
A Framework for Semantic Grouping in P2P Databases⋆

Verena Kantere, Dimitrios Tsoumakos and Timos Sellis

School of Electr. and Comp. Engineering, National Technical University of Athens,
vkante@dbnet.ece.ntua.gr,
dtsouma@cslab.ece.ntua.gr,
timos@dbnet.ece.ntua.gr

Abstract. Sharing of structured data in decentralized environments is a chal-
lenging problem, especially in the absence of a global schema. Social network
structures map network links to semantic relations between participants in order
to assist in efficient resource discovery and information exchange. In this work,
we propose a scheme that automates the process of creating schema synopses
from semantic clusters of peers which own autonomous relational databases. The
resulting mediated schemas can be used as global interfaces for relevant queries.
Active nodes are able to initiate the group schema creation process, whichpro-
duces a mediated schema representative of nodes with similar semantics.Group
schemas are then propagated in the overlay and used as a single interface for rel-
evant queries. This increases both the quality and the quantity of the retrieved
answers and allows for fast discovery of interest groups by joining peers. As
our experimental evaluations show, this method increases both the quality and
the quantity of the retrieved answers and allows for faster discovery of semantic
groups by joining peers.

1 Introduction

In the last few years, there has been a growing interest in thePeer-to-Peer (P2P) com-
puting paradigm, primarily boosted by popular applications that enable massive data
sharing among millions of users. The P2P paradigm dictates afully distributed, cooper-
ative network design, where nodes collectively form a system without any supervision.
Many popular P2P applications (e.g., Gnutella [15]) operate on unstructured networks,
with peers joining and leaving the system in an ad-hoc fashion, while maintaining only
local knowledge. While structured overlays (e.g., [39]) provide efficient lookup opera-
tions, in many realistic scenarios the topology cannot be controlled and thus they cannot
be used (e.g., dynamic ad-hoc networks or existing large-scale unstructured overlays).

In the variety of P2P applications that have been proposed, Peer Data Management
Systems (PDMSs) (e.g., [17, 41]) hold a leading role in sharing semantically rich in-
formation. In a PDMS, each peer is an autonomous source that has a local schema.
Sources store and manage their data locally, revealing partof their schemas to the rest
of the peers. Due to the lack of global schema, they express and answer queries based
on their local schema. Peers also perform local coordination with their acquaintees,
i.e., their one-hop neighbors in the overlay. During the acquaintance procedure, the two

⋆ Extended version of a paper to appear in DEXA 2007.

II

Group
Schema

Q

Fig. 1. Query directed to-
wards a group schema

P2P Layer

DavisDB

StuartDB

LuDB

P2P Layer

P2P Layer

DavisD
B
:

Visits(
Pid, Date, Did
)

Disease (
Did
, DisDescr, Ache)

Treatment (
Did, Drug
, Dosology)

LuDB
 :

Disease(
Did
, AvgFever, Drug)

Patients(
Insurance#, Did, Age
, Ache)

StuartDB
:

Treatment(
Pid, Did, Date
, Symptom,

TreatDescr, DisDescr)

Fig. 2. Part of a P2P system with peer-databases from
the health environment

peers exchange information about their local schemas and create mediating mappings
semi-automatically [23]. The establishment of an acquaintance implies an agreement
for the performance of data coordination between the acquaintees based on the respec-
tive schema mapping. However, peers do not have to conform toany kind of data or
schema transformation to establish acquaintances with other peers and participate in
the system. The common procedure for query processing in such a system is the prop-
agation of the query on paths of bounded depth in the overlay.At each routing step,
the query is rewritten to the schema of its new host based on the respective acquain-
tance mappings. A query may have to be rewritten several times from peer to peer till it
reaches nodes that are able to answer it sufficiently in termsof quality but also quantity.

Several theoretical frameworks have been proposed for PDMSs [9,14,17,36]. These
frameworks aim at the provision of correct and complete semantics that distinguish
PDMSs from data integration systems and also handle inconsistency in such a way that
the system does not collapse in its presence. The works in [9,14] employ epistemic and
autoepistemic logic in order to achieve maximum peer autonomy w.r.t. both the local
semantics and the peer connectivity. Even though we acknowledge the efficiency of
these results, in this work we adopt a PDMS framework towardsthe lines of [17, 36],
sinceFirst Order Logicand therelational modelare more convenient for a practical
PDMS.

Assuming a social network organization in a PDMS, an interesting question is how
to automatically create a synopsis of the common interests of a group of semantically
related nodes. This will be a mediating schema representative of the group along with
its mappings with the local databases. Queries can then be expressed on this mediated
schema (see Figure 1). This functionality is desirable for multiple reasons:

First, it allows queries to be directed to a single, authoritative schema. In this way
query answers are more precise, since they come from the mostrelevant peers. More-
over, these peers receive a query version that has not been rewritten successively multi-
ple times, but only twice (i.e. from the original query to thegroup schema and from the
group schema to the peer that will answer the query), and mostimportantly, through a
mediating schema that is as lossless as possible in terms of semantics. Thus, the query
version that the relevant peers receive is not degraded so much as it is through multiple

III

successive rewritings [25,41]. Furthermore, using the group schema as the mediator of
query answering, is much less time-consuming.

Second, the group schema actively expedites the acquaintance between semanti-
cally related peers. It allows joining peers with little or no memory to be promptly and
favorably interconnected. Since group schemas can be periodically advertised inside the
network, each newcomer is able to make an “educated guess” asto which groups are
interesting to him. Hence, users with no prior exposure to the different (and possibly
numerous) schemas of remote nodes will save the time and bandwidth that a learning
process requires.

Finally, it minimizes human involvement in the process of creating/updating the
group schema. Until now, nodes have been organized by means of a human-guided
process (usually by one or more administrators and application experts) into groups of
peers that store semantically related data. The administrator, using schema matching
tools as well as domain knowledge, initiates and maintains these synopses. This ap-
proach requires manual work, extensive peer coordination and repetition of this process
each time the group changes.

The above advantages of group schema mediation in a PDMS would be unimpor-
tant if group schemas do not conform without major overhead to the vital P2P features
of autonomy and dynamicity. Thus, group schemas should be created and maintained
dynamically and in an automatic way. Moreover, group schemas should be adaptable
to the changes of semantics of the peers that participate in the PDMS. Therefore, they
should be able to evolve accordingly to the peer joining, leaving, or interest changing.

Motivating example
As a motivating example, envision a P2P system where the participating peers are
databases of private doctors of various specialties, diagnostic laboratories and databases
of hospitals. Figure 2 depicts a small part of this system, where the peer databases (or
else, pDBMSs) are: DavisDB - the database of the private doctor Dr. Davis, LuDB - the
database of pediatrist Dr Lu and StuartDB - the database of the pharmacist, Mr Stuart. A
P2P layer, responsible for all data exchange of a peer with its acquaintees, sits on top of
each database. Among others, the P2P layer is responsible for the creation and mainte-
nance of mappings of local schemas during the establishmentof acquaintances towards
the line of [23]. Moreover, each peer owns a query rewriting and a query-schema match-
ing mechanism. The schemas of the databases are shown in Figure 2.

We would like to automatically produce a merged schema for all three peers of our
example, semantically relevant to their local schemas. Such a merged schema could be
the following:
Disease/Sickness(Did, DisDescr, Symptom, Drug)

Visits/Patients(Pid/Insurance#, Did, Date, Age, Ache)
Treatment(Did,Drug, Dosology)

Obviously, in the merged schema we would like alternative names for relations or
attributes (separated by ‘/’ above). We would also like the merged schema to contain
relations or attributes according to their frequency in theset of local schemas. For ex-

IV

ample, the attributePatients.AvgFeveris not present, possibly because the respective
concept is not considered to be frequent in the set of local schemas.

In this paper, we describe a mechanism that operates on a semantically clustered flat
(i.e. without super-peers) PDMS and automatically createsrelational schemas that are
representative of the existing clusters. Given the semantic neighborhoods, our system
can initiate the creation of a mediating schemaSG that summarizes the semantics of the
participating database schemas. It is created by the gradual merging of peer schemas
along the path followed by the process. We callinterestor semantic groupsthe se-
mantic clusters that exist in social networks operating on PDMSs; moreover, we call
group schemathe inferred schema of the groupSG . SG holds mappings with each of
the peers involved in its creation and functions as a point ofcontact for all incoming
queries, whether from inside or outside the semantic neighborhood. Thus, requesters
of information need only maintain mappings and evaluate queries against one schema,
instead of multiple ones. The inferred groups are advertised after their creation and are
not managed by any specific peer. Furthermore, the inferred schemas are periodically
broadcast in the overlay, so that joining peers can direct their queries or participate in
groups similar to their interests. Group schemas are created and managed automatically
so that they are dynamically adapted to the change of peer semantics, due to peer join
and leave, as well as change in peer needs for information. Thus, group schemas are al-
ways representative of peer semantics, without any overhead of human interaction. Our
experimental evaluation shows that our group creation process increases both the accu-
racy and the number of answers compared to individually propagating and answering
queries in an unstructured PDMS.

In Section 2 we describe the basic notions of the framework that we consider and
give some essential formal definitions. In Section 3 we describe the core characteristics
of the inference procedure of the group schema. In Section 4 we present our experi-
mental results and Section 5 summarizes related work. Finally, Section 6 concludes the
paper.

2 Preliminaries

We assume a PDMS with a social-network organization of peers, i.e., semantically rel-
evant peer DBMSs are acquainted or close in the overlay. Thiscan be achieved ei-
ther manually or using one of the proposed schemes (e.g., [25, 34]). Peer schemas are
relational, (i.e., the only internal mappings are foreign key constraints). Acquainted
peers create and maintain schema mappings between them thatare of the widely-known
GAV/LAV/GLAV form [17, 27]. A mappingM that refers to the schemasS1, S2 of the
acquainted peers peersp1, p2, respectively, is stored locally in both of them. Peersp1

andp2 can employM in order to rewrite a query that is expressed on their local schema
(S1, S2, respectively) on the schema of the other peer, (S2, S1, respectively). Moreover,
peers do not carry additional semantic information about their schemas and mappings.

