
ar
X

iv
:2

31
2.

05
75

7v
1 

 [
cs

.L
G

] 
 1

0 
D

ec
 2

02
3

Towards Human-like Perception: Learning Structural Causal Model

in Heterogeneous Graph

Tianqianjin Lina,c, Kaisong Songc, Zhuoren Jianga,∗, Yangyang Kangc, Weikang Yuana,

Xurui Lic, Changlong Sunc, Cui Huanga and Xiaozhong Liub,∗

aDepartment of Information Resources Management, Zhejiang University, Hangzhou, 310058, China
bComputer Science Department, Worcester Polytechnic Institute, Worcester, 01609-2280, Massachusetts, USA
cAlibaba DAMO Academy, Hangzhou, 311121, China

A R T I C L E I N F O

Keywords:

structural causal model

heterogeneous graph

node property prediction

interpretability

generalizability

Abstract

Heterogeneous graph neural networks have become popular in various domains.

However, their generalizability and interpretability are limited due to the discrepancy

between their inherent inference flows and human reasoning logic or underlying causal

relationships for the learning problem. This study introduces a novel solution, HG-

SCM (Heterogeneous Graph as Structural Causal Model). It can mimic the human

perception and decision process through two key steps: constructing intelligible

variables based on semantics derived from the graph schema and automatically

learning task-level causal relationships among these variables by incorporating ad-

vanced causal discovery techniques. We compared HG-SCM to seven state-of-the-art

baseline models on three real-world datasets, under three distinct and ubiquitous out-

of-distribution settings. HG-SCM achieved the highest average performance rank with

minimal standard deviation, substantiating its effectiveness and superiority in terms of

both predictive power and generalizability. Additionally, the visualization and analysis

of the auto-learned causal diagrams for the three tasks aligned well with domain

knowledge and human cognition, demonstrating prominent interpretability. HG-

SCM’s human-like nature and its enhanced generalizability and interpretability make

it a promising solution for special scenarios where transparency and trustworthiness

are paramount.

1. Introduction

The surge and convergence of numerous readily available data sources have elicited exhilarating oppor-

tunities for investigation across various data-rich domains. Heterogeneous Graph Neural Network (HGNN),

as a noteworthy approach in this realm, has garnered significant attention recently due to its effectiveness in

modeling real-world complex systems with intricate relationships, such as academic networks, e-commerce

networks, and social networks, in which different types of nodes and relations interplay following specific

graph schema (Han et al., 2022a; VDong et al., 2020; Jiang et al., 2020; Chen et al., 2021; Lu et al., 2022;

Wang et al., 2022a; Mo et al., 2023; Xie et al., 2023).

Despite the impressive results these models have achieved, three challenges have yet to be fully

elucidated.

Generalizability: The vast majority of studies on HGNN are conducted under the premise of identically

and independently distributed (i.i.d) data splits, which can potentially lead to a disregard for the issue of
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generalizability. In practical applications, however, the i.i.d assumption is not always valid as the presence

of distribution shifts in unseen data, also known as out-of-distribution (o.o.d) problems (Zhang et al., 2021;

Yang et al., 2023a). HGNNs that are susceptible to the presence of spurious correlations and connections in

the training data may fail to generalize to unseen data (Li et al., 2022; Miao et al., 2022; Wan et al., 2022;

Fu et al., 2023). As Knyazev et al. (2019) claimed, the popular neighborhood aggregation mechanisms

used in current HGNNs are vulnerable to the presence of spurious edges and correlations that mislead in

how they attend to node neighbors, thereby resulting in inadequate generalizability of the models.

Interpretability: Building more accurate predictive models is not the only objective for graph mod-

els (Ying et al., 2019). It is imperative for researchers to discover the patterns from the input graph that induce

certain predictions (Cranmer et al., 2020). While attention-based graph models (Velickovic et al., 2018;

Hu et al., 2020; Lv et al., 2021) are capable to assign weights to edges in the input graph, research has found

that these estimated weights can not provide any reliable interpretation for the learning tasks (Yu et al.,

2021; Miao et al., 2022). These methods mostly estimate the input-output relationships at the sample level

from an associational perspective (Wang et al., 2022b), which may overestimate the graph structure in a

single input graph irrelevant to the outcome (Moraffah et al., 2020), rather than uncovering the plausible

causation of the task itself .

Figure 1: A toy academic heterogeneous graph is displayed in (c), where KDD and ACL are highly representative
conferences in the fields of data mining and natural language processing, respectively. Its graph schema is shown
in (a). For the task of predicting the author’s research area, a hypothetical causal structure is depicted in (b),
where the research area of an author is only determined by two factors: the author’s papers and the venues of
the author’s papers. The two mainstream paradigms of current HGNNs are illustrated in (d) and (e). It can
be observed that the inherent associational inference flows of current HGNNs can not align well with

human reasoning logic or underlying causal relationships. Therefore, they can face limitations in correct

interpretation with respect to the learning tasks and are prone to get compromising generalizability due

to inevitably introducing spurious correlations.

Learning level. Perhaps due to the success of many models that employ sample-level dynamic

adaptation (Velickovic et al., 2018; Shi et al., 2021; Xian et al., 2022), existing HGNNs primarily focus

on sample-adaptive learning by leveraging complex attention modules in the neighbor aggregation and

relations/meta-paths fusion (Schlichtkrull et al., 2018; Hu et al., 2020; Lv et al., 2021; Vashishth et al.,

2020). However, beyond the sample-level adaptation, for a given learning problem on a graph, there is

always a relatively consistent principle for processing all samples. For instance, the importance of different
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relationships/meta-paths should be stable in a specific task (Jiang et al., 2018). As a result, for prediction

problems in heterogeneous graphs, it can be critical to prioritize learning at the task level, rather than

solely focusing on fine-grained sample-level adaptation. The empirical evidence from Yang et al. (2023b) has

indicated that the sample-wise neighbor attention has limited impacts on the performance of the models

in fact. Our supplementary experiment in Appendix A suggests that sample-wise semantic attention may

also yield limited improvement in model performance.

We provide a toy example in Figure 1 to explain these three challenges from the perspective of the design

of the inference flow. The inference flow of HGNN models naturally introduces spurious correlations to

reduce the generalizability of the model. For instance, in the relation/meta-path fusion models (Figure 1e),

the co-author’s information can always have a direct impact on the prediction. While information from co-

author B (whose research area is data mining) is useful for predicting the research area of author A (data

mining), for predicting author C’s research area (NLP), co-author B’s information would introduce noise.

Thus, if the model attaches great importance to co-author information, the generalizability of the model

will decrease. Current HGNN models carry limitations in interpretability because their inference flows

are fixed. For instance, in the layer-by-layer models (Figure 1d), the venue’s information can only indirectly

impact the prediction of the research area through intermediate variables, i.e., paper and author. Additionally,

the venue’s information can become indistinguishable due to the blending with co-authors. As a result, it

would be difficult for the model to provide a clear and explicit explanation: an author would be considered

as a data mining scholar when this author publishes papers mainly at KDD.

Under the constraints of these two mainstream paradigms, current efforts tend to focus on designing

sophisticated aggregation or fusion within the inference flow, rather than reflecting on whether the

paradigm of the inference flow needs to be changed. Generally, ignoring achievable task-level causal

relationships and strengthening the sample-level adaptive learning based on the inherent fixed associational

inference logic may exacerbate the issues of interpretability and generalizability.

1.1. Research objectives and contributions

The three challenges mentioned above pose significant obstacles to the trustworthiness and reliability

of current HGNNs in real-world settings. To shed light on the reasons behind these challenges, we present

an instructive toy example in Figure 1 and corresponding theoretical analysis that illustrate the deficiencies

inherent in the pre-defined and fixed inference flows in existing HGNNs.

As such, the focus of this work is to develop an HGNN architecture that aligns with human reasoning

logic and causal mechanisms for the learning problem, achieving inherent and powerful interpretability and

generalizability. Our motivation stems from a fundamental question: “What will humans do when facing a

prediction task on a heterogeneous graph?” Generally, when reasoning about a task defined in a system,

humans will cognitively perceive meaningful variables involved in the system, select potentially causally-

correlated factors from them, and estimate the causal effect of these factors on the task for task reasoning.

