
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 INformation Systems

An empirical evaluation of XQuery processors

S. Manegold

REPORT INS-E0704 MARCH 2007

Information Systems

´

Centrum voor Wiskunde en Informatica (CWI) is the national research institute for Mathematics and
Computer Science. It is sponsored by the Netherlands Organisation for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2007, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-3681

An empirical evaluation of XQuery processors

ABSTRACT
This paper presents an extensive and detailed experimental evaluation of XQuery processors.
The study consists of running five publicly available XQuery benchmarks --- the Michigan
benchmark (MBench), XBench, XMach-1, XMark and X007 --- on six XQuery processors, three
stand-alone (file-based) XQuery processors (Galax, Qizx/Open, Saxon-B) and three
XML/XQuery database systems (BerkeleyDB/XML, MonetDB/XQuery, X-Hive/DB). Next to
assessing and comparing the functionality, performance and scalability for the various systems,
the major focus of this work is to report in detail about the experiences made while performing
such an exhaustive study, to discuss all the problems that we encountered and how we solved
them, and hence to hopefully provide some guidelines (or even a recipe) for performing
reproducible large-scale experimental research and system evaluation.

1998 ACM Computing Classification System: H.3.4: Performance evaluation; D.2.8: Performance measures; C.4:
Measurement techniques
Keywords and Phrases: XML; XQuery; XQuery processors; Database Systems; Benchmarks; Performance Evaluation

An Empirical Evaluation of XQuery Processors

Stefan Manegold
CWI

Kruislaan 413
1098 SJ Amsterdam

The Netherlands
Stefan.Manegold@cwi.nl

ABSTRACT
This paper presents an extensive and detailed experimen-
tal evaluation of XQuery processors. The study consists of
running five publicly available XQuery benchmarks — the
Michigan benchmark (MBench), XBench, XMach-1, XMark
and X007 — on six XQuery processors, three stand-alone
(file-based) XQuery processors (Galax, Qizx/Open, Saxon-
B) and three XML/XQuery database systems (BerkeleyDB/
XML, MonetDB/XQuery, X-Hive/DB). Next to assessing
and comparing the functionality, performance and scalabil-
ity for the various systems, the major focus of this work is to
report in detail about the experiences made while perform-
ing such an exhaustive study, to discuss all the problems
that we encountered and how we solved them, and hence to
hopefully provide some guidelines (or even a recipe) for per-
forming reproducible large-scale experimental research and
system evaluation.

1. INTRODUCTION
Experimental evaluation and comparison of (new) techniques,
algorithms and/or complete systems is a vital means to as-
sess the practical impact and benefit of research results, es-
pecially in applied domains such as data management sys-
tems. While many publications present experimental re-
sults, the extent of the presentation — or even the exper-
iments themselves — are often very limited due to space,
time and/or other resource constraints. The major focus
of most research publications is on the (so-called) scientific
contributions.

In this study, we shift the focus. Performing the actual
experimental evaluation becomes the primary subject. Pre-
senting the experimental setup in detail, we do not hesi-
tate to reveal all the “nasty details” and “minor problems”
that give us headaches and cause sleep-less nights. Although
choosing XML data management using XQuery as the sam-
ple scenario for this study, we believe that the proposed
techniques can easily be adapted to other data management
scenarios. The major contribution is hence a detailed cook-

book about how to conduct an experimental comparison and
assessment of data management systems. However, though
focusing on the actual experimentation techniques, we also
present the “hard facts”: the detailed performance results
we gathered.

The remainder of this paper is organized as follows. We start
with presenting our experimentation environment in Sec-
tion 2. Section 3 lists the benchmarks that we are using and
discusses adaptations of the benchmarks, their queries and
documents that are necessary to perform our experiments.
In Section 4, we introduce the six XQuery systems we use,
and explain in detail how we compile, install, configure and
use them. Section 5 reveals how we run our experiments,
validate results and timings, and collect the performance
data that is presented in detail in Section 6. We draw final
conclusions in Section 7.

2. THE SCENARIO
Given the popularity of XML in the data management world
— both in research and in commercial environments — we
chose XML data management using XQuery as the sample
scenario for our experimental study. In particular, the idea
is to run the five most popular publicly available XQuery
benchmarks — the Michigan benchmark (MBench), XBench,
XMach-1, XMark and X007 — on the most popular pub-
licly available XQuery processors. We picked three stand-
alone (file-based) XQuery processors (Galax, Qizx/ Open,
Saxon-B) and three XML/XQuery database systems (Berke-
leyDB/XML, MonetDB/XQuery, X-Hive/DB). For
simplicity, we will use engine as a unified term to refer to
both stand-alone (file-based) XQuery processors and XML/
XQuery database systems in the remainder of this text.

Despite using XML/XQuery as sample scenario, none of the
general approaches and techniques presented and used in
this work are limited to XML and/or XQuery. With obvi-
ous and straightforward adaptations, they can likewise be
applied to other data management scenarios.

The chosen setup is very complex. First of all, there are
5 × 6 combinations of benchmarks with engines (actually
8 × 6, as XBench comes in four flavors, TC/SD, DC/SD,
TC/MD, DC/MD). Secondly, each benchmark consists of 8
up to 46 individual queries (in total 163 queries for all 5
benchmarks). Thirdly, each benchmark provides (at least)
3 to 6 different document sizes. Hence, we face two major
challenges: (1) Running a huge set of experiments, and (2)

collecting, analyzing, and presenting a huge amount of ex-
perimental results. To tackle these challenges, we decided
to use the XCheck benchmark platform [2].

2.1 Benchmark tool: XCheck
XCheck [2] provides a convenient integrated platform to run
various benchmarks (or experiments in general), each con-
sisting of several individual queries and varying input doc-
uments, using different engines. Per benchmark, all experi-
ments are performed by a single invocation of XCheck.