In our setting, semantics of peer schemas and data, are derived solely from the local
schemas, data and mappings between acquainted peers. We define a distinct concept of
a schemaS to be each elementR.A, whereA is an attribute of relationRof schemaS:

V

Definition 1. Considering a relational schema S, a distinct concept corresponds to
each R.A where A is an attribute of relation R∈ S.

A schema mapping between peers is actually a a set of concept correspondences
that hold under a set of conditions. The conditions are either attribute joins or attribute
value constraints. The following is the definition of a mapping:

Definition 2. Considering a source schema S and a target schema S′, a GAV/LAV/GLAV
mapping between them M(S,S′) is the set{CrM(S,S′),CondM(S,S′)}, where the set
of concept correspondences CrM(S,S′) = {R.A = R′.A′|R.A ∈ S,R′.A′ ∈ S′} holds un-
der the set of conditions CondM(S,S′) = {R1.A = R2.B or R1.A = const|R1,R2 ∈ S or
R1,R2 ∈ S′}; const is a data value.

Obviously, for each pair of concepts{R.A,R′.A′} that each belong to a different
schema,R.A∈ SandR′.A′ ∈ S′, and that are corresponded through a mappingM(S,S′),
there is one such pair inCrM(S,S′). A set of mappings betweenS,S′ is denoted as
M (S,S′).

Semantics are ’flooding’ from one peer to the other, through respective mappings:

Definition 3. For each correspondence R.A = R′.A′ ∈ CrM(S,S′) ∈ M(S,S′), the con-
cepts, R.A, R′.A′ are considered equivalent.

Extended discussion and details on acquaintance mappings,query rewriting, query
similarity etc can be found in [25].

3 Interest Group Creation

Our goal in creating a group schema is to represent the semantic clusters in a social
network using a distributed process that iteratively merges local schemas into the final
group schema that preserves their most frequent semantics.

In social network systems, nodes with relevant informationare close in overlay
distance. Yet, this semantic clustering is implicit, in that peers have no knowledge of
the number of the participants and their common characteristics. The need for explicit
knowledge of the semantic groups spread over a network has multiple advantages: First,
it enables peers to direct relevant queries promptly towards “authority” nodes. In many
distributed systems, new peers join the network using random entry points. Therefore,
they would like to be informed about the various semantic groups in which they could
participate and select acquaintees from. In addition, since most such systems exhibit a
highly dynamic behavior, with node arrivals/departures and possible schema or work-
load changes, meta-data on semantic groups can be refreshed. Nevertheless, clustering
w.r.t. the semantics of all peers requires constant maintenance whereas group mainte-
nance (w.r.t. only the group semantics) can be performed occasionally. Thus, it is easier
to maintain semantic groups than implicit semantic clusters. Nevertheless, it is essential
to the social network that these semantic groups are dynamic, in order to follow the
evolution of the content and structure of the overlay.

In the following we describe the inference procedure of explicit semantic groups in
social networks. Furthermore, we encounter the implications of multiple concurrent or
sequential inferences of distinct groups and we discuss management methods.

VI

3.1 Group Inference

In this section we describe the process through which a groupschema emerges from a
set of clustered nodes in our system. The group-inference procedure comprises of the
following steps:

– Initialization: Who and when initiates the group schema inference
– Propagation: How does the process advance among peers of thesame group
– Termination and Refinement: When is the process over/reiterated

Figure 3 summarizes the above steps that are described extensively in the following.

Group Inference Procedure
Input: The prospective initiator peerI
Output: The group schemaSIG

Initialization:P = I , i.e.ST(I) = /0, SIG = /0, #visitedpeers = 0,SP = SI , SIG = /0, M = /0, Mi

= /0, D = /0.
Step1: If I is notactiveabort the procedure.
Step2: Add appropriate acquaintees ofP to ST(I) and reorder the latter.
Step1: Augment #visitedpeersby one.
Step3: Call {S′IG, M ′

i , D′} = Schema Merging Algorithm(SIG, SP, M , Mi , D).
Step4: If (#visitedpeers =MaxP) then if theDoC(S′IG, SIG) is below a certain threshold,
then goto Step7; else goto Step5.
Step5: Select the next peer,P′, that corresponds to the next element in the stackST(I). Set
M equal to the set of mappings betweenP, P′; change attribute and relation names ofP in
M ′ to the respective names in the merged schemaS′IG.
Step6: SetSIG = S′IG, P = P′ go to Step2.
Step7: ReturnSIG.

Fig. 3.Group inference procedure

Initialization
The nature of our application requires that the group inference is performed in a dis-

tributed manner, without global coordination. Peers should be able to start the process
that creates the respective schema with minimum message exchange. In our system,
each member of the social group is eligible to initiate the inference process. Neverthe-
less, such groups may consist of numerous participants resulting in very frequent col-
lisions among competing initiators. Hence, we only allowactivemembers to become
the initiators of the process. This is enforced by a system-wide parameter that defines
the minimum number of queries posed in the most recent time frame. Intuitively, active
peers have a better knowledge of the social network and the schemas of the other par-
ticipants through the answers they receive. Moreover, since the network is semantically
clustered, the active peers have good knowledge of the semantic cluster(s) they belong
to.

VII

The initiator’s local schema becomes a point-of-referenceregarding the inferred
one. Thus, the peer schemas considered for the formation of the group schema should
not differ semantically a lot from the schema of the initiator. Specifically, we require
that the participating local schemas should be at leastt-similar to the initiator’s schema:
t is a parameter that mainly determines how specialized (onlypeers very similar to the
initiator considered) or general (a broad collection of peers participate in the process)
the inferred schema will be. The initiator peer is called theoriginator of the group, its
schema is theorigin of the group schema and the maximum similarity distance between
the origin and the peer schemas that participate in the groupschema inference is the
semantic radiusof the group.

The following function calculates thedirectedsemantic similarity,SS, of two rela-
tional schemas:

SS(S,T) =
∑i ∑ j wi j MappedT(SRi j)

∑i ∑ j wi j SRi j
(1)

In function 1,SRi j is the j th attribute of theith relation ofS. S is the source schema
and T is the target schema.SScalculates the portion ofS’s attributes (SR) that are
mapped onT. Specifically,SSis the average sum of the weighted sum of all the at-
tributes ofSthat correspond to attributes ofT through mappings. Thus,MappedT(SRi j)
is a boolean function that gives 1 ifSRi j is mapped to some attribute in schemaT, or
it gives 0, otherwise. Also,wi j > 1 for attributes ofS that belong to relation keys and
wi j = 1 otherwise. Obviously,SS(S,T) 6= SS(T,S) in general.SSachieves to measure
semantic similarity because it takes into consideration the mapping of concepts be-
yond their structural interpretations on the schema level.Moreover, sinceSSignores
the schema structure, it is very easily calculated.

Propagation
The initiatorI , with schemaSI of the inference process initializes the group schema

to its own and creates a stackST(I) with its acquaintees that are part of the cluster.
Specifically,ST(I)= {A1,A2, ...,Am} is an ordered set of elementsA j = {Pj ,SS(SI ,SPj)},
wherePj is a peer with schemaSPj . ElementsA j refer to theI ’s most similar acquain-
tees:SS(SI ,SPj) ≥ t, j = 1, ..,m and SS(SI ,SPj) ≥ SS(SI ,SPj+1), j = 1, ..,m− 1. The
initiator propagates the inference procedure to the first peer on the stack. The latter is
supposed to merge its own schema with the group schema it receives according to the
merging procedure described in the next subsection. The stack ST dictates a network
path that corresponds to the peer order of the stack ST(I). Every peerP (beyond the ini-
tiator) on the network path that the inference process follows, determines its acquaintees
Pj for whichSS(SI ,SPj)≥ t, adds the respective pairPj , SS(SI ,SPj), toST(I) and orders
the latter. Any peerP on the inference process path calculatesSS(SI ,SPj) indirectly, as
the product:SS(SI ,SP) ·SS(S′P,SPj), whereS′P is the part ofSP mapped onSI . Essen-
tially, SS(SI ,SP) aims to measure how much of the semantics ofSI can be found on
schemaSP, independently of other semantics that the latter captures. The only way to
measure this (without automatic matching) is through the chain of mappings ofSI all
the way toSP. As such, the value ofSS(SI ,SP) depends on the path that the inference
process follows and fails to consider concepts that exist both in SI andSP but did not
exist in the schemas of intermediate nodes. However, this formula produces a satisfac-
tory result, since nodes are visited in decreasing order of similarity with I and clustering

VIII

precedes this process, so a peerP will have higher similarity with the originator than
successor nodes in the stack1. Moreover, if a peerP already inST(I) is considered for
addition, the entry with the highestSS(SI ,SP) value is kept.

Even though the participation or not of peers in the inference process is judged by a
part of their schemas, their whole schema contributes to theinferred group schema (see
subsection 3.2). Intuitively, the goal of the inference process is to produce a schema
that represents semantics encapsulated in the cluster. In order to determine the clus-
ter’s semantic borders we use as a reference the semantics ofthe initiator. In this way
the process is safe from producing a schema too much broader or distorted from the
interests of the initiator.

Termination
As aforementioned, the group inference procedure ends whenthe stack of partic-

ipating peers becomes empty. However, if too many peers own schemas very similar
to the originator’s schema or the similarity thresholdt is too small (i.e. the semantic
radius of the inferred group is big), then it may be the case that the stack is provided at
each step with a lot of new entries. Thus, the inference procedure is prolonged taking
into account a big number of peers. After a certain number of iterations, there is usually
no point of considering more peer schemas in the inference procedure, because they do
not alter the schema significantly. In order to reduce the time of the inference and save
the network from spending resources on pointless iterations of the procedure, we add
a limit to the maximum number of encountered peer schemas,MaxP, as a termination
condition. A smallMaxPvalue implies the desire for more specialized groups.MaxPis
not aTime To Live(hereafter TTL) condition, since successive hops are not always on
the same path;MaxP refers to the total number of participating nodes and not just the
nodes on one path.

