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Abstract. Sharing of structured data in decentralized environments is a chal-
lenging problem, especially in the absence of a global schema. Sotiarke
structures map network links to semantic relations between participantsen ord
to assist in efficient resource discovery and information exchangéid work,

we propose a scheme that automates the process of creating schrepaesy
from semantic clusters of peers which own autonomous relational d&wsbEhe
resulting mediated schemas can be used as global interfaces fontejeeaies.
Active nodes are able to initiate the group schema creation process, prioich
duces a mediated schema representative of nodes with similar sem@ntiop.
schemas are then propagated in the overlay and used as a single énferfiasd-
evant queries. This increases both the quality and the quantity of the eetriev
answers and allows for fast discovery of interest groups by joiniregspeAs
our experimental evaluations show, this method increases both the quality a
the quantity of the retrieved answers and allows for faster discovergméstic
groups by joining peers.

1 Introduction

In the last few years, there has been a growing interest iRP#ge-to-Peer (P2P) com-
puting paradigm, primarily boosted by popular applicasidhat enable massive data
sharing among millions of users. The P2P paradigm dictafelyadistributed, cooper-
ative network design, where nodes collectively form a systgthout any supervision.
Many popular P2P applications (e.g., Gnutella [15]) opeoat unstructured networks,
with peers joining and leaving the system in an ad-hoc fashidile maintaining only
local knowledge. While structured overlays (e.g., [39])vide efficient lookup opera-
tions, in many realistic scenarios the topology cannot Imgrotied and thus they cannot
be used (e.g., dynamic ad-hoc networks or existing largiesmstructured overlays).
In the variety of P2P applications that have been proposeet, Pata Management
Systems (PDMSs) (e.g., [17,41]) hold a leading role in sttagemantically rich in-
formation. In a PDMS, each peer is an autonomous source #satHocal schema.
Sources store and manage their data locally, revealingopéneir schemas to the rest
of the peers. Due to the lack of global schema, they exprassaswer queries based
on their local schema. Peers also perform local coordinatiith their acquaintees
i.e., their one-hop neighbors in the overlay. During theuadgtance procedure, the two
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peers exchange information about their local schemas aadecmediating mappings
semi-automatically [23]. The establishment of an acqaaice implies an agreement
for the performance of data coordination between the aotges based on the respec-
tive schema mapping. However, peers do not have to conforamydind of data or
schema transformation to establish acquaintances witr @bers and participate in
the system. The common procedure for query processing nasgstem is the prop-
agation of the query on paths of bounded depth in the oveflagach routing step,
the query is rewritten to the schema of its new host based emetspective acquain-
tance mappings. A query may have to be rewritten severaktfroen peer to peer till it
reaches nodes that are able to answer it sufficiently in tefrgsality but also quantity.

Several theoretical frameworks have been proposed for PO $4,17,36]. These
frameworks aim at the provision of correct and complete sdits that distinguish
PDMSs from data integration systems and also handle instemgly in such a way that
the system does not collapse in its presence. The worksid]@mploy epistemic and
autoepistemic logic in order to achieve maximum peer autgnw.r.t. both the local
semantics and the peer connectivity. Even though we aclatmel the efficiency of
these results, in this work we adopt a PDMS framework tow#trddines of [17, 36],
sinceFirst Order Logicand therelational modelare more convenient for a practical
PDMS.

Assuming a social network organization in a PDMS, an intarggjuestion is how
to automatically create a synopsis of the common interdsisgooup of semantically
related nodes. This will be a mediating schema represeatatithe group along with
its mappings with the local databases. Queries can thengressed on this mediated
schema (see Figure 1). This functionality is desirable faltiple reasons:

First, it allows queries to be directed to a single, autlatixie schema. In this way
query answers are more precise, since they come from therglegant peers. More-
over, these peers receive a query version that has not bedtier successively multi-
ple times, but only twice (i.e. from the original query to t@up schema and from the
group schema to the peer that will answer the query), and imgetrtantly, through a
mediating schema that is as lossless as possible in ternesnafrgics. Thus, the query
version that the relevant peers receive is not degraded sh aulit is through multiple



successive rewritings [25,41]. Furthermore, using theigischema as the mediator of
query answering, is much less time-consuming.

Second, the group schema actively expedites the acquamntagtween semanti-
cally related peers. It allows joining peers with little @ memory to be promptly and
favorably interconnected. Since group schemas can bediealty advertised inside the
network, each newcomer is able to make an “educated gueds”velsich groups are
interesting to him. Hence, users with no prior exposure ¢odifferent (and possibly
numerous) schemas of remote nodes will save the time anduidthdhat a learning
process requires.

Finally, it minimizes human involvement in the process adating/updating the
group schema. Until now, nodes have been organized by mdam$ieman-guided
process (usually by one or more administrators and apjaitaxperts) into groups of
peers that store semantically related data. The admitastiassing schema matching
tools as well as domain knowledge, initiates and maintdiese synopses. This ap-
proach requires manual work, extensive peer coordinatidrregpetition of this process
each time the group changes.

The above advantages of group schema mediation in a PDMSIkeulinimpor-
tant if group schemas do not conform without major overhedti¢ vital P2P features
of autonomy and dynamicity. Thus, group schemas should dsgtexi and maintained
dynamically and in an automatic way. Moreover, group sctesieuld be adaptable
to the changes of semantics of the peers that participatei®DMS. Therefore, they
should be able to evolve accordingly to the peer joiningyileg or interest changing.

Motivating example
As a motivating example, envision a P2P system where thécjpating peers are
databases of private doctors of various specialties, dstgnlaboratories and databases
of hospitals. Figure 2 depicts a small part of this systenenelthe peer databases (or
else, pDBMSs) are: DavisDB - the database of the privateod@unt Davis, LUDB - the
database of pediatrist Dr Lu and StuartDB - the databasesqfithrmacist, Mr Stuart. A
P2P layer, responsible for all data exchange of a peer wgithciquaintees, sits on top of
each database. Among others, the P2P layer is responsiltfeeforeation and mainte-
nance of mappings of local schemas during the establishofi@ctjuaintances towards
the line of [23]. Moreover, each peer owns a query rewritind a query-schema match-
ing mechanism. The schemas of the databases are shown e Rigu

We would like to automatically produce a merged schema fahede peers of our
example, semantically relevant to their local schemash &uoerged schema could be
the following:

Disease/Sickness(Di®isDescr, Symptom, Drug)

Visits/Patients(Pid/InsuranceBid, Date Age, Ache)
Treatment(DicdDrug, Dosology)

Obviously, in the merged schema we would like alternativmes for relations or
attributes (separated by ‘/" above). We would also like therged schema to contain
relations or attributes according to their frequency ingbeof local schemas. For ex-
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ample, the attribut®atientsAvgFeveris not present, possibly because the respective
concept is not considered to be frequent in the set of lodedrsas.

In this paper, we describe a mechanism that operates on ateatiy clustered flat
(i.e. without super-peers) PDMS and automatically creggkgional schemas that are
representative of the existing clusters. Given the semargighborhoods, our system
can initiate the creation of a mediating schesgathat summarizes the semantics of the
participating database schemas. It is created by the dratkrging of peer schemas
along the path followed by the process. We daterestor semantic groupshe se-
mantic clusters that exist in social networks operating BWBs; moreover, we call
group schemahe inferred schema of the grodjg. S holds mappings with each of
the peers involved in its creation and functions as a poirdootact for all incoming
queries, whether from inside or outside the semantic neididod. Thus, requesters
of information need only maintain mappings and evaluateigaegainst one schema,
instead of multiple ones. The inferred groups are advettder their creation and are
not managed by any specific peer. Furthermore, the infealeeinsas are periodically
broadcast in the overlay, so that joining peers can diresit tiueries or participate in
groups similar to their interests. Group schemas are deaté managed automatically
so that they are dynamically adapted to the change of peeaargas, due to peer join
and leave, as well as change in peer needs for informatiars, Group schemas are al-
ways representative of peer semantics, without any ovdrblauman interaction. Our
experimental evaluation shows that our group creationge®creases both the accu
racy and the number of answers compared to individually ggafing and answering
queries in an unstructured PDMS.

In Section 2 we describe the basic notions of the framewakwre consider and
give some essential formal definitions. In Section 3 we dies¢he core characteristics
of the inference procedure of the group schema. In Sectiore $nesent our experi-
mental results and Section 5 summarizes related work.ligdction 6 concludes the
paper.