For each benchmark, XCheck iterates over all engines, and
for each engine over all document sizes, executing each query
of the respective benchmark on the given document size us-
ing the given engine. Each individual experiment is repeated
n+1 times. The execution times of the first run are neglected
(“warm-up”). XCheck then calculates the average and stan-
dard deviation of the execution times for the remaining n
runs1. Next to the overall execution time, XCheck allows to
collect the breakdown times for document processing, query
translation, query execution, and result serialization — as
far as provided by the various engines (see Section 4.3.3 for
details). Additionally, XCheck collects the sizes of the pro-
duced results and (pre-defined) error messages.

2.2 Customizing XCheck
XCheck can be extended to use new benchmarks and/or
new engines by providing the respective information, e.g.,
the benchmark queries and documents (or the respective
generators), in XML configuration files.

While being very convenient and working reliably, XCheck
(Version 0.1.3) comes with two limitations that are quite
relevant for our experiments.

The first limitation is that XCheck can only handle a sin-
gle document per query. XCheck replaces the URI in the
fn:doc() call in the queries to use the requested document
(size), and only one URI is replaced. Hence, multi-docu-
ment experiments/benchmarks cannot easily be run with
XCheck. To circumvent this limitation while retaining the
multi-document characteristics, we gather the URIs of all
documents of each multi-document benchmark (XMach-1,
XBench TC/MD & DC/MD) in a single XML file

<uri_collection>

<uri><!-- URI of document 1 --></uri>

<!-- ... -->

<uri><!-- URI of document n --></uri>

</uri_collection>

and obtain the sequence of documents on-the-fly via the
following preamble to each query:

let $doc :=

for $d in doc("uri_collection.xml")//uri/text()

return doc($d)

1In our experiments, we use the default: n = 3.

The second limitation is the way how XCheck calls the
engines to run a query. This is done via a single com-
mand line call. While this is sufficient for stand-alone (file-
based) XQuery processors, it does not allow for a “natu-
ral” usage of XML/XQuery database systems. Firstly, most
(XML/XQuery) database systems have a client-server ar-
chitecture, where the server is running in the background,
and each query is executed by calling of the client program
that then connects to the server. Secondly, XML/XQuery
database systems allow that the files that contain the XML
documents need to be read only once, loading the documents
into the database. All queries then only need to access the
documents as stored in the database, not requiring the pars-
ing of the original document with each individual query.

While having access to the source code of XCheck (it is ba-
sically a collection of perl scripts), we decided not to change
the code, but rather exploit (mis-use?) some features of
the adapters that specify for each individual engine how
XCheck should execute a query. Next to the actual call to
execute the query, XCheck allows for both a pre-processing-
and a post-processing-call. All three interfaces are basi-
cally simple command line calls of arbitrary executables,
parametrized with (the name/location of) the query-file and
the document-file. Hence, a simple straightforward solution
would be to start the database server in the pre-call, run
the query via the client, and finally stop the server with the
post-call. However, we think it is not “natural” to start and
stop the database server for each individual query execu-
tion — let alone the extra overhead/delay that extends the
overall execution time of the whole benchmark considerably.

Alternatively, we could start all required engines and load
all used documents prior to starting the XCheck runs. How-
ever, this would mean that we (1) require enough disk space
to store all (possibly huge) documents of each benchmark
in all databases concurrently, and (2) all database servers
are running concurrently — though only one is active at a
time, the “idle” ones consume vital memory, which might
compromise the behavior of the active one.

Instead, we want to start each database server individually
only once per benchmark, engine and document, and leave
it running while all queries of the given benchmark are ex-
ecuted on the given document with the given engine. To
implement this, we added two empty queries to each bench-
mark, containing only the comments “(:StartServer:)”
and “(:StopServer:)”. Used as first and last query for each
benchmark, these queries trigger the pre- and post-calls to
start and stop the respective database server. For all other
queries, the pre- and post-calls do nothing.

Likewise, we added a query Q0 to all benchmarks, that loads
the respective document into the database using the re-
spective database’s document loading functionality. Thus,
XCheck automatically uses these queries to measure and
collect the document loading times. All other benchmark
queries then access only the pre-loaded document, just like
a database scenario is supposed to work. To save disk space,
our post-calls remove the document from the database once
they see the respective “(:StopServer:)”-query.

X007 [8] XMark [15] MBench [13] XMach-1 [6] XBench [17]
(cfg) (sf) (sf) (#docs) TC/SD TC/MD DC/SD DC/MD
small3 2x 4.5MB 0.001 110KB (size) (#docs) (#docs)
small6 2x 8.7MB 0.01 1.1MB 100 2.3 MB small 11 MB 26 9.1MB 11 MB 2597 9.9 MB
small9 2x 13MB 0.1 11MB 0.1 46MB 1000 18 MB normal 104MB 266 97MB 104MB 25925 100MB
med3 2x 44MB 1.0 110MB 1.0 496MB 10000 174MB large 1.1 GB 2666 1.1GB 1.1 GB 259205(?) (?)

med6 2x 86MB 10.0 1.1 GB 10.0 4.8 GB huge 11 GB 26666 16 GB (?) 2592005(?) (?)

med9 2x 129MB 100.0 11GB [document generator failed/crashed]

22 20 46 8 #queries 17 19 16 15

Table 1: Benchmarks, their document sizes and number of queries

3. THE BENCHMARKS
In this work, we consider the five most popular publicly
available XML/ XQuery related benchmarks: MBench [13],
X007 [8], XBench [17], XMach-1 [6], XMark [15], as listed in
Table 1. All benchmarks consist of a set of queries and pro-
vide document generators that allow to generate documents
of various sizes.