Finally, there may be situations where the inference procedure terminates due to
MaxP while important semantic information is still added, or continues untilMaxP
is reached while little information is assimilated. To rectify this, we also consider the
degree of change, or elseDoC, that occurs to the inferred schema during each merging
step. Note that this threshold should be taken into account for termination afterMaxP
is reached. Otherwise, in case of a well clustered network, the inference procedure will
terminate after one or a few steps. Nevertheless, in case of apoorly chosenMaxPvalue,
this criterion can be used to calibrate this parameter.

3.2 Group Schema Creation

As aforementioned, the inference of the interest group schema is achieved gradually by
merging the schemas of peers on consecutive steps of the paththat the merging proce-
dure follows. In this section we present the algorithm that performs schema merging
between two peer schemas.

The goal of the merging procedure is to produce a schema that represents the se-
mantics of the majority of the peers that belong to the respective cluster. Therefore, the

1 Assuming a path of three peers with schemasS1, S2 andS3 in a clustered overlay,SS(S1,S2) ·
SS(S′2,S3) is able to give us a value that is close to the real value ofSS(S1,S3). The reason is
thatS2 is a schema that maps most of the semantics ofS1 andS′2 is very similar toS2.

IX

merged schema is neither the intersection nor the union of the schemas of the members
of the cluster. Assuming that such a cluster comprises numerous peers, it is straight-
forward that the intersection of their schemas would be probably empty and their union
would be a huge schema with specific semantics being represented multiple times. Thus,
we need a merging procedure that keeps in the merged schema the most popular con-
cepts of the respective peer schemas. Yet we aim at inferred group schemas that will
be representative of almost all their source peer schemas. Thus, we require a merging
procedure that performs high compression before throwing away schema elements (i.e.
relations or attributes). Note that a peer can join several groups in order to satisfy its
need for information and of course the employment of the group schema for query an-
swering is not mandatory: a peer can still propagate a query from peer-to-peer instead
of using a group schema. In any case, our approach is parameterized, such that it can
allow schemas with broad or narrow semantics (thus, group schemas can keep or not
unpopular concepts).

Finally, we require that the merging procedure is based onlyon available informa-
tion on the peers, i.e. it exploits solely the peer schemas and the peer mappings. We
remind the reader that we assume that peer mappings are GAV/LAV/GLAV and peer
schemas are relational, (i.e. the only internal mappings are foreign key constraints).
One mapping is considered to be a set of 1-1 correspondences between attributes that
hold with an optional set of value constraints on some attributes. Moreover, peers do
not carry semantic information about their schemas and mappings.

The schema merging procedure is dictated by the following dictations:

1. Fewer relations with more attributes are preferred to more relations with fewer
attributes

2. The semantic relevance of two relations is proportional to the number of correspon-
dences between their sets of attributes

3. If the keys of two relations are mapped thoroughly, both relations are considered to
be projections of the same relation with the same key

4. The key of a merged relation consists of the keys of both relations that are merged
5. If two attributes are merged and at least one of them is a key, then the merged

attribute is part of the key of the merged relation
6. Correspondences that involve the same attribute imply that all involved attributes

are semantically equivalent
7. Correspondences that are based on any value constraints are considered valid only

under conditions and do never produce merged attributes.
8. There is a pre-specified constant that represents the maximum number of relations

that the schema of the interest group is allowed to have

Dictation (1) is based on the rationale that more relations result in more join opera-
tions in query expressions; thus, mapping a peer schema on the interest group schema
would be more complicated in this case. Of course, this may lead to relations with too
many attributes that are not semantically closely related.However, this is not a problem,
since the group schema is not intended for data storage but just for mediation.2

2 In case that the group schema should be populated with data, many semantically irrelevant
attributes of a relation would result in sparse tuples with many NULL values.

X

In dictation (2) a relation is considered as a set of concepts. Since a correspondence
between two concepts entails their semantic equivalence, it actually states the obvious
fact that two sets of concepts are considered semantically relevant according to the
semantic relevance of their members.

Moreover, the attributes that constitute the key of a relation are considered to repre-
sent vital concepts of the respective set, i.e. concepts that deterministically characterize
the whole set. Dictation (3) states that the key value prescribes univocally the values
of the rest of the attributes; thus, if there are two relations with the same key, a value
assignment to the set of attributes that are not part of the key of one relation corresponds
to one at most value assignment to the respective set of attributes of the other relation.
Thus, the two relations can produce one relation with the same key that contains all the
remaining attributes from both relations. Actually, dictation (3) is like an extension of
dictation (2) that specifies very big weights for the key attributes of relations.

Furthermore, the merge of two relations produces a relationthat is actually the set
of all involved concepts. Since we assume that each relationis a set of concepts char-
acterized uniquely by a subset of them, the merged set shouldbe characterized by the
union of these subsets (dictation (4)).

Dictation (5) ensues from the previous rationale and adds that, if two attributes are
merged during the merge of two relations, then if one or both of them are keys, the
merged attribute should be a part of the key of the merged relation. The reason is that if
two relations are decided to be merged, it means that they areconsidered as subsets of
a greater set of concepts. Dictation (4) requires that this set of concepts is characterized
by the the union of the respective keys. If an attribute whichis part of a key is merged
to produce a non-key attribute, dictation (4) is violated. Therefore, merged attributes
should inherit the key property from either of their merged parts.

Dictation (6) reminds us of the assumption that a correspondence is semantically
interpreted as an equivalence of the two involved concepts and that equivalence is tran-
sitive. In coherence with this, attributes are merged if they correspond to a common
attribute. This means that even attributes of the same relation can be merged eventually
(see following example).

Since correspondences between attributes are actually parts of mappings between
schemas, the first hold under the constraints of the latter. As discussed in [24], joins are
assumed to be associative constraints, whereas value constraints are not. Dictation (7)
states that value constraints are intentional conditions under which the mapping corre-
spondences hold. Thereupon, these correspondences cannotproduce merged attributes,
since the existence of the latter in the merged schema is unconditional.

Dictation (8) ensures the satisfaction of dictation (1) butalso guarantees the cre-
ation of a schema with more than one relations. Actually, thelimits set by dictation
(8) express the initial requirement for the approximate size of the inferred schema in
terms of involved relations and attributes. Since no other semantic or meta-information
is provided, the limits are “safety valves” that stop the enforcement of the merging of
relations and attributes and ensure the creation of a schemawith more than one relations
and relations with more than one attribute.

XI

Schema Merging Algorithm
Input: the merged schemaSIG; the peer schemaSP and a set of mappingsM between them;
a set of intra-schema mappingsMi and a dictionaryD.
Output: the new merged schemaS′IG, a set of intra-schema mappingsM ′

i and a dictionary
D′.
Step1: Add toSIG all the relations ofSP.
Step2: If M = /0 setS′IG = SIG and go to step 7.
Step3: Merge relations that share the same key using theRelation Merging Procedure.
Step4: While the number of relations is over the limit do:
a. Select pairs of relations that have the most correspondences between their attributes and
that do not depend on value constraints.
b. From pairs of (a) select the pairs of relations that have the fewest not mapped attributes
and merge them using theRelation Merging Procedure.
c. Remove fromM the mappings used for the merge of (b) and add the involved
correspondences in the dictionaryD.
Step5: SetS′IG = SIG, M ′

i = Mi ∪M .
Step6:ReturnS′IG,M ′

i , D′.

Fig. 4.Schema merging algorithm

The schema merging algorithm is presented in Figure 4. Steps3 and 4 of refer to the
merging of a pair of relations. The procedure shown in Figure5 performs the merging
of two relations according to the following definition.

Definition 4 (Merge of two relations). The merge of two relations R1(A1, ...,An),
R2(B1, ...,Bm) is a relation R1/R2 with attributes the set(A1, ..,An)∪(B1, ...,Bm)−
(A1, ..,An)∩ (B1, ...,Bm)

At the end of the schema merging procedure, i.e. when all relevant peer schemas
have been merged, relations and relation attributes that have been met very rarely during
the procedure can be dropped.

As shown in Figure 4, the schema merging algorithm produces the interest group
schema,SIG, but also a set of peer mappings,M , a set of internal mappings,Mi and
a dictionary,D. When the schema merging algorithm is initialized, all four parameters
are empty. Each time the schema merging procedure is propagated to another peer,P,
SIG is augmented with the relations ofP andM becomes the set of mappings thatP
maintains with the current form ofSIG. We remind that in each iteration the merging
algorithm is propagated to the peerp that corresponds to the first element of the stack
ST (see Section 3.1). The mappingsM are actually the mappings of schemaSP with
the schema of a peer that has already participated in the group inference procedure.
The internal mappings are the peer mappings that were not consumed in the successive
schema merges. The internal mappings hold additional syntactic and implicit semantic
information for the interest group schema elements; thus, they can be very helpful to
peers that would like to join the group and create mappings totheir local schema. More-

XII

Relation Merging Procedure
Input: A pair of relationsR1, R2 a set of mappingsM .
Output: The merged relationR.
Initialization:R = /0.
Step1: Add toR all attributes of the relationsR1, R2.
Step2: Until the number of attributes is above the limit, if it is possible do:
a. if there are any, merge attributes that are involved only in one correspondence: e.g.
correspondence{a = b} produces the attributea/b; if either a or b is a key, makea/b a
key.
b. merge the attributes that are involved in at least one correspondence, starting from
those participating in the fewest correspondences; in this case produceone attribute for all
correspondence: e.g. correspondences{a = b} and{a = c} produce the attributesa/b/c; if
eithera or b or c is a key, makea/b/c a key.

Fig. 5.Relation merging procedure

over, this set of mappings has the collection of all mappingswith value constraints met
during the merging procedure. This kind of mappings cannot be consumed: the involved
relations/attributes cannot be merged, since they are mapped under certain conditions
(the value constraints).

