
ar
X

iv
:c

s/
02

02
03

7v
2

 [
cs

.D
B

]
 1

3
O

ct
 2

00
3

Towards practical meta-querying

Jan Van den Bussche1 Stijn Vansummeren1

Gottfried Vossen2

1University of Limburg, Belgium 2University of Muenster, Germany

Abstract

We describe a meta-querying system for data-
bases containing queries in addition to ordi-
nary data. In the context of such databases,
a meta-query is a query about queries. Repre-
senting stored queries in XML, and using the
standard XML manipulation language XSLT
as a sublanguage, we show that just a few fea-
tures need to be added to SQL to turn it into a
fully-fledged meta-query language. The good
news is that these features can be directly sup-
ported by extensible database technology.

1 Introduction

Enterprise databases often contain not only
ordinary data, but also queries. Examples
are view definitions in the system catalog; us-
age logs or workloads; and stored procedures
as in SQL/PSM or Postgres [22]. Unfortu-
nately, these queries are typically stored as
long strings, which makes it hard to use stan-
dard SQL to express meta-queries: queries
about queries. Meta-querying is an important
activity in situations such as advanced data-
base administration, database usage moni-
toring, and workload analysis. Examples of
meta-queries to a usage log are:

1. Which queries in the log do the most
joins?

2. Which queries in the log return an empty

answer on the current instance of the
database?

3. View expansion: replace, in each query in
the log, each view name by its definition
as given in the system catalog.

4. Given a list of new view definitions (un-
der the old names), which queries in the
log give a different answer on the current
instance under the new view definitions?

Query 1 is syntactical: it only queries the
stored queries on the basis of their expres-
sions. Query 2 is semantical: its answer de-
pends on the results of dynamically execut-
ing the stored queries. Query 3 is again syn-
tactical, but more so than query 1 in that
it also performs syntactical transformations.
Query 4 is syntactical and semantical to-
gether.

To express meta-queries, database adminis-
trators and other advanced users typically re-
sort to a programming language like Perl, in
combination with Dynamic SQL. It would be
much nicer if they would not have to “leave”
the database system and could express their
meta-queries directly in Interactive SQL. In-
deed, already in 1993, in his SIGMOD Innova-
tions Award speech, Jim Gray urged the data-
base community to lower the wall between
data and programs. In the same vein, the
Asilomar Report puts the unification between
programs and data high on the database re-
search agenda [2]. As queries are an important

1

http://arxiv.org/abs/cs/0202037v2

kind of program in the context of databases,
support for meta-querying thus seems to be
a step in the right direction towards under-
standing how we can unify programs and data
in database systems.

In this paper, we present a practical
meta-querying system based on the relational
model. Our main design goal was to use cur-
rent DBMS technology and only extend stan-
dard SQL with specific meta-querying fea-
tures where necessary. Stored queries are rep-
resented as syntax trees in XML format. This
representation provides a convenient basis for
syntactical meta-querying. Indeed, rather
than reinventing the wheel and designing a
new sublanguage for syntactical manipulation
of stored queries, it allows us to use the stan-
dard XML transformation language XSLT for
this purpose. Many syntactical meta-queries
can then directly be expressed simply by al-
lowing XSLT function calls within SQL ex-
pressions.1

This combination of SQL and XSLT gives
us a basic level of expressive power, but
for more complex syntactical meta-queries we
need a bit more. To this end, we enrich
the SQL language with XML variables which
come in addition to SQL’s standard range
variables. XML variables range not over the
rows of a table, but rather over the subele-
ments of an XML tree. The range can be nar-
rowed by an XPath expression. (XPath is the
sublanguage of XSLT used to locate subele-
ments of XML documents.) XML variables
thus allow us to go from an XML document
to a set of XML documents. Conversely, we
also add XML aggregation [19], which allows
us to go from a set of XML documents to a

1We embrace XSLT because it is the most popular
and stable standard general-purpose XML manipula-
tion language to date. When other languages, notably
XQuery [27], will take over this role, it will be an easy
matter to substitute XSLT by XQuery in our overall
approach.

single one.
SQL combined with XSLT and enriched

with XML variables and aggregation offers all
the expressive power one needs for ad-hoc syn-
tactical meta-querying. To allow for semanti-
cal meta-querying as well, it now suffices to
add an evaluation function, taking the syntax
tree of some query as input, and producing
the table resulting from executing the query
as output. We note that a similar evaluation
feature was already present in the Postgres
system.

What we obtain is Meta-SQL: a practical
meta-query language. Meta-SQL has as ad-
vantage that it is not “yet another query lan-
guage”: it is entirely compatible with mod-
ern SQL implementations offered by contem-
porary extensible database systems. Indeed,
these systems already support calls to exter-
nal functions from within SQL expressions,
which allows us to implement the XSLT calls.
Furthermore, XML variables and the evalua-
tion function can be implemented using set-

valued external functions. As we will show,
the powerful feature of “lateral derived ta-
bles”, part of the SQL:1999 standard, turns
out to be crucial to make this work. XML
aggregation, finally, can be implemented as a
user-defined aggregate function.

We emphasize again that we are not propos-
ing yet another database language. Instead,
our main design goal was to stick as closely
as possible to standard SQL. Of course, a
drastic alternative is to abandon the relational
model altogether and move to, e.g., an XML-
XQuery environment, where meta-querying
does not pose any problem. However, given
the widespread use of relational databases, a
conservative approach such as ours remains
important.

This paper is further organized as follows.
In Section 2, we combine SQL with XSLT.
In Section 3, we add XML variables. In
Section 4, we move on to semantical meta-

2

querying. In Section 5, we describe how
Meta-SQL can be implemented using extensi-
ble database technology. We give some exper-
imental performance results of our prototype
in Section 6. In Section 7, we conclude with a
discussion of our approach.

