Available online at www.sciencedirect.com l

ScienceDirect

E?a

¥ s
ELSEVIER Information Systems 33 (2008) 1-17

www.elsevier.com/locate/infosys

Clustering spatial networks for aggregate query processing:
A hypergraph approach™

Engin Demir, Cevdet Aykanat™, B. Barla Cambazoglu

Computer Engineering Department, Bilkent University, 06800 Bilkent, Ankara, Turkey

Received 9 January 2006; received in revised form 29 September 2006; accepted 3 April 2007
Recommended by N. Koudas

Abstract

In spatial networks, clustering adjacent data to disk pages is highly likely to reduce the number of disk page accesses
made by the aggregate network operations during query processing. For this purpose, different techniques based on the
clustering graph model are proposed in the literature. In this work, we show that the state-of-the-art clustering graph
model is not able to correctly capture the disk access costs of aggregate network operations. Moreover, we propose a novel
clustering hypergraph model that correctly captures the disk access costs of these operations. The proposed model aims to
minimize the total number of disk page accesses in aggregate network operations. Based on this model, we further propose
two adaptive recursive bipartitioning schemes to reduce the number of allocated disk pages while trying to minimize the
number of disk page accesses. We evaluate our clustering hypergraph model and recursive bipartitioning schemes on a
wide range of road network datasets. The results of the conducted experiments show that the proposed model is quite
effective in reducing the number of disk accesses incurred by the network operations.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Spatial networks; Clustering; Record-to-page allocation; Hypergraph partitioning

1. Introduction techniques are proposed [1,2] to overcome the

problems faced within the extensive scale of geo-

1.1. Motivation

In the last two decades, numerous conceptual
models, spatial access methods, and query processing

*This work is partially supported by The Scientific and
Technological Research Council of Turkey under Grant
EEEAG-103E028.

*Corresponding author. Tel.: +903122901625;
fax: +903122664047.

E-mail addresses: endemir@cs.bilkent.edu.tr (E. Demir),
aykanat(@cs.bilkent.edu.tr (C. Aykanat),
berkant@cs.bilkent.edu.tr (B.B. Barla Cambazoglu).

0306-4379/$ - see front matter © 2007 Elsevier B.V. All rights reserved.

doi:10.1016/].15.2007.04.001

graphic information systems (GIS). The increasing
demand on geographic applications made spatial
databases quite popular. The research on spatial
databases focused on the Euclidean space, where the
distances between the objects are determined by the
relative positions of the objects in space. However,
the operations in spatial networks, where the data
has an underlying network topology, do not solely
rely on geographical locations. This attracted many
researchers from the areas of transportation GIS,
network analysis, moving object databases, opera-
tions research, artificial intelligence, and robotics.


www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2007.04.001
mailto:endemir@cs.bilkent.edu.tr
mailto:aykanat@cs.bilkent.edu.tr
mailto:berkant@cs.bilkent.edu.tr

2 E. Demir et al. | Information Systems 33 (2008) 1-17

In spatial networks, both the topological and
geographical properties of the underlying network
are important. The topological properties are
usually represented as a finite collection of points
and links. For example, in road networks, intersec-
tions of roads and road segments connecting the
intersections are stored. Types of spatial network
queries [3-9] include route evaluation, path compu-
tation, tour evaluation and location-allocation
evaluation.

In practice, spatial network data is too large to fit
into the volatile memory, and a considerable
portion of the data must be stored on the secondary
storage. Consequently, a high number of disk
accesses must be performed during the processing
of a query in order to cache the disk pages that store
the relevant spatial data in the memory. This makes
organization of the spatial data over the disk pages
particularly important. There are two primary
concerns in organizing the data over the disk pages.
First, the number of disk accesses should be kept
low for time efficiency in query processing. Second,
the utilization of disk pages should be increased to
reduce the number of pages that the data spans for
space efficiency in data storage.

In query processing over spatial networks, the
spatial coherency that exists in accessing data leads
to a temporal coherency, that is, connected points
are accessed almost concurrently. Taking this fact
into consideration, it seems reasonable to place the
data associated with connected points in the same
disk pages so that the data can be fetched to the
memory with fewer disk accesses. Furthermore,
the recent query logs can be utilized for predicting
the future network usage frequencies and hence disk
access patterns, resulting in increased efficiency and
effectiveness in data organization. This option
requires the data over the disk to be periodically
reorganized.

Most data reorganization techniques proposed so
far are based on data clustering, which aims to
group commonly accessed data in the same disk
pages. In this work, we propose a highly accurate
clustering hypergraph model utilizing query logs for
efficient query processing in spatial networks. The
proposed model aims to minimize the number of
disk page accesses incurred by the network opera-
tions while keeping the number of allocated disk
pages at a reasonable amount. Throughout the
paper, the number of disk page accesses incurred by
network operations will be referred to as the disk
access cost of these operations.

1.2. Related work

There are many query types [10-13] in spatial
databases, but generally the nearest neighbor, range
search, spatial join, and closest pair queries are the
widely used types of queries. Query types in spatial
networks are somewhat different than those in
spatial databases as the evaluation of the network
queries highly depends on the topological properties
of the underlying network. For accelerating the
computation of network queries, materialization
techniques are used by pre-computing the results
and storing them at the expense of additional
storage [14,15].

So far, a considerable number of studies have
been carried out on spatial databases to design
effective storage schemes [16-23] for efficient query
processing. These efforts can be categorized into
two groups as proximity- and connectivity-based
approaches. In the proximity-based approaches
[16,19-21], interrelation of data is dependent on
spatial proximity. However, query processing in
spatial networks mostly involves route evaluation
and path computation queries [3,6,24], which
require the use of the connectivity information. As
the connectivity information cannot be resolved
from spatial proximity, the proximity-based ap-
proaches are not directly applicable in indexing and
querying of spatial networks [25]. In the connectiv-
ity-based approaches [17,18,22,23,26], the connec-
tivity  relationship is embedded in graph
representations of spatial networks. Based on this
fact, efficient access methods are proposed for
directed network graphs with no cycles [27-30]
and with limited cycles [31]. However, as these
proposals rely on the total ordering of the graph
vertices, they do not accurately model all kinds of
spatial networks including road networks.

In the literature, two approaches which fully
utilize the connectivity information are proposed:
network-traversal clustering (NTC) by Woo and
Yang [23] and connectivity-clustered access method
(CCAM) by Shekhar and Liu [22]. Both works use
graph partitioning for clustering the spatial net-
work. They model the spatial network as an
undirected clustering graph, where partitioning the
clustering graph induces a clustering of the spatial
network into disk pages and the partitioning
objective relates to storing concurrently accessed
data in the same pages.

Woo and Yang [23] propose the NTC method,
which obtains the minimum number of disk pages



E. Demir et al. | Information Systems 33 (2008) 1-17 3

based on the assumption that the size of data
records is fixed and the disk page size is a multiple of
the record size. This is not appropriate for spatial
networks since, in most cases, the record sizes vary
depending on the connectivity of the network.
Moreover, NTC does not utilize the previous query
logs and does not incorporate the usage frequencies
of the network into the clustering.

Shekhar and Liu [22] propose the CCAM method
to cluster the spatial network into disk pages based
on the network connectivity using graph partition-
ing. CCAM focuses on Get-a-Successor (GaS) ope-
rations to retrieve a successor of a junction in route
evaluation queries and Get-Successors (GSs) opera-
tions to retrieve all successors of a junction in path
computation queries. It correctly captures the disk
access cost of the GaS operations. In [22], the
authors also evaluate dynamic reclustering strate-
gies. Basic database operations (i.e., Create, Find,
Insert, and Delete) and aggregate network opera-
tions (i.e., GaS and GSs) are evaluated in the
clustering graph model. Experimental results show
that CCAM performs better than the previous
proximity- and connectivity-based methods in
reducing the number of disk page accesses.