2 Preliminaries

We assume a PDMS with a social-network organization of peerssemantically rel-
evant peer DBMSs are acquainted or close in the overlay. ddnisbe achieved ei-
ther manually or using one of the proposed schemes (e.g-3426 Peer schemas are
relational, (i.e., the only internal mappings are foreigy kconstraints). Acquainted
peers create and maintain schema mappings between theangludithe widely-known
GAV/LAVIGLAV form [17,27]. A mappingM that refers to the schem&g, S of the
acquainted peers peeps, p2, respectively, is stored locally in both of them. Pepys
andp, can employM in order to rewrite a query that is expressed on their lode¢ s
(S1, S, respectively) on the schema of the other peer, %1, respectively). Moreover,
peers do not carry additional semantic information abaoeit fthemas and mappings.

In our setting, semantics of peer schemas and data, arededlely from the local
schemas, data and mappings between acquainted peers. Wealdistinct concept of
a schem&to be each eleme A, whereA is an attribute of relatioR of schemés:
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Definition 1. Considering a relational schema S, a distinct concept spoads to
each RA where A is an attribute of relation R S.

A schema mapping between peers is actually a a set of conoapspondences
that hold under a set of conditions. The conditions are edkttebute joins or attribute
value constraints. The following is the definition of a maypi

Definition 2. Considering a source schema S and a target scheénaaAV/LAV/GLAV
mapping between them (8 S) is the set{Cru (S S),Condu(S,S)}, where the set
of concept correspondencesydS S) = {RA=R.A|RAc SR.A € S} holds un-

der the set of conditions CopdS S) = {R;.A= R,.B or Ri.A=constR;,R, € S or

Ri,R; € S}; const is a data value.

Obviously, for each pair of concep{R A,R.A’'} that each belong to a different
schemaR A € SandR.A’ € S, and that are corresponded through a mappig, S),
there is one such pair i€ry (S S). A set of mappings betwee8 S is denoted as
M (S S).

Semantics are 'flooding’ from one peer to the other, throwgpective mappings:

Definition 3. For each correspondence R= R.A’ € Cry (S, S) € M(S,S), the con-
cepts, RA, R.A’ are considered equivalent.

Extended discussion and details on acquaintance mapjpjugsy rewriting, query
similarity etc can be found in [25].

3 Interest Group Creation

Our goal in creating a group schema is to represent the sendsters in a social
network using a distributed process that iteratively mgtgeal schemas into the final
group schema that preserves their most frequent semantics.

In social network systems, nodes with relevant informatioa close in overlay
distance. Yet, this semantic clustering is implicit, inttpaers have no knowledge of
the number of the participants and their common charatit=isThe need for explicit
knowledge of the semantic groups spread over a network hiipleadvantages: First,
it enables peers to direct relevant queries promptly tosv&adthority” nodes. In many
distributed systems, new peers join the network using raneliotry points. Therefore,
they would like to be informed about the various semantiaigsoin which they could
participate and select acquaintees from. In additiongsinost such systems exhibit a
highly dynamic behavior, with node arrivals/departured passible schema or work-
load changes, meta-data on semantic groups can be refrééhexttheless, clustering
w.r.t. the semantics of all peers requires constant maanies whereas group mainte-
nance (w.r.t. only the group semantics) can be performedsoacally. Thus, it is easier
to maintain semantic groups than implicit semantic clsstidevertheless, it is essential
to the social network that these semantic groups are dynamarder to follow the
evolution of the content and structure of the overlay.

In the following we describe the inference procedure of iememantic groups in
social networks. Furthermore, we encounter the implicatiof multiple concurrent or
sequential inferences of distinct groups and we discusageanent methods.
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3.1 Group Inference

In this section we describe the process through which a ggobpma emerges from a
set of clustered nodes in our system. The group-inferenmeegure comprises of the
following steps:

— Initialization: Who and when initiates the group schemaraifiee
— Propagation: How does the process advance among peerssafrtieegroup
— Termination and Refinement: When is the process over/r&tra

Figure 3 summarizes the above steps that are describedmelgrin the following.

Group_Inference_Procedure

Input: The prospective initiator peér

Output: The group schengg

Initialization: P =1, i.e.ST(l) =0, Sg = 0, #visitedpeers =G =S,Sc =0, M =0, M,
=0,D=0.

Stepl If | is notactiveabort the procedure.

Step2 Add appropriate acquaintees®to ST(I) and reorder the latter.

Stepl Augment #isited peerdy one.

Step3 Call {§, M'i, D'} = Schema_Merging_Algorithm(Sg, Sp, M, M, D).

Step4 If (#visitedpeers MaxP) then if theDoC(S, Sg) is below a certain threshold,
then goto Step7; else goto Step5.

Step5 Select the next peel/, that corresponds to the next element in the s&EK ). Set
M equal to the set of mappings betwerP’; change attribute and relation nameddh
M’ to the respective names in the merged schgga

Step@ SetSg = S, P =P’ go to Step2.

Step7 ReturnSg.

Fig. 3. Group inference procedure

Initialization

The nature of our application requires that the group imfeegs performed in a dis-
tributed manner, without global coordination. Peers sthdnal able to start the process
that creates the respective schema with minimum messadm@mge. In our system,
each member of the social group is eligible to initiate tHfer@nce process. Neverthe-
less, such groups may consist of numerous participanttirgsin very frequent col-
lisions among competing initiators. Hence, we only allagtive members to become
the initiators of the process. This is enforced by a systéde\warameter that defines
the minimum number of queries posed in the most recent tiamadt Intuitively, active
peers have a better knowledge of the social network and treses of the other par-
ticipants through the answers they receive. Moreovergdine network is semantically
clustered, the active peers have good knowledge of the sencéuster(s) they belong
to.
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The initiator's local schema becomes a point-of-referemggarding the inferred
one. Thus, the peer schemas considered for the formatidreajroup schema should
not differ semantically a lot from the schema of the initra®pecifically, we require
that the participating local schemas should be at kesishilar to the initiator’'s schema:
t is a parameter that mainly determines how specialized (oedys very similar to the
initiator considered) or general (a broad collection ofrpgrrticipate in the process)
the inferred schema will be. The initiator peer is called dhiginator of the group, its
schema is therigin of the group schema and the maximum similarity distance &etw
the origin and the peer schemas that participate in the gsobpma inference is the
semantic radiusf the group.

The following function calculates thdirectedsemantic similaritySS of two rela-
tional schemas:

sgsT) 2131 WiMapped (SR;) M
2i2WijSR;

In function 1,SR; is thejth attribute of thd'" relation ofS. Sis the source schema
and T is the target schem&Scalculates the portion ofs attributes ER that are
mapped onrl. Specifically,SSis the average sum of the weighted sum of all the at-
tributes ofSthat correspond to attributes dfthrough mappings. Thubjapped (SR;)
is a boolean function that gives 1$R; is mapped to some attribute in schefaor
it gives 0, otherwise. Alsay;; > 1 for attributes ofSthat belong to relation keys and
wij = 1 otherwise. Obviously$SS T) # SST,S) in general SSachieves to measure
semantic similarity because it takes into consideratianrttapping of concepts be-
yond their structural interpretations on the schema leMelreover, sincesSignores
the schema structure, it is very easily calculated.

Propagation

The initiatorl, with schem&5 of the inference process initializes the group schema
to its own and creates a sta8d(l) with its acquaintees that are part of the cluster.
Specifically,ST(l) = {A1, Az, ...,Am} is an ordered set of elemerts= {P;, SSS,S,) },
whereP; is a peer with schem&y,. ElementsA; refer to thel’s most similar acquain-
tees:SSS,Saj) >t,j=1,..,m andSS{S,Saj) > SS{S,S:J.H), j=1.,m-1. The
initiator propagates the inference procedure to the first pa the stack. The latter is
supposed to merge its own schema with the group schema vesaeccording to the
merging procedure described in the next subsection. Tk §&& dictates a network
path that corresponds to the peer order of the stack ST(@ryEweerP (beyond the ini-
tiator) on the network path that the inference processvia|aetermines its acquaintees
Pj for whichS§S, Sp,) > t, adds the respective pdf, S5, Sp, ), to ST(1) and orders
the latter. Any peeP on the inference process path calculs8&S, S, ) indirectly, as
the productSSS,Ss) - S3$7&j), where$; is the part ofS> mapped orf§. Essen-
tially, SIS ,Sp) aims to measure how much of the semantic§o€an be found on
scheméasy, independently of other semantics that the latter captdies only way to
measure this (without automatic matching) is through thercbf mappings ofy all
the way toSs. As such, the value d83S, Sp) depends on the path that the inference
process follows and fails to consider concepts that exigt boS and S but did not
exist in the schemas of intermediate nodes. However, this'fta produces a satisfac-
tory result, since nodes are visited in decreasing orddénufesity with | and clustering
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precedes this process, so a pBaxill have higher similarity with the originator than
successor nodes in the stchMoreover, if a peeP already inST(1) is considered for
addition, the entry with the higheSSS, $) value is kept.