2 SQL + XSLT

Consider a standard relational database, ex-
cept that in a table some columns can be
marked to be of type “XML”. In any row of
that table, the component corresponding to
a column of type XML holds an XML docu-
ment. At the present conceptual level, we do
not yet care about how this is implemented.

XSLT [28] is a widely used manipulation
language for XML documents. An XSLT pro-
gram takes an XML document as input, and
produces as output another XML document
(which could be in degenerate form, holding
just a scalar value like a number or a string).
Using the XSLT top-level parameter binding
mechanism [28], programs can also take addi-
tional parameters as input.2

Hence, to query databases containing XML,
it seems natural to extend SQL by allowing
calls to XSLT functions, in the same way as
extensible database systems extend SQL with
calls to external functions. However, in these
systems, external functions have to be pre-
compiled and registered before they can be
used. In Meta-SQL, the programmer merely
includes the source of the needed XSLT func-
tions and can then call them directly.

Let us see an example of all this, at the
same time applying it to meta-querying. Con-
sider a simplified system catalog table, called
Views, containing view definitions. There is a
column name of type string, holding the view

2In this paper, we cannot include a tutorial on
XSLT, for which we refer to the Web or to the lit-
erature [23, 13].

name, and a column def of type XML, hold-
ing the syntax tree of the SQL query defining
the view, in XML format. For example, over
a movies database, suppose we have a view
DirRatings defined as follows:

select director, avg(rating) as avgrat

from Movies group by director

Then table Views would have a row with value
for name equal to ‘DirRatings’, and value for
def equal to the following XML document:

<query>

<select>

<sel-item>

<column>director</column>

</sel-item>

<sel-item>

<aggregate><avg/>

<column-ref>

<column>rating</column>

</column-ref>

</aggregate>

<alias>avgrat</alias>

</sel-item>

</select>

<from>

<table-ref>

<table>Movies</table>

</table-ref>

</from>

<group-by>

<column-ref>

<column>director</column>

</column-ref>

</group-by>

Figure 1 shows the same document as a DOM
tree [8], which is perhaps clearer.

To achieve uniformity in the specific XML
format for representing SQL syntax trees, we
must agree on some fixed BNF syntax for
SQL. A BNF grammar can be easily trans-
formed into an XML DTD [25], which then

3

query

select

sel-item

column

sel-item

aggregate alias

avg column-ref

column

from

table-ref

table

group-by

column-ref

column

director

rating

avgrat Movies Director

Figure 1: Syntax tree of SQL query select director, avg(rating) as avgrat from

Movies group by director.

specifies the XML format to use. In this pa-
per, we use the BNF grammar given by Date
[6]. The derived DTD is given in Appendix A.

Now recall the first example meta-query
from the Introduction, but applied to our
Views table: “which queries do the most
joins?” For simplicity of exposition, let us
identify the number of joins an SQL query
does with the number of table names occur-
ring in it. To express this meta-query in Meta-
SQL, we write an auxiliary XSLT function
count tables, followed by an obvious SQL
query calling this function:

function count_tables returns number

begin

<xsl:template match="/">

<xsl:value-of

select="count(//table)"/>

</xsl:template>

end

select name from Views

where count_tables(def) =

(select max(count_tables(def))

from Views)

The first line declares the XSLT function in
Meta-SQL; between begin and end one writes
arbitrary XSLT code. Of course, in general,

Meta-SQL allows multiple XSLT functions to
be declared and called in the SQL query that
follows the function declarations.

As a second example, suppose we are given
a list Removed of names of tables that are
going to be removed, and we want to know
which views will become invalid after this re-
moval because they mention one of these table
names. To express this meta-query in Meta-
SQL, we write:

function mentions_table

param tname string

returns string

begin

<xsl:param name="tname"/>

<xsl:template match="/">

<xsl:if

test="//table[string(.)=$tname]">

true

</xsl:if>

</xsl:template>

end

select name from Views, Removed

where mentions_table(def,Removed.name)

= ’true’

Note that, using the XSLT parameter mecha-
nism already mentioned near the beginning of

4

this section, function mentions table takes
an extra parameter tname (of type string).
Accordingly, in the SQL query, the function
is called on two arguments: the XML input
def, and the parameter Removed.name.

As a final example, suppose we are given a
second view definitions table Views2, and for
every view name that is listed in both views
tables, we want a new definition that equals
the union of the first definition and the sec-
ond definition. To express this meta-query in
Meta-SQL, we write:

function unite

param v2 xml

returns xml

begin

<xsl:param name="v2"/>

<xsl:template match="/">

<union>

<xsl:apply-templates/>

<xsl:apply-templates select="$v2"/>

</union>

</xsl:template>

<xsl:template match="*">

<xsl:copy>

<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

end

select name, unite(v.def,v2.def)

from Views v, Views2 v2

where v.name=v2.name

Note that function unite outputs XML, and
again takes an extra parameter v2, now also
of type XML.

3 XML variables and XML

aggregation

The simple combination SQL + XSLT is al-
ready quite useful, but its full potential is only

realized when we add a language construct
that allows us to extract the subelements of
an XML document. For example, the simple
meta-query

give all pairs (v, t), where v is a view
name and t is a table name men-
tioned in the definition of view v

is otherwise not expressible.
We therefore add XML variables to SQL:

while the standard SQL range variables range
over the rows of a table, XML variables
range over the subelements of an XML doc-
ument. Like range variables, XML variables
are bound in the from-clause, in a similar way
variables are bound in OQL [5] and in XQuery
[27]. More specifically, an XML variable x is
bound in a from-clause using a construct of
the following form:

x in y[e]

Here,

• y is a previously bound XML variable or
a column reference, or an XSLT function
call, of type XML; and

• e is an XPath expression [26] specifying
which subelements of y we want x to
range over.