1.3. Contributions

Both CCAM [22] and NTC [23] methods fail to
correctly capture the number of disk page accesses
in aggregate network operations on spatial net-
works. As mentioned in [22], although the clustering
graph model accurately captures the disk access cost
of GaS operations, it cannot correctly capture the
disk access cost of GSs operations. When GaS and
GSs operations are not uniformly distributed over
the network and the GSs operations are more
frequent than the GaS operations, the performance
of the clustering graph model degrades.

In this paper, we propose a novel clustering
hypergraph model which utilizes the network usage
frequencies obtained from previous query logs and
enables the correct estimation of the disk access
costs of aggregate network operations. Allocation
of data to disk pages according to the clustering of
the proposed hypergraph model results in a
considerable efficiency improvement in spatial
query processing when compared with the earlier
proposals that are based on the clustering graph
model. Our model is able to use the spatial access
methods of [22] in order to support network
operations on clustered network data. Note that

our model can benefit from the dynamic clustering
strategies presented in [22].

As a secondary contribution, we introduce two
adaptive partitioning schemes based on recursive
bipartitioning (RB). These schemes, which are
applicable to both the clustering graph and hyper-
graph models, try to reduce the number of allocated
disk pages while trying to minimize the number of
disk page accesses during the network operations.

The rest of the paper is organized as follows.
Section 2 presents some background material. In
Section 3, the clustering graph model and its flaws
are discussed. Section 4 presents our clustering
hypergraph model. We present our adaptive parti-
tioning schemes in Section 5. Section 6 overviews
the experimental setup and presents experimental
results. Finally, we conclude the paper in Section 7.

2. Preliminaries
2.1. Spatial networks

A well-known type of spatial networks is the road
networks. Throughout the paper, we use road
networks to present the terminology of the cluster-
ing models. We represent a road network as a two
tuple (7, %), where J denotes the spatial locations
(junctions) and . denotes the road segments (links)
between pairs of junctions. That is, £; € & denotes
a link from a junction #; € 7 to a neighbor junction
t; € 7. There are a number of attributes associated
with junctions (e.g., locations, turn restrictions) and
links (e.g., length, average speed limit, capacity,
type, location related information). Road networks
are usually represented as directed graphs with the
points located in 2D. Constraints on junctions such
as turn restrictions can be modeled by introducing
dummy nodes to the graph [32-34]. Fig. 1 illustrates
a sample network with eight junctions and 14 links.
In the figure, the squares represent the junctions and
directed lines represent the links.

2.1.1. Storage

In road networks, a record is allocated for each
junction of the network. Each record r; stores the
data associated with junction ¢; (i.e., its coordinates
and attributes) and its connectivity information
(i.e., predecessor and successor lists). A predecessor
list corresponds to the set of incoming links while a
successor list corresponds to the set of outgoing
links. Each element in the predecessor list of a
junction #; stores the coordinates of the source



4 E. Demir et al. | Information Systems 33 (2008) 1-17

Fig. 1. A sample road network.

junction ¢, of the incoming link £;;. Each element in
the successor list stores the coordinates of the
destination junction ¢; of the outgoing link £;; as well
as the attributes of ¢;. Successor lists are used in
network operations, whereas predecessor lists are
used in maintenance operations such as Insert and
Delete to update the successor lists. Hence, storing
link attributes only in successor lists suffices to
evaluate network queries. The record sizes are not
fixed since the predecessor and successor list sizes
depend on the connectivity of the junctions.

2.1.2. Query processing

In road networks, Create, Find, Insert, Delete,
GaS, and GSs operations should be performed
efficiently as discussed in [22]. Here, we will provide
a brief overview of these operations. The Create
operation creates a network from a given set of
junctions and links. The Find, Insert, and Delete
operations perform the actions implied by their
names on records of junctions. It should be noted
that an auxiliary index structure (e.g., a B* tree with
Z-ordering) is necessary to retrieve the records
efficiently since the records are not ordered.
Additionally, in order to support different types of
spatial queries using the spatial coordinates, a
multidimensional index (e.g., an R-tree) can be
build on top of the data points. The Find operation
retrieves a record from the disk by using the
auxiliary index. The GaS and GSs operations are
specific to aggregate network queries. The GaS
operation retrieves the record of a specified succes-
sor of a given junction from the page buffer. If the
page that stores the record is not in the page buffer,
a Find operation is performed in order to retrieve
the page from the disk. Similarly, the GSs operation
retrieves the records of all successors of a given
junction by scanning its successor list. While
searching for the records of successors, it retrieves

the records that are currently in the page buffer. If
there are records that are not found in the page
buffer, one of the remaining records is retrieved by
invoking a Find operation. This process is iteratively
repeated until all records of successors are retrieved.

In road networks, frequently observed aggregate
network queries include route evaluation and path
computation queries [35], in which an aggregate
property is defined as a function of the attributes of
junctions and links. In order to derive the aggregate
properties, route evaluation queries require retrieval
of all junctions and links in a specified route, which
is a sequence of junctions (¢, 3, #3,. .., #;) and links
(€12, 023, ..., €k—1y%). A naive approach for route
evaluation is to perform a sequence of Find
operations on the specified junctions. However, a
much better alternative is to perform an initial Find
operation followed by a sequence of GaS opera-
tions. Path computation queries deploy iterative
search algorithms such as the breadth-first search,
best-first search, A* search, and Dijkstra’s algo-
rithm [36] on the network to derive the aggregate
properties. The Dijkstra’s algorithm processes an
unvisited junction that is extracted from the priority
queue at each iteration, where processing a junction
means scanning its successor list to compute the
aggregate property. Thus, in path computation
queries, records are accessed through a sequence
of Find and GSs operation pairs (i.e., Find, GSs, ...,
Find, GSs), where the Find operations are selectively
performed only if the record is not found in the
current page buffer.

2.1.3. Problem definition

Since the data records, which contain the
topology- and application-dependent attributes, do
not fit into the volatile memory, they must be stored
in the secondary storage. In processing aggregate
network queries, a vast amount of data must be
iteratively accessed in such a way that records of
connected junctions are likely to be concurrently
accessed. Consequently, the disk pages that contain
these records must be fetched into the memory for
processing.

If the previous query logs are available, they are
utilized to compute the access frequencies of the
junctions and links; otherwise, a uniform frequency
distribution is assumed. We use f(#;) and f(;, ;) to,
respectively, denote the access frequency of junction
t; in GSs(t;) operations and the access frequency of
the link from junction ¢ to junction ¢; in GaS(t;, t;)
operations. In the sample road network of Fig. 1,



E. Demir et al. | Information Systems 33 (2008) 1-17 5

access frequencies are given for GSs and GaS
operations, respectively, in squares and on directed
edges.

Given a road network (,%) and the above-
mentioned frequency functions extracted from the
query logs, the record-to-page allocation problem
can be stated as the problem of allocating a set of
data records # = {ry,r2,...} to a set of disk pages
P = {2, P, ...} such that the total disk access cost
is reduced as much as possible while the number of
allocated disk pages is kept reasonable. Typically,
allocation of data to disk pages can be modeled as a
clustering problem, where the clustering objective is
to store the records that are likely to be concurrently
accessed in the same pages as much as possible. This
clustering objective relates to minimizing the disk
access costs of GaS and GSs operations in network
queries. This way, efficiency in query processing can
be achieved since fewer disk accesses are usually
required to fetch all relevant records. However,
neither the clustering graph model nor our model
try to encapsulate the additional disk access cost of
Find operations incurred by the priority queue
processing in path computation queries.