3.1 Documents
Compiling, installing and running the document generators
was no problem with most of the benchmarks. However,
some generators required small fixes. For X007 and MBench,
the generators required minor (quite obvious) changes to
get the source code compiled with gcc/g++ 4.0.2 on Fedora
Core 4 (details omitted here). The XBench document gen-
erator worked fine for the text-centric documents (TC/SD,
TC/MD), but kept crashing with some “obscure” Java ex-
ception when trying to generate the document-centric doc-
uments (DC/SD, DC/MD) on our Fedora Core 4 (64-bit)
systems using Java 1.5.0. Luckily, Loredana Afanasiev could
provide us with the generated documents — at least the
smaller sizes.

3.2 Queries
Except from XMark, not all queries of the benchmarks were
publicly available in a form that complies with the latest
XQuery syntax requirements. In fact, 62 out of the total
163 benchmark queries were not available as valid XQuery
queries. Our thanks go to Loredana Afanasiev [4] for mak-
ing these queries compliant with the latest XQuery require-
ments2, so that they can be processed by most of the consid-
ered XQuery processors. Some queries still give syntactical
or runtime errors with some of the engines, mainly due to
limitations of the respective engines (see Section 6.1 for de-
tails).

4. THE SYSTEMS
To be included in our evaluation, XQuery processors need
to fulfill the following criteria:

• free public availability, either in open source, or at least
as a binary (evaluation) version;

• running under Linux on an x86 64 (AMD 64) or x86
(Intel i686) platform;

• supporting (a reasonable subset of) XQuery.

2cf., http://staff.science.uva.nl/∼lafanasi/xcheck/queries.html

While there might be more systems fulfilling these criteria,
we limit our evaluation to the following ones:

Engine Version Code Bits

M MonetDB/XQuery [7] 0.14.0 C 64
X X-Hive/DB [16] 7.2.2 Java 64
B BerkeleyDB/XML [5] 2.2.13 C/C++ 64
S Saxon-B [14] 8.7.1 Java 64
G Galax [9] 0.6.10 OCaml 64
Q Qizx/Open [12] 1.0 Java 64

The first three are XML/XQuery database systems, the last
three are stand-alone (file-based) XQuery processors.

4.1 Compilation
While all chosen XQuery engines are publicly available, there
is no unified way to install all of them. Neither are all en-
gines available as ready-to-run packages suitable for our ex-
perimentation platform (cf., Section 6.2), nor are all of them
available in open source. In the following, we briefly describe
how we installed each engine.

X-Hive/DB, Saxon-B, Qizx/Open: For the 3 Java-
based engines, we use the pre-compiled .jar packages, even
if the source code is available as well.

The remaining three engines — MonetDB/XQuery, Berke-
leyDB/XML, Galax — are all are available in open source.
Hence, we compiled them optimized for our experimentation
platform.

Galax: As recommended on the Galax web-site, we used
the GODI installation and configuration tool to automati-
cally compile and install a 64-bit version of Galax from the
sources. We used the default optimization switches for the
OCaml compiler, as GODI does not allow to change them
(easily).

MonetDB/XQuery: We use the 64-bit, 32-bit OIDs bi-
nary RPMs as available from MonetDB’s SourceForge site.
These packages have been compiled with full optimization
(‘configure --enable-optimize‘3).

BerkeleyDB/XML: We compiled a 64-bit version of the
sources using gcc/g++ 4.0.2 and the same optimization swit-
ches3 as with MonetDB/XQuery.

3gcc -O6 -fexpensive-optimizations -falign-loops=4
-frerun-loop-opt -funroll-loops -falign-jumps=4
-finline-functions -frerun-cse-after-loop
-falign-functions=4 -fomit-frame-pointer

(In fact, we planned to analyze the impact of compiler op-
timization switches — mainly the difference between the
default -g -O2 and the excessive list used here — as well as
the impact of using different compilers, e.g., the Intel com-
piler, on the various open source systems. However, time
and resource limitations forced us to postpone this analysis.
We plan to perform it and report the results as soon as time
and resources allow it.)

4.2 Configuration
The basic idea is to use the default “out-of-the-box” con-
figuration of the systems. We only applied some minor
configurations related to memory. Given that we are us-
ing a 64-bit machine with 8GB of main memory (see Sec-
tion 6.2 for details), we allow the Java virtual machine for all
Java-based systems to allocate up to 6GB of main memory
(‘java -mx6144m‘). Using the complete 8GB is not possi-
ble, as some system processes use some memory (probably
less than 2GB, but we did not spend time on finding the
maximum we could safely assign to Java; 6GB seemed to
work and be sufficient for moderate document sizes), and
our machine is configured to not allow memory allocations
that exceed the physical available memory. The latter is
an attempt to avoid instable behavior of our machine under
excessive virtual memory allocations.

In particular, we did not explicitly create any indices with
the database systems, though especially X-Hive and Berke-
leyDB/XML might benefit significantly from creating the
right indices for the right queries (cf., [7]). The main reason
for this decision was that we did not have enough in-depth
knowledge of all systems to tune all of them equally well, and
thus ensure a fair comparison. Hence, treating all systems
equally with “no tuning at all” seems the fairest approach
for now. In fact, investigating the impact/benefit of using
indices and further tuning would provide enough material
for a separate study of this kind.

4.3 Adapters
XCheck uses simple XML configuration files (“adapters”)
to specify the details how to call each individual engine and
how to collect the detailed timing information (if available)
from their output.

Saxon-B, Galax, Qizx/Open: For the stand-alone file-
based processors, we use the default adapters that come
with XCheck 0.1.3. In the following, we describe our new
adapters for the three database engines used here.

4.3.1 Starting Servers and Loading Documents
To model a “realistic” database usage scenario, we decided
to start the database server and pre-load the XML docu-
ments from the benchmarks’ document XML files into the
database only once per benchmark and document, not repet-
itively for each query. To implement this, we exploit the
concept of pre- and post-calls in the XCheck adapters. The
principle mechanism is sketched in Section 2.2. We now
discuss the details for each database engine.