A bound XML variable can appear in an SQL
expression anywhere a column reference can.

For example, the meta-query quoted above
can now be expressed as follows:

function string_value returns string

begin

end

select v.name, string_value(x)

from Views v, x in v.def[//table]

Note that the body of function string value

is empty; indeed, the empty XSLT program

5

does exactly what we want here, namely, to
return the string value of an XML document
(in this case, a table subelement).

As another example, suppose we are given a
log table Log with stored queries (in a column
Q), and we want to identify “hot spots”: sub-
queries that occur as a subquery in at least ten
different queries. To express this meta-query,
we write:

select s

from Log l, s in l.Q[//query]

group by s

having count(l.Q) >= 10

XML aggregation XML variables allow us
to go from an XML document to a set of XML
documents. Conversely, we want to be able to
go from a set of XML documents to a sin-
gle one. Thereto, we add a natural aggregate
function on XML columns, called CMB (for
“combine”), also used by Shanmugasundaram
et al [19]. Just like the result of the standard
aggregate function SUM on a list of numbers
x1, . . . , xn is the sum x1+· · ·+xn, the result of
CMB on a list of XML documents d1, . . . , dn
is the combined XML document

cmb

d1 . . . dn

So, the top-level element of CMB(d1, . . . , dn)
is always labeled ‘cmb’, and has the docu-
ments d1, . . . , dn as its subelements.3

As an example, suppose we are given a view
definitions table Views3 similar to Views,
except that the same view name may ap-
pear with multiple definitions. Suppose we
want to ask the following meta-query: for

3CMB is not commutative, so in the outcome
of an XML aggregation, the particular order of
the grouped documents is undetermined and will be
implementation-dependent. Shanmugasundaram et al
[19] consider an ordered version of CMB.

each view name, give the Cartesian product
of its definitions. Thereto, we first write
an easy XSLT function cartprod (see Ap-
pendix B) that transforms an input of the
form CMB(d1, . . . , dn) into the document

query

select

wildcard

from

table-ref

d1

. . . table-ref

dn

We then write:

select name, cartprod(CMB(def))

from Views3 group by name

As another example, recall the third exam-
ple meta-query from the Introduction: view
expansion in the log. To express this meta-
query in Meta-SQL, we first write two auxil-
iary XSLT functions (see Appendix B):

• pair, taking a string parameter s, and
transforming an input document d into
the document

pair

name

s

d

• rewrite, taking an XML parameter p of
the form

cmb

pair

name

s1

d1

. . . pair

name

sn

dn

6

where s1, . . . , sn are different strings and
d1, . . . , dn are arbitrary XML documents,
and transforming an input query q by re-
placing every occurrence of an element of
the form

table

si

by a copy of di.

We then write:

select

rewrite(l.Q, (select

CMB(pair(def,name))

from Views))

from Log l

4 Semantical meta-querying

The language we have so far: SQL combined
with XSLT, and enriched with XML variables
and XML aggregation, gives us all the power
we need for ad-hoc syntactical meta-querying.
We now complete Meta-SQL so as to allow
semantical meta-querying as well.

To this end, we add a function EVAL for
dynamic evaluation of SQL queries. EVAL
takes an SQL query (more correctly, its syntax
tree in XML format) as input, and returns the
table resulting from executing the query. A
call to EVAL can appear in an SQL expression
anywhere a table reference can; the resulting
table can thus be ranged over by a standard
range variable.

As an example, suppose we are given a ta-
ble Customer with two attributes: custid of
type string, and query of type XML. The ta-
ble holds queries asked by customers to the
catalogue of a store. Every query returns a ta-
ble with attributes item, price, and possibly
others. The following meta-query shows for
every customer the maximum price of items
he requested:

select custid, max(t.price)

from Customer c, EVAL(c.query) t

group by custid

EVAL is all we need, provided we have
enough information about the output scheme
of the stored queries we are evaluating. For
example, in the previous meta-query, we are
only interested in the price attribute, and we
know that every stored query evaluates to a
table that indeed has a price column. But
what if we are given an arbitrary collection
of stored queries without information about
their output schemes? They could even all
have different output schemes!

Such a situation neatly fits the genre known
as “semistructured data” [1]: data that has a
structure (scheme), but we do not know it,
and it can be irregular. Since XML is the
standard format for semistructured data, and
since we already have XML variables in Meta-
SQL, we can easily solve the problem with an
untyped version of EVAL. This UEVAL func-
tion works just like EVAL, except that the ta-
ble resulting from the dynamic evaluation of
the query is presented as a set of XML docu-
ments.

More concretely, suppose a particular
stored query evaluates to a table with at-
tributes (A,B,C). Then every output row
(a, b, c) is represented as the XML document

row

A

a

B

b

C

c

The resulting set of XML documents is ranged
over by an XML variable rather than a stan-
dard range variable; this is a new use we make
of XML variables in the Meta-SQL language.

As a simple example, recall the second
example meta-query from the Introduction:
“which queries in the log return an empty an-
swer?” To express this meta-query, we write:

7

select Q from Log l

where not exists

(select x from x in UEVAL(l.Q))

Note that x is an XML variable, whereas t in
the previous example is a standard SQL range
variable.

The fourth example meta-query from the
Introduction (query comparison after view ex-
pansion) is equally easy to express, given that
we already saw how to express view expan-
sion in the previous section. In particular,
note that we can apply EVAL and UEVAL not
only to queries directly stored in the database,
but also to queries coming from a syntactical
meta-subquery (such as view expansion).