2.2. Graph and hypergraph partitioning

An undirected graph ¥ = (77, &) is defined as a
set of vertices ¥~ and a set of edges &. Every edge
e; € & connects a pair of distinct vertices v; and v;.
A weight w(v;) is associated to each vertex v; € ¥~
and a cost c(e;) is assigned with each edge e; € &.
II={71,7>,...,7k} is a K-way vertex partition
of @ if each part ¥7; is non-empty, parts are
pairwise disjoint, and the union of parts gives 7 .

In a given K-way vertex partition IT of ¢, an edge
is said to be cut if its pair of vertices fall into two
different parts and uncut otherwise. The partition-
ing objective is to minimize the cutsize defined over
the cut edges &y, that is,

Cutsize(IT) = _ c(ey). (1)

€;j€6 cut

The partitioning constraint is to maintain an upper
bound on the part weights, i.e., W< Wy, for
each k=1,...,K, where W, = Zvie,,/-kw(v,») de-
notes the weight of part ¥, and W,,x denotes the
maximum allowed part weight.

A hypergraph # = (7", /") consists of a set of
vertices ¥ and a set of nets 4" [37]. Each netn; € A~
connects a subset of vertices in ¥~, which are called
as the pins of n; and denoted as Pins(n;). Hence,

graph is a special instance of a hypergraph where
each net has exactly two pins. Each vertex v; has a
weight w(v;), and each net #; has a cost c(n)).

In a given K-way vertex partition II =
(V1,7 5,...,7 k} of A, a net is said to connect a
part if it has at least one pin in that part.
The connectivity set A(n;) of a net n; is the set of
parts connected by n;. The connectivity A(nj) =
|A(n;)] of a net n; is equal to the number of
parts connected by n;. If A(n;) =1, then n; is an
internal net. If A(n;)>1, then n; is an external net
and is said to be cut. The partitioning objective is to
minimize a cutsize metric defined over the cut nets.
In the literature, a number of cutsize metrics are
employed [38]. In connectivity—1 (4 — 1) metric,
which is widely used in VLSI [39] and in scientific
computing [40-42] communities, each net n; con-
tributes c(n;) (A(n;) — 1) to the cutsize of a partition
II. That is,

Cutsize(IT) = Y _ c(n)(A(m) — 1). )

n; eN

The partitioning constraint is to maintain an upper
bound on part weights as in graph partitioning.

3. Clustering graph model and its flaws

In this section, we briefly describe the clustering
graph model proposed by Shekhar and Liu [22] and
flaws of this model.

3.1. Clustering graph representation

An undirected clustering graph ¥ = (7",8) is
created to model the network (7,%). In ¥, a
vertex v; € ¥~ exists for each record r; € # storing
the data associated with junction ¢; € 7. The size of
a record r; is assigned as the weight w(v;) of vertex
v;. There exists an edge e;; between vertices v; and v;,
for i<j, if junctions #; and ¢ are connected
by at least one link. That is, e¢; € & if either {; €
& or {; € & or both. The cost c(e;;) associated with
€jj 18

S@) + [, )

S@) +f(, 1)

S@) @)+ f(4, 1)
+f (), 1:)

if fif € g, 6/’i¢$3

if f/,‘ €Y, fuég,
C((:‘l'j = '

if f,‘j, gji e .
3)



6 E. Demir et al. | Information Systems 33 (2008) 1-17

3.2. Clustering graph model

Shekhar and Liu [22] formulate the record-to-
page allocation problem as the problem of parti-
tioning the clustering graph % with the disk page
size being the upper bound on part weights. Shekhar
and Liu partition % into a number of parts
I ={y1,7,,...}, where each part ¥’ € Il corre-
sponds to the subset of records to be assigned to
disk page 2, € #. The partitioning objective is to
maximize the weighted connectivity residue ratio
(WCRR) metric, which corresponds to maximizing
the sum of the costs of internal edges in a partition.
It can be shown that maximizing WCRR is
equivalent to minimizing the cutsize given in
Eq. (1). This cutsize relates to the total disk access
cost of aggregate network operations. Note that, in
the original problem definition given in Section
2.1.3, the number K of parts is not known in
advance. Thus, they use a partitioning algorithm
based on RB with ratio-cut heuristic in order to
create a number of parts, each with a size less than
or equal to the disk page size.

Fig. 2 shows the clustering graph ¥ for the sample
network given in Fig. 1. In the figure, circles denote
vertices, and lines denote edges. For the sake of
clarity, ¢ is displayed in two parts, where edge costs
represent the access frequencies of GaS operations
in Fig. 2(a) and GSs operations in Fig. 2(b). Fig. 2
also shows a 3-way partition IT = {771, V"5, 7 3} of
%, where the shaded regions represent the vertex
parts.

3.3. Flaws of clustering graph model

Although the clustering graph model correctly
captures the disk access cost of GaS operations

R

g~
i

il

Fig. 2. A 3-way vertex partition, which models disk access costs
of (a) GaS and (b) GSs operations for the clustering graph 4 of
the sample network given in Fig. 1.

invoked in route evaluation queries, it fails to
correctly capture the cost of GSs operations invoked
in path computation queries. Consider a junction ¢;
with doy(¢;) > 1 successive junctions. Assume that the
records of these dqou(#;) + 1 junctions span two disk
pages. The cost of such an assignment should always
be f(t;). However, the cost estimated by the
clustering graph model depends on the distribution
of these doy(?;)+ 1 records across the two pages.
Consider a distribution in which record r; is assigned
to a page together with m <d(¢;) — 1 of the records
corresponding to successors of #; and the remaining
dou(t;) — m records are assigned to the other page. In
this case, the graph model estimates the cost as
(dout(t;)) — m) x f(t;), which is an overestimation
compared to the actual cost f(z;). This flaw
easily extends to the cases where these dyy(#;) + 1
records are distributed among more than two pages.
On the other hand, the graph model succeeds in cases
where each record corresponding to successors of
junction ¢;, except the ones in the page of r;, is
allocated to a separate page.

In Fig. 2, we illustrate the deficiency of the
clustering graph model in estimating the total disk
access cost of GSs operations using the sample
partition IT = {/"| = {v1,v4, 05}, V"2 = {v3, 03}, V'3 =
{ve, v7,v8}}. According to partition II, the total
costs of GaS and GSs operations, due to the cut
edges in Sy = {e12, €13, €24, €34, €46, €47, €57},  are
computed as 51 and 73, respectively. Note that 51
is a correct estimation for the cost of GaS opera-
tions. However, the disk access cost of GSs opera-
tions is overestimated as 73, whereas the actual
cost is 53. This difference 73 — 53 = 20 stems from
the overestimation of the costs of the GSs(1;)
and GSs(¢;) operations by the clustering graph
model. For example, the disk access cost of
GSs(t;) operations, where the set of successors
of t; is Succ(z)) = {t2,13,14}, is overestimated as
2x 11 =22 due to the cut edges e, ej3, each
with a cost of 11. However, the actual cost is
f(t;) = 11 since page P,, which contains records r;,
and r3, is accessed and placed into the page buffer
only once to retrieve both r, and r3 at each GSs(t;)
operation.

4. Clustering hypergraph model
In this section, we propose a clustering hyper-

graph model for the record-to-page allocation
problem.