Even though the participation or not of peers in the infeegmocess is judged by a
part of their schemas, their whole schema contributes tomteered group schema (see
subsection 3.2). Intuitively, the goal of the inferencegass is to produce a schema
that represents semantics encapsulated in the clusterdém  determine the clus-
ter's semantic borders we use as a reference the semanttos ioitiator. In this way
the process is safe from producing a schema too much broadtstorted from the
interests of the initiator.

Termination

As aforementioned, the group inference procedure ends Wieestack of partic-
ipating peers becomes empty. However, if too many peers aWwensas very similar
to the originator’'s schema or the similarity thresholid too small (i.e. the semantic
radius of the inferred group is big), then it may be the caaettie stack is provided at
each step with a lot of new entries. Thus, the inference phaeeis prolonged taking
into account a big number of peers. After a certain numbeteadiions, there is usually
no point of considering more peer schemas in the inferermeepiure, because they do
not alter the schema significantly. In order to reduce the tithe inference and save
the network from spending resources on pointless iteratadrihe procedure, we add
a limit to the maximum number of encountered peer scheMasP, as a termination
condition. A smalMaxPvalue implies the desire for more specialized grobaxPis
not aTime To Live(hereafter TTL) condition, since successive hops are mays on
the same pathylaxP refers to the total number of participating nodes and ndttjues
nodes on one path.

Finally, there may be situations where the inference proeterminates due to
MaxP while important semantic information is still added, or tiones untilMaxP
is reached while little information is assimilated. To iBcthis, we also consider the
degree of changer elseDoC, that occurs to the inferred schema during each merging
step. Note that this threshold should be taken into accaurtefmination afteMaxP
is reached. Otherwise, in case of a well clustered netwhekirtference procedure will
terminate after one or a few steps. Nevertheless, in caspaiy chosemMaxPvalue,
this criterion can be used to calibrate this parameter.

3.2 Group Schema Creation

As aforementioned, the inference of the interest groupraehis achieved gradually by
merging the schemas of peers on consecutive steps of thé¢haatine merging proce-
dure follows. In this section we present the algorithm thexffgrms schema merging
between two peer schemas.

The goal of the merging procedure is to produce a schemaegpetsents the se-
mantics of the majority of the peers that belong to the respecluster. Therefore, the

1 Assuming a path of three peers with schergsS, andS; in a clustered overlaysSS;, S) -
SSS,.S3) is able to give us a value that is close to the real valu%8§;,S3). The reason is
thatS; is a schema that maps most of the semantic @idsS, is very similar toS,.
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merged schema is neither the intersection nor the unioreas¢themas of the members
of the cluster. Assuming that such a cluster comprises nousepeers, it is straight-
forward that the intersection of their schemas would be @obbempty and their union
would be a huge schema with specific semantics being refesbemltiple times. Thus,
we need a merging procedure that keeps in the merged schemaost popular con-
cepts of the respective peer schemas. Yet we aim at infermgp gchemas that will
be representative of almost all their source peer schentas, Tve require a merging
procedure that performs high compression before throwiveyaschema elements (i.e.
relations or attributes). Note that a peer can join sevax@lms in order to satisfy its
need for information and of course the employment of the gihema for query an-
swering is not mandatory: a peer can still propagate a queny peer-to-peer instead
of using a group schema. In any case, our approach is panareetesuch that it can
allow schemas with broad or narrow semantics (thus, grobpreas can keep or not
unpopular concepts).

Finally, we require that the merging procedure is based onlgvailable informa-
tion on the peers, i.e. it exploits solely the peer schemadstlaa peer mappings. We
remind the reader that we assume that peer mappings are @XAELAV and peer
schemas are relational, (i.e. the only internal mappingsfareign key constraints).
One mapping is considered to be a set of 1-1 correspondert@sdn attributes that
hold with an optional set of value constraints on some aitei. Moreover, peers do
not carry semantic information about their schemas and mgpp

The schema merging procedure is dictated by the followintatons:

1. Fewer relations with more attributes are preferred toemetations with fewer
attributes

2. The semantic relevance of two relations is proportiom&hé number of correspon-
dences between their sets of attributes

3. If the keys of two relations are mapped thoroughly, boldtiens are considered to
be projections of the same relation with the same key

4. The key of a merged relation consists of the keys of bo#ticeis that are merged

5. If two attributes are merged and at least one of them is atkey the merged
attribute is part of the key of the merged relation

6. Correspondences that involve the same attribute impaliyat involved attributes
are semantically equivalent

7. Correspondences that are based on any value constnardsresidered valid only
under conditions and do never produce merged attributes.

8. There is a pre-specified constant that represents themmaxinumber of relations
that the schema of the interest group is allowed to have

Dictation (1) is based on the rationale that more relati@ssiit in more join opera-
tions in query expressions; thus, mapping a peer schemaeanttirest group schema
would be more complicated in this case. Of course, this mag te relations with too
many attributes that are not semantically closely reldtegvever, this is not a problem,
since the group schema is not intended for data storage sifojumediation?

2|n case that the group schema should be populated with data, manytathairrelevant
attributes of a relation would result in sparse tuples with many NULL values.



In dictation (2) a relation is considered as a set of conc&jtge a correspondence
between two concepts entails their semantic equivalehaetually states the obvious
fact that two sets of concepts are considered semanticelyant according to the
semantic relevance of their members.

Moreover, the attributes that constitute the key of a refaéire considered to repre-
sent vital concepts of the respective set, i.e. conceptslgtarministically characterize
the whole set. Dictation (3) states that the key value pilessrunivocally the values
of the rest of the attributes; thus, if there are two relaiarith the same key, a value
assignment to the set of attributes that are not part of thekene relation corresponds
to one at most value assignment to the respective set dilgts of the other relation.
Thus, the two relations can produce one relation with theeseay that contains all the
remaining attributes from both relations. Actually, diaia (3) is like an extension of
dictation (2) that specifies very big weights for the keyiltires of relations.

Furthermore, the merge of two relations produces a reldliahis actually the set
of all involved concepts. Since we assume that each rel@iarset of concepts char-
acterized uniquely by a subset of them, the merged set slheubtharacterized by the
union of these subsets (dictation (4)).

Dictation (5) ensues from the previous rationale and adafs ifitwo attributes are
merged during the merge of two relations, then if one or bdtthem are keys, the
merged attribute should be a part of the key of the mergetioelarhe reason is that if
two relations are decided to be merged, it means that thegoarsidered as subsets of
a greater set of concepts. Dictation (4) requires that #tisfsconcepts is characterized
by the the union of the respective keys. If an attribute wihéchart of a key is merged
to produce a non-key attribute, dictation (4) is violatetiefiefore, merged attributes
should inherit the key property from either of their mergedtsg.

Dictation (6) reminds us of the assumption that a correspooel is semantically
interpreted as an equivalence of the two involved conceqtgtzat equivalence is tran-
sitive. In coherence with this, attributes are merged if/therrespond to a common
attribute. This means that even attributes of the samdarlean be merged eventually
(see following example).

Since correspondences between attributes are actuatly gfamappings between
schemas, the first hold under the constraints of the latgedigcussed in [24], joins are
assumed to be associative constraints, whereas valugaiotsare not. Dictation (7)
states that value constraints are intentional conditiomeuwhich the mapping corre-
spondences hold. Thereupon, these correspondences pandiote merged attributes,
since the existence of the latter in the merged schema isditamal.

Dictation (8) ensures the satisfaction of dictation (1) &iso guarantees the cre-
ation of a schema with more than one relations. Actually,liiés set by dictation
(8) express the initial requirement for the approximate si#zthe inferred schema in
terms of involved relations and attributes. Since no otkeramtic or meta-information
is provided, the limits are “safety valves” that stop theagoément of the merging of
relations and attributes and ensure the creation of a scivimenore than one relations
and relations with more than one attribute.
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Schema Merging Algorithm

Input: the merged schenSg; the peer schem® and a set of mapping® between them;
a set of intra-schema mapping4 and a dictionanD.

Output: the new merged scherffg;, a set of intra-schema mappingé'; and a dictionary
D'

Stepl Add to S all the relations ofp.