Run-time errors Both EVAL and UEVAL
expect their input to be (the XML syntax tree
of) a correct SQL query. If that is not the
case, we consider this to be a programming
error, and a run-time exception will be raised.
Moreover an application of EVAL can still fail
even if its argument is a correct SQL query,
namely, when the query result does not have
the expected columns.

Designing a meta-query language where dy-
namic evaluation of stored queries is statically
typed so as to be safe from such run-time er-
rors is possible [18], but leads to an overly
restricted formalism. In the design of Meta-
SQL, we have opted to prefer flexibility and
expressive power above static typing.

5 Implementation

Meta-SQL is entirely compatible with mod-
ern SQL implementations offered by contem-
porary extensible database systems. Extensi-
ble (also called object-relational, or universal)
database systems [21] support user-defined
data types for the columns of tables, and al-
low user-defined functions on these types to be
called within SQL. Extensibility is now part

of the new SQL:1999 standard, and the major
commercial vendors are aggressively moving
to support it.

In Figure 2 we illustrate the architecture of
an implementation of Meta-SQL, explained in
more detail in this section.

Implementing XML columns To sup-
port XML columns, it suffices to define a data
type ‘XML’. We could derive this type from
the built-in type CLOB (Character Large Ob-
ject) and store XML documents as texts,
but we could also derive from BLOB (Binary
Large Object) and store XML documents as
binary encodings of their DOM tree struc-
tures.

Implementing XSLT calls Starting from
Meta-SQL source code, consisting of a number
of XSLT functions, followed by an SQL query
using these functions, the Meta-SQL compiler
does the following automatically:

1. For each XSLT function, we generate a
wrapper function (in an external pro-
gramming language such as C or Java)
that invokes an XSLT processor, thus
performing the required XSLT transfor-
mation on the arguments, and returns the
result. If necessary, this result is con-
verted to an SQL datatype like number
or string.

2. All wrapper functions are compiled and
put together in an object library.

3. Every wrapper function is registered in
the database system (using SQL:1999
CREATE FUNCTION statements).

4. With the functions in place, the final
Meta-SQL query can now be executed lit-
erally by the database system.

8

Meta-SQL program

Meta-SQL
compiler

function f returns xml
begin
 <xsl:template>
 ...
 </xsl:template>
end
...

select f(x)
from L,
 x in L.A[//query]

import com.icl.saxon. *;
public class XSLT_f
{
 ...
}

Java Wrapper
Java

compiler

Extensible
DBMS

Meta-SQL
compiler select UDF_f(x.result)

from L,
 table(EXTRACT(L.A, ’//query’)) x

SQL:1999 statement

Saxon XSLT
Library

Standard Meta-SQL functions
(EXTRACT, EVAL, UEVAL)

Code base

XSLT_f.class

Meta-SQL program result

create function UDF_f(XML)
returns XML
source ’XSLT_f.f’
language JAVA

External Function registration statment

Executed by
Meta-SQL compiler

compilation
execution

Legend

Figure 2: Implementing Meta-SQL.

Almost all available XSLT processors pro-
vide an interface to various programming lan-
guages, and can be loaded together with the
application that invokes them. Hence, the
compiled wrapper functions can be loaded
into the database server together with the
XSLT processor functionality and executed as
efficiently as possible.

Implementing XML variables Now the
first and the last step in the above plan be-
come more involved: in the first step, we must
generate an additional function EXTRACT; in
the last step, we must perform some rewrit-
ing on the SQL query. We next explain this
in a bit more detail.

To support the XSLT calls, we needed only
single-valued external functions: they return
as output only a single value, be it a string,
a number, or an XML document. To support
XML variables, however, we need a set-valued

external function. Specifically, the Meta-SQL
system provides a function EXTRACT, which
takes an XML document y and an XPath ex-
pression e as input, and which returns the set
of all subelements of y that satisfy e. This
set is returned as a one-column table with at-

tribute name result.

Every XML variable binding, say, x in

y[e], is now rewritten by the Meta-SQL com-
piler into a call EXTRACT(y,’e’). This call
returns a table to which x is again bound, but
now x has become a standard SQL range vari-
able over the single attribute result.

For example, recall the first example of Sec-
tion 3:

select v.name, string_value(x)

from Views v, x in v.def[//table]

This query will be rewritten as follows:

select v.name, string_value(x.result)

from Views v,

table(EXTRACT(v.def,’//table’)) x

The above from-clause contains two table ex-
pressions. Note that the variable ranging over
the first table expression, namely v, is directly
used in the second table expression. This is an
instance of what SQL:1999 calls a “lateral de-
rived table” [16]. Such lateral joins were not
allowed in SQL-92; we see that they are cru-
cial here. We point out that they were present
in OQL from the outset [5].

9

Implementing EVAL and UEVAL The
function UEVAL can, like EXTRACT, be re-
alized as a set-valued external function. This
evaluation function takes an SQL syntax tree
in XML as input; unparses it; sends the SQL
query to the database; receives the answer
rows; transforms them into XML as explained
in the previous section; and returns the re-
sults. The XML variable ranging over the
UEVAL result is handled in the same way as
above.

For example,

select Q from Log l

where not exists

(select x from x in UEVAL(l.Q))

is compiled into

select Q from Log l

where not exists

(select x.result

from table(UEVAL(l.Q)) x)

The implementation of EVAL is a bit more
complicated, because EVAL returns not a set
of XML documents, but a normal SQL ta-
ble ranged over by a standard range variable.
In this case, the Meta-SQL compiler first de-
termines the specific attributes that are men-
tioned in connection with this range variable.
A specific table-valued external function hav-
ing this set of attributes as output scheme is
then generated and registered in the database
system. This evaluation function will actu-
ally not send its exact argument SQL query
to the database for evaluation, but rather its
projection on the output scheme in question.