E. Demir et al. | Information Systems 33 (2008) 1-17 7

4.1. Clustering hypergraph representation

A clustering hypergraph # = (v, A") is created
to model the network (77, &). In A, a vertex v; € ¥~
exists for each record r; € # storing the data
associated with junction ¢; € 7. The size of a record
r; is assigned as the weight w(v;) of vertex v;. The net
set A" of A is the union of two disjoint sets of nets,
N9 and 4¢SS which, respectively, encapsulate
the disk access costs of GaS and GSs operations,
Le., N = NSy G5,

We employ two-pin nets in # to represent the
disk access cost of GaS operations. In .#"%*S  there
exists a two-pin net n; with Pins(n;) = {v;,v;}, for
i<Jj, if junctions ¢ and ¢; are connected by at least
one link. That is, n;; € A% if either ¢; € £ or ¢;; €
& or both. The cost c(n;) associated with n; for
capturing the costs of GaS(#,t) and GaS(t),t;)
operations is

JAURD)! iftje, (¢,
JAURD) iftie, ;¢Z,
J ) +f@, ) if &t e L.

c(ny) =

4)
Note that these two-pin nets correspond to the
edges employed in the clustering graph described in
Section 3.1 with the difference that their costs do
not include the costs of GSs operations (i.e., the
access frequency f(¢;) of junction ¢;). Fig. 3(a)
displays the two-pin net construction for a pair of
neighbor junctions #; and f,.

We employ multi-pin nets in J# to represent the
disk access cost of GSs operations. In 495, there
exists a (dou(;) + 1)-pin net n; for each junction ¢;
with d gy (2;) >0 successors, where n; connects vertex
v; and the vertices corresponding to the records of the
junctions that are in the successor list of ¢;. That is,

Pins(n;) = {v;} U {v;: ¢; € Succ(t))},

where Succ(?;) is the set of successors of #;. Each net
n; 1s associated with a cost

c(ny) = f(t) (5
a
f(tht?)
1/_\ 2 ’Ul )
O] 0 ) O——O
) o

to capture the cost of GSs(¢;) operations. Fig. 3(b)
displays the multi-pin net construction for junction ¢
with Succ(t)) = {5, 13, t4}.

The size of the clustering hypergraph # in terms
of the number of pins depends on the topological
properties of the network. The number [A%S| of
two-pin nets varies between [|.#|/2] and |.Z|. The
number |A4°%| of multi-pin nets equals |7 | — o,
where o = |{t;: dou(t;) = 0}] is the number of dead
ends. The number of pins introduced by multi-pin
nets is | Z| + |7 | — a. Hence, the total number of
pins in # is between 2[|.%|/2]1 + | L] + |7 | — o and
3L+ |7 | — «a.

4.2. Clustering hypergraph model

After modeling the network (7, ¥) as a cluster-
ing hypergraph #, we formulate the record-to-page
allocation problem as the problem of partitioning
A with the disk page size, P, being the upper bound
on part weights (i.e., Wpna,x = P). A hypergraph
partitioning algorithm can be used to partition the
clustering hypergraph into a number of parts
I ={v,7,,...}. Here, partition II induces a
record-to-page allocation, where each part ¥ € I1
corresponds to the subset of records to be allocated
to disk page Z; € #. That is, v; € V; means that
record r; is allocated to page Z.

In our model, the cutsize of a partition IT relates
to the total number of disk accesses incurred by
the GaS and GSs operations. The cutsize can be
written as

Cutsize(II)
= Y dm)im) =D+ D cn)(im) — 1)
nye NG4S nie NG
= > clm)(m) = 1) (6)
neN

In fact, under the assumption that a single-page
buffer is available, the 1 — 1 cost incurred to the
partition by the two-pin cut nets in 4% exactly
corresponds to the disk access cost incurred by the

V2

flt) B2

Fig. 3. The clustering hypergraph: (a) Two-pin net n;; for the GaS(t,, ;) and GaS(t,,t,) operations; (b) multi-pin net n; for the GSs(z;)

operations.



8 E. Demir et al. | Information Systems 33 (2008) 1-17

GaS operations in the route evaluation queries.
With the assumption of a single-page buffer, the
A —1 metric is also able to encapsulate the disk
access cost of GSs operations in the path computa-
tion queries. Our model correctly captures the
aggregate disk access costs of GaS and GSs
operations. Consequently, in our model, minimizing
Cutsize(IT) given in Eq. (2) exactly minimizes the
total number of disk accesses.

To illustrate the correctness of our model, we
provide the following example. Consider a partition
IT and a two-pin net n; € A %S with Pins(n;) =
{vj,v;}. If ny; is internal to a part ¥, then records r;
and r; both reside in page . Since both r; and r;
can be found in the memory when Z is in the page
buffer, neither GaS(;,t;) nor GaS(t,t;) operations
incur any disk access. If n; is a cut net with
connectivity set A(n;) = {7/, ¥ '}, ri and r; reside
in separate pages #; and 2,,. Without loss of
generality, assume that r; € 2, and r; € 2,,. In this
case, GaS(t;,t;) operations incur f(#;,t) disk ac-
cesses in order to replace the current page % in the
buffer with 2, in the disk. In a similar manner,
GaS(t;, ;) operations incur f(#;,;) disk accesses in
order to replace the current page #,, in the buffer
with 2 in the disk. Hence, cut net n; incurs a cost
of c¢(n;) to the cutsize since A(n;) — 1 = 1.

Now, consider the same partition IT and a multi-
pin net n; € A" 1f n; is internal to a part ¥, then
record r; and all records of the successive junctions
of t; reside in page 2. Consequently, GSs(t;)

vr M7s(10) T

Vs

operations do not incur any disk access since page
Py 1s already in the page buffer. If n; is a cut net
with connectivity set A(n;), record r; and the records
of the successors of ¢; are distributed across the
pages corresponding to the vertex parts that belong
to A(n;). Without loss of generality, assume that r;
resides in page %, where ¥, must be in A(#n;). In
this case, each GSs(¢;) operation incurs A(n;) — 1
page accesses in order to retrieve the records of the
successors of #; by fetching the pages corresponding
to the vertex parts in A(n;) — {#"«}. Hence, cut net n;
incurs a cost of ¢(n;)(A(n;) — 1) to the cutsize.

In Fig. 4, we illustrate the correctness of the
clustering hypergraph # for the network given in
Fig. 1 using partition IT = {7y = {v,v5},7 > =
{va, v3, 04}, V"3 = {vg,v7,8}}. For the sake of simpli-
city, J is given in two parts which separately show
the net sets 4% and .47 with the associated
costs of GaS and GSs operations shown in
parentheses. According to partition I1, the disk
access cost of GaS operations, due to the set
{n12, n13, n4, Nas, n4g, Na7, 157} of cut nets, is com-
puted as 34+64+4+54+184+7+7)(2—-1)=50
since each of these nets has a connectivity of 2.
The disk access cost of GSs operations, due to
the set {n,n4,n7} of cut nets, is computed as 11 x
C-D+10xB—-1)4+9x(3—1)=49 since the
connectivities of these nets are 2, 3, and 3,
respectively. Note that internal nets do not incur
any cost for neither GaS nor GSs operations since
they have a connectivity of 1. In Fig. 4(b), consider

ine(16

.'A.

‘\‘\\ v 113(18) s ',"l

Vs

Fig. 4. The clustering hypergraph 2 for the network given in Fig. 1 and a 3-way vertex partition separately shown on net-induced
subhypergraphs: (a) (77, 4°%5) and (b) (7", /%), respectively, modeling disk access costs of GaS and GSs operations.



E. Demir et al. | Information Systems 33 (2008) 1-17 9

cut net n; with Pins(n;) = {vy, v2,v3,v4} and A(n)) =
{7"1,72}. Since v is in vertex part ¥"|, page 2|
must be the single page in the buffer when GSs(7;)
operations are invoked. Since v;, v3, and vy are all in
v 5, each of the 11 GSs(¢,) operations will incur only
one disk access for page #; to bring it into the page
buffer for retrieving records r;, r3 and ry.