MonetDB/XQuery: Our pre-call script starts the server
in daemon mode via

‘Mserver --set monet daemon=yes

--dbinit=’module(pathfinder);’‘.

Loading the document simply requires execution of query
Q0: count(doc("<doc uri>")[*]), exploiting the document
caching feature of MonetDB/XQuery: fn:doc() reads the
document from the given URI and stores it in the database.4

Subsequent fn:doc() calls with the same URI avoid reload-
ing the document, unless its timestamp has changed. The
respective post-call script stops the server by killing it.

X-Hive/DB: We start and stop the server via

‘XHStartServer‘ and ‘XHStopServer‘,

respectively. To load the documents, the execution script ex-
tracts the document URI from Q0 and calls a small Java pro-
gram (an adaptation of the sample StoreDocuments.java

that comes with X-Hive/DB) that stores the document in
the database and assigns it the filename from the URI for
later reference.

BerkeleyDB/XML: Though also a database system, Berke-
leyDB/XML does not have a client/server architecture, but
simply works as a stand-alone program that uses a persis-
tent database storage. Hence, our pre-call script only needs
to create a database, using the createContainer command
of the dbxml console application. To load documents, we
use the putDocument command of the dbxml console appli-
cation. Like with X-Hive/DB, we extract the URI from Q0
and assign the filename from the URI for later reference.

4.3.2 Running Queries
We use the following commands and respective commandline
options to execute XQuery queries (given in a file) with the
various engines.

Saxon-B:
‘java -cp saxon8.jar net.sf.saxon.Query‘.

Galax:
‘galax-run -output-xml‘.

Qizx/Open:
‘qizxopen batch -serial‘.

MonetDB/XQuery:
‘MapiClient -lxquery -oxml‘.

X-Hive/DB:
We adapted the sample XQuery.java that comes with the
distribution according to our needs.

BerkeleyDB/XML:
We use the query and print commands of the dbxml console
application to execute queries.

4By default, when loaded implicitly via doc("<doc uri>"),
MonetDB/XQuery keeps only documents up to 100 MB per-
sistent in the database; for our experiments, we raise the
limit to 20GB (--set xquery cacheMB=20000).

M X B S G Q
query translation + * + + +
query execution + * + + + +
result serialization + * + + +
document processing + * + + +
communication T− (tran + exec + seri + docu)
Total time + * XCheck

+: default *: self-made

Table 2: Which systems provides which timing

4.3.3 Measuring Time
While XCheck measures the overall evaluation time for each
query execution itself, it can also collect more detailed tim-
ing information from the engines. The various engines pro-
vide different means to get detailed timing information.

Saxon-B: The default adapter calls net.sf.saxon.Query

from saxon8.jar with the -t switch to get information about
tree build time (“Tree built in”), “Compilation time”,
and “Execution time”. The former two are taken as doc-
ument processing time and query translation time, respec-
tively. Query execution time is calculated as difference of
Execution time and Compilation time. Result serializa-
tion time is not available for Saxon-B.

Galax: The default adapter calls galax-run with the
-monitor-time on option to get the detailed timing for doc-
ument processing, query translation, query execution and
result serialization. (See also Section 5.2.)

Qizx/Open: The default adapter calls qizxopen batch with
the -tex switch to get information about “evaluation time”
and “display time” which are used as query execution time
and result serialization time, respectively. Document pro-
cessing time and query translation time are not available for
Qizx/Open.

MonetDB/XQuery: We call MapiClient with -T to get
the detailed timings for document processing (“Shred”),
query translation (“Trans”), query execution (“Query”), and
results serialization (“Print”). We also get the total execu-
tion time (“Timer”), overruling XCheck’s measurements.

X-Hive/DB: We add timing statements to the modified
sample applications (StoreDocuments.java & XQuery.java)
that measure the times taken by document loading, query
translation (rootLibrary.executeXQuery(theQuery);),
query execution (result.next();) and result serialization
(System.out.println(value.toString());). Like with
MonetDB/XQuery, we also measure the overall evaluation
time, overruling the measurement done by XCheck.

BerkeleyDB/XML: We call dbxml with -vv to get the
query translation time (“Optimizer - Finished parse,

time taken”) and query execution time (“Query - Finished
query execution, time taken”). Additionally, we use the
time prefix with the putDocument and print commands to
get the document processing time and result serialization
time, respectively. Alternatively, we also could use the time

prefix with the query command to get the sum of query

translation time and query execution time. However, in
many cases, it turned out that none of these timings can
be trusted (see Section 5.2).

Table 2 summarizes, which engine provides which timing
information. For the database engines (MonetDB/XQuery,
X-Hive/DB, BerkeleyDB/XML), the document processing
time represents only the time required to load, parse and
process the original XML document in order to store it in
the database. Any costs for accessing the document once
it is stored in the database are included in the query pro-
cessing times and/or communication times (cf., Section 5.2).
Please note that the classification of detailed timings given
here is based on the semantics we could easily derive from
the respective systems’ documentation (as far as available).
There is no guarantee that all systems use the same seman-
tics and/or definition for these detailed timings.

5. THE EXPERIMENTS
Finally, we are ready to run our experiments. To ensure that
the measured performance results do indeed make sense, we
need to make sure that all engines work properly, with re-
spect to both the actual XQuery processing and the collec-
tion of detailed timing information.