Step2 If M =0setS; =Sc and go to step 7.

Step3 Merge relations that share the same key usindRation Merging Procedure.
Step4 While the number of relations is over the limit do:

a. Select pairs of relations that have the most correspondencesbetvedr attributes and
that do not depend on value constraints.
b. From pairs of (a) select the pairs of relations that have the fewéestaoped attributes
and merge them using threlation Merging Procedure.
c. Remove from% the mappings used for the merge of (b) and add the involved
correspondences in the dictionddy
Step5 SetS; = Sg, M'i = MUM.
Step6ReturnSg,M’;, D'.

Fig. 4. Schema merging algorithm

The schema merging algorithm is presented in Figure 4. Stapsl 4 of refer to the
merging of a pair of relations. The procedure shown in Figuperforms the merging
of two relations according to the following definition.

Definition 4 (Merge of two relations). The merge of two relations1RAy,...,An),
R2(By,...,Bm) is a relation R/Ry with attributes the setAq,..,An)U(Bu,...,Bm) —
(Al7~-7An) N (Bl,...,Bm)

At the end of the schema merging procedure, i.e. when aNaatepeer schemas
have been merged, relations and relation attributes tvatleen met very rarely during
the procedure can be dropped.

As shown in Figure 4, the schema merging algorithm producesnterest group
schemaSg, but also a set of peer mapping¥,, a set of internal mappingsy; and
a dictionary,D. When the schema merging algorithm is initialized, all foargmeters
are empty. Each time the schema merging procedure is prgazhtgaanother peeR,
S is augmented with the relations Bfand M becomes the set of mappings tiat
maintains with the current form &g. We remind that in each iteration the merging
algorithm is propagated to the pegthat corresponds to the first element of the stack
ST (see Section 3.1). The mappingé are actually the mappings of schei®awith
the schema of a peer that has already participated in thednberence procedure.
The internal mappings are the peer mappings that were netiooed in the successive
schema merges. The internal mappings hold additional siyontnd implicit semantic
information for the interest group schema elements; tthey; tan be very helpful to
peers that would like to join the group and create mappingfseio local schema. More-
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Relation Merging Procedure

Input: A pair of relationdRy, Ry a set of mapping8/.

Output: The merged relatidR

Initialization: R= 0.

Stepl Add to Rall attributes of the relationR;, Ry.

Step2 Until the number of attributes is above the limit, if it is possible do:

a. if there are any, merge attributes that are involved only in one camdspce: e.g
correspondencéa = b} produces the attributa/b; if eithera or b is a key, makea/b a
key.

b. merge the attributes that are involved in at least one correspondsaceéng from
those participating in the fewest correspondences; in this case prodectribute for all
correspondence: e.g. corresponder@s b} and{a= c} produce the attributes/b/c; if
eitheraorb orcis a key, make/b/c a key.

Fig. 5. Relation merging procedure

over, this set of mappings has the collection of all mappimigis value constraints met
during the merging procedure. This kind of mappings canaatdmsumed: the involved
relations/attributes cannot be merged, since they are ethppder certain conditions
(the value constraints).

Furthermore, the merged schema has alternative keywartissfeame element that
result from the merged mapping correspondences. Thesaatlt@s are entered in the
dictionaryD that accompanies the group schema; tluss a set of concept correspon-
dences. Later, when the group schema is available in théagyéne dictionary can be
proved of great help for the peers that want to become menolbéns group.

Step 4 of the algorithm merges relations that do not sharedhmee key. Priority is
given to relations that share most of their attributes. Addal criteria in order to break
ties can be based on whether the corresponded attributpsidseof the relation keys,
or whether unmapped attributes are parts of the relatios. Kégvertheless, refining the
algorithm based on additional criteria is out of the scopthisfwork.

Example Assume that Dr Davis is a doctor that owns a peer databassclieena
of which is:
SoavisDB -
Visits(Pid Date Did)
Disease (DigdDisDescr, Symptom)
Treatment (DidDrug, Dosology)

And Dr Lu is another doctor with a peer database, the schemaich is:

S.upB:
Sickness(DidAvgFever, Drug)
Patients(Insuran¢eDid, Age, Ache)
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The schemas of DavisDB and LuDB are presented in Figure Gldtebases have
the following mapping:

M1pavisDB LUDB:
Disease (Did,, Symptom), Treatment (Did, Drug):-Sickness(Did, AvgFever, Drug),
{Symptom = AvgFever, Disease = Sickngss

where the correspondences Symptom = AvgFever, DiseasekreSis that are im-
plied are added in a set at the end of the mapping.

In this case, as shown in Figure 7 there are three correspoesi¢hat are encapsu-
lated in mappindg1. We assume that the peer of Dr Davis initializes the scheargen
Thus, S is initialized to Spavisps: When the group inference procedure iterates on
LuDB, after the # step of the schema merging algorith§g contains all the relations
of Spavisps andS ype. Since there is a mapping among the relations, Step2 isefipp
The algorithm goes on to Step3: relatioDseaseand Sicknessare merged in one,
since they share the same key. Thus, attrib8tes ptonandAvgFeverare merged. The
correspondencBiseas¢Sicknes®rug = TreatmeniDrug is kept as an internal one
(Step5). Also, the dictionarp is enriched with correspondencBssease= Sickness
andSymptom= AvgFever(Step4c); actually the schema keeps one name for each rela-
tion or attribute from the alternative ones. At the end ofsbleema merging procedure
we propose that the schema keeps for relation and attritaurtees the most common
ones encountered during the procedure.

Assuming that the algorithm goes on to Step3, relatibiseas¢ Sicknessand
Treatmentare merged, since they are the only ones related with a mgppigure
9 shows Step3 of the algorithm. Now there is one attributeathidrug’ and it is part
of the relation key, even though just one of the attributes Were merged was a key.
Additional iterations can merge relations based on fordigy constraints, since no
other internal mappings exist.

At this point we revise the example based on the assumptiintile initial peer
schema$pavisps andS yps have mappindv1 but also the following mapping:
M2pavisDR LuDB:
Visits(Pid, _, Did), Disease (Did,, Symptom), Treatment (Did, Drug):-Sickness(Did,
_, Drug), Patients(InsurangeDid, _, Ache){Pid = Insurancg Symptom = Ache and
Disease = Sickne$s

Figure 10 shows almost all correspondences of mapdihgsandM2. Again, at
Step3 of the merging algorithm the relatioDsseaseand Sicknessare merged, since
they share the same key. The first iteration of Step4 mertpgforesVisitsandPatients

3 The mapping is actually a view defined on DavisDB.Disease joined with Daeitment,
which is matched with relation LuDB.Sickness, such as:
Viewy(Did, Symptom, Drug):- Disease(Did, DisDescr, Symptom)Treatméid,( Drug,
Dosology)
Viewy(Did, AvgFever, Drug):-Sickness(Did, AvgFever, Drug)
The mapping is actually:
Viewy (X, y, z):Views(X,y,z)
For simplicity, we summarize mappings by omitting view definitions, adding witie the im-
plied correspondences in the mapping, and introducirfgr attributes that are not interesting
to the mapping.
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The state of merging is presented in Figure 11. The secoradida of Step4 merged re-
lationsDiseas¢ SicknesandT reatmentrather tharDiseas¢g SicknesandVisits/Patients
even though these two pairs have the same amount of corspoes, the second pair
has more unmapped attributes. The result is shown in FigurEitally, assuming that
Step4 iterates one more time. All relations of the initidiesmas are merged in one, the
key of which is the set of all key attributes of the initialagbns. Moreover, this step
produces an attribut®ym ptorniAvgFevey Achewhere both correspondences Symptom
= Ache and Disease = Sickness are merged.

Limitations of the Schema Merging Algorithm

It is apparent from the previous example that diverse casaspy be merged be-
cause they correspond to the same concept. Additionaligjsrcase the dictionary will
have entries that do not seem semantically correct at fiastogl. The example shows
that the conceptSymptomAvgFeverand Achewill be merged in one, producing the
dictionary entry AvgFever = Ache. The latter equates theceptsAvgFeverandAche
yet the average person knows that these concepts do nothegarne meaning. This
problem arises from dictation (6) that is based on our inissumption/definition that
a correspondence indicates the semantic equivalence ofvbleed concepts. Albeit,
the real meaning of concepfsygFeverandAcheis actually a specialization of the se-
mantics of SymptomAn ontology could represent this situation as the hienaich
Figure 14. Yet our basic assumption is that peers do not haveemantic information
about their schemas and mappings other than the semarsdiosath be deduced from
the structure of the schema and the mappings itself. Dactg6) is coherent with this
assumption and it draws the best possible semantic connkibly collapsing a possible
hierarchy of concepts to a simple set of equivalent concepts

Using additional semantic information such as ontologrebassociative tools such
as operations on ontologies in order to refine the schemaimgeatgorithm is out of
the scope of this work. However, it is possible for peers ®whbatever means in their
disposition in order to perform a finer schema merging.