From this viewpoint, we propose a novel solution for the node property prediction task, named HG-SCM

(Heterogeneous Graph as Structural Causal Model). HG-SCM is designed to mimic the human perception

and decision process and automatically learn task-level causal relationships by incorporating emerging causal

techniques.

Specifically, the following research questions will be addressed in this work:

1. How to define, construct and represent human-understandable variables in the heterogeneous graph?

2. How to automatically discover the task-level causal relationships among the variables and identify the

direct causes for the target variable?

3. How to make the prediction based on the learned task-level causal relationships?
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4. How good is the task performance of the proposed solution?

5. How effective is the proposed solution for achieving better generalizability and interpretability?

Technically, HG-SCM constructs meaningful variables based on schema-level semantics in the hetero-

geneous graph. Specifically, the target node, the label of the target node, and neighbor sets of the target node

based on different relations/meta-paths are considered available variables. HG-SCM embeds these variables

via mutually-independent encoders without fitting the spurious correlations among them. By incorporating

emerging causal structural learning techniques into the understanding of a heterogeneous graph task, HG-

SCM further learns task-level causal relationships among these variables and makes predictions based only

on variables that are likely to be causally correlated to the target variable. The learned causal structures can

further provide clear interpretation with respect to the learning tasks. Own to such human-like reasoning

logic, HG-SCM naturally equips enhanced interpretability and generalizability. Extensive experiments and

in-depth analysis under both the i.i.d setting and the o.o.d setting effectively validate such hypotheses.

In summary, the contribution of this paper can be threefold:

1. We propose a novel heterogeneous graph algorithm HG-SCM. Unlike prior works, its inference flow

aligns with human reasoning logic or underlying causal diagrams. To the best of our knowledge, this

is a pioneer investigation to introduce the structural causal model into heterogeneous graph learning.

2. HG-SCM can consistently and significantly outperform various SOTA baselines in extensive experi-

ments under the i.i.d setting and various types of the o.o.d settings, which verify the optimal efficiency

and promising generalizability of HG-SCM.

3. HG-SCM can provide in-depth interpretations in accordance with the learning tasks by automatically

discovering causal relationships among meaningful semantics hidden in a heterogeneous graph along

with the graph schema.

2. Literature Review

2.1. Heterogeneous Graph Neural Networks

Recent studies have attempted to explore algorithms for modeling heterogeneous graphs since many

real-world problems can hardly be represented by homogeneous graphs. Among these efforts, message-

passing-based heterogeneous graph neural networks (HGNNs), e.g., RGCN (Schlichtkrull et al., 2018),

HAN (Wang et al., 2019b), GTN (Yun et al., 2019), CompGCN (Vashishth et al., 2020), HGT (Hu et al.,

2020), PGRA (Chairatanakul et al., 2021), SimpleHGN (Lv et al., 2021), SeHGNN (Yang et al., 2023b),

RHGCN (Mo et al., 2023), HetReGAT (Li et al., 2023b), and R-HGNN (Yu et al., 2023), have emerged

as the dominant approach because these methods can leverage complex encoders along with deep neural

networks and enable the natural modeling of both spatial proximity and node attributes (VDong et al., 2020).

HGNNs generally learn node representations from neighbors in two approaches: meta-path-based fusion and

layer-by-layer aggregation. The meta-path-based methods (Wang et al., 2019b; Fu et al., 2020; Yang et al.,

2023b) make in-depth use of the heterogeneous graph semantics. For example, two authors connected by

a meta-path “Author-Publication-Author” suggest they have an academic partnership. Meanwhile, layer-

by-layer methods (Schlichtkrull et al., 2018; Vashishth et al., 2020; Hu et al., 2020; Lv et al., 2021) learn a

node’s representation by simultaneously aggregating all the directly connected neighbors belonging to all

edge types, and they update the node representation recursively. The rapid development of heterogeneous

graph neural networks has also led to a series of transformations and applications in specific fields, such

as fact verification (Chen et al., 2021), recommendation (Qiao et al., 2020; Dai et al., 2023; Chang et al.,

2023; Wang et al., 2023a), sentiment analysis (Lu et al., 2022; Zeng et al., 2023), video question answer-

ing (Wang et al., 2023b), stock prediction (Tan et al., 2022) and knowledge graph learning (Xie et al., 2022).
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Unfortunately, these approaches have limitations in terms of model generalizability and interpretability

due to the deficiency of their inference flows (Wang et al., 2022b; Moraffah et al., 2020; Yu et al., 2021;

Knyazev et al., 2019).

To address this issue, research on the generalizability and interpretability of graph neural networks

has undergone notable advancements in recent years. In the realm of generalizability, prior efforts have

not only expanded data augmentation (Zhao et al., 2021; Kong et al., 2022; You et al., 2020) and training

strategies (Wan et al., 2022; Liu et al., 2022; Feng et al., 2021) intrinsic to the broader field of machine

learning but have also formulated novel model structures and prediction pipelines based on disentanglement

techniques (Ma et al., 2019; Liu et al., 2020) and causality tools (Lin et al., 2021; Fan et al., 2022). Despite

these advancements, the inherent black-box nature of these methods remains a fundamental concern. This

opacity hinders human comprehension and collaboration, thereby constraining the applicability of the

models, particularly in high-stakes domains (Cui and Athey, 2022). On the interpretability front, prevailing

methods primarily adopt post-hoc approaches, evaluating the significance of nodes or edges in the input

graph for a trained graph model. Yuan et al. (2023) categorizes these methods into two branches: model-level

and instance-level. While XGNN (Yuan et al., 2020) stands as the sole model-level method, instance-level

techniques encompass gradients-based (Pope et al., 2019; Baldassarre and Azizpour, 2019), perturbation-

based (Ying et al., 2019; Luo et al., 2020a), decomposition (Schnake et al., 2022), and surrogate meth-

ods (Huang et al., 2023). Additionally, a few approaches enhance built-in interpretability through learnable

prototypes (Zhang et al., 2022; Ragno et al., 2022) and concept distillation (Magister et al., 2023). However,

all of these approaches only aid in understanding the dependency path of predictions, falling short of aligning

with human cognitive processes. Consequently, trust issues persist in real-world applications. Moreover,

it is noteworthy that the preponderance of extant generalizability and interpretability methods is tailored

for homogeneous graphs. Therefore, they struggle to effectively handle or leverage the intricate semantics

inherent in heterogeneous graphs. This limitation further underscores the need for continued advancements.

2.2. Causal Structural Learning

Causal understanding is a fundamental problem of science (Pearl, 2009; Bareinboim et al., 2022;

Luo et al., 2020b) and is crucial for reasoning about the physical world (Vowels et al., 2022; Kitson et al.,

2023). In order to discover causal relations and acquire causal understanding, randomized experiments

(REs) with interventions and manipulations can be carried out (Vowels et al., 2022; Alan, 2012). However,

in real applications, REs tend to be costly or even impractical due to ethical concerns, etc (Vowels et al.,

2022; Gamella and Heinze-Deml, 2020). Therefore, researchers often discover causal structures from non-

experimental and observational data. One can achieve this goal by learning a Bayesian networks (BNs),

which encodes the conditional independencies between variables using directed acyclic graphs (DAGs), but

learning such networks from data can be computationally intractable due to the combinatorial explosion

in the search space (Luo et al., 2020b). Recent work (Zheng et al., 2018; Yu et al., 2019; Lachapelle et al.,

2020; Zheng et al., 2020; Cundy et al., 2021; Zhu et al., 2020b; Wei et al., 2020; Charpentier et al., 2022;

Kalainathan et al., 2022; Fang et al., 2022; Strobl, 2022; Fang et al., 2023; Li et al., 2023a) has made it

possible to approximate this problem as a continuous optimization task (Luo et al., 2020b) by minimizing an

innovative smooth function that quantifies the “DAG-ness” in both linear and non-linear cases (Kyono et al.,

2020). These techniques provide us with an unprecedented opportunity to develop neural models that could

achieve both accuracy and interpretability simultaneously (Luo et al., 2020b; Kyono et al., 2020; He et al.,

2022). For example, Kyono et al. (2020) regard such techniques as a regularization method in regression

models, He et al. (2022) incorporate DAG into the recommendation domain, and Zhai et al. (2023) utilize

causality learning in the model in click-through rate prediction. However, to the best of our knowledge, no

prior works have integrated this technique into the framework design of heterogeneous graph algorithms.
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Table 1

Notations and Explanations.

