-based Extraction Models

Sequence Tagging(Roberta-base) (Sun
et al., 2021)

0.331 0.336 0.321 0.177 0.476 0.319 0.379 0.291 0.416 0.240

JointKPE (Sun et al., 2021) 0.352 0.348 0.476 0.335 0.360 0.202 0.393 0.306 0.417 0.239

Table 5
Results of present keyphrase prediction using generation models. #bs denotes beam
size. † indicates previously reported scores.

Model
Inspec NUS Krapivin SemEval KP20k

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

ONE2ONE Paradigm-based Models

CopyRNN(#bs=200) (Meng et al., 2017) 0.272 0.293 0.356 0.306 0.283 0.214 0.294 0.257 0.336 0.255
KG-KE-KR-M(#bs=200) (Chen et al., 2019a) 0.324 0.362 0.421 0.342 0.304 0.273 0.325 0.293 0.400 0.277

ONE2SEQ Paradigm-based Models

CatSeq(#bs=1) (Yuan et al., 2020) 0.229 0.266 0.324 0.394 0.270 0.344 0.245 0.296 0.292 0.365
CatSeq(#bs=50) (Yuan et al., 2020) 0.328 0.398 0.417 0.395 0.352 0.316 0.343 0.334 0.360 0.302
catSeqTG-2RF1(#bs=1) (Chan et al., 2019) 0.253 0.301 0.375 0.433 0.300 0.369 0.287 0.329 0.321 0.386
Transformer(#bs=1) (Ye et al., 2021b) 0.285 0.331 0.371 0.418 0.308 0.356 0.287 0.319 0.330 0.373

ONE2SET Paradigm-based Models

SetTrans(#bs=1) (Ye et al., 2021b) 0.281 0.318 0.406 0.452 0.339 0.374 0.322 0.354 0.354 0.390
WR-SetTrans(#bs=1) (Xie et al., 2022) 0.330 0.351 0.428 0.452 0.360 0.362 0.360 0.370 0.370 0.378

6. Comparison between Existing Models
To better understand advantages and disadvantages of different models, we conduct several groups of experiments

to compare representative models in different settings. To this end, we use the KP20k training set to train various
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Table 6
Results of absent keyphrase prediction using generation models.

Model
Inspec NUS Krapivin SemEval KP20k

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

ONE2ONE Paradigm-based Models

CopyRNN(#bs=200) (Meng et al., 2017) 0.007 0.007 0.009 0.012 0.013 0.019 0.007 0.011 0.011 0.013
KG-KE-KR-M(#bs=200) (Chen et al., 2019a)† 0.024 0.028 0.060 0.076 0.059 0.063 0.031 0.040 0.070 0.083

ONE2SEQ Paradigm-based Models

CatSeq(#bs=1) (Yuan et al., 2020) 0.005 0.009 0.015 0.026 0.018 0.034 0.015 0.022 0.014 0.030
CatSeq(#b=50) (Yuan et al., 2020) 0.021 0.028 0.038 0.052 0.051 0.065 0.030 0.038 0.041 0.058
catSeqTG-2RF1(#bs=1) (Chan et al., 2019) 0.012 0.021 0.019 0.031 0.030 0.053 0.021 0.030 0.027 0.050
Transformer(#bs=1) (Ye et al., 2021b) 0.008 0.017 0.028 0.050 0.030 0.055 0.016 0.022 0.021 0.043

ONE2SET Paradigm-based Models

SetTrans(#bs=1) (Ye et al., 2021b) 0.018 0.029 0.041 0.061 0.046 0.073 0.029 0.035 0.035 0.056
WR-SetTrans(#bs=1) (Xie et al., 2022) 0.025 0.034 0.057 0.071 0.057 0.074 0.040 0.043 0.050 0.064
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Figure 4: The training losses of representative models under three paradigms.

models, and then apply the same script4 to evaluate the model predictions on five commonly-used test sets: Inspec,
NUS, Krapivin, SemEval, and KP20k.

6.1. Comparison of Extraction Models
The performance of extraction models is reported in Table 4. Note that the previous studies in this aspect report the

evaluation scores with respect to all target keyphrases. To ensure fair comparisons, we only use the present keyphrases
to evaluate the performance of various extraction models.