For example, recall the first example of Sec-
tion 4:

select custid, max(t.price)

from Customer c, EVAL(c.query) t

group by custid

To implement this query, the Meta-SQL sys-
tem will generate an evaluation function, say,

EVAL 1, with output scheme (price), and
will rewrite the query to

select custid, max(t.price)

from Customer c,

table(EVAL_1(c.query)) t

group by custid

Here, EVAL 1(q), when called on any stored
query q, evaluates and returns the projection
πprice(q).

If the select-clause would have additionally
included sum(t.qty), then the system would
have generated a different evaluation function
EVAL 2 with output scheme (price,qty)

and according behavior.

Implementing XML aggregation The
XML aggregate function CMB introduced in
Section 3 can be directly provided as a user-
defined aggregate function.

A working prototype We have developed
a prototype implementation on top of DB2
UDB [3], which we chose because it is freely
available to university research and teaching.

We implement the external XSLT wrap-
per functions in Java, in conjunction with
the popular and free Java-based XSLT pro-
cessor SAXON [12]. SAXON also provides
a convenient Java-XML interface making the
EXTRACT function very easy to write.4 A
caveat in connection to the implementation
of EVAL and UEVAL is that DB2 UDB cur-
rently does not allow SQL calls inside exter-
nal functions. We bypass this restriction by
spawning a child process, which then makes
a new connection to the database in order to
evaluate the stored query.

4IBM provides an ‘XML Extender’ to DB2 UDB
which already provides an XML data type (derived
from CLOB as we do), but with insufficient functional-
ity for our needs. For example, there is also an Extract
function, but it is much weaker than the EXTRACT
function we need to implement our mechanism of XML
variables.

10

6 Experimental performance

evaluation

In this section we describe some performance
experiments on our prototype implementa-
tion. Unless stated otherwise, the results
shown are averages of multiple executions of
the test under discussion.

Java Overhead Our first test measures the
overhead implied by calling external functions
written in Java. To that cause we created
three simple single-valued external functions,
CST, MUL and CAP, which respectively return
a constant number, multiply a number with
a constant, and transform the input string
to capital letters. The following four queries
were executed:

select * from T

select CST(A), B from T

select MUL(A), B from T

select A, CAP(B) from T

Here, T consists of an integer column A and
a character column B. The first query is ex-
ecuted to measure the time needed to select
tuples from T without calling an external func-
tion.

Figure 3 shows the results for varying ta-
ble sizes. As was to be expected, the running
times of all functions grow linearly in the num-
ber of input tuples. Since the time needed to
execute the last three queries closely resembles
that of the first, we may conclude that there
is a minimal overhead involved with external
functions programmed in Java.

XSLT Processor overhead Our proto-
type implements XSLT functions by external
wrapper functions calling the SAXON XSLT
processor. To measure the startup cost of the
XSLT processor, we compared the Meta-SQL
query

function XSLT_CST returns number

begin

<xsl:template match="/">

40513

</xsl:template>

end

select XSLT_CST(A) from T

whose execution time is dominated by starting
up the XSLT processor, with the query

select CST(A) from T

Here, CST is single-valued external function
which also returns the same constant on all
inputs. Table T consists of a single XML col-
umn, whose values are single-node trees.

Figure 4 shows the results for varying table
sizes. The XSLT function running time is sig-
nificantly larger than that of CST, and grows
linearly in the number of input tuples, which
indicates that there is a constant startup cost
imposed by the XSLT processor. As such, a
Meta-SQL implementation would greatly ben-
efit from more efficient XSLT/XML proces-
sors.

A valid question to ask next is how the size
of the input XML document affects the run-
ning time of an XSLT function. To this cause
we compared the following two queries:

select XSLT_COPY(A) from T1

select COPY(A) from T1

Here, both XSLT_COPY and COPY copy their in-
put to the output. The only difference is that
XSLT function XSLT_COPY does so by XSLT
template matching whereas external function
COPY performs a true copy. Table T1 consists
of a single XML column A.

Figure 5 shows the running times of these
queries on tables with 1000 documents, for
varying document sizes. Both running times
grow linearly when the number of nodes per

11

0 5000 10000 15000 20000
Tuples

0

10

20

30
Se

co
nd

s
SELECT
CST
MUL
CAP

Figure 3: Performance of external functions in Java

0 500 1000 1500 2000
Tuples

0

100

200

300

400

500

600

700

Se
co

nd
s

CST
XSLT CST

Figure 4: Performance of XSLT calls

12

tuple increases, as was to be expected. Com-
bined with the previous results, this indicates
that calling a XSLT function has a rather
large start-up cost, but a relatively small ex-
ecution cost.

Extract As described in the Section 5,
XML variables are implemented by a set-
valued external function called EXTRACT.
To see how set-valued external functions
compare with single valued functions, we
created a single-valued function named
SCALAR_EXTRACT, which evaluates the XPath
expression / on its input, and executed the
following three queries:

select x from T, x in B[//*]

select x from T1, x in B[/]

select SCALAR_EXTRACT(B) from T1

Here, T consists of an XML column B, which
is populated by 1000 documents of m nodes.
Table T1 contains the result of the first query.
Hence, the second and third query return the
same output as the first; here, the second
query still uses an XML variable, whereas the
third query makes a direct function call. The
difference is that EXTRACT is called 1000 times
in the first query, each time returning m tu-
ples, whereas in the second and third query
EXTRACT and SCALAR EXTRACT are called m×

1000 times, each call returning a single tu-
ple. Thus, this test compares the overheads
involved with set-valued functions returning
multiple tuples, set-valued functions return-
ing a single tuple, and single-valued functions
returning a single tuple.

We timed the execution for varying m, as
shown in Figure 6. Due to the large running
times, the test was only timed once.