Another limitation of the schema merging algorithm is thakitity to selectively
merge attributes that are corresponded under value conglitAssume thabavisDB
andLuDB have the following mapping:

M3LuDB_DavisDB'
Visits(Pid, , Did), Disease (Did,, Symptom), Treatment (Did, Drug):-Sickness(Did,
_, Drug), Patients(InsurangeDid, Age, Ache), Age> 13

As discussed in [24, 25] the value constraint Agel3 may have two reasons of
existence: the first is that the two databases want to exehdatg only for patients that
are under 13, but they could exchange data for patients afja$; the second is that one
of the databases stores data only for patients under 13lysimapause the owner of the
database is a pediatrician; in this case the databases motudckchange mutually data
on patients of all ages. Furthermore, in the second caseltdte@ns of the pediatrician’s
database are semantically bounded to the notion of childethe mapping indicates.
This means that 'sickness’ is not another word for 'diseasfor 'children’s disease’.
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In the first case, where the value condition is actually ae@ent on which portion
of data peers will exchange information, semantic schenrgingcould and probably
should ignore the constraint and merge the respectiveoeatyet, in the second case,
we have the same situation as with the multiple correspareteaf one attribute, dis-
cussed above. This means that the value constraint actondibates that one or more
relations of one database, (the database without consiyaiimvolved in the mapping
are semantically specialized concepts of relations of therodatabase, (the one on
which the constraint is defined); thus, 'sickness’ (or 'dhéin disease’) can be a spe-
cialization of 'diseasé.

Certainly, we can follow the same tactic as for multiple espondences on one
attribute, and merge relations mapped under constragnisying the latter. However,
we choose not to do this. The reason is that vey often reldtsechemas are designed
such that some relations are specializations, in a semeatyc of another, and the
general and specialized relations are joined with foreigysk For example a database
of a hospital can have a relation Person(ID, Role, ...) whdribute Role has values
such as 'Doctor’, 'Nurse’, 'Patient’ etc. Also, the databdwas a relation Doctor(ID,
Name, Specialty, ..), where Person.ID is a foreign key iatreh 'Doctor’. It is more
likely that we do not want to merge these two relations, beeave do not want all
persons working in the hospital to correspond semantitallye same schema element.

Fig. 6. Two schemas to be semantically merged

4We believe that this semantic situation does not occur with value constraimts Hoth
databases involved in a mapping. In case of a mapping with constraintstbrdatabases,
then concepts from one database overlap semantically with conceptsahgreunder cer-
tain circumstances.
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Fig. 9. Relations Disease/Sickness and Treatment of Figure 8 angeche
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M1&M2

Fig. 10. S is initialized to Syavisps and there are two mappingl, M2 betweerSg
andS (ps. The most important correspondences are shown

Fig. 11.Pairs of relations Disease and Sickness, and Visits andri®aitbf Figure 10 are
merged

Fig. 12.Relations Disease/Sickness and Treatment of Figure 11 engech
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Fig. 13. Relations Disease/Sickness/Treatment and Visits/Ratieh Figure 12 are
merged

Symptom

T

AvgFever Ache

Fig. 14.The hierarchy of concep&ym ptomAvgFeverandAche

3.3 Group Schema Broadcast

The group schema creation is followed by the periodical agagion of respective meta-
data. These metadata include the group schema, some ottladl ids of participating
nodes ¢ontact lis), the time of creation and the originator. The reason thaeax pnay
want to know explicitly about peers of the same group is that:

a. it may want to be acquainted with some of them that have siemjfar schemas to
its own, so that it can send queries directly to them (direaftritings may be more
information preserving that going through the group schema

b. if queries are not broadcasted in the overlay (broaduastill overload the net-
work), even if they are rewritten to the group schema, thdyneit go far into the
system due to the constraint TTL; thus, they may not reactyroaat all peers that
are members of the respective group.

Of course, if the clustering procedure performs long befbeegroup schema cre-
ation, peers of the same group will already be acquaintetitrars, close to each other,
eliminating the (a) and (b) problematic situations. Yegnsanay come and go or even
change their schemas. Thus, the achieved clustering ishlastncountering the dy-
namic nature of the P2P system.

Any peer can rewrite its queries to the group schemas aleil§ueries can then
be directly forwarded to the group members. In this way, waage to bypass the in-
formation loss of multiple rewritings, since a query is skted only once, through the
group schema. Making the participating nodes known to atpenables any remote
node to enter the cluster. Furthermore, group nodes havelemappings with the
inferred schema, so no loss is observed there. Peers caneommnbk acquainted with
group nodes that have very similar schemas with them, withauing to wait to be
gradually clustered.

3.4 Group Inference Interaction

While our completely decentralized approach in group ooeats necessary, it also
raises some consistency issues, since more than one grolye caeated, even simul-
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taneously. This can affect correct behavior only if nodeslar to the initiator choose
to create a groupndthe two processes overlap in the overlay. If two or more pieérs
tiate the group inference procedure, it may be the caseltb@tterred schemas overlap
semantically. This is the case when the schemas of the at@imare more similar than
the sum of theadiusesof the respective group schemas (see Figure 15). In thess cas
a big number of groups can be inferred that overlap signifigahhis is not desired,
because peers are disorientated, having many similarehéic groups to participate
in, and the network and individual peer overhead for groujntaaance is too big.
Topologically close peers initiating the process overedéht semantic groups pose no
problem. The same is true if the initiators’ hop distanceuishsthat would not allow
either procedure to incorporate both groups in its progieshe following we discuss
the details of such situations in order to determine thectizes of a protocol for the
resolution of group inference interactions, in order toidvbe inference of unnecessary
groups.

If two peers close in the overlay initiate the schema infeegprocedure, it may be
the case that their semantic distance is smaller than thiesraélone (or both) of the
inferred group schemas (see Figure 15 (a) and (b)). In oocdavdid extended negoti-
ation rounds between competing potent originators, weiredat initiators announce
their intention to create a group to their neighborhoodsTbices competing initiators
with schemas similar to the first initiator to postpone orralizeir process, if they are
inside the announcement neighborhood. We note that theuanement neighborhood
must have a radius proportional to the semantic radius ofithap to be inferred. If
such peers do not eventually participate in the group infsgethey can add themselves
to the overlay neighborhood or participate in the conseguaintenancef the group.

The originator should announce, i.e. broadcast, the fiutiaof the group either to
the whole overlay (which is definitely inefficient) or to a taén TTL distanceD. The
value ofD is determined by the intented semantic width of the groupdéiferred
(denoted by the semantic similarity threshold of the gropg@nd implied by the thresh-
old on the maximum participating node@daxP), as well as the clustering degree of the
respective cluste€d, (i.e. the quality of the cluster at the point of the respectroup
initiation). Thus,D(g) = fun(t(g), MaxP(g),Cd(g)), wherefunis a function.

Optimization Choices for the Group Inference Interaction Protocol
Instead of requiring peers residing in a group announcer@esa to postpone or
abort their intention for group creation, we have the foilogvoptions:

1. Peers irD reply to the initiator of the group that they want to partatip as ad-
ditional originators of the group; the group initiator iates the schema merging
procedure for a group with multiple origins (i.e. sourceesolas).

2. Peers irD have the chance to add their selves as originators to a greing n-
ferred in which they already participate, only when the pohae of the latter is
iterated on their platform.

The above options intend to be more gentle to other peersiéisate to create a group,
and give them the chance to be additional originators to agtbat has already been
announced. The simplest choice, case (1), is to let the perearn about the initiation
of a group to reply to the initiator that they wish to becoadlitional originators
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Fig. 15. Semantic overlap of group schemas

The initiator should wait for a small period after the groumauncement in order to
receive such replies. Then, it begins the procedure takilogionsideration the schemas
of the additional originators. In a more dynamic environinide protocol can allow
the spontaneous participation of peers as additionalraigrs to an ongoing group
inference procedure, choice (2). Yet, this is only possibke time when the inference
procedure is iterating on such a peer. At that time, the paerdecide if it wants to
introduce another origin of the group schema being inferfé@ new origin is its own
schema: thus, the group schema will have one more origifratorthis peer and on. Of
course, the sequence of originators that participate inntleeence of a group schema
has a role in the resulted group schema, especially if it Famall maximum size and
if the maximum number of participants for a group is small.