Furthermore, the merged schema has alternative keywords for the same element that
result from the merged mapping correspondences. These alternatives are entered in the
dictionaryD that accompanies the group schema; thus,D is a set of concept correspon-
dences. Later, when the group schema is available in the overlay, the dictionary can be
proved of great help for the peers that want to become membersof the group.

Step 4 of the algorithm merges relations that do not share thesame key. Priority is
given to relations that share most of their attributes. Additional criteria in order to break
ties can be based on whether the corresponded attributes areparts of the relation keys,
or whether unmapped attributes are parts of the relation keys. Nevertheless, refining the
algorithm based on additional criteria is out of the scope ofthis work.

Example Assume that Dr Davis is a doctor that owns a peer database, theschema
of which is:
SDavisDB :
Visits(Pid, Date, Did)
Disease (Did, DisDescr, Symptom)
Treatment (Did, Drug, Dosology)

And Dr Lu is another doctor with a peer database, the schema ofwhich is:
SLuDB :
Sickness(Did, AvgFever, Drug)
Patients(Insurance♯, Did, Age, Ache)

XIII

The schemas of DavisDB and LuDB are presented in Figure 6; thedatabases have
the following mapping:

M1DavisDB LuDB:
Disease (Did,, Symptom), Treatment (Did, Drug,):-Sickness(Did, AvgFever, Drug),
{Symptom = AvgFever, Disease = Sickness}

where the correspondences Symptom = AvgFever, Disease = Sickness that are im-
plied are added in a set at the end of the mapping.3

In this case, as shown in Figure 7 there are three correspondences that are encapsu-
lated in mappingM1. We assume that the peer of Dr Davis initializes the schema merge.
Thus,SIG is initialized to SDavisDB. When the group inference procedure iterates on
LuDB, after the 1st step of the schema merging algorithm,SIG contains all the relations
of SDavisDB andSLuDB. Since there is a mapping among the relations, Step2 is skipped.
The algorithm goes on to Step3: relationsDiseaseand Sicknessare merged in one,
since they share the same key. Thus, attributesSymptomandAvgFeverare merged. The
correspondenceDisease/Sickness.Drug = Treatment.Drug is kept as an internal one
(Step5). Also, the dictionaryD is enriched with correspondencesDisease= Sickness
andSymptom= AvgFever(Step4c); actually the schema keeps one name for each rela-
tion or attribute from the alternative ones. At the end of theschema merging procedure
we propose that the schema keeps for relation and attribute names the most common
ones encountered during the procedure.

Assuming that the algorithm goes on to Step3, relationsDisease/Sicknessand
Treatmentare merged, since they are the only ones related with a mapping. Figure
9 shows Step3 of the algorithm. Now there is one attribute named ’Drug’ and it is part
of the relation key, even though just one of the attributes that were merged was a key.
Additional iterations can merge relations based on foreignkey constraints, since no
other internal mappings exist.

At this point we revise the example based on the assumption that the initial peer
schemasSDavisDB andSLuDB have mappingM1 but also the following mapping:

M2DavisDB LuDB:
Visits(Pid, , Did), Disease (Did,, Symptom), Treatment (Did, Drug,):-Sickness(Did,
, Drug), Patients(Insurance♯, Did, , Ache),{Pid = Insurance♯, Symptom = Ache and

Disease = Sickness}

Figure 10 shows almost all correspondences of mappingsM1 andM2. Again, at
Step3 of the merging algorithm the relationsDiseaseandSicknessare merged, since
they share the same key. The first iteration of Step4 merges relationsVisitsandPatients.

3 The mapping is actually a view defined on DavisDB.Disease joined with Davis.Treatment,
which is matched with relation LuDB.Sickness, such as:
View1(Did, Symptom, Drug):- Disease(Did, DisDescr, Symptom)Treatment (Did, Drug,
Dosology)
View2(Did, AvgFever, Drug):-Sickness(Did, AvgFever, Drug)
The mapping is actually:
View1(x, y, z):-View2(x,y,z)
For simplicity, we summarize mappings by omitting view definitions, adding a set with the im-
plied correspondences in the mapping, and introducing ’’ for attributes that are not interesting
to the mapping.

XIV

The state of merging is presented in Figure 11. The second iteration of Step4 merged re-
lationsDisease/SicknessandTreatment, rather thanDisease/SicknessandVisits/Patients:
even though these two pairs have the same amount of correspondences, the second pair
has more unmapped attributes. The result is shown in Figure 12. Finally, assuming that
Step4 iterates one more time. All relations of the initial schemas are merged in one, the
key of which is the set of all key attributes of the initial relations. Moreover, this step
produces an attributeSymptom/AvgFever/Achewhere both correspondences Symptom
= Ache and Disease = Sickness are merged.

Limitations of the Schema Merging Algorithm

It is apparent from the previous example that diverse concepts may be merged be-
cause they correspond to the same concept. Additionally, inthis case the dictionary will
have entries that do not seem semantically correct at first glance. The example shows
that the conceptsSymptom, AvgFeverandAchewill be merged in one, producing the
dictionary entry AvgFever = Ache. The latter equates the conceptsAvgFeverandAche;
yet the average person knows that these concepts do not have the same meaning. This
problem arises from dictation (6) that is based on our initial assumption/definition that
a correspondence indicates the semantic equivalence of theinvolved concepts. Albeit,
the real meaning of conceptsAvgFeverandAcheis actually a specialization of the se-
mantics ofSymptom. An ontology could represent this situation as the hierarchy in
Figure 14. Yet our basic assumption is that peers do not have any semantic information
about their schemas and mappings other than the semantics that can be deduced from
the structure of the schema and the mappings itself. Dictation (6) is coherent with this
assumption and it draws the best possible semantic conclusions by collapsing a possible
hierarchy of concepts to a simple set of equivalent concepts.

Using additional semantic information such as ontologies and associative tools such
as operations on ontologies in order to refine the schema merging algorithm is out of
the scope of this work. However, it is possible for peers to use whatever means in their
disposition in order to perform a finer schema merging.

Another limitation of the schema merging algorithm is the inability to selectively
merge attributes that are corresponded under value conditions. Assume thatDavisDB
andLuDB have the following mapping:

M3LuDB DavisDB:
Visits(Pid, , Did), Disease (Did,, Symptom), Treatment (Did, Drug,):-Sickness(Did,
, Drug), Patients(Insurance♯, Did, Age, Ache), Age> 13

As discussed in [24, 25] the value constraint Age> 13 may have two reasons of
existence: the first is that the two databases want to exchange data only for patients that
are under 13, but they could exchange data for patients of allages; the second is that one
of the databases stores data only for patients under 13, simply because the owner of the
database is a pediatrician; in this case the databases couldnot exchange mutually data
on patients of all ages. Furthermore, in the second case the relations of the pediatrician’s
database are semantically bounded to the notion of children, as the mapping indicates.
This means that ’sickness’ is not another word for ’disease’but for ’children’s disease’.

XV

In the first case, where the value condition is actually an agreement on which portion
of data peers will exchange information, semantic schema merging could and probably
should ignore the constraint and merge the respective relations. Yet, in the second case,
we have the same situation as with the multiple correspondences of one attribute, dis-
cussed above. This means that the value constraint actuallyindicates that one or more
relations of one database, (the database without constraints), involved in the mapping
are semantically specialized concepts of relations of the other database, (the one on
which the constraint is defined); thus, ’sickness’ (or ’children disease’) can be a spe-
cialization of ’disease’4.

Certainly, we can follow the same tactic as for multiple correspondences on one
attribute, and merge relations mapped under constraints, ignoring the latter. However,
we choose not to do this. The reason is that vey often relational schemas are designed
such that some relations are specializations, in a semanticway, of another, and the
general and specialized relations are joined with foreign keys. For example a database
of a hospital can have a relation Person(ID, Role, ...) whereattribute Role has values
such as ’Doctor’, ’Nurse’, ’Patient’ etc. Also, the database has a relation Doctor(ID,
Name, Specialty, ..), where Person.ID is a foreign key in relation ’Doctor’. It is more
likely that we do not want to merge these two relations, because we do not want all
persons working in the hospital to correspond semanticallyto the same schema element.

Disease

S
DavisDB

Visits
 Treatment

Did
 Descr
 Symptom
 Pid
 Date
 Did
 Did
 Drug
 Dosology

Sickness

S
LuDB

Patients

AvgFever
 Insurance#
 Age
 Ache
Did
 Drug
 Did

Fig. 6.Two schemas to be semantically merged

4 We believe that this semantic situation does not occur with value constraints from both
databases involved in a mapping. In case of a mapping with constraints on both databases,
then concepts from one database overlap semantically with concepts of theother, under cer-
tain circumstances.