We can safely conclude that returning mul-
tiple tuples from a set-valued function is not
a problem. Indeed, the running time of the
first query is quite reasonable and increases

linearly with m (although it appears constant
in Figure 6 due to the large running times of
the other queries). In particular, it is multiple
times faster than returning m times a single
tuple. As such, the implementation of XML
variables in our approach performs very rea-
sonably.

Since both EXTRACT and SCALAR EXTRACT

use the XSLT processor to evaluate their
XPATH expressions and because the running
time of the second query resembles that of the
third, we can also conclude that the overhead
of a set-valued external function is about the
same as that of a single-valued one.

With the following two queries, we measure
the overhead of an EXTRACT call versus the
actual amount of work that needs to be done:

select x from T, x in B[//*]

select C from T, T2

Here, T is as before and T2 is the table with
XML column C, containing the result of the
first query on a single document in T. Since all
documents in T are the same, both queries re-
turn the same result. By adding the time the
XSLT processor needs to evaluate the XPath
expression //* 1000 times to the timing of
the second query, we get an estimate of the
time needed to calculate the result of the first
query, without actually calling EXTRACT.

As can be seen from Figure 7, the running
time of both queries grow linearly in their in-
put. However, the first query outperforms the
second one when m grows larger. Hence, al-
though EXTRACT has some startup overhead, it
is efficient when applied to large documents.
Indeed, it even outperforms a setting in which
the same amount of work needs to be done,
but no call to a set-valued external function
is made. Combined with our previous results,
this shows that XML variables are efficiently
implementable.

13

0 200 400 600 800 1000
Nodes

0

100

200

300

400

500

600

Se
co

nd
s

COPY
XSLT COPY

Figure 5: Performance of XSLT calls

40 50 60 70 80 90 100
Nodes

0

10000

20000

30000

Se
co

nd
s

EXTRACT //*
EXTRACT /
SCALAR EXTRACT

Figure 6: Performance of Extract—Experiment 1

14

0 50 100 150 200 250 300
Nodes

0

100

200

300

400

500

600

Se
co

nd
s

EXTRACT //*
JOIN + PREPROC

Figure 7: Performance of Extract—Experiment 2

Eval Remember from Section 5 that EVAL

and UEVAL are implemented as set-valued ex-
ternal functions which create a subprocess to
execute their input query. In order to measure
the overhead incurred by starting this process
and communicating with it, we created tables
T and T’ with integer column A and XML
column B. Every tuple in T contains in its B
column the following query in XML format:

select * from T1

We then measured the time needed to execute
the query

select A, e.A

from T, EVAL(T.B) as e

Furthermore, with n be the number of tuples
in T , we timed the execution of n times the
query

select * from T1

(in Java, since EVAL uses Java to execute its
queries) and added that to the time needed to
compute the same result:

select T.A, T1.A from T, T1

Comparison of these two measurements
gives a good indication of the overhead im-
plied by EVAL.

As shown in Figure 8, calling the EVAL func-
tion is six to seven times slower than prepro-
cessing and joining, and grows linearly in the
number of input tuples.

Conclusion The experiments above indi-
cate that our proposal for implementing meta-
querying features on top of the database en-
gine induces constant, predictable overheads,
which is certainly good news.

Still, the running times are sometimes too
high. Therefore, more efficient XSLT proces-
sors would certainly help. The ideal solution

15

0 500 1000 1500 2000
Tuples

0

500

1000

1500

2000

2500

3000

Se
co

nd
s

EVAL
NO EVAL

Figure 8: Performance of Eval

would be to incorporate XSLT processing di-
rectly into the query processor, as has recently
been suggested by Moerkotte [17]. It would
also help if we could implement the EVAL and
UEVAL functions entirely in a programmed
SQL language such as Oracle’s PL/SQL, or
SQL/PSM, in which case the overhead of call-
ing a table function and starting a subprocess
could be avoided.

On the other hand, our current implemen-
tation method has the advantage that it is
generally applicable without a need to change
the internal query processor (which is often
not feasible).

7 Discussion

Other meta-query languages. Meta-
SQL is the first practical language for meta-
querying. At the same time, however, it is
firmly based on our past experience in de-

signing formalisms for meta-querying. More
specifically, two of us (in collaboration with
Neven and Van Gucht) have earlier introduced
the reflective relational algebra [24] and the
meta relational algebra [18], two formal meta-
query languages based on the relational alge-
bra rather than on SQL. The two formalisms
differ in their approach: the reflective algebra
is untyped, stores queries in so-called “pro-
gram relations”, and uses the basic relational
algebra operators for the syntactical manipu-
lation; in contrast, the meta algebra is stati-
cally typed and views stored queries as an ab-
stract data type with specific operations for
syntactical manipulation. Meta-SQL is the
practical culmination of these two proposals,
and stands in between the two approaches:
like the meta algebra, it stores queries in an
XML abstract data type, but like the reflec-
tive algebra, it is essentially untyped. Every
meta-query expressed in the reflective rela-

16

tional algebra, or in the meta relational al-
gebra, can also be expressed in Meta-SQL.

Schema querying. Starting with the sem-
inal paper on HiLog [4], the concept of schema

querying has received considerable attention
in the literature. Clearly, schema querying
is a special kind of meta-querying. For in-
stance, SchemaSQL [14] augments SQL with
generic variables ranging over table names,
rows, and column names. It is not difficult
to simulate SchemaSQL in Meta-SQL, using
XML variables and UEVAL calls. Of course,
since SchemaSQL is more specialized, it allows
more opportunities for optimized implementa-
tion [15].