5.1 Checking/Validating Results
Given our extended (purely practical) experience in software
testing and validation5, our first concerns are not the actual
performance results, but rather the question whether the
various engines indeed produce the correct results. Unfortu-
nately, the benchmarks do not come with correct results. In
fact, this is hardly feasible, given the randomness built into
most document generators for good reasons. Moreover, even
with correct results provided, validating the actual results
requires more than a simple diff, as both XQuery seman-
tics and XML specifications allow for some variation that
cannot easily be recognized as equivalent. For the smallest
document size of each benchmark, we did “by hand” verify
“consistency” among the engines, i.e., all engines yield the
same result for each query. For the remaining document
sizes, we are left with what XCheck offers us. First, XCheck
detects engine-specific error messages, using regular expres-
sions given in the adapters. Second, XCheck collects the
sizes of the produced query results. Though we do not have
the resources to analyze this in detail, a quick comparison
reveals that the all engines produce results “of similar size”
for all document sizes and each query processed without er-
rors.

5.2 Checking/Validating Timings
Already shortly after starting the experiments, we noticed
that there were some inconsistencies with the detailed tim-
ings of some of the systems. Basically, the breakdown tim-
ings (document processing, query translation, query execu-
tion, result serialization) did not always add up to the total
evaluation time. In most cases, the sum was less than the
total; we assume that this is due to start-up and communi-
cation costs that are not included in the detailed timings.
Once the execution time (per query) exceeds one minute
(60 seconds), the detailed timings reported by Galax are so
small, that their sum is only a minor fraction of the total

5cf., http://monetdb.cwi.nl/TestWeb/

execution time. We guess that the respective code is not cor-
rect, and hence, consider these timings as unreliable. In our
graph in the next section, we hence depict these “missing
times” as communication times.

More severe are the cases where the sum of the detailed
timings exceed the total times (often significantly). This is
mainly the case with BerkeleyDB/XML, regardless which of
the alternatives we use to get the query execution times (cf.,
Section 4.3.3). Apparently, there is some bug in the code
that measures the respective times in BerkeleyDB/XML. In
the breakdown graphs in the next section, we mark these
“excess times” as (void). In the scalability graphs, we use
the total times as measured by XCheck.

6. EXPERIMENTAL RESULTS
Figures 1 through 18 present a subset of the performance
results that we collected from our exhaustive experiments,
running all benchmarks with various document sizes, as de-
picted in Table 1. To avoid “endless” runs, we limit the
execution time for each single query to at most one hour
(3600 seconds). Only for loading documents (query Q0), we
allow up to one day (24 hours).

The goal of this work is not to crown a single best system
nor to advise users which system to use for their purpose.
Rather, we want to provide detailed information and in-
sights such that in particular developers can draw their own
conclusions as to whether, where and how to improve their
systems. Of course, also users are welcome to draw their
own conclusions from the detailed results that we provide.

On the y-axis of all graphs, we list all queries of the re-
spective benchmark, identified by their number on the right-
hand size of each graph. “load doc.” identifies the document
loading query Q0 as introduced in Sections 2.2 & 4.3. For
each query, we list all six engines, identified by their first let-
ter on the left-hand side of each graph. For each benchmark,
we show two plots.

Execution time breakdown. For one sample document
size per benchmark, the graphs on the left-hand side (“odd”
Figures 1, 3, ..., 176) depict the relative contribution of the
detailed timings to the total evaluation time per engine and
query. The different sections of the horizontal bars represent
the various detailed timings, provided they are reported by
the respective engine (cf., Section 4.3.3):

tran: query translation
exec: query execution
seri: result serialization
comm: communication (cf., Section 5.2)
docu: document processing
(void): wrongly reported times that exceed

the actual total times (cf., Section 5.2).

As mentioned in Section 4.3.3, the detailed definition and
semantics of these breakdown times are not standardized
and can vary between the systems.

6A full-color version of this paper is available on-line at
http://www.cwi.nl/htbin/ins1/publications?request=abstract&key=Ma:TR-CWI:07

E01: preceding axis not supported (see Section 6.1)

E02: parsing / (static) typing
- Qizx/Open: MBench QA2; X007 Q23; XBench-DC/MD

Q4,17; XBench-DC/SD Q17,20; XMach-1 Q3; XMark
Q3,11,12,18.

E03: invalid variable reference (see Section 6.1)

E04: fatal XQuery compiler error (see Section 6.1)

E05: materialization out of bounds (see Section 6.1)

E06: out of memory (see Section 6.1)

E07: out of Java heap space
- Saxon-B: MBench QS6,J1-4 (496MB), Q0-A6 (4.8 GB);

XBench-TC/MD Q0-19 (≥2666 docs / 1.1 GB);
XBench-TC/SD Q0-19 (≥1.1 GB); XMark Q1,4,6,7,18,19
(1.1GB), Q0-20 (11GB).

- Qizx/Open: MBench QA4 (496MB), Q0-J2 (4.8GB);
XBench-TC/MD Q0-19 (26666 docs / 16 GB);
XBench-TC/SD Q0-19 (11 GB); XMark Q0-20 (11GB).

E08: segmentation fault
- BerkeleyDB/XML: MBench QS12 (≥496MB).
- Galax: X007 Q19 (≥2x 44 MB); MBench QS35 (≥496MB);

XBench-DC/SD Q0-20 (1.1GB); XMark Q0-20
(≥1.1 GB).

E09: abort
- BerkeleyDB/XML: XBench-TC/SD Q2,17,18 (≥1.1 GB);

XMark Q7 (≥1.1 GB), Q20 (11 GB).

E10: unknown error/crash (cf., Sec. 6.1)
- X-Hive/DB: MBench QS12 (≥496MB); X007 Q19 (2x

129MB).
- BerkeleyDB/XML: MBench QS1,2,A2,6,QR1-A6 (4.8GB);

X007 Q14,15, Q19 (2x 129MB); XBench-TC/MD Q19;
XBench-TC/SD Q3,6,9,10 (≥1.1 GB); XMach-1 Q3,7;
XMark Q6,14 (≥1.1 GB), Q2-4,13,15-19 (11GB).