Notation Explanation Notation Explanation

r an edge type x a node feature vector
t a node type y a label vector of a node
p a meta-path h a hidden representation vector
q the number of used relations/meta-paths X a matrix of node feature vectors
C the number of classes Y a matrix of node label vectors
B the number of samples in a batch H a matrix of hidden representation vectors
N a neighbor set A an adjacency matrix of a DAG

3. Definitions and Notations

Definition 1. Heterogeneous Graph: A heterogeneous graph is defined as a directed graph  = ( , ) with

a node type mapping function � ∶  →  and an edge type mapping function ' ∶  → , where each

node n ∈  belongs to a particular node type t ∈  and each edge e ∈  belongs to a particular edge type

r ∈  (Sun et al., 2011). Furthermore, in this work, we consider settings where nodes are associated with

features. As a result, for each node ni ∈  , a feature vector xi ∈ ℝ
D is assigned. D is the supposed feature

dimension.

Definition 2. Node Property Prediction: Generally, a node property prediction task is defined on a specific

node type t in a graph  and is to predict properties of a single node belonging to the node type t. In this

work, we take the node classification task as an example. The task is to estimate a function   ∶ t → 

which can map each node ni ∈ t to a categorical vector yi in the label space  ∈ ℝ
C based on a given

labeled node set ∗
t
⊆ t, where t denotes the node set { ni ∣ ni ∈  ∧ �(ni) = t } and C is the number of

classes.

Definition 3. Meta-Path: A meta-path (Dong et al., 2017) is a path in the form of t1
r1
←←←←←←←←→ t2

r2
←←←←←←←←→ ⋯

rl
←←←←←←←→ tl+1,

which defines a composite l-hop relation p = r1◦r2◦⋯◦rl between the node type t1 and tl+1.

Definition 4. Ego-graph: Ego-graphs are local graphs with the focal node (known as the ego), while all

other nodes connected to the ego are called alters (Borgatti et al., 2009; Daly and Haahr, 2007). An ego-

graph can be defined as a k-hop ego-graph when the maximum distance between the alters and the ego is k

and the alters contain all k-hop neighbors of the ego.

Definition 5. Structural Causal Model: A Structural Causal Model (SCM) can describe the causal

mechanisms of a system. Specifically, assuming no unobserved variable exists, a SCM of k variables

{ vi ∣ 1 ≤ i ≤ k } consists of a collection { fi ∣ 1 ≤ i ≤ k } of structural assignments vi ∶= fi(pai) where

pai is the set of direct causes of vi. “∶=” represents the assignment operation and it means the value of vi
should be determined by its direct causes pai through the function fi. Usually, assignments are assumed

acyclic and thus these assignments can be represented by a Directed Acyclic Graph (DAG) (Christofides,

1975) with edges pointing from causes to effects (Peters et al., 2017; Pawlowski et al., 2020).

The notations are summarized in Table 1 and vectors/matrices are indexed starting from zero in this

paper.

4. Methodology

In this section, we illustrate the proposed model, which can answer research questions 1, 2 and 3

in Section 4.1, Section 4.2 and Section 4.3, respectively. The overall HG-SCM architecture is depicted
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Figure 2: Overall architecture of HG-SCM.

in Figure 2 and the general forward process of HG-SCM is described in Algorithm 1. In addition, the

optimization objectives are explained in Section 4.4 and we provide the analysis of the computational

complexity of the HG-SCM in Section 4.5.

4.1. Variables Construction

As aforementioned, when given a task defined by a system, humans naturally tend to comprehend

information and identify variables involved in the system. In the case of a node classification task,   ∶

t →  , which maps each node ni ∈ t to a categorical vector yi in the label space  ∈ ℝ
C , two variables

are naturally included, i.e., the node feature x of a target node n and the node label y of the target node. In

addition, we can construct meaningful variables based on various semantics that can be derived from the

graph schema, i.e., relations and meta-paths. For example, as shown in Figure 2, given the graph schema and

the target node type “author”, we can obtain semantics such as “author’s papers” and “co-authors” through

the relation “Author-Paper” and the meta-path “Author-Paper-Author”, respectively. Based on the real graph

, the variables based on these semantics can be embodied by the set of neighboring nodes. For instance, in

Figure 2, the value of the variable based on semantic “author’s papers” of the author “1” can be represented

by the set of papers “1”, “2”, “3” and “4”. To maintain the context integrity of the target node, we consider

all meta-paths starting from the target node type within a specified length limit. Thereby, in this work, the

variables inherent to the task   consist of three parts: the node itself, the node’s label, and the neighbor

sets corresponding to all available relations/meta-paths.

Due to the heterogeneous nature, these variables typically have different forms and may exist in different

feature spaces. For instance, nodes and labels are often vectors of different dimensional sizes, and the

neighbor sets are collections of vectors. To address this, we need to embed all these variables into the same

representation space.

For a node ni, its feature xi and its label yi are encoded by two linear transformations as follows:

hi
x
= Linearx(xi) (1)

hi
y
= Lineary(yi) (2)

Then, for the j-th relation/meta-path based variable of the node ni, we encode the corresponding neighbor

set to a fixed-size vector representation hi
j

via a function NeighborSetEncoder j , i.e.,
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hi
j
= NeighborSetEncoder j({xk ∣ nk ∈ N i

j
}) =

1

|N i
j
|
∑

xk, (3)

whereN i
j

is the neighbor set of the target node ni based on the j-th relation/meta-path given the graph  and

|N i
j
| is the number of nodes inN i

j
. The set {xk ∣ nk ∈ N i

j
} represents the collection of node feature vectors

of all nodes contained in N i
j
. Practically, the NeighborSetEncoder can be implemented by any module that

is capable of handling an unordered set of vectors, e.g., various pooling operators (Hamilton et al., 2017),

Transformer (Vaswani et al., 2017) and Set Transformer (Lee et al., 2019). For simplicity and motivated

by Yang et al. (2023b), we use a simple average pooling here.

Note that these encoders, i.e., Linearx, Lineary and {NeighborSetEncoder j }, need to be mutually

independent to avoid fitting the spurious correlations among variables. For example, the widely used

encoding methods in previous works (Velickovic et al., 2018; Hu et al., 2020; Lv et al., 2021), which

compute attention weights between neighboring nodes and target nodes, are not satisfactory since they

introduce correlation between xi and {xk ∣ nk ∈ N i
j
} into the representation.

Assuming there are q relations/meta-paths, we can obtain a set of q + 2 variables, i.e., {hi
x
,hi

y
} ∪

{hi
j
∣ 1 ≤ j ≤ q }. For brevity, we ignore the superscript i and use h0 and hq+1 to refer to hx and hy,

respectively.

4.2. Causal Structure Modeling

Based on the assumption that a causal directed acyclic graph (DAG) can exist among the above-

constructed variables, in this section, we illustrate how to leverage emerging causal discovery techniques

to learn a structural causal model from the constructed variables. According to Definition 5, we need to

learn a collection of { fk ∣ 0 ≤ k ≤ q + 1 } of structural assignments function hk ∶= fk(pak) where pak is

the set of direct causes of hk, and its value should be determined by the causes.

We initialize a trainable matrix A ∈ ℝ
(q+2)×(q+2) to represent the causal DAG, where Ai,j represent the

probability that hi is one of the directed causes of hj . Note that the diagonal of the matrix A is constrained

to be zero since a variable cannot be its own cause, i.e., Ai,i = 0.