Commercial XML extensions. All the
major commercial ORDBMS vendors are pro-
viding XML extensions to their products,
However, the emphasis there is mainly on
publishing results of SQL queries in XML for-
mat (e.g., [19, 11]), so that they can be further
processed using the standard XML tools, in-
cluding XSLT. This combination of SQL and
XSLT is clearly quite different in scope com-
pared to the combination we have proposed in
this paper. The other direction, where large
XML documents are decomposed and stored
in tabular format, has also been researched
(e.g., [20, 7]) and is getting into the commer-
cial products.

We also mention that several features of
“SQL/XML” [9, 10] such as the XML data
type and the mapping of tables to XML val-
ues are similar to those found in this pa-
per. Moreover, an Extract-like operator and
functions operating on XML values (albeit
through XQuery) are listed among the future
work.

Text extensions. Given that most data-
base systems now support a text data type
with better functions for text searching and
editing than standard SQL, one may wonder
why we cannot support meta-querying sim-
ply by representing the stored queries as text.

The answer is that for many meta-queries the
structure of the stored queries is important.
For example, searching for the use of a certain
view name in a query is more than a simple
pattern search. Using syntax trees and XSLT
makes structural querying very easy.

XML query languages. Although the fo-
cus of this paper has been on meta-querying
as opposed to general XML querying, we still
would like to conclude by pointing out that
Meta-SQL, without EVAL, is not only a lan-
guage for syntactical meta-querying, but can
serve in general as a query language for data-
bases containing XML documents in addition
to ordinary relational data. Its closeness to
standard SQL and object-relational process-
ing is a major advantage. On the other hand,
the treatment of XML documents as abstract
data items seems less appropriate for “pure”
XML databases, i.e., huge XML documents.
However, as already indicated above, there
seems to be a strong trend in the database
processing world to decompose such XML
databases into relational data anyway.

Acknowledgment We are indebted to
Frank Neven and Dirk Van Gucht for inspir-
ing conversations. We also thank our students
Igor Kalders, Frank Pilgrim, and Jef Vos for
their help with the prototype implementation.

References

[1] S. Abiteboul, P. Buneman, and D. Su-
ciu. Data on the Web: From relations to

semistructured data and XML. Morgan Kauf-
mann, 2000.

[2] P. Bernstein et al. The Asilomar report
on database research. SIGMOD Record,
27(4):74–80, 1998.

[3] D. Chamberlin. A complete guide to DB2

Universal Database. Morgan Kaufmann,
1998.

17

[4] W. Chen, M. Kifer, and D.S. Warren. HiLog:
A foundation for higher-order logic pro-
gramming. Journal of Logic Programming,
15(3):187–230, 1993.

[5] S. Cluet. Designing OQL: Allowing objects to
be queried. Information Systems, 23(5):279–
305, 1998.

[6] C.J. Date. A Guide to the SQL Standard.
Addison-Wesley, fourth edition, 1997.

[7] A. Deutsch, M.F. Fernandez, and D. Suciu.
Storing semistructured data with STORED.
SIGMOD 1999, p 431–442.

[8] Document object model (DOM) level 2 core
specification version 1.0. W3C Recommenda-
tion 13 November 2000. www.w3.org.

[9] A. Eisenberg, J. Melton. SQL/XML and the
SQLX Informal Group of Companies. ACM
SIGMOD Record 30 (3) 2001.

[10] A. Eisenberg, J. Melton. SQL/XML is mak-
ing good progress. ACM SIGMOD Record 31
(2) 2002.

[11] M.F. Fernandez, D. Suciu, and W.C. Tan.
SilkRoute: Trading between relations and
XML. Computer Networks, 33:723–745, 2000.
Proceedings WWW9.

[12] M. Kay. SAXON: The XSLT processor.
saxon.sourceforge.net.

[13] M.H. Kay. XSLT Programmer’s Reference.
Wrox Press, 2001.

[14] L.V.S. Lakshmanan, F. Sadri, and I.N. Sub-
ramanian. SchemaSQL: A language for inter-
operability in relational multi-database sys-
tems. VLDB 1996, p 239–250.

[15] L.V.S. Lakshmanan, F. Sadri, and I.N.
Subramanian. On efficiently implementing
SchemaSQL on an SQL database system.
VLDB 1999, p 471–482.

[16] J. Melton and A. Simon. SQL:1999: Under-

standing Relational Language Components.
Morgan Kaufmann, 2001.

[17] G. Moerkotte. Incorporating XSL processing
into database engines. VLDB 2002, p 107-
118.

[18] F. Neven, J. Van den Bussche, D. Van Gucht,
and G. Vossen. Typed query languages for
databases containing queries. Information

Systems, 24(7):569–595, 1999.

[19] J. Shanmugasundaram, E. Shekita, et al. Ef-
ficiently publishing relational data as XML
documents. The VLDB Journal, 10(2–
3):133–154, 2001.

[20] J. Shanmugasundaram, K. Tufte, C. Zhang,
et al. Relational databases for querying XML
documents: Limitations and opportunities.
VLDB 1999, p 302–314.

[21] M. Stonebraker and P. Brown. Object-

relational DBMSs: Tracking the Next Great

Wave. Morgan Kaufmann, 1999.

[22] M. Stonebraker et al. Extending a database
system with procedures. ACM Transactions

on Database Systems, 12(3):350–376, 1987.

[23] D. Tidwell. XSLT. O’Reilly & Associates,
2001.

[24] J. Van den Bussche, D. Van Gucht, and
G. Vossen. Reflective programming in the re-
lational algebra. Journal of Computer and

System Sciences, 52(3):537–549, June 1996.

[25] Extensible markup language (XML) 1.0 (sec-
ond edition). W3C Recommendation 6 Octo-
ber 2000. www.w3.org.

[26] XML path language (XPath) version 1.0.
W3C Recommendation 16 November 1999.
www.w3.org.