E11: cast not applied to a single atomic value
- Galax: XMark Q3 (≥1.1 MB). (new since [11])

doc: document loading failed
- MonetDB/XQuery: XBench-TC/MD Q1-19

(26666 docs / 16GB); XBench-TC/SD Q1-19 (11GB).

DNF: timeout (>1 h)
- MonetDB/XQuery: MBench QS12,A4,J1-4 (≥496MB), QS33

(4.8GB); XBench-DC/MD Q19 (25925 docs / 100 MB);
XBench-TC/MD Q0 (26666 docs / 16 GB; >24 h);
XBench-TC/SD Q0 (11 GB; >24 h);
XMark Q10,11,12,19,20 (11 GB).

- X-Hive/DB: MBench QA4 (≥496MB); XBench-TC/SD Q3
(≥1.1 GB); XMach-1 Q7 (10000 docs / 174MB); XMark
Q8,9,11,12 (≥110MB), Q10,19 (11GB).

- BerkeleyDB/XML: MBench QJ2, QS35,A4,J1,3,4
(≥496MB); XBench-TC/MD Q18 (26666 docs / 16 GB);
XBench-TC/SD Q2-19 (11 GB); XMark Q8,9,11,12
(≥110MB), Q10 (≥1.1 GB).

- Saxon-B: MBench QA2,4 (≥496MB); XMark Q8-12
(1.1GB).

- Galax: MBench QA4,J1-4, QS12,25,33 (≥496MB), Q0-A6
(4.8GB); X007 Q0,6 (2x 129 MB); XBench-TC/MD
Q0,2-19 (≥2666 docs / 1.1 GB), Q1 (26666 docs / 16GB);
XBench-TC/SD Q0-19 (≥1.1 GB); XMach-1 Q2,7
(10000 docs / 174MB).

- Qizx/Open: MBench QJ3,4 (≥496MB); XBench-TC/SD
Q3 (≥1.1 GB); XMark Q10 (1.1GB).

lic: 30-days evaluation license expired
- X-Hive/DB: MBench Q0-A6 (11GB), QJ1-4;

XBench-TC/MD Q0-19 (26666 docs / 16 GB);
XBench-TC/SD Q0-19 (11 GB).

Table 3: Errors and Error Codes used in Fig. 1–18

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

XMach-1 10000 documents (174MB)

lo
ad

 d
oc

.

E02

E10

E10
DNF

DNF

DNF

tran exec seri comm docu (void)

Figure 1: XMach-1: Execution time breakdown

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

XMach-1

lo
ad

 d
oc

.

time limit: 1h

3600

E02

E10

E10
DNF

DNF

DNF

100 docs (2.3MB) 1000 docs (18MB) 10000 docs (174MB)

Figure 2: XMach-1: Scalability

Scalability. The graphs on the right-hand side (“even” Fig-
ures 2, 4, ..., 186) depict the total times (wall-clock) for all
document sizes of each benchmark. The execution time per
engine, query and document is the length of the respective
horizontal bar taken from the left margin of the graph, i.e.,
bars for smaller documents cover the left part of the bars
of larger documents. To accommodate the results for all
document sizes of one benchmark in one graph, we use a
logarithmic scale (decimal base) for the x-axis of the scala-
bility graphs.

All reported results are collected using XCheck as described
in the previous sections. In particular, the measured times
represent the average of the last three of four consecutive
runs, i.e., “hot” results, neglecting the first “warm-up” run
(cf., Section 2.1).

6.1 Errors
Some queries fail to execute successfully. Table 3 lists all
errors that occur with all our experiments. We use the er-
ror codes (E01–E11, doc, DNF) from Table 3 to indicate the
errors in Figures 1–18. In the “Scalability” figures, the er-
ror codes are depicted in the color of the smallest document
size that the respective error occurs with. In various cases,
the “unknown error/crash” (E10) could actually be caused
by the fact that we kill the respective engine (or client) due
to a timeout, in which case they should rather read DNF.
However, we did not check this by hand in all cases.

For ease of comparison, we use the same error codes as in
[11], although errors E01, E03–E06 do not occur any more.
The respective problems with MonetDB/XQuery 0.10.2 and
Galax 0.5.0 (used in [11]) have been fixed in the newer ver-
sion used here (MonetDB/XQuery 0.14.0 and Galax 0.6.10).

6.2 Hardware & Operating System
Our experimentation platform is a dual 1.6GHz AMD Op-
teron 242 (1MB L2 cache) processor with 8GB RAM and a
RAID-5 disk subsystem (3ware 7810, configured with eight
250GB IDE disks of 7200RPM). The operating system is
Fedora Core 4 (Linux 2.6.14 kernel), using a 64-bit address
space. We use gcc/g++ 4.0.2 and Java 1.5.0 (64-bit).

7. CONCLUSIONS
First of all, we can conclude that our exercise demonstrates
the feasibility of such an extensive and detailed experiment
— though is requires quite some work, time, and resources.
We describe our experimental setup in detail and explain,
how we tackle various problems to reach our ambitious goal.
We hope, we provide all information that is necessary and
sufficient to reproduce our results.

As expected, the actual performance results do not crown
a single winner. However, some general trends can be ob-
served. In a realistic database scenario, i.e., with the doc-
uments pre-loaded in the database, the database engines
perform considerably better (up to two orders of magni-
tude) than the file-based stand-alone systems. Even if we
add the initial document loading times, they are often still
faster, but hardly ever slower. In pure document load-
ing performance (query Q0), MonetDB/XQuery, Saxon-B
and Qizx/Open lead the race neck-to-neck; X-Hive/DB and
BerkeleyDB/XML follow within a factor 2–3; Galax runs
about factor 10 behind the leaders. While all systems have
their strengths and weaknesses, MonetDB/XQuery seems
to be ahead of the pack in most cases, usually followed (in
that order) by BerkeleyDB/XML, X-Hive/DB, Qizx/Open,
Saxon-B, and finally Galax. Join recognition and processing
(still) seems to be the biggest challenge to be solved.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

19

17

16

14

12

11

10

9

8

7

6

5

4

3

1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

XBench-DC-MD normal (25925 documents; 100MB)

lo
ad

 d
oc

.