In both cases (1) and (2) the protocol should prescribe at@nsfor the maxi-
mum number of additional originators and the maximum semairnilarity and dis-
similarity between the pioneering originator and the r€herwise, if too dissimilar
originators are added the group may become too broad arwdtdisim the interests of
the first originator. Moreover, if there is a big dissimitgramong originators and the
maximum number of participating peers is small, the mergbgima may summarize
divergent concepts. Also, if too similar or too many simiteiiginators to the initiator
are added, then the inference procedure is overloaded vathy mannecessary itera-
tions (the staclST may become too big). Hence, in both cases (1) and (2) therddsho
be a maximum number of additional originatddsxO, which should be significantly
smaller than the maximum number of participating pebtaxO < MaxP. Moreover,
additional originator© should be in a constrained semantic distance from thetitia
| < SSS,S0) < u, wherel, u are the lower and upper borders of the semantic distance.
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3.5 Group Schema Merging

Nevertheless, peers are eligible to initiate a new groulpey thave not received a rele-
vant announcement or if they incorrectly calculate therriksirity with a known initia-
tor. Possibly such originators will create groups that resggnificant semantic overlap
with existing ones. Thus, these groups are subject to beadengo a unified schema.
The merging of the two group schemas can be performed witedhema merging al-
gorithm. In such a case, the merging will be guided by the rimayzthat exist between
the group schemas and participating peers that are commibie itwo groups. After
both groups are advertised, the respective originatorsletatt the similarity between
the inferred schemas and initiate the merging process. imidves choosing a new
originator among the two existing ones, merging the two se@sand advertising the
new group using the new initiator and the union of the coritsist.

If an initiating inference procedure is not announced oniscainced to a certaid,
then the only way for a peer beyolto have knowledge about an ongoing inference
procedure is to have already participated in it. Peers thg hot yet participated in an
ongoing procedurg, are potent of initiating a new one, even if it turns out laket they
are part of a procedure initiated earlier. The parametedistzrmines the interaction of
a pair of inferred groups is their semantic overlap. If g®dp not overlap, then there
is no interaction, and, thus, no problem to solve. If grouwgeriap, either:

— none of the group originators belong semantically to theigraf the other.
— one of the group originators belongs semantically to thegf the other.
— both of the group originators belong semantically to theugrof the other.

The above cases provide a reason to merge the respectiyesgtoooth originators
belong to each other’s group, then there is a strong reasmeige the groups. If one
or none originator belongs to the other’s groups then theseweaker reason to merge
the group. Nonetheless, the semantic overlap of two grasipaltulated with th&S
function, presented earlier. The decision for group meygims to better query answers
overall. We think that this will be the case for peers thabhglmarginally to the groups,
thus, they do not get satisfying answers through them.

From the above discussion we can conclude that interactidnogerlap among
groups that are or have been inferred is inevitable. ThesP&P overlay has to guar-
antee that group merging decisions are based solely on thg gthema semantics
and not on the execution of the inference process, i.e. thaognitiator and additional
originators.

An important property must hold:

Groups created by similar initiators will also be similar @mgroups by dissimilar ini-
tiators will be dissimilar.

This property is essential because it justifies that authpgers can independently
initiate the process (and thus block other similar ones fdwimg it). The semantic
clustering of the peers that belong to a social network asstimat this property holds.
Moreover, this property shows that groups are characttbyeheir schema and their

5 We assume that the broadcast of new groups is short enough, shehzriod between the
end of the procedure and the end of the broadcast is negligible.
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inference process does not matter.

Finally, we note that group schemas are not connected to ethen unless this
becomes evident as soon as they are created and is resaleadhtithe merging pro-
cedure. As mentioned before, peers select the group of¢heice to send the query
to (and they are not limited to choosing a single one). If dogaeries and employed
groups are not semantically very relevant, then the qugrpéers may not be satisfied
with the answers they get through the groups. In this cagecdhn always propagate
their queries in the network without using the groups. Tlgitothe employment of the
merging procedure, the presence of many very similar grisipsoided, and , thus,
peers can choose groups without confusion.

3.6 Group Schema Maintenance

A group schema has to be occasionally maintained. The grolugnsa maintenance
includes maintenance of:

a. the point of contacts, since new peers that may belongetgtbup join and old
peers that belonged to the group leave.

b. the group schema itself, in order to represent the peensab that are members of
the group (since old peers leave and new join).

There are two ways to decide when to maintain a group schema:

1. maintenance is performed periodically
2. maintenance is performed when the quality of answers ¢oiegi rewritten to the
group schema by members of the group is not satisfying.

The maintenance process refers to updates in the contaasligell as the group
schema itself. Maintenance is necessary, since peersheigroup while others that
belong to the group leave or change their local databasésnén There are two ways
to decide how to maintain a group schema: The first is to all@notriginator to initiate
the inference process periodically. The second is to afloyeligible peer re-start the
process. In order for both approaches to work, we defirepachfactor to represent the
maximum life-span of a group, after which it will become iligaThen, the originator
can invoke the inference process evepochminutes and re-transmit the new group
in the overlay. Thus, group meta-data are kept in a form dfsate and get promptly
updated. By allowing any eligible peer to undertake the obkbe originator, we elimi-
nate inconsistencies created by changes in the origirtadtmi and also ensure that the
inferred schema does not specialize.

Obviously, there is a trade-off between the cost of repgdtie process over the
anticipated query performance using stale groups. How&®@MSs are considered
as P2P applications that do not exhibit very dynamic changesnnectivity or peer
interests (i.e. peer schemas). Rather than this, peergeeted to stay connected (and
therefore have mappings) to the same peers and store thekgaanef data for long
periods. In any case, peers can be parts of a group, answeoatedqueries without
having to pose queries at the same time (i.e., without aptivgcipation from the user).
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In the future we intend to exploit the performance of maiatee at time points
when the quality of answers to queries rewritten to the gselpema by members of
the group is not satisfying.

3.7 Group Deletion

Up to this point we have discussed all issues that concerrcrgggtion and life of a
semantic group. However, after a group has been around irZReoverlay for a while
it might have to be deleted altogether. A recommendatiorafgroup deletion can be
based on several reasons. First, a group may not be used enfonquery answering
or for meeting acquaintances. Second, after using a graugofoe time it may turn
out that it is problematic: the group schema may have flawstawgrors during the
performance of the inference procedure. Third, partidipaha group may decide that
they do not want to be members of it anymore. In this case oifrb@ny participants
drop out, it may be more meaningful to delete the group anghéets initiate new
group inference procedures, than to maintain the group.

In any case, obsolete peer needs or procedural mistakeklst@uemain perpet-
ually in the overlay. Due to all these conditions, group tlefeshould be a permitted
operation that complements the dynamic creation and nmmant® of groups. Yet, it
is not easy to delegate the decision for group deletion. Ak ,sgroup deletion is im-
plicitly handled through the periodic group maintenancecpss. If group deletion is
necessary due to nodes changing their interests ( i.el, dosbamas and queries), an
extreme case of which is to have departed from the systerheatdxt maintenance
check point the necessary conditions for an initiator woll be met (i.e., the number of
posed and answered queries over a specific accuracy thigsheélidating all current
and past group information without any extra coordinatietween its participants. We
prefer this solution to an explicit one that would requir&rargroup communication
since it integrates with the maintenance operation andnmegjno manual intervention
from the part of the users.

4 Performance Evaluation

To evaluate the performance of the proposed group inferpnoeedure, we use a
message-level simulator that implements it over an unstred overlay of semanti-
cally clustered nodes. The clustering is performed usie@touPeersystem [25].

Overview of GrouPeer
GrouPeerfocuses on the problem that, in a random flat unstructuredgegabase sys-
tem, information-rich peers may well remain hidden to guaitjators because of the
enforced reformulation of queries on each node of the prafiay path. It proposes a
procedure that supports the evasion of successive regsitin every peer of a query’s
propagation path, instead of, sometimes hopelessly, mgfiiery reformulation. This
methodology enables peers to discover others with similarésts and schemas, that
cannot be tracked otherwise. Pairs of remote peers thabegehqueries and answers
learn gradually about the schema of the other party. Legrisrperformed through
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making queries and evaluating their answers, and is formexappings between the
schemas of the two peers.