It is worthwhile to elaborate on the difference
between the partitions produced by the clustering
graph and hypergraph models for the network given
in Fig. 1. In Figs. 2 and 4, both models achieve their
optimum partitions under the partitioning con-
straint of three records per page. The clustering
hypergraph model achieves a better record-to-page
allocation with a disk access cost of 99 compared to
the clustering graph model which has a cost of 124.
This is basically due to the difference in the assign-
ment of vertex vq to parts; vg is in 7| in the
clustering graph model, whereas it is in ¥, in the
clustering hypergraph model. The clustering graph
model fails to obtain this better allocation since the
high cost of edge e;4 due to GSs(¢;) operation
prevents vertex v4 from moving to ¥7, although
introducing this edge to the cut actually incurs no
additional cost.

5. Recursive graph/hypergraph bipartitioning
schemes

In the record-to-page allocation problem, a
secondary objective, in addition to the main
objective of minimizing the number of disk accesses,
is to keep the number of allocated disk pages as
small as possible. Since the size of each record varies
depending on the topological properties of the
network, the total number K of pages to be
allocated is not known in advance. The lower
bound on K is equal to the ratio of the total size
of the records to the disk page size. It is hard to
achieve this lower bound since the problem of
minimizing the number of disk pages is NP-hard
(bin-packing problem [43]) even without the main
objective of minimizing the number of disk accesses.

The RB paradigm is widely used in K-way graph/
hypergraph partitioning and known to be amenable
to produce good solution qualities. This paradigm is
inherently suitable for partitioning graphs and
hypergraphs when K is not known in advance.
Hence, the RB paradigm can be successfully
employed in the clustering graph and hypergraph
models for solving the record-to-page allocation
problem.

In the RB paradigm, first, a two-way partition of
the graph/hypergraph is obtained. Then, each part
of the bipartition is further bipartitioned in a
recursive manner until the desired number K of
parts is obtained or part weights drop below a given
maximum allowed part weight, W ,x. In RB-based
graph partitioning, the cut-edge removal scheme is
adopted, that is, the cut edges of the bipartition are
removed after each bipartitioning step. In RB-based
hypergraph partitioning, the cut-net splitting
scheme [41] is adopted to capture the 4 — | cutsize
metric given in Eq. (2). In both graph and
hypergraph partitioning, balancing the part weights
of the bipartition is enforced as the bipartitioning
constraint.

5.1. Determining the number of pages via RB

Here, we introduce two RB schemes, based on
different bipartitioning constraints, to partition the
records into pages while trying to minimize the total
number of allocated pages. In both schemes,
bipartitioning is recursively employed for partition-
ing the clustering graphs/hypergraphs until all parts
have weights less than or equal to Wy,x, which is set
to be equal to the disk page size, P. In a resulting
partition IT = {77, 7 ,...}, a part ¥ is said to be
lightly loaded if (Wj/Wna)<0.5 and heavily
loaded otherwise.

In the first scheme, RBI1, the bipartitioning
constraint on part weights is to obtain two nearly
equal-sized parts. That is,

LIRS o
where W, and W, are the weights of the parts of
the bipartition, and ¢ is the allowed deviation ratio
over the predetermined load distribution. The
deviation ratio is introduced to provide a flexibility
to the bipartitioning heuristics for achieving lower
cutsize values. In essence, each bipartitioning step
tries to balance the part weights to maintain a
uniform space utilization among the pages. We
slightly adapt the bipartitioning constraint given in
Eq. (7) when the weight of a part to be bipartitioned
drops below 3P. One of the parts is forced to have a
weight close to P in order to increase the load factor
of heavily loaded parts thus increasing the number
of lightly loaded parts. By this adaptation, it is
possible to further decrease K since lightly loaded
parts are likely to be generated and packed into

pages.

Wi, Wr<



10 E. Demir et al. | Information Systems 33 (2008) 1-17

On the other hand, in the second scheme, RB2,
the bipartitioning constraint on part weights is

wws<p [T ®)

to obtain a distribution such that one of the part
weights is nearly a multiple of P. In essence, weight
distribution of parts is adaptively tuned to decrease
K by increasing the load factors of the heavily
loaded parts with the assumption of a following
phase in which the lightly loaded parts will be
packed. This objective is tried to be achieved by
making one of the part weights approximately a
multiple of the disk page size, instead of dividing a
part into two nearly equal-sized parts. However,
due to the allowed deviation ratio, this partitioning
approach may generate large numbers of lightly
loaded parts.

5.2. Packing lightly loaded parts

Elimination of lightly loaded parts can be
formulated as an instance of the bin-packing
problem [43], where the parts correspond to items,
pages correspond to bins, and the disk page size
corresponds to bin capacity. The best-fit-decreasing
heuristic used in solving the bin-packing problem is
adopted to obtain a final distribution of parts to
pages. Parts are assigned to pages in decreasing size
order, where the best-fit criterion corresponds to
assigning a part to a page which currently has the
minimum space utilization.

It is also possible to further improve the primary
objective of minimizing the total disk access cost
while reducing the number of allocated pages. This
can be done by modifying the best-fit criterion such
that a part is assigned to a page that already
contains part(s) with the highest weighted net
connectivity to the part to be assigned. However,
experimental results show that the gain is at most
0.5% of the total cutsize. The improvement of
packing is very small since the lightly loaded parts
are generated at relatively distant branches of the
recursive bipartitioning tree and the cutsize con-
tribution of the nets that connect such parts is
typically very small.

6. Experimental results
In this section, we first describe the experimental

setup. Then, we evaluate the performance of RBI
and RB2 schemes in terms of both the number of

allocated pages and the cutsize and investigate the
effect of packing lightly loaded parts. Finally, we
evaluate the performance of the clustering graph
and hypergraph models with changing page and
page buffer sizes in terms of both the cutsize, which
gives the total number of disk page accesses
incurred by the GaS and GSs operations, and the
total number of disk accesses in aggregate network
queries.

6.1. Experimental setup

Experiments are conducted on a wide range of
real-life road network data sets collected from US
Tiger/Line [44] (Minnesota7 including 7 counties
Anoka, Carver, Dakota, Hennepin, Ramsey, Scott,
Washington; San Francisco; Oregon; New Mexico;
Washington), US Department of Transportation
[45] (California Highway Planning Network),
and Brinkhoff’s network data generator [46]
(Oldenburg; San Joaquin). These data sets are
primarily composed of points and polylines con-
necting the points. Since there is no embedded
direction information in these data sets, we assume
that all links are bidirectional. In general, self-loops
and multi-links can be modeled by introducing
dummy nodes to generate a simple network graph.
But, for simplicity, we perform a preprocessing over
these data sets to eliminate self-loops, multi-links,
and points that do not correspond to a junction
(i.e., a junction must be connected to at least three
points). All experiments are conducted on these
preprocessed data sets, whose properties are given
in Table 1, where the data sets are listed in the order
of increasing network size. In Table 1, d,,, denotes
the average number of predecessors and successors
of a junction.