Overall, unsupervised statistical extraction models perform worst in this setting, and unsupervised graph-based
extraction models surpass statistical ones. This result is not surprising, because unsupervised graph-based extraction
models not only use statistical features but also employ effective graph algorithms, such as clustering, graph propagation,
etc. Moreover, due to the advantage of semantic representation learning, deep learning-based models achieve the
best result, echoing the development trend of natural language processing studies from statistical models to deep
learning-based models.

Besides, comparing unsupervised and supervised extraction models, we can observe that supervised extraction
models outperform unsupervised ones on most test sets except Inspec. Further analysis on Inspec will be provided in

4https://github.com/kenchan0226/keyphrase-generation-rl/blob/master/evaluate_prediction.py
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Table 7
Statistical features of five datasets.

Dataset #pre. KP/doc #abs. KP/doc #token/doc Length of pre. KP Length of abs. KP #doc

Inspec 7.23 2.59 134.10 2.44 2.72 500
NUS 6.34 5.31 230.13 1.95 2.56 211

Krapivin 3.26 2.59 189.32 2.16 2.29 400
SemEval 6.25 8.41 245.89 2.08 2.61 100
KP20k 3.24 2.84 179.02 1.85 2.55 570, 802

Section 6.2.

6.2. Comparison of Gneration Models
Three Training Paradigms Figure 4 shows the training losses of CopyRNN, CatSeq and SetTrans, which are the
representative models under three paradigms. CopyRNN suffers from the highest loss, due to the difficulty of model
training brought by the One2One paradigm where one input corresponds to multiple targets. One2Seq paradigm
alleviates the problem of inconsistent training instances by concatenating target keyphrases into a sequence and Cat2Seq
achieves a relatively lower loss than CopyRNN. Among three representative models, SetTrans has the lowest loss after
convergence, demonstrating the advantage of the ONE2SET paradigm.

Inspec NUS Krapivin SemEval KP20k
Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

26.1%
15.8% 20.9% 14.5% 14.5%

30.7%

19.3%
21.4%

24.5% 19.9%

43.2%

64.9% 57.7% 61.0% 65.6%

Front
Middle
Back

Figure 5: The first occurrence position distribution of present keyphrases in input
documents

Comparison of SOTA Extraction Model and Generation Models From the last rows of Table 4 and Table 5, we
observe that JointKPE (Sun et al., 2021) outperfoms all generation models in terms of F1@5. However, extraction
models cannot dynamically decide the number of extracted keyphrases. If the pre-defined number of extracted
keyphrases is larger than the actual number of target keyphrases, it may introduce noise into the extracted phrases,
resulting in a low F1@M . Worse still, extraction models are unable to deal with the predictions of absent keyphrases,
which account for a large proportion of target keyphrases. Therefore, we argue that a combination of extraction and
generation model, such as KG-KE-KR-M (Chen et al., 2019a), has the potential to achieve better overall results than
single-mode models.

Back to Table 5, KG-KE-KR-M performs significantly better than CopyRNN, proving the superiority of combing
generation and extraction. Note that although KG-KE-KR-M incorporates retrieval and reranking techniques into
ONE2ONE paradigm, SetTrans(Ye et al., 2021b) still outperforms KG-KE-KR-M and other generation models in
F1@M without special techniques, showing its advantages in predicting the keyphrase number for documents.
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Figure 6: The first occurrence position distributions of the target present keyphrases and present keyphrases predicted
by SIFRank, JointKPE and SetTrans in Inspec. The document has been divided into ten equal parts, and the x-axis
indicates the index of the divided sub-document, for example, x = p1 means that the first 10% of the document. The
y-axis is the proportion of the keyphrase in this sub-document.

Analysis of the Inspec Dataset From Table 4 and Table 5, we observe that unsupervised deep learning-based
extraction models achieve comparable or better performance than supervised deep learning-based extraction and
generation models when predicting present keyphrases on Inspec. To explain this phenomena, we further conduct the
following analyses:

1) Table 7 shows the statistical features of datasets. Compared with other test sets, Inspec has the shortest average
document length, the longest average length of present keyphrase, and the maximum number of present keyphrase,
indicating Inspec is more suitable for extraction models than other datasets.