Based on the matrix A, we define the structural assignment fk of a variable hk as:

fk(pak) = VariableDecoderk

(
q+1∑

i=0

Ai,k ⋅ EffectEncoder ik(hi)

)
, (4)

where EffectEncoder ik is a function to computes the hidden state of the causal effect of hi on hk and

VariableDecoderk is a function to reconstruct the variable hk based on the received causal effects. We use

multi-layer perceptrons (MLPs) to model and learn EffectEncoder ik and VariableDecoderk without any as-

sumption on the underlying functions of them, thanks to the universal approximation theorem (Hornik et al.,

1989). In detail, we implement Equation 4 as following:

ĥk = MLPk

(
q+1∑

i=0

Ai,k ⋅ Linear ik
(
MLPi

(
hi
))
)
, (5)

where MLPk is a three-layer MLP, MLPi is a shared two-layer MLP when variable hi serves as a cause

and imposes influence on other variables, and Linear ik between each pair of variables, i.e., hi and hk, are

mutually independent because the function of the causal relationships between different variables can be
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different. Generally, Equation 4 can also be implemented based on many other powerful modules, as long as

these modules have the ability to process the unordered set of weighted vectors. Our implementation is one

of the simple modules, and we found that it can achieve good performance.

4.3. Label Prediction

Once the structural assignments collection, i.e., { fk ∣ 0 ≤ k ≤ q + 1} has been learned, we can have the

reconstructed label representation ĥy, i.e., ĥq+1, through fq+1 ∈ { fk ∣ 0 ≤ k ≤ q + 1}, i.e., Equation 4 and

Equation 5 with k = q + 1. Thereby, we can achieve the label prediction under the causal constraints as

ŷ = Linear−1
y
(ĥy), (6)

where Linear−1
y

is the inverse function of Lineary mentioned in Equation 2. However, Linear−1
y

may not

be solvable mathematically. Therefore, we use a two-layer MLP with a shortcut to approximate this inverse

linear transformation as follows:

ŷ = Linear2inv

(
ĥy + �

(
Linear1inv(ĥy)

))
, . (7)

where Linear2
inv

and Linear1
inv

are the two linear transformation layers and � is the activation function, such

as Sigmoid(x) =
1

1+e−x
, ReLU(x) = max(0, x).

4.4. Optimization Objectives

To ensure the structural assignment effectiveness, the least-squares loss is applied on the reconstructed

variables, i.e.,

rec =
1

B

B∑

i=1

1

q + 2

q+1∑

k=0

||hi
k
− ĥi

k
||2
F
, (8)

where B is the number of training samples and || ⋅ ||F is the Frobenius norm. hi
k

and ĥi
k

are the raw value of

the variable i and the reconstructed value of the variable i, respectively. Furthermore, to satisfy the directed

acyclic constraint of the matrix A, motivated by Zheng et al. (2018), a smooth optimizable objective can

be minimized as follows:

dag =
�

2
|acy|2 + �acy, (9)

where � and � can be hyper-parameters (while we set them to 1 in this work for the sake of simplicity), and

acy is calculated by:

acy =
(
Tr(eA⊙A) − q − 2

)2
, (10)

Tr(eA⊙A) =

q+1∑

i=0

∞∑

k=0

1

k!
(A ⊙A)k

i,i
, (11)

where Tr(⋅) is the trace of a square matrix, which is defined to be the sum of elements on the main

diagonal (from the upper left to the lower right) of the square matrix. eA⊙A is the matrix exponential of

A⊙A. (A⊙A)k
i,j

denotes the probability that hi can influence hj through k steps and thus the term (A⊙A)k
i,i

represents the probability of the existence of a cycle of length k starting from node i and returning to node
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i, which indicates the probability that variable hi is its own cause. By allowing “k” to take values from 0

to infinity, we can ensure that the result is equal to q + 2 only if there are no cycles with any length in the

causal DAG A. This implies that there are no causal relationships between variables that can create loops.

In other words, there is no variable that is its own cause or two variables are mutually causes and effects of

each other.

In addition, a cross-entropy loss should be minimized to learn the inverse function of Lineary in the

Equation 7, i.e.,

inv = −
1

B

B∑

i=1

C−1∑

j=0

yi
j
⋅ log(ŷi

j
), (12)

where C is the number of classes. yi
j

and ŷi
j

are the probability of the class j in the ground truth and the

prediction, respectively. Finally, these objectives can be jointly optimized by:

joint = inv
⏟⏟⏟

Task

+ �rec + 
dag
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Causal Structure

. (13)

� and 
 can adjust the weight ratios of these three objectives. Generally, the larger values of � and 
 indicate

that we have more confidence in the existence of an underlying causal DAG among the constructed variables.

4.5. Computational Complexity

In the training stage, the computational cost mainly comes from the Equations 1, 2, 5 and 7. Suppose

that the hidden dimension isD, the complexity for HG-SCM isO(B×D×(2×C)+(q2+8q+15)×B×D2).

In the evaluation stage, we only need to reconstruct the label variable, i.e., k is set to q + 1 in Equation 5

and the loop defined from line 9 to line 11 in Algorithm 1 is no longer needed. Therefore, the complexity

for HG-SCM can be O(B × D × (2 × C) + (7q + 15) × B × D2). Compared to other models, HG-SCM

has comparable computational complexity during the training stage. For example, the computational

complexities of SimpleHGN and SeHGNN are aroundO(B×E×D2) andO(B×(q2+2q+1)×D2) (Yang et al.,

2023b), respectively. E is the number of processed neighbors during the multi-layer aggregation and it

generally exceeds q2. However, HG-SCM can be faster during the evaluation stage due to the linear

computational complexity regarding the number of relations/meta-paths.

5. Experiments

To answer research questions 4 and 5, in this section, we conduct extensive experiments to validate HG-

SCM task performance as well as promising generalizability and interoperability. In Section 5.1, we will

describe the experimental setup, including datasets, baselines and reproducibility. In Section 5.2, we will

report the experimental results. Based on comprehensive experiment outcomes, HG-SCM outperformed a

series of strong baselines when applied to the independent and identical distribution (i.i.d) setting and also

showed its superiority and stability under multiple out-of-distribution (o.o.d) settings. In-depth analyses of

the learned DAGs in HG-SCM further demonstrated its potential in model interpretation with respect to the

learning tasks.

5.1. Experimental Setup
5.1.1. Dataset

Three open benchmark datasets including DBLP, ACM, and IMDB from the Heterogeneous Graph

Benchmark (HGB) (Lv et al., 2021) are employed in this work. These datasets were chosen for their ability

to present a relatively complete system. Table 2 summarizes the brief statistical information of the three
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Algorithm 1 The training forward process of HG-SCM.

Input: Graph  = ( , ); Features of all nodes X ∈ ℝ
||×D; Target node type t; B training nodes ∗

t
and

their labels Y ∈ ℝ
B×C ; q valid relations/meta-paths.

Output: Task Prediction Ŷ ∈ ℝ
B×C .

// define model parameters

1: Ego transformation Linearx; Label transformation Lineary; Causal DAG matrix A; q neighbor set

encoder {NeighborSetEncoder i ∣ 1 ≤ i ≤ q } for each relation/meta-path; q + 2 variable-wise causal

effect encoders { EffectEncoder i ∣ 0 ≤ i ≤ q + 1}; (q+2)×(q+1) pair-wise causal effect transformation

{ Linear ik ∣ 0 ≤ i, k ≤ q + 1 ∧ i ≠ k }; q + 2 variable decoders {VariableDecoder i ∣ 0 ≤ i ≤ q + 1 };

Inverse label encoder Linear inv.

// define function

2: function STRUCTURALASSIGNMENT( k )

// reconstruct a variable based on a DAG

3: Ĥk ∈ ℝ
B×D

← Equation 5, given k, A, { EffectEncoder i ∣ i ≠ k }, { Linear ik ∣ i ≠ k } and

VariableDecoderk
4: return Ĥk

5: end function

// main process

6: H0 ∈ ℝ
B×D

← Equation 1, given ∗ and X

7: Hq+1 ∈ ℝ
B×D

← Equation 2, given Y

8: {Hk ∈ ℝ
B×D ∣ 1 ≤ k ≤ q } ← Equation 3, given  and X

// This loop is implemented by parallel matrix multiplication

9: for 0 ≤ k ≤ q + 1 do

10: Ĥk ∈ ℝ
B×D

←STRUCTURALASSIGNMENT(k)

11: end for

12: Ŷ ∈ ℝ
B×C

← Equation 6, given Ĥq+1 and Linear inv
// optimization objectives

13: rec ← Equation 8, given { (Hk, Ĥk) ∣ 0 ≤ k ≤ q + 1}

14: dag ← Equation 9, given A

15: inv ← Equation 12, given Y and Ŷ

Table 2

Dataset statistics.