XVI

Disease

S
IG

Visits
Treatment

Did
 Descr
 Symptom
 Pid
 Date
 Did
Did
 Drug
 Dosology

Sickness

S
LuDB

Patients

AvgFever
 Insurance#
 Age
 Ache
Did
 Drug
 Did

M1
 M1
 M1
M1

Fig. 7.SIG is initialized toSDavisDB and there is mappingM1 betweenSIG andSLuDB

Disease/

Sickness

S
IG

Visits
Treatment
Did

Descr

Symptom/

AvgFever

Pid
 Date
 Did
Did
 Drug
 Dosology

Insurance#

Age

Ache

Did

Patients

Drug

M1

Fig. 8.Relations Disease and Sickness of Figure 7 are merged

Disease/Sickness/Treatment

S
IG

Visits

Did

Descr

Symptom/

AvgFever

Pid
 Date
 Did

Drug
 Dosology

Insurance#

Age

Ache

Did

Patients

Fig. 9.Relations Disease/Sickness and Treatment of Figure 8 are merged

XVII

Disease

S
IG

Visits
Treatment

Did
 Descr
 Symptom
 Pid
 Date
 Did
Did
 Drug
 Dosology

Sickness

S
LuDB

Patients

AvgFever
 Insurance#
 Age
 Ache
Did
 Drug
 Did

M1&M2
 M1&M2
 M1&M2

M1

M2

M2

M2

M2

M2

Fig. 10.SIG is initialized toSDavisDB and there are two mappingM1, M2 betweenSIG

andSLuDB. The most important correspondences are shown

Disease/

Sickness

S
IG

Visits/

Patients

Treatment
Did

Descr

Symptom/

AvgFever

Pid/

Insurance#

Date
 Did

Did

Drug
 Dosology

Age

Ache
Drug

M1

M2

Fig. 11.Pairs of relations Disease and Sickness, and Visits and Patients of Figure 10 are
merged

Disease/Sickness/Treatment

S
IG

Did

Descr

Symptom/

AvgFever

Drug
 Dosology

M2

Visits/

Patients

Pid/

Insurance#

Date
 Did

Age

Ache

Fig. 12.Relations Disease/Sickness and Treatment of Figure 11 are merged

XVIII

Disease/Sickness/Treatment/Visits/Patients

S
IG

Did

Descr
 Symptom/Avg

Fever/Ache

Drug

Dosology

Pid/

Insurance#
 Date

Age

Fig. 13. Relations Disease/Sickness/Treatment and Visits/Patients of Figure 12 are
merged

Symptom

AvgFever
 Ache

Fig. 14.The hierarchy of conceptsSymptom, AvgFeverandAche

3.3 Group Schema Broadcast

The group schema creation is followed by the periodical propagation of respective meta-
data. These metadata include the group schema, some or all ofthe IDs of participating
nodes (contact list), the time of creation and the originator. The reason that a peer may
want to know explicitly about peers of the same group is that:

a. it may want to be acquainted with some of them that have verysimilar schemas to
its own, so that it can send queries directly to them (direct rewritings may be more
information preserving that going through the group schema)

b. if queries are not broadcasted in the overlay (broadcasting will overload the net-
work), even if they are rewritten to the group schema, they will not go far into the
system due to the constraint TTL; thus, they may not reach many or at all peers that
are members of the respective group.

Of course, if the clustering procedure performs long beforethe group schema cre-
ation, peers of the same group will already be acquainted, and thus, close to each other,
eliminating the (a) and (b) problematic situations. Yet, peers may come and go or even
change their schemas. Thus, the achieved clustering is unstable encountering the dy-
namic nature of the P2P system.

Any peer can rewrite its queries to the group schemas available. Queries can then
be directly forwarded to the group members. In this way, we manage to bypass the in-
formation loss of multiple rewritings, since a query is translated only once, through the
group schema. Making the participating nodes known to all peers enables any remote
node to enter the cluster. Furthermore, group nodes have complete mappings with the
inferred schema, so no loss is observed there. Peers can now become acquainted with
group nodes that have very similar schemas with them, without having to wait to be
gradually clustered.

3.4 Group Inference Interaction

While our completely decentralized approach in group creation is necessary, it also
raises some consistency issues, since more than one group can be created, even simul-

XIX

taneously. This can affect correct behavior only if nodes similar to the initiator choose
to create a groupandthe two processes overlap in the overlay. If two or more peersini-
tiate the group inference procedure, it may be the case that the inferred schemas overlap
semantically. This is the case when the schemas of the originators are more similar than
the sum of theradiusesof the respective group schemas (see Figure 15). In these cases
a big number of groups can be inferred that overlap significantly. This is not desired,
because peers are disorientated, having many similar choices for groups to participate
in, and the network and individual peer overhead for group maintainance is too big.
Topologically close peers initiating the process over different semantic groups pose no
problem. The same is true if the initiators’ hop distance is such that would not allow
either procedure to incorporate both groups in its progress. In the following we discuss
the details of such situations in order to determine the directions of a protocol for the
resolution of group inference interactions, in order to avoid the inference of unnecessary
groups.

If two peers close in the overlay initiate the schema inference procedure, it may be
the case that their semantic distance is smaller than the radius of one (or both) of the
inferred group schemas (see Figure 15 (a) and (b)). In order to avoid extended negoti-
ation rounds between competing potent originators, we require that initiators announce
their intention to create a group to their neighborhood. This forces competing initiators
with schemas similar to the first initiator to postpone or abort their process, if they are
inside the announcement neighborhood. We note that the announcement neighborhood
must have a radius proportional to the semantic radius of thegroup to be inferred. If
such peers do not eventually participate in the group inference, they can add themselves
to the overlay neighborhood or participate in the consequent maintenanceof the group.

The originator should announce, i.e. broadcast, the initiation of the group either to
the whole overlay (which is definitely inefficient) or to a certain TTL distance,D. The
value ofD is determined by the intented semantic width of the group being inferred
(denoted by the semantic similarity threshold of the group,t, and implied by the thresh-
old on the maximum participating nodes,MaxP), as well as the clustering degree of the
respective cluster,Cd, (i.e. the quality of the cluster at the point of the respective group
initiation). Thus,D(g) = f un(t(g),MaxP(g),Cd(g)), where f un is a function.

Optimization Choices for the Group Inference Interaction Protocol
Instead of requiring peers residing in a group announcementarea to postpone or

abort their intention for group creation, we have the following options:

1. Peers inD reply to the initiator of the group that they want to participate as ad-
ditional originators of the group; the group initiator initiates the schema merging
procedure for a group with multiple origins (i.e. source schemas).

2. Peers inD have the chance to add their selves as originators to a group being in-
ferred in which they already participate, only when the procedure of the latter is
iterated on their platform.

The above options intend to be more gentle to other peers thatdesire to create a group,
and give them the chance to be additional originators to a group that has already been
announced. The simplest choice, case (1), is to let the peersthat learn about the initiation
of a group to reply to the initiator that they wish to becomeadditional originators.

XX

r1
r2

p1 p2

group 1

group2

space of
semantics

d

r1

r2
p1 p2

group 1

group2

space of
semantics

d

(a)

(b)

Fig. 15.Semantic overlap of group schemas

The initiator should wait for a small period after the group announcement in order to
receive such replies. Then, it begins the procedure taking into consideration the schemas
of the additional originators. In a more dynamic environment the protocol can allow
the spontaneous participation of peers as additional originators to an ongoing group
inference procedure, choice (2). Yet, this is only possibleat the time when the inference
procedure is iterating on such a peer. At that time, the peer can decide if it wants to
introduce another origin of the group schema being inferred. The new origin is its own
schema: thus, the group schema will have one more originatorfrom this peer and on. Of
course, the sequence of originators that participate in theinference of a group schema
has a role in the resulted group schema, especially if it has asmall maximum size and
if the maximum number of participants for a group is small.

In both cases (1) and (2) the protocol should prescribe a constraint for the maxi-
mum number of additional originators and the maximum semantic similarity and dis-
similarity between the pioneering originator and the rest.Otherwise, if too dissimilar
originators are added the group may become too broad and distort from the interests of
the first originator. Moreover, if there is a big dissimilarity among originators and the
maximum number of participating peers is small, the merged schema may summarize
divergent concepts. Also, if too similar or too many similaroriginators to the initiator
are added, then the inference procedure is overloaded with many unnecessary itera-
tions (the stackST may become too big). Hence, in both cases (1) and (2) there should
be a maximum number of additional originatorsMaxO, which should be significantly
smaller than the maximum number of participating peers:MaxO≪ MaxP. Moreover,
additional originatorsO should be in a constrained semantic distance from the initiator:
l < SS(SI ,SO) < u, wherel , u are the lower and upper borders of the semantic distance.

XXI

3.5 Group Schema Merging

Nevertheless, peers are eligible to initiate a new group if they have not received a rele-
vant announcement or if they incorrectly calculate their similarity with a known initia-
tor. Possibly such originators will create groups that havea significant semantic overlap
with existing ones. Thus, these groups are subject to be merged into a unified schema.
The merging of the two group schemas can be performed with theschema merging al-
gorithm. In such a case, the merging will be guided by the mappings that exist between
the group schemas and participating peers that are common inthe two groups. After
both groups are advertised, the respective originators candetect the similarity between
the inferred schemas and initiate the merging process. Thisinvolves choosing a new
originator among the two existing ones, merging the two schemas and advertising the
new group using the new initiator and the union of the contactlists.

If an initiating inference procedure is not announced or is announced to a certainD,
then the only way for a peer beyondD to have knowledge about an ongoing inference
procedure is to have already participated in it. Peers that have not yet participated in an
ongoing procedure5, are potent of initiating a new one, even if it turns out laterthat they
are part of a procedure initiated earlier. The parameter that determines the interaction of
a pair of inferred groups is their semantic overlap. If groups do not overlap, then there
is no interaction, and, thus, no problem to solve. If groups overlap, either:

– none of the group originators belong semantically to the group of the other.
– one of the group originators belongs semantically to the group of the other.
– both of the group originators belong semantically to the group of the other.

The above cases provide a reason to merge the respective groups. If both originators
belong to each other’s group, then there is a strong reason tomerge the groups. If one
or none originator belongs to the other’s groups then there is a weaker reason to merge
the group. Nonetheless, the semantic overlap of two groups is calculated with theSS
function, presented earlier. The decision for group merging aims to better query answers
overall. We think that this will be the case for peers that belong marginally to the groups,
thus, they do not get satisfying answers through them.

From the above discussion we can conclude that interaction and overlap among
groups that are or have been inferred is inevitable. Thus, the P2P overlay has to guar-
antee that group merging decisions are based solely on the group schema semantics
and not on the execution of the inference process, i.e. the group initiator and additional
originators.

An important property must hold:
Groups created by similar initiators will also be similar and groups by dissimilar ini-
tiators will be dissimilar.

This property is essential because it justifies that authority peers can independently
initiate the process (and thus block other similar ones fromdoing it). The semantic
clustering of the peers that belong to a social network assures that this property holds.
Moreover, this property shows that groups are characterized by their schema and their

5 We assume that the broadcast of new groups is short enough, so thatthe period between the
end of the procedure and the end of the broadcast is negligible.

XXII

inference process does not matter.