2) In Figure 5, we also visualize the occurrence position distributions of present keyphrases in each dataset. It reveals
that the present keyphrases of the KP20k training set tend to occur in the front of the document. This phenomenon
becomes even more evident when analyzing the first occurrence positions of present keyphases. As a result, the
supervised models trained on KP20k tend to predict present keyphrases from the front of the document, which, however,
is not applicable for Inspec, of which present keyphrases distribute evenly in the document.

3) Figure 6 depicts the position distributions of the target present keyphrases and present keyphrases predicted
by SIFRank, JointKPE, and SetTrans in Inspec. Please note that they are the best unsupervised keyphrase extraction,
supervised keyphrase extraction and keyphrase generation models, respectively. The distribution of present keyphrases
predicted by SIFRank is very close to the distribution of Inspec, while other supervised models are quite different.
It supports our hypothesis that supervised models, are deeply affected by the occurrence position distribution of
keyphrases in training data, which leads to the degradation of model performance when the test set is domain-mismatch
with the training data.

6.3. Comparison of LLMs
Recently, large language models (LLMs) have achieved remarkable success in various NLP tasks and have displayed

a variety of capabilities. To evaluate the keyphrase prediction ability of these models, we compare the performance of
commonly-used LLMs, including BART, T5, KeyBART, and ChatGPT, across five benchmark datasets.

Table 8 and Table 9 reports the experimental results. We find that compared with previous SOTA models, such
as CatSeq, Transformer, SetTrans and WR-SetTrans, LLMs show modest improvements in both present and absent
keyphrase predictions. Additionally, our comparison of SetTrans and LLMs suggests that the impact of increasing
model parameters is overshadowed by the adoption of new training and inference paradigms.

By synthesizing all results of Table 4, Table 8 and Table 9, we conclude that ChatGPT outperforms all other
unsupervised keyphrase extraction methods in terms of F1@5-score and F1@M-score under the zero-shot setting, but is
still inferior to the existing SOTA supervised models on almost all datasets. With more training instances, the prediction
ability of ChatGPT for both present and absent keyphrases can be significantly improved. Its superior performance on
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Table 8
Results of present keyphrase prediction using large language models. #bs denotes
beam size. † indicates previously reported scores.

Model
Inspec NUS Krapivin SemEval KP20k

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

CatSeq(#bs=1) (Yuan et al., 2020) 0.229 0.266 0.324 0.394 0.270 0.344 0.245 0.296 0.292 0.365
Transformer(#bs=1) (Ye et al., 2021b) 0.285 0.331 0.371 0.418 0.308 0.356 0.287 0.319 0.330 0.373
SetTrans(#bs=1) (Ye et al., 2021b) 0.281 0.318 0.406 0.452 0.339 0.374 0.322 0.354 0.354 0.390
WR-SetTrans(#bs=1) (Xie et al., 2022) 0.330 0.351 0.428 0.452 0.360 0.362 0.360 0.370 0.370 0.378

BART-base(#bs=1) (Lewis et al., 2020) 0.270 0.323 0.366 0.424 0.270 0.336 0.271 0.321 0.322 0.388
BART-large(#bs=1) (Lewis et al., 2020) 0.276 0.333 0.380 0.435 0.284 0.347 0.274 0.311 0.332 0.392
T5-base(#bs=1) (Raffel et al., 2020) 0.288 0.339 0.388 0.440 0.302 0.350 0.295 0.326 0.336 0.388
T5-large(#bs=1) (Raffel et al., 2020) 0.295 0.343 0.398 0.438 0.315 0.359 0.297 0.321 0.343 0.393
KeyBART(#bs=1) (Kulkarni et al., 2022) 0.268 0.325 0.373 0.430 0.287 0.365 0.260 0.289 0.325 0.398

zero-shot ChatGPT(#bs=1) 0.309 0.428 0.338 0.258 0.237 0.189 0.274 0.252 0.192 0.158
1-shot ChatGPT(#bs=1) 0.421 0.480 0.355 0.359 0.297 0.298 0.319 0.326 0.298 0.295
5-shot ChatGPT(#bs=1) 0.431 0.497 0.365 0.351 0.285 0.287 0.312 0.300 0.297 0.288

Table 9
Results of absent keyphrase prediction using large language models.