Dataset #Nodes #Node Types #Edges #Edge Types Target #Classes

DBLP 26,128 4 239,566 6 author 4
ACM 9,040 3 36,634 6 paper 3
IMDB 21,420 4 86,642 6 movie 5

datasets, while Figure 3 displays the graph schema for each dataset. Below are specific introductions for the

three datasets:

1. DBLP is a computer science bibliography website 1. The used dataset is a subset of it. Its graph

schema is shown in Figure 3a. The dataset comprises four types of nodes: author (N=4,057), paper

(N=14,328), term (N=7,723), and venue (N=20). Additionally, there are three types of directed

1https://dblp.org/
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relations connecting two node types: an author writes a paper (N=19,645), a venue publishes a

paper (N=14,328), and a paper uses a term (N=85,810). The papers’ feature vectors are created based

on the bag-of-words representation of their titles, while the authors’ feature vectors are constructed

based on the bag-of-words representation of their research keywords. The terms’ feature vectors

are represented by pre-trained GloVe vectors (Pennington et al., 2014), and the feature vectors of

venues are represented by one-hot encoded vectors. The authors are manually labeled into four areas:

Database, Data Mining, Machine Learning, and Information Retrieval. The task is to predict the

author’s area.

2. ACM is an international learned society for computing 2. The used dataset is a subset of the ACM

Digital Library. Its graph schema is shown in Figure 3b. The dataset contains three types of nodes:

paper (N=3,025), author (N=5,959), and subject (N=56). Additionally, there are three types of

directed relations connecting two node types: a paper cites a paper (N=5,343), an author writes a

paper (N=9,949), and a paper belongs to a subject (N=3,025). Each paper or author or subject node

is associated with a bag-of-words vector formed by 1,902 representative keywords. The papers are

categorized into three classes, Database, Wireless Communication, and Data Mining. The task is to

predict the paper’s category.

3. IMDB is an online database of information related to films 3. The used dataset was a subset of it.

Its graph schema is shown in Figure 3c. The dataset contains four types of nodes: movie (N=4,932),

director (N=2,393), actor (N=6,124), and keyword (N=7,971). In addition, there are three types of

directed relations connecting two node types: an actor act in a movie (N=14,779), a director directs a

movie (N=4,932), and a keyword describes a movie (N=23,610). The movie’s feature vectors are

bag-of-word representations of their plot keywords. The features of director and actor nodes are

aggregated features from their associated movies. The movies are divided into five classes, namely

Action, Comedy, Drama, Romance, and Thriller. The task is to predict the movie’s category.

In the i.i.d setting, we follow the data splits used in HGB(Lv et al., 2021; Yang et al., 2023b), where

node labels are split according to 24% for training, 6% for validation and 70% for test in each dataset. For

the concerned o.o.d settings, we consider three types of bias that are ubiquitous in graph mining:

1. Homophily bias: Homophily is a principle of graphs whereby linked nodes often belong to the

same class or have similar features. Many existing graph algorithms implicitly assume strong

homophily, thus they can fail to generalize to graphs with heterophily (or low/medium level of

homophily) (Zhu et al., 2020a, 2021). In the context of heterogeneous graphs, we can define the

homophily level of a target node as the label consistencies between the target node and its neighbors

based on various meta-paths, where the meta-paths start with and end with the same node type as the

target node.

2. Degree bias: Degrees of nodes often obey a long-tailed or skewed distribution (Newman and Park,

2003; Liu et al., 2021). A model may have inferior performance on unseen nodes that have a different

degree distribution compared to nodes in the training graph. In heterogeneous graphs, a node type

can be associated with multiple relation types. Therefore, we define the degree size of a node as the

degrees of the target nodes in terms of different relations.

3. Feature bias: Collected nodes in many real scenes are inherently imbalanced on features or

classes (Park et al., 2022; He et al., 2022), hence HGNNs can be biased toward the dominant feature

2https://www.acm.org/
3https://www.imdb.com/
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(a) DBLP (b) ACM (c) IMDB

Figure 3: Graph Schemas. Black circles represent node types in the datasets. Black arrows describe directional
relations between node types. The shown relations and their inverse relations together form all the edge types.
Red circles and arrows define the node property prediction tasks, starting from the target node types and ending
with the predicted properties. Generally, relations can be represented by two consecutive node types without

confusion. For example, “AP” in DBLP means Autℎor
write
←←←←←←←←←←←←←←←←←←←←→ Paper. However, there exists one special case. Since

the relation Paper
cite
←←←←←←←←←←←←←←→ Paper in ACM starts and ends with the same node type, “PP” can not clearly identify

the relation. Therefore, we use “PcP” and “PrP” to represent Paper
cite
←←←←←←←←←←←←←←→ Paper and Paper

cited by
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Paper,

respectively. Based on this denotation convention, we can further represent a meta-path by a sequence of node

types. For instance, “APA” can represent Autℎor
write
←←←←←←←←←←←←←←←←←←←←→ Paper

written by
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Autℎor in DBLP and “PcPrP” can

represent Paper
cite
←←←←←←←←←←←←←←→ Paper

cited by
←←←←←←←←←←←←←←←←←←←←←←←←←←←←←→ Paper in ACM.

groups. The original node features in the above datasets are represented as bag-of-words, which are

mostly sparse and high-dimensional. Therefore, we performed a Principal Component Analysis (PCA)

on the node feature and we conducted the bias analysis based on the top 128 principal components.

To simulate the above potential bias, for each dataset, we cluster the labeled nodes into two clusters by

K-MEANS (Lloyd, 1982) based on their homophily level, degree size, and feature value. Then, the cluster

with a larger sample size is randomly divided into the training and the validation sets in a six-to-four ratio,

and the other cluster is regarded as the test set. In Figrue 4, we visualize the mean homophily levels, mean

degree sizes, and mean feature values of all samples, training set samples, validation set samples, and test set

samples under the o.o.d data splits for each dataset. For example, in Figure 4a, on the DBLP dataset, based on

the meta-path “Author-Paper-Author”, the proportion of co-authors with the same label as the target authors

is around 80% for all labeled authors. This proportion is nearly 100% for the authors in the training and

validation sets, but only about 50% for the authors in the test set.

5.1.2. Baselines

We have validated the superiority of HG-SCM by comparing it with the following two categories

of HGNNs: (1) relation/meta-path fusion methods including the Heterogeneous Graph Neural Network

(HetGNN) (Zhang et al., 2019), Heterogeneous Graph Attention Network (HAN) Wang et al. (2019b),

the Graph Transformer Network (GTN) Yun et al. (2019), and the Simple and Efficient Heterogeneous

Graph Neural Network (SeHGNN) Yang et al. (2023b) and (2) layer-by-layer methods including the

Relational Graph Convolutional Network (RGCN) Schlichtkrull et al. (2018), the Composition-based Multi-

Relational Graph Convolutional Networks (CompGCN) Vashishth et al. (2020), the Relation Structure-

Aware Heterogeneous Graph Neural Network (RSHN) (Zhu et al., 2019), the Metapath Aggregated Graph

Neural Network for Heterogeneous Graph Embedding (MAGNN) (Fu et al., 2020), the Heterogeneous Graph

Structural Attention Neural Network (HetSANN) (Hong et al., 2020), the Heterogeneous Graph Transformer

(HGT) Hu et al. (2020) and the Simple Heterogeneous Graph Neural Network (SimpleHGN) Lv et al.