Finally, we note that group schemas are not connected to eachother unless this
becomes evident as soon as they are created and is resolved through the merging pro-
cedure. As mentioned before, peers select the group of theirchoice to send the query
to (and they are not limited to choosing a single one). If posed queries and employed
groups are not semantically very relevant, then the querying peers may not be satisfied
with the answers they get through the groups. In this case, the can always propagate
their queries in the network without using the groups. Through the employment of the
merging procedure, the presence of many very similar groupsis avoided, and , thus,
peers can choose groups without confusion.

3.6 Group Schema Maintenance

A group schema has to be occasionally maintained. The group schema maintenance
includes maintenance of:

a. the point of contacts, since new peers that may belong to the group join and old
peers that belonged to the group leave.

b. the group schema itself, in order to represent the peer schemas that are members of
the group (since old peers leave and new join).

There are two ways to decide when to maintain a group schema:

1. maintenance is performed periodically
2. maintenance is performed when the quality of answers to queries rewritten to the

group schema by members of the group is not satisfying.

The maintenance process refers to updates in the contact list as well as the group
schema itself. Maintenance is necessary, since peers join the group while others that
belong to the group leave or change their local databases in time. There are two ways
to decide how to maintain a group schema: The first is to allow the originator to initiate
the inference process periodically. The second is to allowanyeligible peer re-start the
process. In order for both approaches to work, we define anepochfactor to represent the
maximum life-span of a group, after which it will become invalid. Then, the originator
can invoke the inference process everyepochminutes and re-transmit the new group
in the overlay. Thus, group meta-data are kept in a form of soft state and get promptly
updated. By allowing any eligible peer to undertake the roleof the originator, we elimi-
nate inconsistencies created by changes in the original initiator and also ensure that the
inferred schema does not specialize.

Obviously, there is a trade-off between the cost of repeating the process over the
anticipated query performance using stale groups. However, PDMSs are considered
as P2P applications that do not exhibit very dynamic changesin connectivity or peer
interests (i.e. peer schemas). Rather than this, peers are expected to stay connected (and
therefore have mappings) to the same peers and store the samekind of data for long
periods. In any case, peers can be parts of a group, answer androute queries without
having to pose queries at the same time (i.e., without activeparticipation from the user).

XXIII

In the future we intend to exploit the performance of maintenance at time points
when the quality of answers to queries rewritten to the groupschema by members of
the group is not satisfying.

3.7 Group Deletion

Up to this point we have discussed all issues that concern thecreation and life of a
semantic group. However, after a group has been around in theP2P overlay for a while
it might have to be deleted altogether. A recommendation fora group deletion can be
based on several reasons. First, a group may not be used anymore for query answering
or for meeting acquaintances. Second, after using a group for some time it may turn
out that it is problematic: the group schema may have flaws dueto errors during the
performance of the inference procedure. Third, participants of a group may decide that
they do not want to be members of it anymore. In this case, if too many participants
drop out, it may be more meaningful to delete the group and letpeers initiate new
group inference procedures, than to maintain the group.

In any case, obsolete peer needs or procedural mistakes should not remain perpet-
ually in the overlay. Due to all these conditions, group deletion should be a permitted
operation that complements the dynamic creation and maintenance of groups. Yet, it
is not easy to delegate the decision for group deletion. As such, group deletion is im-
plicitly handled through the periodic group maintenance process. If group deletion is
necessary due to nodes changing their interests (i.e., local schemas and queries), an
extreme case of which is to have departed from the system, at the next maintenance
check point the necessary conditions for an initiator will not be met (i.e., the number of
posed and answered queries over a specific accuracy threshold), invalidating all current
and past group information without any extra coordination between its participants. We
prefer this solution to an explicit one that would require intra-group communication
since it integrates with the maintenance operation and requires no manual intervention
from the part of the users.

4 Performance Evaluation

To evaluate the performance of the proposed group inferenceprocedure, we use a
message-level simulator that implements it over an unstructured overlay of semanti-
cally clustered nodes. The clustering is performed using theGrouPeersystem [25].

Overview of GrouPeer
GrouPeerfocuses on the problem that, in a random flat unstructured peer-database sys-
tem, information-rich peers may well remain hidden to queryinitiators because of the
enforced reformulation of queries on each node of the propagation path. It proposes a
procedure that supports the evasion of successive rewritings on every peer of a query’s
propagation path, instead of, sometimes hopelessly, refining query reformulation. This
methodology enables peers to discover others with similar interests and schemas, that
cannot be tracked otherwise. Pairs of remote peers that exchange queries and answers
learn gradually about the schema of the other party. Learning is performed through

XXIV

making queries and evaluating their answers, and is formed in mappings between the
schemas of the two peers.

In GrouPeer, peers decide to add new (and abolish old) one-hop neighbors in the
overlay (acquaintees) according to the accuracy of the answers they receive from re-
mote peers. This is measured using a function that tries to capture the semantic sim-
ilarity between rewritten versions of a query. Specifically, requesters (i.e., peers that
pose queries) accumulate correct and erroneous mappings with remote peers through a
learning procedure. Based on these mappings, they decide tobecome acquainted with
peers that store information similar to their interests. The result is an effective semantic
clustering of the overlay, where the accuracy of query rewritings and answers is a lot
higher compared to the unclustered overlay (for details see[25]).

We compare the query evaluation performed by GrouPeer with the evaluation that
utilizes the inferred groups on the overlay. In GrouPeer a query is propagated in the
P2P network using informed walkers. A query is successivelyrewritten on each peer
on a query propagation path. The rewritten query on each peeris answered using the
local schema and data. This procedure of query answering is the state-of-the-art in flat
PDMSs, [1, 3, 17]. When the first group is created, we direct relevant queries to the
inferred schema. The basic performance metrics are the averageaccuracyof answers
to the original queries (i.e., the similarity of the rewritten query that is answered over
the original one), as well as the number of nodes that providean answer. Similarity
is calculated by a formula presented in [25] that identifies erroneous or not-preserved
correspondences in mappings, which degrade the complete and perfect rewriting. Se-
mantic query similarity is a very big issue, [24], and is out of the scope of this paper.
Very briefly, the essence of the query similarity formula that is used in GrouPeer and
that we use in this experimental study is:

Msim(Qorig,Qans) =
∑Qorig elements present in Qans+∑additional Qans elements

∑Qorig elements
(2)

In function (2)elementsare either query attributes or query conditions (for example,
for an SQL (select-project-join) query, elements are the ’select’ clause attributes and
the ’where’ clause conditions). To identify the gains of ourgrouping approach, we
present the percentile increase/decrease in accuracy and number of answers compared
to GrouPeer’s clustering as these are measured on thefirst created group. Participants
of the group hold mappings with the group schema; thus, when the query is rewritten to
the group schema, the successive rewritings through the chain of mappings are avoided.
In the presence of a group, there is a query rewriting from thepeer schema on which it
is originally posed to the group schema, and a second rewriting from the group schema
to each peer that will answer the query. Data is stored locally in each peer and they are
not re-materialized in the group schema. Non-members create mappings with relevant
group schemas.

We present results for 1,000-node random graphs (an adequate number of partici-
pants regarding our motivating application) with average node degrees around 4, created
by theBRITE[29] topology generator. Results are averaged over 20 graphs of the same

XXV

Fig. 16.% Increase in answer similarity over
variable MaxP and t

Fig. 17. % Increase in number of answers
over variable MaxP and t

type and size, with 100 runs in each. Results using power-lawtopologies constructed
by Inet-3.0 [20] with the same number of peers are qualitatively similar.

For the schemas stored at each node, as it is realistically very hard to come up
with hundreds of different but yet semantically similar ones for each node, we use
two initial relational schemas, whose tables and attributes are uniformly distributed at
nodes. The initial schema comprises of 5 tables and 33 attributes. Seven attributes are
keys with a total of 11 mappings (correspondences) between them. Each peer stores 10
table columns (attributes) on average. Queries are formed on a single or multiple tables
if applicable (join queries). We also experimented with a larger schema of 8 tables
with a total of 55 attributes that was retrieved from the Internet movie database [19]
usingJMDB [21]. JMDB is a Java-based application to locally search forinformation
about movies, actors, producers, directors, etc as these are provided through IMDb. This
second schema comprises of 12 keys and a total of 14 mappings between the attributes.

Our metrics are the percentile increase/decrease in accuracy and number of replies
compared to clustering as these are measured on thefirst created group. We use the
termsaccuracyandsimilarity interchangeably. The maximum size of the inferred schema
is always in the order of the size of the initial schema used toproduce the local ones
during start-up. When the first group is created, we direct relevant queries to the in-
ferred schema and measure their similarity compared to the semantic clustering of the
social network at the time of group creation. Initiators that belong to the group hold
the complete mappings with the group schema, avoiding reformulation errors. Non-
members utilize the same learning feature as with normal nodes, assuming a “virtual”
host holding the group schema as their contact.

First, we vary the maximum group size limit,MaxP, as well as the minimum simi-
larity of participating peers to the initiator node,t. Figures 16 and 17 show the obtained
results for 100 requesters and maximum 100 queries each. Ast increases, the group
becomes more specialized and less general. In contrast, small similarity values produce
groups too general that incorporate many concepts foreign to the initiator. Initiators
choose to send queries to a schema if they deem it advantageous. This has the effect
that specializedgroups (i.e., high value oft) receive fewer queries, while more “gen-

XXVI

5000 10000 15000 20000 25000 30000 35000 40000
query number where group is created

0

10

20

30

S
im

ila
rit

y
In

cr
ea

se
 (

%
)

50 requesters
100 requesters
200 requesters
400 requesters

Fig. 18.% Increase in answer similarity over
variable group creation time

5000 10000 15000 20000 25000 30000 35000 40000
query number where group is created

0

100

200

300

400

500

600

700

800

900

1000

%
 In

cr
ea

se
 in

 A
ns

w
er

s

50 requesters
100 requesters
200 requesters
400 requesters

Fig. 19. % Increase in number of answers
over variable group creation time

eral” ones receive more but cannot answer them all satisfactorily. Thus, there exists a
point where grouping ceases to increase its relative gains to clustering, as our graphs
show.