In GrouPeer, peers decide to add new (and abolish old) operbighbors in the
overlay (acquaintees) according to the accuracy of the essthey receive from re-
mote peers. This is measured using a function that triesgtucathe semantic sim-
ilarity between rewritten versions of a query. SpecificatBquesters (i.e., peers that
pose queries) accumulate correct and erroneous mappittysamote peers through a
learning procedure. Based on these mappings, they decliectime acquainted with
peers that store information similar to their interestse Tésult is an effective semantic
clustering of the overlay, where the accuracy of query wgs and answers is a lot
higher compared to the unclustered overlay (for detail§ 2.

We compare the query evaluation performed by GrouPeer Wwéltevaluation that
utilizes the inferred groups on the overlay. In GrouPeer exyjis propagated in the
P2P network using informed walkers. A query is successiv@hyritten on each peer
on a query propagation path. The rewritten query on eachipearswered using the
local schema and data. This procedure of query answeritng istate-of-the-art in flat
PDMSs, [1, 3, 17]. When the first group is created, we dire@vaait queries to the
inferred schema. The basic performance metrics are thagaaccuracyof answers
to the original queries (i.e., the similarity of the reweittquery that is answered over
the original one), as well as the number of nodes that proaid@nswer. Similarity
is calculated by a formula presented in [25] that identifiesereeous or not-preserved
correspondences in mappings, which degrade the compldtpeafect rewriting. Se-
mantic query similarity is a very big issue, [24], and is ofittee scope of this paper.
Very briefly, the essence of the query similarity formulattisaused in GrouPeer and
that we use in this experimental study is:

Y Qorig elements present ingk+ Y additional Qins elements
Msim(Qoriga Qans) =
Y Qorig elements

2

In function (2) elementsare either query attributes or query conditions (for exampl
for an SQL (select-project-join) query, elements are tledest’ clause attributes and
the 'where’ clause conditions). To identify the gains of @uouping approach, we
present the percentile increase/decrease in accuracyuamoen of answers compared
to GrouPeer’s clustering as these are measured ofirshereated group. Participants
of the group hold mappings with the group schema; thus, wikeqaery is rewritten to
the group schema, the successive rewritings through the ohenappings are avoided.
In the presence of a group, there is a query rewriting fronpier schema on which it
is originally posed to the group schema, and a second regfitom the group schema
to each peer that will answer the query. Data is stored paakach peer and they are
not re-materialized in the group schema. Non-memberseraappings with relevant
group schemas.

We present results for 1,000-node random graphs (an agequatber of partici-
pants regarding our motivating application) with averagdendegrees around 4, created
by theBRITE[29] topology generator. Results are averaged over 20 grafhe same
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type and size, with 100 runs in each. Results using powerdpwlogies constructed
by Inet-3.0 [20] with the same number of peers are qualggtigsimilar.

For the schemas stored at each node, as it is realistically heed to come up
with hundreds of different but yet semantically similar srfer each node, we use
two initial relational schemas, whose tables and attribare uniformly distributed at
nodes. The initial schema comprises of 5 tables and 33 @tiisb Seven attributes are
keys with a total of 11 mappings (correspondences) betwesn.tEach peer stores 10
table columns (attributes) on average. Queries are formedsingle or multiple tables
if applicable (join queries). We also experimented with mydat schema of 8 tables
with a total of 55 attributes that was retrieved from the iné& movie database [19]
usingJMDB [21]. JMDB is a Java-based application to locally searchriformation
about movies, actors, producers, directors, etc as thegg@rided through IMDb. This
second schema comprises of 12 keys and a total of 14 mappéhgedn the attributes.

Our metrics are the percentile increase/decrease in acaral number of replies
compared to clustering as these are measured ofirthereated group. We use the
termsaccuracyandsimilarity interchangeably. The maximum size of the inferred schema
is always in the order of the size of the initial schema usegrtaluce the local ones
during start-up. When the first group is created, we dire@vesit queries to the in-
ferred schema and measure their similarity compared togimastic clustering of the
social network at the time of group creation. Initiatorsttbalong to the group hold
the complete mappings with the group schema, avoiding meftation errors. Non-
members utilize the same learning feature as with normatsicassuming a “virtual”
host holding the group schema as their contact.

First, we vary the maximum group size limilaxP, as well as the minimum simi-
larity of participating peers to the initiator nodeFigures 16 and 17 show the obtained
results for 100 requesters and maximum 100 queries eachinkseases, the group
becomes more specialized and less general. In contradt,ssmidarity values produce
groups too general that incorporate many concepts for@ghe initiator. Initiators
choose to send queries to a schema if they deem it advantagEois has the effect
that specializedgroups (i.e., high value df) receive fewer queries, while more “gen-
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eral” ones receive more but cannot answer them all satisfctThus, there exists a
point where grouping ceases to increase its relative gaitustering, as our graphs
show.

Both metrics increase ddaxPincreases. This is reasonable since more nodes can
participate and produce results. Very specialized graypauses significantly less pop-
ulated groups, which in turn affects the number of returmeheers. As groups get more
general (arountl= 0.6), an improvement of 13-23% in accuracy is achieved, white t
gains in replies are 40-900%. Aglecreases, the gains in accuracy decrease but more
results are generated. These curves show thatéue of around 0.65 with the group
initiator andMaxP = 80 achieve good results without too much generalizatioes€&h
will be our default values for the rest of this discussion.

Next, we try to determine the quality of the created groupelasn its creation
time, i.e., the number of queries at which it was createdurfeig 18 and 19 show the
percentile improvement in our basic metrics when the firstigris created at various
points in the clustering process. Our observations showeedse in the relative gains
in accuracy and an increase in the corresponding numbersweas. This happens
because clustering improves with time while the number sfilts slightly decreases
due to the forwarding process: now more walkers cross pathiglevant nodes. What
is important is that groups that are allowed to be createdas as possible (which
would be the frequent case) show about 20% more accurateeesiawd return about
three times more results compared to the clustering of thialseetwork, even though
the inference procedure is performed on a less optimalsteted overlay. Groups that
are created later exhibit noticeable gains, especiallgrims$ of the number of replies.

Table 1 shows the exact performance figures using our dgfatdimeters for 400
requesters and various queries-per-requester comhisdio both schemas. The fig-
ures in parentheses show the percentile increase commasadjtle clustering for the
same number of queries. We notice that querying the infegredps results in an aver-
age 18% increase in accuracy and a 300-400% increase in thigenwf replies. This
is true regardless of the number of requesters or their qugerptes. It is interesting to
note that, in all these results, the queries from nodesértie created groups are less
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Table 1. Performance comparison with clustering

initial schema IMDb schema
qu/reqy Sim #Answ Sim #Answ
10 ]0.70(+19.9%)p3.7 (+387%)0.68(+16.7%)50.1 (+317%)
50 [0.71(+19.0%)61.6 (+461%)0.69(+17.3%]52.6 (+341%)
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Fig. 20.Relationship between initiator and inferred schema siityla

than 10% of the total. This proves that group creation angdamation effectively helps

all nodes in the overlay. The figures regarding the IMDb schare slightly lower due

to the fact that the initial average similarity between gégtower (for the same number
of stored attributes per node as in the initial schema).

One of the basic assumptions of our scheme is that each peandigidually
choose to initiate the group inference process. This allmvsompletely distributed
behavior only if semantically close initiators produce isimgroups and the opposite.
We measure the similarity between the first and randomlycsadethereafter initiators
as well as of the group schemas created respectively. FRfudisplays results over
different runs, where either the two initiators were ove¥/6r less than 40% similar.
Clearly, for very similar initiators the process yields wsimilar groups. On the other
hand, for fairly dissimilar initial schemas, the createdups are 40-50% similar. This
value is a little higher than expected due to the high ovealagp semantic relations
between stored attributes at various peers. When data ischlaca non-overlapping
manner, such groups have less than 20% similarity. So, theaely exists a correlation
between initiator and inferred schema similarity value.

As we just showed, peers with similar schemas generateasigribups. To do so
simultaneously is undesirable for two reasons: First, yfstesn will perform a redun-
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Table 2. Estimating group broadcast range

D=05D=0.7D=0.8D=09D=1.0
Min/Max Distancel1.1/5.9 1.9/5.6/2.1/5.3 2.9/4.8 3.8/4.2
#nodes 597 | 235 | 113 27 17
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Fig. 21.Similarity and number of answers of the initial and mergeslgs vs creation
time

dant operation and second, it will force our merging prodedse invoked regularly.
As we mentioned in Section 3, initiators broadcast thegrntibn to create a semantic
group. Nevertheless, broadcasts that reach many nodeereastly. Furthermore,
our clustering process assures that a non-negligible nuafilsemantically close nodes
will also be close to the initiator in the hop-distance neetfio demonstrate this, we
measure the hop-distance distribution of peers not indudehe group creation pro-
cess with similarity greater or equal to D to the initiatavem our default parameters.
Table 2 presents our results.