E02

E02
DNF

tran exec seri comm docu (void)

Figure 3: XBench-DC/MD: Execution time breakdown

Compared to [11], we upgraded two systems to newer ver-
sions. For MonetDB/XQuery, version 0.10.2 has been re-
placed by version 0.14.0, and for Galax, version 0.5.0 (pre-
compiled 32-bit binary) has been replaced by version 0.6.10,
which we compiled from the source into a 64-bit binary
(cf., Section 4.1). For single-document benchmarks, the
performance of MonetDB/XQuery 0.14.0 is within 20% of
the performance of MonetDB/XQuery 0.10.2. With multi-
document benchmarks, however, MonetDB/XQuery 0.14.0
shows an improvement of up to three orders of magnitude.
The new (64-bit) version of Galax runs much more stable
and with much less memory problems than the old (32-
bit) one. In particular, it is now able to successfully run
the XMark join queries (Q8,9,11,12) on documents of up
to 110MB (sf=1). However, overall scalability has hardly
improved, and overall performance has dropped by a factor
2–5.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

19

17

16

14

12

11

10

9

8

7

6

5

4

3

1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

XBench-DC-MD

lo
ad

 d
oc

.

time limit: 1h

3600

E02

E02
DNF

small (2597 docs; 9.9MB) normal (25925 docs; 100MB)

Figure 4: XBench-DC/MD: Scalability

For the future, we plan to extend the scenario in various di-
mensions, e.g., including more systems (e.g., eXist [1]) and
benchmarks (e.g., XPathMark [10], MemBeR [3]), consid-
ering other compilers and optimization flags, using different
hardware and operating systems, etc.. The goal is not to find
the single best setup, but rather to show that all these often
neglected factors can influence experimental results consid-
erably. Hence, all reports of experimental results should
reveal all these information explicitly in order to (1) provide
all information to make the results reproducible, and (2) to
put them in the right perspective. Finally, we hope that our
experiences with XCheck will help to improve and extend
this convenient experimentation tool.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

20

19

17

14

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

XBench-DC-SD normal (104MB)

lo
ad

 d
oc

.

E02

E02

tran exec seri comm docu (void)

Figure 5: XBench-DC/SD: Execution time breakdown

8. REFERENCES
[1] eXist. http://exist.sourceforge.net/.

[2] L. Afanasiev, M. Franceschet, M. Marx, and
E. Zimuel. XCheck: a Platform for Benchmarking
XQuery Engines. In VLDB, 2006. Demo.
http://ilps.science.uva.nl/Resources/XCheck/.

[3] L. Afanasiev, I. Manolescu, and P. Michiels. MemBeR:
A Micro-benchmark Repository for XQuery. In XSym,
2005.

[4] L. Afanasiev and M. Marx. An Analysis of the
Current XQuery Benchmarks. In ExpDB, 2006.

[5] Berkeley DB XML.
http://www.sleepycat.com/products/bdbxml.html.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

20

19

17

14

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

XBench-DC-SD

lo
ad

 d
oc

.

time limit: 1h

3600

E02

E02

small (11MB) normal (104MB) large (1.1GB)

Figure 6: XBench-DC/SD: Scalability

[6] T. Böhme and E. Rahm. XMach-1: A benchmark for
XML data management. In BTW, 2001.
http://dbs.uni-leipzig.de/de/projekte/XML/

XmlBenchmarking.html.

[7] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold,
J. Rittinger, and J. Teubner. MonetDB/XQuery: A
Fast XQuery Processor Powered by a Relational
Engine. In SIGMOD, 2006.
http://monetdb-xquery.org/.

[8] S. Bressan, G. Dobbie, Z. Lacroix, M. Lee, Y. Li,
U. Nambiar, and B. Wadhwa. X007: Applying 007
benchmark to XML query processing tool. In CIKM,
2001. http://www.comp.nus.edu.sg/∼ebh/XOO7.html.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

19

18

17

14

13

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

XBench-TC-SD normal (104MB)

lo
ad

 d
oc

.

tran exec seri comm docu (void)

Figure 7: XBench-TC/SD: Execution time breakdown

[9] M.F. Fernández, J. Siméon, B. Choi, A. Marian, and
G. Sur. Implementing XQuery 1.0: The Galax
Experience. In VLDB, 2003.
http://www.galaxquery.org/.

[10] M. Franceschet. XPathMark: An XPath Benchmark
for the XMark Generated Data. In XSym, 2005.

[11] S. Manegold. An Empirical Evaluation of XQuery
Processors. In ExpDB, 2006.
http://www.cwi.nl/htbin/ins1/publications?

request=abstract&key=Ma:EXPDB:06.

[12] Qizx/Open. http://www.axyana.com/qizxopen/.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

19

18

17

14

13

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

XBench-TC-SD

(1.2h)

lo
ad

do
c.

time limit: 1h

3600

(>24h)DNF

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E06

E09

E09

E09

E10

E10

E10

E10

DNF

DNF

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

small (11MB) normal (104MB) large (1.1GB) huge (11GB)

Figure 8: XBench-TC/SD: Scalability

[13] K. Runapongsa, J. Patel, H. Jagadish, Y. Chen, and
S. Al-Khalifa. The Michigan Benchmark: A
Microbenchmark for XML Query Processing Systems.
In EEXTT, 2002.
http://www.eecs.umich.edu/db/mbench/.

[14] Saxon-B. http://saxon.sourceforge.net/.