Both metrics increase asMaxP increases. This is reasonable since more nodes can
participate and produce results. Very specialized grouping causes significantly less pop-
ulated groups, which in turn affects the number of returned answers. As groups get more
general (aroundt = 0.6), an improvement of 13-23% in accuracy is achieved, while the
gains in replies are 40-900%. Ast decreases, the gains in accuracy decrease but more
results are generated. These curves show that at value of around 0.65 with the group
initiator andMaxP= 80 achieve good results without too much generalization. These
will be our default values for the rest of this discussion.

Next, we try to determine the quality of the created group based on its creation
time, i.e., the number of queries at which it was created. Figures 18 and 19 show the
percentile improvement in our basic metrics when the first group is created at various
points in the clustering process. Our observations show a decrease in the relative gains
in accuracy and an increase in the corresponding number of answers. This happens
because clustering improves with time while the number of results slightly decreases
due to the forwarding process: now more walkers cross paths on relevant nodes. What
is important is that groups that are allowed to be created as soon as possible (which
would be the frequent case) show about 20% more accurate answers and return about
three times more results compared to the clustering of the social network, even though
the inference procedure is performed on a less optimally clustered overlay. Groups that
are created later exhibit noticeable gains, especially in terms of the number of replies.

Table 1 shows the exact performance figures using our defaultparameters for 400
requesters and various queries-per-requester combinations for both schemas. The fig-
ures in parentheses show the percentile increase compared to simple clustering for the
same number of queries. We notice that querying the inferredgroups results in an aver-
age 18% increase in accuracy and a 300-400% increase in the number of replies. This
is true regardless of the number of requesters or their querying rates. It is interesting to
note that, in all these results, the queries from nodes inside the created groups are less

XXVII

Table 1.Performance comparison with clustering

initial schema IMDb schema
qu/requ Sim #Answ Sim #Answ

10 0.70(+19.9%)53.7 (+387%)0.68(+16.7%)50.1 (+317%)
50 0.71(+19.0%)61.6 (+461%)0.69(+17.3%)52.6 (+341%)
100 0.72(+19.2%)60.0 (+444%)0.71(+17.9%)58.0 (+373%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Initiator similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
ro

up
 s

ch
em

a
si

m
ila

rit
y similarity>0.7

similarity<0.4

Fig. 20.Relationship between initiator and inferred schema similarity

than 10% of the total. This proves that group creation and propagation effectively helps
all nodes in the overlay. The figures regarding the IMDb schema are slightly lower due
to the fact that the initial average similarity between peers is lower (for the same number
of stored attributes per node as in the initial schema).

One of the basic assumptions of our scheme is that each peer can individually
choose to initiate the group inference process. This allowsfor completely distributed
behavior only if semantically close initiators produce similar groups and the opposite.
We measure the similarity between the first and randomly selected thereafter initiators
as well as of the group schemas created respectively. Figure20 displays results over
different runs, where either the two initiators were over 70% or less than 40% similar.
Clearly, for very similar initiators the process yields very similar groups. On the other
hand, for fairly dissimilar initial schemas, the created groups are 40-50% similar. This
value is a little higher than expected due to the high overlapand semantic relations
between stored attributes at various peers. When data is placed in a non-overlapping
manner, such groups have less than 20% similarity. So, thereclearly exists a correlation
between initiator and inferred schema similarity value.

As we just showed, peers with similar schemas generate similar groups. To do so
simultaneously is undesirable for two reasons: First, the system will perform a redun-

XXVIII

Table 2.Estimating group broadcast range

D = 0.5D = 0.7D = 0.8D = 0.9D = 1.0
Min/Max Distance1.1/5.9 1.9/5.6 2.1/5.3 2.9/4.8 3.8/4.2

#nodes 597 235 113 27 17
%nodes≤ 4 hops 78 80 80 78 70

2000 4000 6000 8000 10000
query

0.4

0.5

0.6

0.7

0.8

0.9

1

S
im

ila
rit

y

individually, t=0.65
merged, t=0.65
individually, t=0.8
merged, t=0.8

2000 4000 6000 8000 10000
query

0

10

20

30

40

50

60

70

80

90

#A
ns

w
er

s

individually, t=0.65
merged, t=0.65
individually, t=0.8
merged, t=0.8

Fig. 21.Similarity and number of answers of the initial and merged groups vs creation
time

dant operation and second, it will force our merging processto be invoked regularly.
As we mentioned in Section 3, initiators broadcast their intention to create a semantic
group. Nevertheless, broadcasts that reach many nodes are very costly. Furthermore,
our clustering process assures that a non-negligible number of semantically close nodes
will also be close to the initiator in the hop-distance metric. To demonstrate this, we
measure the hop-distance distribution of peers not included in the group creation pro-
cess with similarity greater or equal to D to the initiator, given our default parameters.
Table 2 presents our results.

We notice that the minimum distance increases as we search for more similar peers,
while the maximum decreases. This is due to the clustering process: Similar peers get
closer in the overlay. Grouping includes most of these peers, so the minimum distance
to a non-grouped similar node increases. Moreover, the onesthat have been left out of
the group inference are now closer than before. The results show that a broadcast range
of 4 contacts around 80% of our target nodes. Nevertheless, as D increases, these nodes
become scarce. Thus, assuming thatD≃ 0.65 for practical reasons, a TTL=4 would suf-
fice. In our experiments, a broadcast of that scope blocks an increasing number of nodes
with time: after about 6 queries per requester, 115 potential group initiators are blocked
on average, while after 20 queries this number increases to over 600. For larger values
of D, broadcasting with large range causes the majority of messages to be delivered to
dissimilar peers.

Finally, we present some results concerning merging process. When two similar
groups are identified (through broadcasting of the group metadata), the merge process
is initiated. We measure the similarity and number of replies by the two groups as well
as the merged one and present the results in Figure 21. We notice that, while the two

XXIX

groups and the merged one do not substantially differ in the accuracy of the results
(although the merged group always outperforms them), the new schema delivers almost
twice as many. A very important observation is that the time of creation of the individual
groups plays almost no role in their performance, which shows that the social network
will keep operating without performance degradation.

5 Related Work

The problem of semantic schema merging is generally relatedto the problems of schema
or ontology matching and integration. The recent survey in [37] approaches in a unified
way all these problems, since they are basically dealing with schema-based matching.
A survey of ontology mapping techniques is presented in [22]. The authors focus on the
current state of the art in ontology matching. They review recent approaches, techniques
and tools. Once appropriate mappings between two ontologies have been established,
either manually, semi-automatically or automatically, these mappings can be used to
merge the two ontologies or to translate elements from one ontology to the other. Ex-
amples of tools for ontology merging are OntoMerge [12] and PROMPT [33]. However,
creating and maintaining a merged ontology incurs a significant overhead. Moreover,
a translation service for OWL ontologies is presented in [30]. The translation relies
on a provided mapping between the vocabularies of the two ontologies. Then, a class
C1 from the source ontology can be characterized asstrongly-translatable, equivalent,
identical, weakly-translatableor approximately-translatableto a classC2 from the tar-
get ontology, depending on its name mapping and thetranslatability of its associated
properties and restrictions.

Schema matching is a fundamental issue in the database field,from database in-
tegration and warehousing to the newly proposed P2P data management systems. As
discussed in [35], most approaches to this problem are semi-automatic, in that they as-
sume human tuning of parameters and final refinement of the results. This is also the
case in some recent P2P data management approaches (e.g., [7,34]. Generally, schema
matching [35] and integration [4] are operations that adhere to schema structure in a
strict way. Thus, most of the effort is concentrated in detecting and compromising con-
tradictory dependencies and constraints.

Ontology matching/integration is a very similar problem toschema matching/
integration. As discussed in [32, 37], both ontologies and schemas provide a vocab-
ulary of terms with a constrained meaning. Yet ontologies and schemas differ in the
declaration of semantics: on one hand ontologies specify strict semantics and on the
other hand schemas do not specify any explicit semantics. Because of this vital differ-
ence, ontology matching/integration has to follow a strictsemantics structure, whereas
schema matching/integration has to obey to strict structural semantic-less constraints.
Our work in this paper, is an effort to complement these approaches by filling the gap
between them. Our focus is the semantics that can be deduced from schemas alone
without adhering to the schema structure or to any ontology constraints on semantics.

The Chatty Web [1] considers P2P systems that share semi-structured or structured
information. The authors are concerned about the gradual degradation, in terms of syn-
tax and semantics, of a query that is propagated along a network path. However, the

XXX

Chatty Web approach considers peers that own very simple relational schemas and
GAV mappings with their acquaintees. Instead, we are interested in more complex peer
schemas and we consider GAV, LAV or GLAV mappings.

PeerDB [34] facilitates relational data sharing without any schema knowledge. Query
matching and rewriting is based on keywords (provided by theusers). A two-step pro-
cess is described: First all nodes within a TTL radius are contacted, returning prospec-
tive answer meta-data. Then the user selects the ones that are relevant to the local query
and the requester directly contacts the selected sources and asks for the results to the
various rewritten versions of the query.

The works in [17] and [23] deal with data exchange between peers. Ref. [17] presents
a significant approach to the heterogeneity issue in P2P datamanagement and proposes
a language for schema mediation between peers. Also, the authors present an algorithm
for query reformulation based on local-as-view as well as global-as-view query an-
swering. In [23], the authors describe mechanisms for the declaration of data exchange
policies on-the-fly based on ECA rules. They also propose a general architecture for
peer-databases and elaborate on the establishment and abolishment of acquaintances
between peers.

Beyond [17] other significant works such as [3, 6, 9, 14, 36] have introduced novel
frameworks for PDMSs. All of these works agree to the fundamental principles of
peer autonomy, peer heterogeneity and peer data exchange through local pairwise map-
pings. Our approach complies with these principles and it follows the lines of these
works. Nevertheless, the focus of all these works is query answering through propa-
gation from peer-to-peer, whereas our focus is on providinga dynamically adaptable
global schema for a semantic group of peers. Therefore, our approach is complemen-
tary to these works, since it proposes query answering through a group schema, without
annulling the peer-to-peer query propagation. Both of these techniques for query an-
swering can coexist in a PDMS.