The clustering graph and hypergraph models are
constructed based on the assumption that network
usage frequencies are available in the query logs.
One way to gather the frequencies is to record the
access frequencies of junctions and links. In our
experiments, we generate a number of queries and
their access frequencies using a synthetic query
generation approach. Specifically, Brinkhoff’s net-
work generator for moving objects framework [46]
is employed with the network-based node selection
option to generate a set of source and destination
junction pairs. For route evaluation queries, short-
est paths between the source and destination
junctions are computed, whereas for path computa-
tion queries, Dijkstra’s algorithm is executed over



E. Demir et al. | Information Systems 33 (2008) 1-17 11

Table 1
Properties of road network data sets and queries performed on
these networks

Tag Data set Road Avg. # of
network junctions
accessed in
queries
|7 | 2| dave Route Path
eval.  comp.
D1  Oldenburg 4465 10778 241 11 109
D2  California 10141 28370 2.80 16 217
HPN
D3  San Joaquin 17444 45974 2.64 19 419
D4  Minnesota7 34222 92206 2.69 31 1207

D5  San Francisco 166558 426742 2.56 48 3577
D6 New Mexico 448959 1112230 248 99 8767
D7  Oregon 507212 1203344 2.37 105 10214
D8  Washington 548901 1304126 2.38 107 12696

Table 2
Properties of the clustering graphs and hypergraphs used in the
models

Tag Y H Wavg Wlolz\l

(I I S

DI 4465 5389 4465 7886 22085 42.62 190308
D2 10141 14181 10141 17369 52965 48.76 494434
D3 17444 22801 17444 26225 80785 46.17 805360
D4 34222 45419 34222 46056 149493 47.11 1612184
D5 166558 212916 166558 197630 654990 44.99 7494104
D6 448959 554448 448959 510477 1682429 43.64 19591516
D7 507212 601340 507212 574353 1844579 41.96 21282352
D8 548901 650268 548901 613558 1980535 42.01 23051620

the network between the source and destination
junctions. For each data set, 1000 queries are
generated. These queries are used for first generat-
ing the query logs and then measuring the total disk
access cost during the experiments. The number of
junctions accessed in the queries varies depending
on the topological properties and the size of the
data set. The average number of junctions accessed
in the queries for each data set is given in Table 1.

Table 2 displays the properties of the clustering
graphs and hypergraphs used in the experiments. In
the table, S refers to the size of clustering
hypergraphs and is equal to the total number of
pins in these hypergraphs. Throughout the experi-
ments, we reserve 12 bytes for link attributes and 4
bytes for the coordinates of a junction. No space is
reserved for junction attributes. As described in
Section 4, in our model, vertex weights correspond

to record sizes in bytes. The average vertex weight,
Wavg, and the total vertex weight, Wy, for each
data set are also given in the table. Since all of the
links in the data sets are bidirectional, in the
hypergraph model, coordinates in the predecessor
list of a junction will be equivalent to the ones in the
successor list of the junction. Hence, we store only
the successor list of the corresponding junction.

The state-of-the-art tools MeTiS [47] and PaToH
[48] are used with default parameters for biparti-
tioning the clustering graphs and hypergraphs in the
RBI1 and RB2 schemes. The deviation ratio ¢ in Egs.
(7) and (8) is set to 0.10 throughout the experiments.
Here, the allocation of the records of a given data
set for a given page size is referred to as an
allocation instance. The experiments are conducted
on 32 different allocation instances for storing the
records of the eight data sets in four different page
sizes of P =1,2,4, and 8 KB. Due to the rando-
mized nature of the partitioning heuristics, the
experiment for each allocation instance is repeated
100 times and the average performance results are
reported in the following figures.

Furthermore, simulations are conducted in order
to observe the effect of reducing the total disk access
cost of GaS and GSs operations on the total number
of disk accesses incurred by the aggregate network
queries. A BT tree with Z-ordering is implemented
for efficient record retrieval. In order to evaluate the
effect of disk caching on our models, simulations
are performed using page buffers with a capacity of
1, 2, 4, and 8 pages. The least recently used (LRU)
page replacement algorithm is employed as the
caching algorithm.

All experiments are performed on a PC that is
equipped with an Intel Pentium IV 2.6 GHz
processor, 2 GB of RAM. As the operating system,
Mandrake 10.0 is installed.

6.2. Comparison of RBI and RB2 schemes

In Fig. 5, we compare the performance of the
RB1 and RB2 schemes in terms of the number K of
allocated pages and show the effect of packing on K.
If no packing is employed, RB1 achieves 10.3%
smaller K values than RB2 on the average.
However, as expected, packing results in much
better improvement in K in RB2 when compared
with RBI. As seen in Fig. 5, in RBI, packing
achieves a small reduction in K (only 4.1% on the
average) since the partitions created by this scheme
involve few lightly loaded pages, thus resulting in



12 E. Demir et al. | Information Systems 33 (2008) 1-17

D1 D2 D3 D4
2500
B RBI1
B RBI with packing
2000 [|B RB2 ([
@ RB2 with packing
on
B LS00 [
°
3
B 1000 |
=]
Z
500
0
Page size (KB)
40000
30000
)
g
a,
G
S 20000
Q
e}
g
=
Z
10000
0

Page size (KB)

Fig. 5. Comparison of RB1 and RB2 schemes for DI-D8 data sets in terms of number of allocated pages.

restricted solution spaces for the packing algorithm.
In contrast, RB2 creates many lightly loaded pages,
providing a flexibility in the solution space for
packing. In RB2, packing reduces K by 22.7% on
the average.

In the same way, in Fig. 6, we compare the
performance of the RB1 and RB2 schemes in terms
of the cutsize and provide the effect of packing on the
cutsize. If no packing is employed, RB1 achieves
1.7% smaller cutsize values than RB2 on the average.
Although reducing K decreases the cutsize in general,
the improvement of packing in the cutsize is quite
small for both RBI and RB2 schemes as the cutsize
among the packed parts is small.

According to the results, RB2 with packing
achieves 10.1% smaller K values while yielding

1.7% higher cutsize values than RB1 with packing
on the average. In the following subsections, we
only present the performance results for the
clustering graph and hypergraph models employing
the RB2 scheme with packing since the models
employing the RB1 scheme with packing give a
similar performance in reducing the cutsize. Note
that the RB2 scheme allocates the data over a
number of pages which is at most 9.8% (8.1% on
the average) higher than the lower bound on K.

6.3. Comparison of clustering graph and hypergraph
models

Fig. 7 displays the variation in the percent cutsize
improvement of the clustering hypergraph model



13

E. Demir et al. | Information Systems 33 (2008) 1-17

o0 ]
<t ee} <t m
A ‘%
= ©
e\l N 3} [a)
Q
=
— — —
L
° o~
g n
S
&
2} O
o~ &=
<
N e\l =
—~ ~ 3
@ @ 0 v
- —
c ) D, [a)
] 10} —
s J A
=
o
© & o & < A
< s 8
A W g
~ O < Q
: @) .m [Se)
” - A
” N N ~
. @
: — — ~
: 9
: =]
. < m
on N m
g 5 ~
< ~< 0 0
Q Q =
g & °
S = = < £ A
— = = wv .2
A = z ~ =) « 5
EEE O
[~ 4 — — o %) =) n S " S
@] (9} N — —
Om BN
=} ydei3 1040 ydeidradAy
o o ) o o o o o o = Jo Juowaaodwr 9z1sIno 9,
S =] [} S (e [} (el S S 9
v <t on N S [} [} (e]
<t o N —

(spuesnouy) azsingy (spuesnoy) azisin)

1248 1248 1248 1248 1248 1248 12438
Page size (KB)

12438
Fig. 7. Percent cutsize improvement of the clustering hypergraph model over the clustering graph model.



14

. 150
2
o
=
g
=3
=}
£
Z 100
2
g
E1
-
z
S 50
o
=}
)
S
E
Z
0

600

500

400

Number of disk accesses (thousands)
)
S
1S3

5000

4000

3000

2000

1000

Number of disk accesses (thousands)

15000

10000

5000

Number of disk accesses (thousands)

Fig. 8. The total disk access costs of aggregate network queries for each data set in the clustering graph and hypergraph models with

E. Demir et al. | Information Systems 33 (2008) 1-17

Dataset D1

Buffer size=1 Buffer size=2  Buffer size=4  Buffer size=8

-

12 438 1 2438 12 438
Page size (KB)

Dataset D3

Buffer size=1 Buffer size=2  Buffer size=4  Buffer size=8

Graph
Hypergraph|

1 2 48 1 2438
Page size (KB)
Dataset D5

Buffer size=2  Buffer size=4  Buffer size=8

Graph
W Hypergraph

12438 12 438 1 2438 12438
Page size (KB)

Dataset D7

Buffer size=1  Buffersize=2  Buffer size=4  Buffer size=8

1 2 48 1 248 1 2438 1 2438
Page size (KB)

Number of disk accesses (thousands) Number of disk accesses (thousands)

Number of disk accesses (thousands)

Number of disk accesses (thousands)

increasing page size P in KB and page buffer size in number of pages.