(2021). Note that HGT, SimpleHGN, and SeHGNN are the strongest state-of-the-art models recently.
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Figure 4: Visualization of data distribution difference in o.o.d settings. The greater the difference in height
between the pink bar and the two corresponding light and deep blue bars, the greater the difference in the data
distribution between the test set and the training/validation set. (a) homophily level (y-axis) in terms of specific
meta-path (x-axis). (b) log-transformed degree size (y-axis) based on specific relation (x-axis). (c) component
values (y-axis) of the top five principal components (denoted by C1 to C5) of the PCA-decomposed features of
the target nodes (x-axis). Please refer to Figure 3 for interpretation of the abbreviated relations and meta-paths.

5.1.3. Reproducibility

All the experiments were run five times with random seeds from 0 to 4. In each experiment, we used the

training set to fit the model, then used the validation set to tune the model’s hyperparameters, and finally

assessed and reported the performance of the model on the test set. For a fair comparison, for all models,

the hidden dimension was set to 64, the number of graph layers was searched from 1 to 4, and the batch

size was searched in 128, 256, 512, and 1024. All experiments are conducted on a Ubuntu (18.04) server

with a Tesla V100 GPU. Baseline models except SeHGNN were implemented via the DGL (Wang et al.,

2019a) package with the PyTorch (1.10) backend based on OpenHGNN (Han et al., 2022b). SeHGNN was

implemented according to its official code (Yang et al., 2023b). We set other hyperparameters of baselines,

e.g., negative slope in the LeakyReLU activation and dropout ratio, following the Lv et al. (2021) and

Yang et al. (2023b). An optimizer AdamW Loshchilov and Hutter (2018) with a learning rate of 0.001
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Table 3

Comparison on the three benchmark datasets under the official i.i.d data splits in HGB (Lv et al., 2021). Bold

and underline indicate the best and the top 3 performance, respectively.

Methods
DBLP ACM IMDB

Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy

RGCN 91.52±0.50 92.07±0.50 91.55±0.74 91.41±0.75 58.85±0.26 62.05±0.15
HAN 91.67±0.49 92.05±0.62 90.89±0.43 90.79±0.43 57.74±0.96 64.63±0.58
GTN 93.52±0.55 93.97±0.54 91.31±0.70 91.20±0.71 60.47±0.98 65.14±0.45
RSHN 93.34±0.58 93.81±0.55 90.50±1.51 90.32±1.54 59.85±3.21 64.22±1.03

HetGNN 91.76±0.43 92.33±0.41 85.91±0.25 85.05±0.25 48.25±0.67 51.16±0.65
MAGNN 93.28±0.51 93.76±0.45 90.88±0.64 90.77±0.65 56.49±3.20 64.67±1.67
HetSANN 78.55±2.42 80.56±1.50 90.02±0.35 89.91±0.37 49.47±1.21 57.68±0.44

HGT 93.01±0.23 93.49±0.25 91.12±0.76 91.00±0.76 63.00±1.19 67.20±0.57

SimpleHGN 94.01±0.24 94.46±0.22 93.42±0.44 93.35±0.45 63.53±1.36 67.36±0.57

SeHGNN 94.49±0.20 94.89±0.18 93.60±0.44 93.51±0.45 64.67±0.29 65.98±0.12

HG-SCM 94.51±0.15 94.90±0.15 93.64±0.31 93.56±0.32 65.34±0.33 66.90±0.61

Figure 5: Box plot of the statistics of the performance rankings. � and � represent the mean and the standard
deviation of rankings in all the o.o.d experiments. ◦ represents fliers and “worst” represents the lowest ranking.
Dashed boxes are variants in the ablation study and their rankings are what they would get if they replaced the
normal HG-SCM in the experiments.

was utilized in all experiments, and an early-stopping strategy with a patience of 50 epochs based on the

evaluation on the validation sets was applied.

Following Lv et al. (2021); Yang et al. (2023b); Lu et al. (2022), we will use Macro F1 and accuracy as

evaluation metrics to present and discuss the experimental results.

5.2. Results and Discussion
5.2.1. Comparison in i.i.d Setting

Table 3 displays the comparison of HG-SCM with other baselines on the three benchmark datasets

with their official i.i.d data splits, where the experimental results of all baselines except SeHGNN are

referenced from Lv et al. (2021). The experimental results of SeHGNN are obtained using its official code

with the hidden dimension set to 64 (for a fair comparison). It is observed that HG-SCM can achieve best

performance on almost all metrics in three datasets. These experimental results prove that HG-SCM has a

promising fitting ability to achieve competitive efficacy under conventional data distribution settings.
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Table 4

Comparison on the three benchmark datasets under the three o.o.d data splits. Bold and underline indicate the
best and the top 3 performance, respectively.

DBLP
By Homophily By Degree By Feature

Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy

RGCN 88.23±0.83 88.55±0.73 88.87±0.37 89.76±0.27 87.00±3.47 90.20±3.05

CompGCN 85.27±1.86 85.82±1.61 86.65±0.89 87.59±0.95 85.65±3.89 89.35±2.67

HGT 88.48±1.10 88.98±1.02 89.37±0.80 90.27±0.77 85.00±4.77 88.65±3.64
SimpleHGN 89.06±1.17 89.40±1.08 89.42±1.29 90.32±1.24 85.27±5.22 89.11±4.31

HAN 82.42±1.33 82.81±1.22 85.41±1.39 86.42±1.38 83.72±4.33 87.79±3.43
GTN 88.38±1.09 88.70±1.07 90.26±0.80 90.98±0.74 84.29±2.71 88.00±3.13

SeHGNN 88.85±0.30 89.14±0.29 90.88±0.32 91.56±0.31 86.05±5.12 89.31±4.37

HG-SCM 89.35±0.75 89.63±0.75 90.11±0.70 90.85±0.60 87.69±5.39 90.48±3.98

ACM
By Homophily By Degree By Feature

Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy

RGCN 92.65±1.16 93.13±1.10 92.93±0.93 93.72±0.80 92.38±0.93 92.25±0.96
CompGCN 94.42±0.58 94.84±0.55 92.86±0.65 93.65±0.55 91.89±0.22 91.79±0.26

HGT 91.87±0.74 92.28±0.73 92.07±0.75 92.76±0.73 90.72±1.37 90.63±1.38
SimpleHGN 93.43±1.43 93.86±1.36 92.54±1.01 93.33±0.83 91.65±1.12 91.57±1.00

HAN 91.72±1.64 92.18±1.66 89.69±1.47 90.80±1.51 91.11±1.26 90.97±1.29
GTN 93.94±1.96 94.36±1.87 93.56±0.50 94.29±0.43 92.54±0.48 92.43±0.56

SeHGNN 96.21±0.66 96.49±0.62 94.26±0.50 94.90±0.44 93.77±0.94 93.66±0.93

HG-SCM 97.10±1.12 97.32±1.06 94.24±0.30 94.94±0.27 94.18±0.70 94.11±0.67

IMDB
By Homophily By Degree By Feature

Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy

RGCN 50.49±2.49 55.77±1.43 34.55±3.89 51.85±2.10 55.79±9.63 64.52±6.07

CompGCN 41.67±0.78 49.74±0.95 30.63±3.82 49.76±4.07 56.93±6.21 62.79±5.49

HGT 49.01±0.96 54.85±0.70 30.04±1.91 49.75±2.42 56.77±6.05 65.59±4.11

SimpleHGN 49.47±2.39 55.24±1.46 43.49±4.68 54.70±3.62 56.56±5.91 63.99±5.91

HAN 48.92±2.04 54.07±1.40 44.33±5.06 51.58±3.91 55.71±4.08 62.92±4.50

GTN 47.90±1.35 54.23±1.12 40.70±3.80 54.13±2.49 55.54±5.25 63.97±5.63

SeHGNN 65.20±0.56 65.86±0.58 43.87±1.42 48.04±1.29 62.88±4.00 67.31±3.43

HG-SCM 65.26±0.67 66.17±0.66 43.51±2.61 52.37±1.63 61.03±5.14 66.64±2.58

5.2.2. Comparison in o.o.d Setting

Tables 4 report the experimental results in the three o.o.d data splits (introduced in Section 5.1.1) on

three benchmark datasets. HG-SCM can outperform current SOTA models in most settings. Especially in the

setting of o.o.d data split by homophily, HG-SCM consistently achieves the optimal performance. Notably,

It can be observed that, though the SOTA methods have already achieved a high performance, HG-SCM can

still push the boundary forward to a higher level. For example, on ACM dataset (under the o.o.d data split

by homophily), the best baseline’s performance is 96.49% in Micro F1, HG-SCM can achieve 97.32%.
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Moreover, HG-SCM is the stablest model across these experiments, demonstrating its promising

generalizability. In contrast, the baseline models usually show significant differences in performance under

different o.o.d settings. For example, GTN achieved very competitive performance in the degree o.o.d setting

while it became a relatively weak baseline in other settings. As shown in Figure 5, HG-SCM has kept

its competitive performance in all settings. In detail, HG-SCM’s ranking standard deviation is only 0.83,

far smaller than the ranking standard deviation of other models. Additionally, the worst ranking HG-SCM

reached is third, while all other models always have their worse ranking at a much lower level, e.g., sixth or

even eighth place.