Beyond the above significant works, there are plenty that have talked about seman-
tics and semantic clustering of peers. The work in [11] is oneof the first to consider
semantics in P2P systems and suggest the construction of semantic overlay networks,
i.e. SONs. Later on, other researchers have attempted to go beyond the a priori static for-
mulation of SONs: the work in [38] suggests the dynamic construction of the interest-
based shortcuts in order for peers to route queries to nodes that are likely more capable
of answering them. Inspired by [38], the authors in [42] but also in [18] exploit implicit
approaches for discovering semantic proximity based on thehistory of query answering
and the least recently used nodes. In the same spirit the workin [13] presents prelimi-
nary results about the clustering of the workload on the realpopular systems e-Donkey
and Kazaa. Additionally, SQPeer is an extensive work on PDMSthat share RDF data
and they localize the query patterns using views [26].

Some of the well-known projects that have dealt with the dataheterogeneity prob-
lem in P2P systems are [2, 16, 31, 40]. Edutella [31] is a schema-based network that
holds RDF data. Peers have services (e.g. quering, mapping,mediating etc) that they
share with other peers. Peers can formulate complex queriesthat are translated in wrap-
pers to queries on the Edutella Common Data Model. Peers register their services and
the kinds of queries they can answer to mediators. The latterroute the incoming queries

XXXI

to peers that are probably able to answer them. Edutella is aninteresting effort towards
the solution of the heterogeneity problem both of data and services. However, it is not
focused on semantic clustering of peers and does not proposesophisticated methods for
distributing queries to semantically relevant peers.

Finally, there are some works that employDistributed Hash Tablesin order to deal
with peer data heterogeneity, such as [2,40], or ontologies, such as [16]. Moreover, most
of the works that consider query answering in unstructured networks with super-peers
[43] assume the presence of ontologies in order solve the problem of heterogeneity
in peer semantics. A variety of such works, [5, 8, 10, 28] assumes that the semantics
of peer schemas are described using an ontology model. A super-peer that manages
semantically similar peers maintains mappings to these descriptions. A query is then
routed to semantically relevant peers following these ontology descriptions. Our work
is orthogonal to these works in that we do not assume either the presence of static
centralized managing overlay nodes, such as super-peers, or the enhancement of peer
semantics with ontology-based descriptions.

6 Summary

In this paper we have described a method to automatically create schemas in order to
characterize semantic clusters in PDMSs. Our scheme operates on clustered unstruc-
tured P2P overlays. By iteratively merging relevant peer schemas and maintaining only
the most frequent common characteristics, we provide a schema representative of the
cluster. Group schemas can be used in order to increase both query performance and
the volume of returned data. Our experimental evaluations confirm these observations
in a detailed comparison with the GrouPeer system.

ACKNOWLEDGMENTS

This work has been funded by the project PENED 2003. The project is cofinanced 75%
of public expenditure through EC - European Social Fund, 25%of public expenditure
through Ministry of Development - General Secretariat of Research and Technology and
through private sector, under measure 8.3 of OPERATIONAL PROGRAMME ”COM-
PETITIVENESS” in the 3rd Community Support Programme.

References

[1] K. Aberer, P. Cudre-Mauroux, and M. Hauswirth. The Chatty Web: Emergent
Semantics Through Gossiping. InWWW Conference, 2003.

[2] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. Van Pelt. Gridvine:Building
internet-scale semantic overlay networks. InInternational Semantic Web Confer-

ence, 2004.
[3] Marcelo Arenas, Vasiliki Kantere, Anastasios Kementsietsidis, Iluju Kiringa,

Rene J. Miller, and John Mylopoulos. The hyperion project: from data integra-
tion to data coordination.SIGMOD Record, 32(3):53–58, 2003.

XXXII

[4] C. Batini, M. Lenzerini, and S. B. Navathe. A comparativeanalysis of methodolo-
gies for database schema integration.ACM Comput. Surv., 18(4):323–364, 1986.

[5] D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. Querying a super-
peer in a schema-based super-peer network. InDBISP2P, pages 13–25, 2005.

[6] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J.Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data management for peer-to-peer computing : A vision. In
WebDB, pages 89–94, 2002.

[7] P. A. Bernstein, S. Melnik, and J. E. Churchill. Incremental schema matching. In
VLDB, pages 1167–1170, 2006.

[8] J. Broekstra, M. Ehrig, P. Haase, A. Kampman F. van Harmelen and, M. Sabou,
R. Siebes, S. Staab, H. Stuckenschmidt, and C. Tempich. A metadata model for
semantics-based peer-to-peer systems. InSemPGRID, 2003.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.Logical foundations
of peer-to-peer data integration. InPODS, pages 241–251, 2004.

[10] S. Castano, A. Ferrara, S. Montanelli, E. Pagani, and G.P. Rossi. Ontology-
addressable contents in p2p networks. InSemPGRID, 2003.

[11] A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems.
In Technical Report, 2003.

[12] D. Dou, D. V. McDermott, and P. Qi. Ontology translationon the semantic web.
J. Data Semantics, 2:35–57, 2005.

[13] F. Le Fessant, S. Handurukande, A.-M. Kermarrec, and L.Massoulie. Clustering
in Peer-to-Peer File Sharing WorkLoads. InIPTPS, 2004.

[14] E. Franconi, G. M. Kuper, A. Lopatenko, and L. Serafini. Arobust logical and
computational characterisation of peer-to-peer databasesystems. InDBISP2P,
pages 64–76, 2003.

[15] Gnutella website: http://gnutella.wego.com.
[16] P. Haase, B. Schnizler, J. Broekstra, M. Ehrig, F. van Harmelen, M. Menken,

P. Mika, M. Plechawski, P. Pyszlak, R. Siebes, S. Staab, and C. Tempich. Bib-
ster - a semantics-based bibliographic peer-to-peer system. In Journal of Web

Semantics, 2005.
[17] A. Halevy, Z. Ives, D. Suciu, and I. Tatarinov. Schema Mediation in Peer Data

Management Systems. InICDE, 2003.
[18] S. Handurukande, A.-M. Kermarrec, F. Le Fessant, and L.Massoulie. Exploiting

Semantic Clustering in the eDonkey P2P Network. InACM SIGOPS, 2004.
[19] The internet movie database: http://imdb.com.
[20] C. Jin, Q. Chen, and S. Jamin. Inet: Internet Topology Generator. Technical Report

CSE-TR443-00, Department of EECS, University of Michigan,2000.
[21] Java movie database: http://jmdb.com.
[22] Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: TheState of the Art.

Knowl. Eng. Rev., 18(1):1–31, 2003.

XXXIII

[23] V. Kantere, I. Kiringa, J. Mylopoulos, A. Kementsientidis, and M. Arenas. Coor-
dinating P2P Databases Using ECA Rules. InDBISP2P, 2003.

[24] V. Kantere and T. Sellis. Reusing Classical Query Rewriting in P2P Databases. In
DBISP2P, 2006.

[25] V. Kantere, D. Tsoumakos, T. Sellis, and N. Roussopoulos. GrouPeer: Dynamic
Clustering of P2P Databases. Technical Report TR-2006-4, National Technical
University of Athens, 2006. http://www.dbnet.ece.ntua.gr/pubs/uploads/TR-2006-
4. Submitted for publication.

[26] G. Kokkinidis, E. Sidirourgos, and V. Christophides.Semantic Web and Peer-to-

Peer, chapter ”Query Processing in RDF/S-based P2P Database Systems”, pages
59–81. Springer-Verlag, 2006.

[27] A. Y. Levy. Answering Queries Using Views: A Survey. InVLDB Journal, 2001.
[28] A. Lo”ser, F. Naumann, W. Siberski, W. Nejdl, and U. Thaden. Semantic overlay

clusters within super-peer networks. InDBISP2P, pages 33–47, 2003.
[29] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: An Approach to Universal

Topology Generation. InMASCOTS, 2001.
[30] L. Mota and L. Botelho. Owl ontology translation for thesemantic web. InPro-

ceedings of the Semantic Computing Workshop of the 14th International World

Wide Web Conference, 2005.
[31] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer,

and T. Risch. Edutella: A p2p networking infrastructure based on rdf. InWWW,
2002.

[32] N. Fridman Noy. Semantic integration: A survey of ontology-based approaches.
SIGMOD Record, 33(4):65–70, 2004.

[33] N. Fridman Noy and M. A. Musen. Prompt: Algorithm and tool for automated
ontology merging and alignment. InAAAI/IAAI, pages 450–455, 2000.

[34] B. Ooi, Y. Shu, K.L. Tan, and A.Y. Zhou. PeerDB: A P2P-based System for
Distributed Data Sharing. InICDE, 2003.

[35] E. Rahm and P.Bernstein. A Survey of Approaches to Automatic Schema Match-
ing. In VLDB Journal, 2001.

[36] L. Serafini, F. Giunchiglia, J. Mylopoulos, and P. A. Bernstein. Local relational
model: A logical formalization of database coordination. In CONTEXT, pages
286–299, 2003.

[37] P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches.J.

Data Semantics IV, pages 146–171, 2005.
[38] K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using

Interest-Based Locality in Peer-to-Peer Systems. InINFOCOM, 2003.
[39] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A

scalable Peer-To-Peer lookup service for internet applications. In SIGCOMM,
2001.

XXXIV

[40] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval using self-
organizing semantic overlay networks. InSIGCOMM, 2003.

[41] I. Tatarinov and A.Halevy. Efficient Query Reformulation in Peer-Data Manage-
ment Systems. InSIGMOD, 2004.

[42] S. Voulgaris, A.-M. Kermarrec, L. Massoulie, and M. vanSteen. Exploiting Se-
manntic Proximity in Peer-to-Peer Content Searching. InFTDCS, 2004.

[43] B. Yang and H. Garcia-Molina. Designing a super-peer network. In ICDE, pages
49–, 2003.