[27] XQuery 1.0: An XML query language.
W3C Working Draft 20 December 2001.
www.w3.org.

[28] XSL transformations (XSLT) version 1.0.
W3C Recommendation 16 November 1999.
www.w3.org.

A A DTD for SQL

The following is a reasonably complete DTD for
syntax trees of SQL-92 select-statements, with the
exception of the various join operators. The DTD
is derived from the grammar given by Date [6].

18

<!ELEMENT query

((select, from, where?, group_by?,

having?)

| (union | except | intersect))>

<!ELEMENT select

((all | distinct)?,

(wildcard | sel-item+))>

<!ELEMENT all EMPTY>

<!ELEMENT distinct EMPTY>

<!ELEMENT wildcard EMPTY>

<!ELEMENT sel-item

((column

| (rangevar, (column | wildcard)))

| scalar

| aggregate)

, alias?)>

<!ELEMENT rangevar (#PCDATA)>

<!ELEMENT column (#PCDATA)>

<!ELEMENT column-ref

(rangevar?, column)>

<!ELEMENT scalar

(alg-exp | concat-exp | column-ref

| aggregate | constant | query)>

<!ELEMENT aggregate

(count-all

| ((avg | count | max | min | sum),

(all | distinct)?,

(alg-exp | concat-exp

| column-ref | constant

| query)))>

<!ELEMENT count-all EMPTY>

<!ELEMENT avg EMPTY>

<!ELEMENT count EMPTY>

<!ELEMENT max EMPTY>

<!ELEMENT min EMPTY>

<!ELEMENT sum EMPTY>

<!ELEMENT alg-exp

(scalar, (add | sub | mul | div),

scalar)>

<!ELEMENT add EMPTY>

<!ELEMENT sub EMPTY>

<!ELEMENT mul EMPTY>

<!ELEMENT div EMPTY>

<!ELEMENT concat-exp

(scalar, scalar)>

<!ELEMENT constant (#PCDATA)>

<!ELEMENT from (table-ref+)>

<!ELEMENT table-ref

((table | query), alias?)>

<!ELEMENT alias (#PCDATA)>

<!ELEMENT table (#PCDATA)>

<!ELEMENT where (cond-exp)>

<!ELEMENT cond-exp

(not?, (cond-test | and | or))>

<!ELEMENT not EMPTY>

<!ELEMENT cond-test

(comparison | like | in

| match | all-or-any | exists

| unique | overlaps

| test-for-null)>

<!ELEMENT and (cond-exp, cond-exp+)>

<!ELEMENT or (cond-exp, cond-exp+)>

<!ELEMENT rowconstr

(column-ref | scalar)+>

<!ELEMENT comparison

(rowconstr,

(eq | lt | let | gt | get | neq),

rowconstr)>

<!ELEMENT eq EMPTY>

<!ELEMENT lt EMPTY>

<!ELEMENT let EMPTY>

<!ELEMENT gt EMPTY>

<!ELEMENT get EMPTY>

<!ELEMENT neq EMPTY>

<!ELEMENT like

((column-ref | scalar),

(column-ref | scalar),

(column-ref | scalar)?)>

<!ELEMENT in

((rowconstr, query)

| (scalar, scalar+))>

<!ELEMENT partial EMPTY>

<!ELEMENT full EMPTY>

<!ELEMENT match

(rowconstr, unique?,

(partial|full)?, query)>

<!ELEMENT all-or-any

(rowconstr,

(eq | lt | let | gt | get | neq),

(all | any)?,

query)>

<!ELEMENT any EMPTY>

<!ELEMENT exists (query)>

<!ELEMENT unique (query)>

<!ELEMENT overlaps

(scalar, scalar, scalar, scalar)>

<!ELEMENT test-for-null (rowconstr)>

<!ELEMENT group-by (column-ref+)>

19

<!ELEMENT having (cond-exp)>

<!ELEMENT union (query, all?, query)>

<!ELEMENT except

(query, all?, query)>

<!ELEMENT intersect

(query, all?, query)>

B XSLT programs

function cartprod returns xml

begin

<xsl:template match="/">

<query>

<select> <wildcard/> </select>

<from>

<xsl:apply-templates

select="cmb/*"/>

</from>

</query>

</xsl:template>

<xsl:template match="/cmb/*">

<table-ref>

<xsl:copy-of select="."/>

</table-ref>

</xsl:template>

end

function pair

param s string

returns xml

begin

<xsl:param name="s"/>

<xsl:template match="/">

<pair>

<name>

<xsl:value-of select="$s"/>

</name>

<xsl:copy-of select="*"/>

</pair>

</xsl:template>

end

function rewrite

param p xml

returns xml

begin

<xsl:param name="p"/>

<xsl:template match="*">

<xsl:copy>

<xsl:apply-templates/>

</xsl:copy>

</xsl:template>

<xsl:template match="table">

<xsl:apply-templates select="$p"

mode="find">

<xsl:with-param name="search"

select="string(.)"/>

<xsl:with-param name="caller">

<xsl:copy-of select="."/>

</xsl:with-param>

</xsl:apply-templates>

</xsl:template>

<xsl:template match="/" mode="find">

<xsl:param name="search"/>

<xsl:param name="caller"/>

<xsl:param name="found"

select="cmb/pair[name=$search]"/>

<xsl:choose>

<xsl:when test="$found">

<xsl:copy-of

select="$found/query"/>

</xsl:when>

<xsl:otherwise>

<xsl:copy-of select="$caller"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

end

20

	Introduction
	SQL + XSLT
	XML variables and XML aggregation
	Semantical meta-querying
	Implementation
	Experimental performance evaluation
	Discussion
	A DTD for SQL
	XSLT programs