5.2.3. Ablation Study

We carried out additional experiments to explore the impacts of the two objectives introduced in

Section 4.4: the reconstruction loss of the structural assignments, denoted by rec , and the directed acyclic

constraint loss, denoted by dag .

As shown in Figure 6, without the optimization objective(s) of causal structure, the average of the

task performances would decline. Furthermore, Figure 5 suggests that, overall, removing any of the two

optimization objectives can decrease the average ranking and increase the standard deviation of the ranking.

Specifically, removing rec got an average ranking of 2.11 with a standard deviation of 1.15, and removing

dag got an average ranking of 2.11 with a standard deviation of 1.56. Moreover, removing both of the two

objectives led to worse results, i.e., an average ranking of 2.22. These results demonstrate the importance

of the objective of learning an underlying causal structure for the generalizability of the HG-SCM.

Figure 6: Ablation Study: the averaged performance of variants of HG-SCM under all o.o.d settings.

An intriguing observation is that the average performance is higher when neither optimization objective

is used compared to using only one of them. This highlights the interconnected nature of these two objectives.

It is only when both objectives are simultaneously considered that the modeling of a Structural Causal

Model (SCM) becomes possible. Therefore, when employing a single objective in isolation, it does not

represent a weaker causal structure optimization objective and can even potentially have a negative impact,

leading to inferior performance. We can infer the potential reasons for the decline in performance. Firstly,

when solely considering the Directed Acyclic Graph (DAG) loss without incorporating the reconstruction

loss, the model will tend to learn simple causal relationships that satisfy the DAG conditions but do not

accurately reflect the true underlying causal relationships as deep learning models have a tendency to

learn shortcuts (Geirhos et al., 2020). For instance, the model might learn that all variables are causes

of the label variable. However, such a causal relationship deviates significantly from the true one and

can detrimentally affect predictions on unseen data, particularly in out-of-distribution scenarios. Secondly,
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when solely considering the reconstruction loss without incorporating the DAG loss, the model essentially

becomes an autoencoder trained on the training set. This increases the risk of overfitting the training data,

resulting in diminished performance on the test set, especially in out-of-distribution scenarios. Therefore,

using a single loss alone does not achieve the desired optimization process for the causal modeling process.

Figure 7: Sensitivity Analysis of � and 
 .

5.2.4. Hyperparameters Sensitivity Analysis

Two hyper-parameters can be tuned in this work: the weight of the objective rec , i.e., �, and the weight

of the objective dag , i.e., 
 . HG-SCM’s sensitivity with respect to � and 
 is presented in Figure 7. We

only change the values of these two hyperparameters in this analysis, and other hyperparameters remain

in the same setting as stated in Section 5.2.2. The average of the Micro F1 and Macro F1 under fixed
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hyperparameters were reported. We varied the values of � from 1e-4 to 5e-1 and varied the values of 


from 1e0 to 5e3.

Although the degree of impact of hyperparameters on task performance varies across datasets, the

improvement of model performance has a clear direction in all settings. For example, on the setting of

DBLP with an o.o.d data split based on homophily, model performance is positively correlated with the

value of � and negatively correlated with the values of 
 . Based on this observation, within the appropriate

hyperparameter interval, HG-SCM can be quite robust to the adjustment of the hyperparameters.

We conducted a sensitivity analysis to examine the impact of the MLP configuration on our proposed

model. In the experiments described in section 5.2.2 and Table 4, we kept the hidden size in hidden layers

of the MLP fixed at 64 and the number of hidden layers fixed at 3. Here, we varied the hidden size from 64

to 256 and the number of hidden layers from 2 to 4 to explore different settings. The experimental results of

all the different MLP configurations across all the datasets and o.o.d scenarios can be found in Figure 8. We

observed the following:

• Our proposed model demonstrates robustness to changes in MLP settings. In most cases, the

model exhibits consistent performance across different MLP configurations. In addition, the original

experiment in Table 4 yielded an average performance of 81.39. In the additional experiments here,

where the hidden size was 128 or 256 and the number of hidden layers was 2 or 4, the average

performance was 81.32. These two values are very close, which indicates that the model maintains

state-of-the-art or competitive performance.

• By tuning the MLP settings, we can further enhance the performance of our proposed model. In many

cases shown in Figure 8, the model with a new MLP configuration outperforms the reported results

in Table 4. For example, in the IMDB dataset with a homophily o.o.d setting, increasing the hidden

size from 64 to 128 improves the model’s Macro F1 score from 65.26 to 66.18. Similarly, reducing

the number of hidden layers from 3 to 2 increases the model’s Macro F1 score from 65.26 to 66.68.
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Figure 8: Sensitivity Analysis of the hidden size of the hidden layer and the number of hidden layers (#Layer) in
MLP.
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Table 5

Variants comparison on the three benchmark datasets under the three o.o.d data splits. Bold and underline
indicate the best Macro F1 and Accuracy among the three variants in each row.

Dataset OOD Type
HG-SCM HG-SCM-TC HG-SCM-ST

Macro F1 Accuracy Macro F1 Accuracy Macro F1 Accuracy

ACM By Homophily 97.10±1.12 97.32±1.06 97.19±0.33 97.44±0.31 96.97±0.80 97.22±0.76

ACM By Degree 94.24±0.30 94.94±0.27 94.06±0.10 94.78±0.09 94.10±0.44 94.81±0.37

ACM By Feature 94.18±0.70 94.11±0.67 92.73±0.33 92.69±0.28 94.15±1.02 94.09±1.01

DBLP By Homophily 89.35±0.75 89.63±0.75 85.18±0.40 85.70±0.42 89.92±0.72 90.13±0.68

DBLP By Degree 90.11±0.70 90.85±0.60 84.26±1.42 85.58±1.35 89.11±0.98 90.03±0.89

DBLP By Feature 87.69±5.39 90.48±3.98 82.24±5.25 86.04±3.85 88.44±3.10 90.95±2.62

IMDB By Homophily 65.26±0.67 66.17±0.66 64.95±0.55 65.67±0.56 65.31±0.73 66.45±0.58

IMDB By Degree 43.51±2.61 52.37±1.63 43.70±2.74 51.50±2.60 41.82±5.53 54.09±5.90

IMDB By Feature 61.03±5.14 66.64±2.58 63.25±1.99 66.86±4.28 63.19±3.71 67.46±3.60

Average 80.27 82.50 78.62 80.70 80.33 82.80

5.2.5. Variants Exploration

In this section, we analyze the impact of replacing simple modules with more complex ones on the

performance of the original model. We introduce two variants:

• HG-SCM-TC: We change the encoding method of the neighbor set in Equation 3 from simple

average pooling to a Transformer Convolution operator derived from (Shi et al., 2021). For each

sample, this variant dynamically adjusts the weights of nodes in a neighbor set based on self-attention

mechanisms (Vaswani et al., 2017) among the nodes.