2000

1500

1000

500

15000

10000

5000

20000

15000

10000

5000

Dataset D2

Buffer size=1 Buffer size=2  Buffer size=4  Buffer size=8

1 2438 12 438 1 248 12 438
Page size (KB)
Dataset D4

Buffer size=1 ~ Buffersize=2  Buffer size=4  Buffer size=8

12 438 1 2438 1 2438 1 2438
Page size (KB)

Dataset D6

Buffer size=1 ~ Buffer size=2  Buffer size=4  Buffer size=8

12438
Page size (KB)
Dataset D8

Buffer size=1  Buffer size=2  Buffer size=4  Buffer size=8

12438
Page size (KB)




E. Demir et al. | Information Systems 33 (2008) 1-17 15

over the clustering graph model with increasing
page size. Recall that cutsize values encapsulate the
total disk access costs of GaS and GSs operations. It
is important to note that, in these experiments, the
models obtain rather close numbers of disk pages.
The graph model achieves K values only 0.03%
smaller than the hypergraph model on the overall
average. This enables a fair comparison of the
cutsize values attained by these two models.

As seen in Fig. 7, the hypergraph model performs
better than the graph model in terms of the cutsize
for every allocation instance. In all data sets, the
performance gap between the two models increases
with increasing page size in favor of the hypergraph
model. When P is doubled, the cutsize values
obtained by the clustering graph and hypergraph
models, respectively, decrease by 35.6% and 38.4%,
on the average. This is because decreasing the page
size increases the likelihood of distributing the
records of the successors of a junction across
separate pages, thus allowing the graph model to
avoid the flaw mentioned in Section 3.3. On the
average over all allocation instances, the perfor-
mance improvement of the hypergraph model over
the graph model is 14.7%.

In Fig. 8, we compare the performance of the
clustering graph and hypergraph models via simula-
tion in terms of the total number of disk accesses
incurred by aggregate network queries and provide
the effect of changing P and page buffer size. Recall
that the cost of aggregate network query processing
includes the costs of GaS and GSs operations and
the cost of priority queue operations. Increasing P
and the buffer size independently decrease the
number of disk accesses in both models since the
chance of assigning concurrently accessed records to
the pages that are already in the memory increases.
In all simulation results with different buffer sizes,
the hypergraph model performs better than the
graph model in reducing the number of disk page
accesses. On the average, the performance gap
between the two models increases with increasing
page size in favor of the hypergraph model.

The effect of page buffer size on the performance
of these models is also important. In almost all data
sets, the percent performance improvement of the
hypergraph model over the graph model increases
with increasing buffer size independent of the page
size. There are only two exceptions in simulations
on the smallest data sets D1 and D2 using the
largest buffer size of eight pages and the largest page
size of 8 KB. In these cases, a considerable portion

of the data reside in the memory, and hence the
clustering models loose their effectiveness.

Comparison of the total disk access cost of GaS
and GSs operations captured by the cutsize and the
total disk access cost of aggregate network queries
shows that, although the average improvement in
the total disk access cost of GaS and GSs operations
is 14.7%, the average improvement in the total disk
access cost of aggregate network queries remains
around 4.4%. This stems from the difference
between the cutsize and the total disk access cost
of aggregate network queries, which is due to the
additional overhead of Find operations incurred by
the priority queue processing in path computation
queries. This overhead varies depending on the
location in the memory hierarchy of the records
matching the ids extracted from the priority queue.
Hence, in the worst case, where all records must be
retrieved from the disk, the overhead is equal to the
total number of records accessed in path computa-
tion queries. In the experiments, for the single-page
buffer case, this overhead is found to be around
80% of the total number of disk accesses on the
average. The overhead of the network operations
still remains around 20% despite our explicit effort
towards minimizing this overhead.

7. Conclusion

We investigated the record-to-page allocation
problem in road network databases. We showed
that the state-of-the-art clustering graph model does
not correctly capture the cost of the Get-Successors
(GSs) operations incurred in path computation
queries, and hence it is not suitable for road
networks where the path computations occur
frequently. In order to overcome this flaw, we
proposed a clustering hypergraph model. Our
model correctly captures the costs of disk accesses
for both Get-a-Successor (GaS) operations incurred
in route evaluation queries and GSs operations
incurred in path computation queries. We also
presented two recursive bipartitioning schemes to
reduce the number of allocated disk pages while
trying to minimize the number of disk page accesses.
Experimental results obtained on a wide range of
road networks verify the validity of our hypergraph
model.

In this work, we solely concentrated on GaS and
GSs network operations. However, the conducted
simulations indicate that the cost of Find operations
incurred by the priority queue processing in path



16 E. Demir et al. | Information Systems 33 (2008) 1-17

computations is also important. As a future work,
we are planning to extend our work to incorporate
the cost of the Find operations.

References

[1] P. Rigaux, M. Scholl, A. Voisard, Spatial Databases with
Application to GIS, Morgan Kaufmann, Los Altos, CA, 2002.

[2] S. Shekhar, S. Chawla, Spatial Databases: A Tour, Prentice-
Hall, Englewood Cliffs, NJ, 2003.

[3] M.F. Goodchild, Towards an enumeration and classification
of GIS functions, in: Proceedings of International Geo-
graphic Information Systems Symposium: The Research
Agenda, NASA, 1987, pp. 62-77.

[4] C.S. Jensen, J. Kolar, T.B. Pedersen, I. Timko, Nearest
neighbor queries in road networks, in: Proceedings of the
International Symposium on Advances in Geographic
Information Systems, ACM, New York, 2003, pp. 1-8.

[S] M.R. Kolahdouzan, C. Shahabi, Alternative solutions for
continuous K nearest neighbor queries in spatial network
databases, Geolnformatica 9 (4) (2005) 321-341.

[6] R. Laurini, D. Thompson, Fundamentals of Spatial
Information Systems, The A.P.I.C Series, vol. 37, Academic
Press, New York, 1992 (Chapters 2.5.4, 5).

[7]1 E. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, S. Teng,
On trip planning queries in spatial databases, in: Ninth
International Symposium on Spatial and Temporal Data-
bases, 2005, pp. 273-290.

[8] M.L. Yiu, N. Mamoulis, D. Papadias, Aggregate nearest
neighbor queries in road networks, IEEE Trans. Knowl.
Data Eng. 17 (6) (2005) 820-833.

[9] F.B. Zhan, C.E. Noon, Shortest path algorithms: an
evaluation using real road networks, Transp. Sci. 32 (1)
(1998) 65-73.

[10] N. Mamoulis, D. Papadias, M.L. Yiu, Aggregate nearest
neighbor queries in road networks, IEEE Trans. Knowl.
Data Eng. 17 (6) (2005) 820-833.

[11] D. Papadias, Y. Tao, M. Kyriakos, K.H. Chun, Aggregate
nearest neighbor queries in spatial databases, ACM Trans.
Database Syst. 30 (2) (2005) 529-576.

[12] Y. Tao, D. Papadias, Range aggregate processing in spatial
databases, IEEE Trans. Knowl. Data Eng. 16 (12) (2004)
1555-1570.

[13] M. Yiu, D. Papadias, N. Mamoulis, Y. Tao, Reverse nearest
neighbors in large graphs, IEEE Trans. Knowl. Data Eng.
18 (4) (2006) 540-553.

[14] N. Jing, Y.W. Huang, E.A. Rundensteiner, Hierarchical
encoded path views for path query processing: an optimal
model and its performance evaluation, IEEE Trans. Knowl.
Data Eng. 10 (3) (1998) 409-432.