[15] A. Schmidt, F. Waas, M.L. Kersten, M.J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for
XML Data Management. InVLDB, 2002.
http://xml-benchmark.org/.

[16] X-Hive/DB. http://www.x-hive.com/products/db/.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

XBench-TC-MD normal (266 documents; 97MB)

lo
ad

 d
oc

.

E10

tran exec seri comm docu (void)

Figure 9: XBench-TC/MD: Execution time breakdown

[17] B. Yao, T. Özsu, and N. Khandelwal. XBench
benchmark and performance testing of XML DBMSs.
In ICDE, 2004.
http://se.uwaterloo.ca/∼ddbms/projects/xbench/.

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

XBench-TC-MD

(1.5h)

lo
ad

do
c.

time limit: 1h

3600

E07

E07

E10

(>24h)DNF

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

doc

DNF

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

small (26 docs; 9.1MB)
normal (266 docs; 97MB)

large (2666 docs; 1.1GB)
huge (26666 docs; 16GB)

Figure 10: XBench-TC/MD: Scalability

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

XMark sf=0.1 (11MB)

lo
ad

 d
oc

.

E02

E02

E02

E02

E11

tran exec seri comm docu (void)

Figure 11: XMark: Execution time breakdown

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

XMark

lo
ad

 d
oc

.

time limit: 1h

3600

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

DNF

DNF

DNF

DNF

DNF

E07

E07

E07

E07

E07

E07

E07

E07

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E08

E02

E02

E02

E02

DNF

E11

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E09

E09

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

sf=0.001 (110KB)
sf=0.01 (1.1MB)

sf=0.1 (11MB)
sf=1 (110MB)

sf=10 (1.1GB)
sf=100 (11GB)

Figure 12: XMark: Scalability

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

XOO7 med3 (2x 44MB)

lo
ad

 d
oc

.

E10

E10

E02

E08

tran exec seri comm docu (void)

Figure 13: X007: Execution time breakdown

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

23

22

21

20

19

18

17

16

15

14

13

12

11

10

9

7

6

5

4

3

2

1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

XOO7

lo
ad

 d
oc

.

time limit: 1h

3600

E10

E10

E02

DNF

DNF

E10
E10

E08

small3 (2x 4.5MB)
small6 (2x 8.7MB)

small9 (2x 13MB)
med3 (2x 44MB)

med6 (2x 86MB)
med9 (2x 129MB)

Figure 14: XOO7: Scalability

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

S20

S19

S18

S17

S16

S15

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

R4

R3

R2

R1

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

MBench sf=1 (496MB)

lo
ad

 d
oc

.

E10

E10

E10

E02

DNF

E10

DNF

DNF
DNF

DNF

DNF

lic

lic

lic

lic

E07

DNF
E10
E08
DNF

DNF

DNF

E08
DNF

DNF

DNF
DNF
DNF
E07

DNF
E07

E07

DNF
E07
DNF

DNF
E07
DNF

DNF

DNF

DNF

DNF

DNF

tran exec seri comm docu (void)

Figure 15: MBench: Execution time breakdown (1/2)

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

S20

S19

S18

S17

S16

S15

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

R4

R3

R2

R1

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

MBench time limit: 1h

3600

lo
ad

do
c.

(2h)

E10

E10

E07

DNF
E10
E08

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E10

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E06

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

DNF

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

E07

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

sf=0.1 (46MB) sf=1 (496MB) sf=10 (4.8GB)

Figure 16: MBench: Scalability (1/2)

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0 20 40 60 80 100

J4

J3

J2

J1

A6

A5

A4

A2

A1

S35

S34

S33

S32

S31

S30

S29

S28

S27

S26

S25

S24

S23

S22

S21

En
gi

ne
s

Q
ue

rie
s

evaluation time breakdown (%)

MBench sf=1 (496MB)

lo
ad

 d
oc

.

E10

E10

E10

E02

DNF

E10

DNF

DNF
DNF

DNF

DNF

lic

lic

lic

lic

E07

DNF
E10
E08
DNF

DNF

DNF

E08
DNF

DNF

DNF
DNF
DNF
E07

DNF
E07

E07

DNF
E07
DNF

DNF
E07
DNF

DNF

DNF

DNF

DNF

DNF

tran exec seri comm docu (void)

Figure 17: MBench: Execution time breakdown (2/2)

Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M
Q
G
S
B
X
M

 0.01 0.1 1 10 100 1000 10000

J4

J3

J2

J1

A6

A5

A4

A2

A1

S35

S34

S33

S32

S31

S30

S29

S28

S27

S26

S25

S24

S23

S22

S21

En
gi

ne
s

Q
ue

rie
s

evaluation time (sec)

MBench time limit: 1h

3600

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07

E10
E07
DNF
E07
DNF
E10
E07
DNF
E07

E10
E07
DNF
E07

DNF
E07
E08
E07

E10
E07
DNF
E07

E10
DNF
DNF

E02
DNF
DNF
DNF
DNF

DNF
E07

E10
E07
DNF
E07

E10 E10
E07
DNF
E07
DNF
DNF
E07

DNF
E07
DNF

DNF
E07

DNF
E07
DNF
DNF
E07

DNF
DNF
DNF
DNF
E07

DNF
DNF

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

lic

sf=0.1 (46MB) sf=1 (496MB) sf=10 (4.8GB)

Figure 18: MBench: Scalability (2/2)

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Shift: none
 Normalise (advanced option): 'improved'

 32

 D:20070327072004
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 Full
 1106
 333

 None
 Left
 5.6693
 0.0000

 Both
 83
 AllDoc
 94

 CurrentAVDoc

 Uniform
 14.1732
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0c
 Quite Imposing Plus 2
 1

 0
 15
 14
 15

 1

 HistoryList_V1
 qi2base