• HG-SCM-ST: We replace Equation 5 with an assignment function inspired by SetTransformer (Lee et al.,

2019). SetTransformer is designed to model interactions among elements in an input set, utilizing

attention mechanisms in both its encoder and decoder. This aligns well with the purpose of Equation 4

which encodes the causes of a variable and then decodes its value. For each sample, we conduct an

element-wise product between the causal DAG A and the self-attention matrix (Vaswani et al., 2017)

among the variables in the SetTransformer.

The results in Table 5 indicate that HG-SCM-ST can outperform HG-SCM in terms of overall perfor-

mance and stability across experimental settings. In addition, HG-SCM-TC achieved optimal performance

under a few settings but showed a decrease in overall performance, and it also exhibited significant

deterioration in several settings, particularly on the DBLP dataset. Hence, the following conclusions can

be drawn:

• The use of more complex modules in neighbor set encoding may lead to reduced generalizability and

stability of the model across different datasets or experimental conditions. This could be attributed

to the fine-grained nature of changes in the neighbor set, with complex modules being prone to

overfitting such information Geirhos et al. (2020), thereby diminishing generalizability. Furthermore,

this overfitting tendency may amplify the model’s preference for specific datasets or data distributions,

leading to reduced stability across conditions.

• Employing more complex modules in the assignment function of SCM has the potential to enhance the

overall generalizability and stability of the model. This is likely because complex assignment functions
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are better equipped to capture intricate causal mechanisms in the real world, thereby facilitating the

overall learning process of the structural causal model.

Figure 9: Learned DAGs for different tasks: these DAGs can provide explanations of the possible causal
relationships in the task. Please refer to Figure 3 for interpretation of the abbreviated relations and meta-paths.

5.2.6. Case Study

As aforementioned, HG-SCM can provide in-depth interpretations on the task level through the learned

causal DAGs. Specifically, after obtaining the optimized matrix A (mentioned in Section 4.2), we remove

edges in A in order of increasing absolute values of the weights until A satisfies the directed acyclic property.

This ensures that the remaining DAGs characterize relatively important and reliable causal structures. These

trimmed DAGs are displayed in Figure 9. We can find that they exhibit extremely high interpretability and

can be partially aligned with our human knowledge/cognition.

For instance, in Figure 9a, based on the learned DAG, an author’s research area is considered to be

labeled based on the venues in which this author has published papers, i.e., APV → Y (author’s area).

When authors publish their papers in specific venues, it usually signifies their active engagement within

specific academic communities, as well as the recognition they garner within those communities (Hsieh,

2017; Durmusoglu and Durmusoglu, 2021). Therefore, using venues to predict an author’s primary research

area can be quite intuitive and widely accepted. This rule probably becomes more reasonable in the current

landscape of academia, where interdisciplinary research is prevalent and papers across different venues often

exhibit considerable semantic similarity (Wang et al., 2021; Abramo et al., 2018). Figuring out an author’s

primary research area through the venues they contribute can be advantageous in avoiding confusion arising

from subtle differences in the meanings of their papers. Moreover, the author’s research area, along with

the target venue, can affect the content of the author’s papers, i.e., APV → AP ← Y. As demonstrated

by Amon and Hornik (2022), venues within the same field still exhibit significant differences in linguistic

features. In practice, authors tailor their writing styles to align with the preferences of specific venues,

thereby enhancing the likelihood of paper acceptance by the respective readership. Additionally, the author

and the content of the papers may determine the academic partners of the author, i.e., A → APA ← AP.

This is supported by research such as that conducted by Hara et al. (2003), which reveals that personal

compatibility and work connections can impact collaboration. Lastly, the authors and the content of the

papers may influence the terms used in writing, i.e., APA→APT←AP, which is consistent with prior studies

indicating that the choice of author keywords is not solely shaped by the paper content but is also substantially
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influenced by authors’ prior knowledge and backgrounds (Lu et al., 2020). Notably, the causality embodied

in this learned DAG is consistent with the logic of reality and human perception. Similarly, Figure 9b and

Figure 9c provide explanations of the possible causal reasoning logic for predicting a paper’s field and a

movie’s category, respectively. A paper’s field could be determined by its subjects and authors. The plot of

a movie and its actors usually determine the movie’s category.

It is crucial to highlight that the automatically learned DAGs not only provide a high degree of

interpretability but also present researchers with the opportunity to refine and improve the model through

such feedback. Based on the DAGs, one can check whether the inference logic of the model is correct, thereby

guaranteeing the model trustworthiness, which is of paramount importance for some real-world applications.

6. Implications

6.1. Theoretical implications

From the theoretical perspective, this work analyzes and breaks through the limitations on the

inference flow in current mainstream paradigms of heterogeneous graph neural networks and offers a

new paradigm for heterogeneous graph learning that can dynamically learn causality-based inference

flow for distinct tasks. As our discussion with the instructive example and theoretical analysis in Section 1,

under the current mainstream paradigm, the generalizability of the model is compromised because the

inference flow naturally introduces spurious correlations and the interpretability of the model is limited

because the inference flow is fixed. In contrast, the proposed methodology aligns well with human perception

and decision-making processes and thus has the potential to achieve more satisfactory generalizability and

interpretability than previous studies. Unlike previous studies that focus on the sophisticated design of

sample-level aggregation and fusion modules, we highlight the importance of reflecting on and optimizing

the heterogeneous graph learning paradigm. It is a more fundamental and critical issue to explore a paradigm

that is causal and aligns with human knowledge or social theory.

6.2. Practical implications

This work has significant practical implications for real-world scenarios, including finance, policy,

and healthcare, where transparency and trustworthiness are critical. Prior research often compromises

task performance for better generalizability and their approaches to achieve generalizability can not enable

human understanding. In contrast, HG-SCM achieves the best task performance and optimal generalizability

according to the experimental results. The generalizability constrained by the causal mechanism is highly

trustworthy because it aligns with human cognition and causal mechanisms are stable across environments.

In addition, prior work can only provide explanations at the sample level, such as which subgraph of a

sample influences the prediction. Such explanations are unreliable and difficult for humans to comprehend. In

contrast, HG-SCM has the capacity to provide in-depth interpretations in accordance with the learning tasks

by generating the learned causal relationships among expressive semantics involved in the heterogeneous

graph. This type of interpretability aligns well with human cognitive habits, enabling researchers and

developers to gain a deeper understanding of the phenomenon or task and reflect on the acceptability and

reasonableness of the logic behind the phenomenon.

7. Conclusion

“What will humans do when facing a prediction task?” Facing this challenge, in this work, we proposed a

novel heterogeneous graph model, HG-SCM (Heterogeneous Graph as Structural Causal Model). HG-SCM

aligns with human cognition and learns reasoning logic at the task level by leveraging causal discovery and

inference techniques. Through extensive experiments on multiple datasets with i.i.d and o.o.d settings, we

found that HG-SCM earns task performance superiority while accomplishing inherent interpretability and
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Table 6

The effect of using the average of estimated values of the self-attention matrices of training samples (global-
mean), instead of dynamic sample-wise self-attention in the transformer-based semantic fusion module in
SeHGNN (Yang et al., 2023b) on test sets.

DBLP ACM IMDB

Metric Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

Sample-wise 94.97±0.33 94.62±0.36 93.81±0.41 93.86±0.40 66.06±0.12 64.68±0.24
Global-mean 94.97±0.43 94.62±0.45 93.82±0.42 93.89±0.41 66.05±0.12 64.67±0.24

enhanced generalizability. The DAGs learned by HG-SCM perceive strong interpretations of the learning

tasks. In the future, we will further enhance the model’s generalizability by incorporating advanced causal

techniques. Furthermore, to improve the comprehensiveness and persuasiveness of the assessments regarding

model interpretability, we will undertake additional quantitative evaluations with human assistance.

A. Supplementary Learning Level Experiment

As shown in Table 6, there is no significant performance difference on test sets when using the average

of estimated values of the self-attention matrices of training samples, instead of dynamic sample-wise

self-attention in the transformer-based semantics fusion module in SeHGNN (Yang et al., 2023b). These

empirical results suggest that, compared with conventional sample-wise learning modules, an advanced

task-level semantic fusion module may have more potential.
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