[15] S. Yung, S. Pramanik, An efficient path computation model
for hierarchically structured topological road maps, IEEE
Trans. Knowl. Data Eng. 14 (5) (2002) 1029-1046.

[16] V. Gaede, O. Giinther, Multidimensional access methods,
ACM Comput. Surv. 30 (2) (1998) 170-231.

[17] Y.W. Huang, N. Jing, E.A. Rundensteiner, Effective graph
clustering for path queries in digital map databases, in:
Proceedings of the International Conference on Information
and Knowledge Management, ACM, New York, 1996,
pp. 215-222.

[18] D. Papadias, J. Zhang, N. Mamoulis, Y. Tao, Query
processing in spatial network databases, in: Proceedings of
the International Conference on Very Large Data Bases,
2003, pp. 790-801.

[19] H. Sagan, Space-filling Curves, Springer, Berlin, 1994.

[20] H. Samet, The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA, 1990.

[21] H. Samet, Spatial data structures, Modern Database
Systems: The Object Model, Interoperability, and Beyond,
Addison-Wesley/ACM Press, Reading, MA, New York,
1995, pp. 361-385.

[22] S. Shekhar, D.R. Liu, A connectivity-based access method
for networks and network computation, IEEE Trans.
Knowl. Data Eng. 9 (1) (1997) 102-117.

[23] S.H. Woo, S.B. Yang, An improved network clustering
method for I/O-efficient query processing, in: Proceedings
of the Symposium on Advances in Geographic Information
Systems, ACM, New York, 2000, pp. 62-68.

[24] S. Shekhar, A. Fetterer, Path computation in advanced
traveler information systems, in: Proceedings of the Sixth
Annual Meeting and Exposition of the Intelligent Trans-
portation Society of America, Houston, TX, August 1996.

[25] S. Shekhar, A. Kohli, M. Coyle, Can proximity-based access
methods efficiently support network computations, Techni-
cal Report, Computer Science Department, University of
Minnesota, 1993.

[26] M.L. Yiu, N. Mamoulis, Clustering objects on a spatial
network, in: Proceedings of International Conference on
Information and Knowledge Management, ACM, New
York, 2005, pp. 443-454.

[27] J. Banerjee, S. Kim, W. Kim, J. Garza, Clustering DAG for
CAD databases, IEEE Trans. Software Eng. 14 (11)
(November 1988) 1684-1699.

[28] S. Dar, H.V. Jagadish, A spanning tree transitive closure
algorithm, in: Proceedings of International Conference on
Data Engineering, IEEE, New York, 1992, pp. 2-11.

[29] K. Hua, J. Su, C. Hua, Efficient evaluation of traversal
recursive queries using connectivity index, in: Proceedings of
the International Conference on Data Engineering, IEEE,
New York, 1993, pp. 549-558.

[30] P.A. Larson, V. Deshpande, A file structure supporting
traversal recursion, in: Proceedings of the International
Conference on Information and Knowledge Management,
ACM, New York, 1989, pp. 243-252.

[31] R. Agrawal, J. Kiernan, An access structure for generalized
transitive closure queries, in: Proceedings of International
Conference on Data Engineering, IEEE, New York, 1993,
pp. 429-438.

[32] T. Caldwell, On finding minimum routes in a network with
turn penalties, Commun. ACM (1961) 107-108.

[33] C. Huang, L. Meng, C. Zhao, A road network data model
and its application in vehicle navigation system, in: Proceed-
ings of the Symposium on Integrated System for Spatial Data
Production, Custodian and Decision Support, 2002.

[34] J. Jiang, G. Han, J. Chen, Modeling turning restrictions in
traffic network for vehicle navigation system, in: Proceedings
of the Symposium on Geospatial Theory, Processing, and
Applications, 2002.

[35] S. Shekhar, A. Kohli, M. Coyle, Path computation
algorithms for advanced traveler information systems, in:
Proceedings of the International Conference on Data
Engineering, IEEE, New York, 1993, pp. 31-39.



E. Demir et al. | Information Systems 33 (2008) 1-17 17

[36] E.W. Dijkstra, A note on two problems in connection with
graphs, Numerische Math. 1 (1959) 269-271.

[37] C. Berge, Graphs and Hypergraphs, North-Holland Publish-
ing Company, Amsterdam, 1973.

[38] C.J. Alpert, A.B. Kahng, Recent directions in netlist
partitioning: a survey, VLSI J. 19 (1-2) (1995) 1-81.

[39] A. Dasdan, C. Aykanat, Two novel multiway circuit
partitioning algorithms using relaxed locking, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 16 (2) (1997)
169-178.

[40] C. Aykanat, A. Pinar, U.V. Catalyiirek, Permuting sparse
rectangular matrices into block-diagonal form, SIAM J. Sci.
Comput. 25 (6) (2004) 1860—-1879.

[41] U.V. Catalyiirek, C. Aykanat, Hypergraph-partitioning-based
decomposition of parallel sparse-matrix vector multiplication,
IEEE Trans. Parallel Distrib. Syst. 10 (7) (1999) 673-693.

[42] B. Ucar, C. Aykanat, Encapsulating multiple communica-
tion-cost metrics in partitioning sparse rectangular matrices
for parallel matrix—vector multiplies, SIAM J. Sci. Comput.
25 (6) (2004) 1837-1859.

[43] E. Horowitz, S. Sahni, Fundamentals of Computer Algo-
rithms, Computer Science Press, Rockville, MD, 1978.

[44] U.S. Census Bureau, Topologically integrated geographic
encoding and referencing system (TIGER), (http://www.
census.gov/geo/www/tiger/), 2002.

[45] U.S. Department of Transportation, Federal Highway
Administration, The National Highway Planning Network,
(http://www.fhwa.dot.gov/planning/nhpn/), 2004.

[46] T. Brinkhoff, A framework for generating network-
based moving objects, Geolnformatica 6 (2) (2002) 153-180.

[47] G. Karypis, V. Kumar, MeTiS: a software package for
partitioning unstructured graphs, partitioning meshes, and
computing fill-reducing orderings of sparse matrices, Version
4.0, Computer Science and Engineering Department, Uni-
versity of Minnesota, 1998, (http://www-users.cs.umn.edu/
~karypis/metis/).

[48] U.V. Catalyiirek, C. Aykanat, PaToH: partitioning tool for
hypergraphs, Technical Report, Computer Engineering Depart-
ment, Bilkent University, 1999, (http://www.cs.bilkent.edu.tr/
~aykanat/pargrp/patoh/).


http://www.census.gov/geo/www/tiger/
http://www.census.gov/geo/www/tiger/
http://www.fhwa.dot.gov/planning/nhpn/
http://www-users.cs.umn.edu/karypis/metis/
http://www-users.cs.umn.edu/karypis/metis/
http://www.cs.bilkent.edu.tr/aykanat/pargrp/patoh/
http://www.cs.bilkent.edu.tr/aykanat/pargrp/patoh/

	Clustering spatial networks for aggregate query processing: �A hypergraph approach
	Introduction
	Motivation
	Related work
	Contributions

	Preliminaries
	Spatial networks
	Storage
	Query processing
	Problem definition

	Graph and hypergraph partitioning

	Clustering graph model and its flaws
	Clustering graph representation
	Clustering graph model
	Flaws of clustering graph model

	Clustering hypergraph model
	Clustering hypergraph representation
	Clustering hypergraph model

	Recursive graph/hypergraph bipartitioning schemes
	Determining the number of pages via RB
	Packing lightly loaded parts

	Experimental results
	Experimental setup
	Comparison of RB1 and RB2 schemes
	Comparison of clustering graph and hypergraph models

	Conclusion
	References