We notice that the minimum distance increases as we searofofe similar peers,
while the maximum decreases. This is due to the clusterioggss: Similar peers get
closer in the overlay. Grouping includes most of these peserthe minimum distance
to a non-grouped similar node increases. Moreover, the thia¢have been left out of
the group inference are now closer than before. The rets that a broadcast range
of 4 contacts around 80% of our target nodes. Neverthele$3jrrcreases, these nodes
become scarce. Thus, assuming fhat 0.65 for practical reasons, a TTL=4 would suf-
fice. In our experiments, a broadcast of that scope blocksaaasing number of nodes
with time: after about 6 queries per requester, 115 potiegtiaup initiators are blocked
on average, while after 20 queries this number increasegetio6®0. For larger values
of D, broadcasting with large range causes the majority afsages to be delivered to
dissimilar peers.

Finally, we present some results concerning merging psadéhen two similar
groups are identified (through broadcasting of the grouadet), the merge process
is initiated. We measure the similarity and number of replig the two groups as well
as the merged one and present the results in Figure 21. Weertbtt, while the two
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groups and the merged one do not substantially differ in twairacy of the results
(although the merged group always outperforms them), theseeema delivers almost
twice as many. A very important observation is that the tifr@eation of the individual
groups plays almost no role in their performance, which shihat the social network
will keep operating without performance degradation.

5 Related Work

The problem of semantic schema merging is generally retatde: problems of schema
or ontology matching and integration. The recent surve3#} fpproaches in a unified
way all these problems, since they are basically dealing s¢hema-based matching.
A survey of ontology mapping techniques is presented in.[PR¢ authors focus on the
current state of the art in ontology matching. They reviewerd approaches, techniques
and tools. Once appropriate mappings between two ontadgige been established,
either manually, semi-automatically or automaticallygysd mappings can be used to
merge the two ontologies or to translate elements from ot@amgy to the other. Ex-
amples of tools for ontology merging are OntoMerge [12] aRORIPT [33]. However,
creating and maintaining a merged ontology incurs a sigmfioverhead. Moreover,
a translation service for OWL ontologies is presented in.[J0le translation relies
on a provided mapping between the vocabularies of the twolagies. Then, a class
C; from the source ontology can be characterizedtemngly-translatableequivalent
identical weakly-translatabler approximately-translatable a classC, from the tar-
get ontology, depending on its name mapping andtéeslatability of its associated
properties and restrictions.

Schema matching is a fundamental issue in the databaseffighd,database in-
tegration and warehousing to the newly proposed P2P datagearent systems. As
discussed in [35], most approaches to this problem are aatoimatic, in that they as-
sume human tuning of parameters and final refinement of thétseShis is also the
case in some recent P2P data management approaches (84j., Generally, schema
matching [35] and integration [4] are operations that adtierschema structure in a
strict way. Thus, most of the effort is concentrated in d@&tgcand compromising con-
tradictory dependencies and constraints.

Ontology matching/integration is a very similar problem g¢chema matching/
integration. As discussed in [32, 37], both ontologies atltemas provide a vocab-
ulary of terms with a constrained meaning. Yet ontologied schemas differ in the
declaration of semantics: on one hand ontologies spediist semantics and on the
other hand schemas do not specify any explicit semanticauge of this vital differ-
ence, ontology matching/integration has to follow a ss&antics structure, whereas
schema matching/integration has to obey to strict stratgemantic-less constraints.
Our work in this paper, is an effort to complement these agghes by filling the gap
between them. Our focus is the semantics that can be dedumedsthemas alone
without adhering to the schema structure or to any ontolagstraints on semantics.

The Chatty Web [1] considers P2P systems that share semsitgted or structured
information. The authors are concerned about the gradgaadation, in terms of syn-
tax and semantics, of a query that is propagated along a riefvedh. However, the
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Chatty Web approach considers peers that own very simpdgiosal schemas and
GAV mappings with their acquaintees. Instead, we are istetein more complex peer
schemas and we consider GAV, LAV or GLAV mappings.

PeerDB [34] facilitates relational data sharing without achema knowledge. Query
matching and rewriting is based on keywords (provided byutes). A two-step pro-
cess is described: First all nodes within a TTL radius areamiad, returning prospec-
tive answer meta-data. Then the user selects the ones¢hale@vant to the local query
and the requester directly contacts the selected sourckasis for the results to the
various rewritten versions of the query.

The works in [17] and [23] deal with data exchange betweersp&ef. [17] presents
a significant approach to the heterogeneity issue in P2Phamtagement and proposes
a language for schema mediation between peers. Also, therayiresent an algorithm
for query reformulation based on local-as-view as well asagl-as-view query an-
swering. In [23], the authors describe mechanisms for tictadation of data exchange
policies on-the-fly based on ECA rules. They also proposenergé architecture for
peer-databases and elaborate on the establishment arnshaimit of acquaintances
between peers.

Beyond [17] other significant works such as [3, 6, 9, 14, 3&fhatroduced novel
frameworks for PDMSs. All of these works agree to the fundataeprinciples of
peer autonomy, peer heterogeneity and peer data exchangghhocal pairwise map-
pings. Our approach complies with these principles andllibs the lines of these
works. Nevertheless, the focus of all these works is quesyaring through propa-
gation from peer-to-peer, whereas our focus is on providirtynamically adaptable
global schema for a semantic group of peers. Therefore, uoach is complemen-
tary to these works, since it proposes query answering gffiralgroup schema, without
annulling the peer-to-peer query propagation. Both oféhteshniques for query an-
swering can coexist in a PDMS.

Beyond the above significant works, there are plenty that ieked about seman-
tics and semantic clustering of peers. The work in [11] is ohthe first to consider
semantics in P2P systems and suggest the construction ahsieroverlay networks,
i.e. SONSs. Later on, other researchers have attempted teygmt the a priori static for-
mulation of SONs: the work in [38] suggests the dynamic amasion of the interest-
based shortcuts in order for peers to route queries to nbdeare likely more capable
of answering them. Inspired by [38], the authors in [42] Haban [18] exploit implicit
approaches for discovering semantic proximity based ohitery of query answering
and the least recently used nodes. In the same spirit the iw¢il8] presents prelimi-
nary results about the clustering of the workload on thepepllar systems e-Donkey
and Kazaa. Additionally, SQPeer is an extensive work on PDi$ share RDF data
and they localize the query patterns using views [26].

Some of the well-known projects that have dealt with the thatarogeneity prob-
lem in P2P systems are [2, 16, 31, 40]. Edutella [31] is a sehkased network that
holds RDF data. Peers have services (e.g. quering, mappiegjating etc) that they
share with other peers. Peers can formulate complex qubeeare translated in wrap-
pers to queries on the Edutella Common Data Model. Peersteegheir services and
the kinds of queries they can answer to mediators. The iattée the incoming queries
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to peers that are probably able to answer them. Edutellaiist@resting effort towards

the solution of the heterogeneity problem both of data ands. However, it is not

focused on semantic clustering of peers and does not preppsesticated methods for
distributing queries to semantically relevant peers.

Finally, there are some works that empDistributed Hash Tables order to deal
with peer data heterogeneity, such as [2,40], or ontologigzh as [16]. Moreover, most
of the works that consider query answering in unstructuesd/orks with super-peers
[43] assume the presence of ontologies in order solve thilgroof heterogeneity
in peer semantics. A variety of such works, [5, 8, 10, 28] as=ithat the semantics
of peer schemas are described using an ontology model. A-pepe that manages
semantically similar peers maintains mappings to theseriggi®ns. A query is then
routed to semantically relevant peers following these logipdescriptions. Our work
is orthogonal to these works in that we do not assume eitteeptasence of static
centralized managing overlay nodes, such as super-pedig enhancement of peer
semantics with ontology-based descriptions.

6 Summary

In this paper we have described a method to automaticalptergschemas in order to
characterize semantic clusters in PDMSs. Our scheme @geoat clustered unstruc-
tured P2P overlays. By iteratively merging relevant pebestas and maintaining only
the most frequent common characteristics, we provide ansahepresentative of the
cluster. Group schemas can be used in order to increase bet performance and
the volume of returned data. Our experimental evaluationdiitn these observations
in a detailed comparison with the GrouPeer system.
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