Model
Inspec NUS Krapivin SemEval KP20k

F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M F1@5 F1@M

CatSeq(#bs=1) (Yuan et al., 2020) 0.005 0.009 0.015 0.026 0.018 0.034 0.015 0.022 0.014 0.030
Transformer(#bs=1) (Ye et al., 2021b) 0.008 0.017 0.028 0.050 0.030 0.055 0.016 0.022 0.021 0.043
SetTrans(#bs=1) (Ye et al., 2021b) 0.018 0.029 0.041 0.061 0.046 0.073 0.029 0.035 0.035 0.056
WR-SetTrans(#bs=1) (Xie et al., 2022) 0.025 0.034 0.057 0.071 0.057 0.074 0.040 0.043 0.050 0.064

BART-base(#bs=1) (Lewis et al., 2020) 0.010 0.017 0.026 0.042 0.028 0.049 0.016 0.021 0.022 0.042
BART-large(#bs=1) (Lewis et al., 2020) 0.015 0.024 0.031 0.048 0.031 0.051 0.019 0.024 0.027 0.047
T5-base(#bs=1) (Raffel et al., 2020) 0.011 0.020 0.027 0.051 0.023 0.043 0.014 0.020 0.017 0.034
T5-large(#bs=1) (Raffel et al., 2020) 0.011 0.021 0.025 0.042 0.023 0.045 0.015 0.020 0.017 0.035
KeyBART(#bs=1) (Kulkarni et al., 2022) 0.014 0.023 0.031 0.055 0.036 0.064 0.016 0.022 0.026 0.047

zero-shot ChatGPT(#bs=1) 0.014 0.027 0.003 0.005 0.002 0.004 0.002 0.003 0.025 0.030
1-shot ChatGPT(#bs=1) 0.027 0.048 0.011 0.017 0.015 0.028 0.009 0.011 0.015 0.027
5-shot ChatGPT(#bs=1) 0.028 0.046 0.010 0.015 0.016 0.031 0.016 0.021 0.015 0.027

multiple benchmark datasets highlights its significance for practical applications in various domains. Further research
could explore the more effective use of ChatGPT to fully exert its potential.

7. Future Directions
In summary, automatic keyphrase prediction has attracted extensive attention from academia and industry currently.

However, it still remains a challenging task in the following aspects:
1) The quality of generated absent keyphrases directly determines the availability of keyphrase generation models.

However, dominant models are still unable to produce satisfactory absent keyphrases. Therefore, how to improve the
prediction performance on absent keyphrases will be the focus of future research.

2) Intuitively, humans often exploit the information beyond the input document to predict keyphrases. Hence, how
to fully exploit more information, such as the extra information from external knowledge base or pre-trained model, for
better keyphrase predictions is worth exploring.

3) Short videos have recently emerged as a widespread type of social media due to the explosive growth of the
Internet. Two new forms of multi-modal information introduced in the search and recommendation scenarios, video
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and audio, place additional demand on keyphrase prediction. Thus, we believe that multi-modal keyphrase prediction is
also the future development trend of keyphrase prediction.

4) Existing studies mainly focus on using domain-specific data to train models, such as scientific documents.
However, it is unable to handle different domains of data from the Internet. Consequently, how to effectively transfer
these models to other domains becomes one problem to be solved in practical applications.

5) The conventional evaluation metrics mainly focus on the comparison between the surface representations of
stemmed phrases. However, two phrases may possess the same meaning although their expressions are different. Hence,
the quality evaluation of generated keyphrases should consider the comparison between semantic representations of
phrases and the application effect in downstream tasks such as retrieval systems (Boudin et al., 2020).

6) Dominant studies model the generations of present and absent keyphrases in a unified manner, although their
prediction difficulties vary greatly. Intuitively, it is more reasonable to individually model the generations of absent and
present keyphrases. Please note that Wu et al. (2022b) verifies the feasibility of this direction.

7) The generation of keyphrases can draw lesson from the process of human reading and refining keyphrases.
For example, humans tend to distill the overall idea first and grasp the specifics later, and thus, an ideal process for
keyphrase prediction is to predict keyphrase in a coarse-to-fine manner.

8) Very recently, ChatGPT has demonstrated effectiveness proficiency across a range of NLP tasks. As such, it is
imperative to explore the optimal utilization of ChatGPT in keyphrase prediction, in order to fully exert its remarkable
potential.
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