
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy
ARTICLE IN PRESS

A constraint-based querying system for exploratory
pattern discovery

Francesco Bonchi a,�,1, Fosca Giannotti b, Claudio Lucchese b,c, Salvatore Orlando c,
Raffaele Perego b, Roberto Trasarti b,d

a Yahoo! Research Barcelona, Ocata 1, Barcelona, Spain
b ISTI-CNR, Area della Ricerca di Pisa, Via Giuseppe Moruzzi 1, Pisa, Italy
c Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Via Torino 155, Venezia Mestre, Italy
d Dipartimento di Informatica, Università di Pisa, Largo Pontecorvo 3, Pisa, Italy

a r t i c l e i n f o

Article history:

Received 16 July 2007

Received in revised form

28 January 2008

Accepted 21 February 2008

Recommended by J. Van den Bussche

Keywords:

Constrained pattern mining

Data mining systems

Inductive databases

Data mining query languages

Interactive data mining

a b s t r a c t

In this article we present CONQUEST, a constraint-based querying system able to support

the intrinsically exploratory (i.e., human-guided, interactive and iterative) nature of

pattern discovery. Following the inductive database vision, our framework provides users

with an expressive constraint-based query language, which allows the discovery process

to be effectively driven toward potentially interesting patterns. Such constraints are also

exploited to reduce the cost of pattern mining computation. CONQUEST is a comprehensive

mining system that can access real-world relational databases from which to extract data.

Through the interaction with a friendly graphical user interface (GUI), the user can define

complex mining queries by means of few clicks. After a pre-processing step, mining

queries are answered by an efficient and robust pattern mining engine which entails

the state-of-the-art of data and search space reduction techniques. Resulting patterns are

then presented to the user in a pattern browsing window, and possibly stored back in the

underlying database as relations.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this article we present in details CONQUEST, a
comprehensive knowledge discovery system for extract-
ing interesting patterns, where the interestingness of the
patterns is defined by means of user-defined constraints.

The paradigm of pattern discovery based on con-
straints was introduced 10 years ago with the aim of
providing the user with a tool to drive the discovery

process toward potentially interesting information, with
the positive side effect of pruning the huge search space
thus achieving a more efficient computation [1–5]. Most
of the research so far has focussed on developing efficient,
sound and complete evaluation strategies for constraint-
based mining queries, and regardless some successful
applications, e.g., in medical domain [6–8], or in biological
domain [9], there is still a lack of research on languages
and systems supporting this knowledge discovery para-
digm. Indeed, to the best of our knowledge, CONQUEST is
the first and only system of this kind.

The basic idea behind CONQUEST is that the task of
extracting useful and interesting knowledge from data is
an exploratory querying process, i.e., human-guided,
iterative and interactive. We believe that the data analyst
must have a high-level vision of the pattern discovery
system, without worrying about the details of the
computational engine, in the same way a database

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

0306-4379/$ - see front matter & 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.is.2008.02.007

� Corresponding author. Tel.: +34 935421182; fax: +34 935421150.

E-mail addresses: bonchi@yahoo-inc.com (F. Bonchi),

fosca.giannotti@isti.cnr.it (F. Giannotti), claudio.lucchese@isti.cnr.it

(C. Lucchese), orlando@dsi.unive.it (S. Orlando),

raffaele.perego@isti.cnr.it (R. Perego), roberto.trasarti@isti.cnr.it

(R. Trasarti).
1 This work was conducted when the first author was a researcher at

ISTI-CNR, Italy.

Information Systems 34 (2009) 3– 27

Author's personal copy
ARTICLE IN PRESS

designer need not worry about query optimization. The
system must provide the analyst with a set of primitives
to declaratively specify in the pattern discovery query
how the desired patterns should look like, and which
conditions they should obey (a set of constraints).

Such rigorous interaction between the analyst and the
pattern discovery system, can be implemented following
the guidelines described in [10], where Mannila intro-
duced an elegant formalization for the notion of inter-
active mining process, named inductive database. This
term refers a relational database framework which
integrates the raw data with the patterns (or true
sentences) extracted from data, and materialized in the
form of relations. In such vision the analyst, exploiting an
expressive query language, drives the discovery process
through a sequence of complex mining queries, extracts
patterns satisfying some user-defined constraints, refines
the queries, materializes the extracted patterns as first-
class citizens in the database, combines the patterns
to produce more complex knowledge and cross-over the
data and the patterns: the knowledge discovery process
consists essentially in an iterative querying process.
Therefore, an inductive database system should provide
the following features:

Coupling with a DBMS. The analyst must be able to
retrieve the portion of interesting data (for instance, by
means of SQL queries). Moreover, extracted patterns
should also be stored in the DBMS in order to be further
queried or mined (closure principle).

Expressiveness of the query language. The analyst must
be able to interact with the pattern discovery system by
specifying declaratively how the desired patterns should
look like, and which conditions they should satisfy. The
task of composing all constraints and producing the most
efficient mining strategy (execution plan) for a given
query should be thus completely demanded to the
underlying system.

Efficiency of the mining engine (ME). Keeping query
response time as small as possible is an important
requirement, since this allows us to design a system able
to give frequent feedbacks to the user, thus allowing
realistic human-guided exploration. Unfortunately, this is
a very challenging task, due to the exponential complexity
of pattern discovery computations. To this end, data and

search space reduction properties of constraints should be
effectively exploited by pushing them within the mining
algorithms. Moreover, we can take advantage of the
iterative nature of a typical pattern discovery task: a
mining session is usually made up of a series of queries
(exploration), where each new query adjusts, refines or
combines the results of some previous queries. It is thus
important for the ME to adopt techniques for incremental
mining. For example, by reusing results of previous
queries, in order to give a faster response to the last
query presented to the system, instead of performing
again the mining task from scratch.

Graphical user interface (GUI). The exploratory nature of
pattern discovery imposes to the system not only to return
frequent feedbacks to the user, but also to provide pattern
visualization and navigation tools. These tools should help
the user in visualizing the continuous feedbacks from the
system, allowing an easier and human-based identification
of fragments of interesting knowledge. Such tools should also
play the role of graphical querying interface. In this way the
action of browsing and visualizing patterns should become
tightly integrated (both by a conceptual and engineering
point of view) with the action of iteratively querying.

Starting from the above requirements we designed
CONQUEST, an exploratory pattern discovery system,
equipped with a simple, yet powerful, query language
(named SPQL that stands for simple pattern query language).
CONQUEST is now a mature and stable software, providing a
larger number of functionalities, compared with [11].
CONQUEST includes a user-friendly interface for accessing
the underlying DBMS, and also for data visualization and
query formulation. In designing the CONQUEST query
language, its architecture and user interface, we have
kept in mind all the tasks involved in the typical
knowledge discovery process [12]: (i) source data selection,
(ii) data preparation, pre-processing and transformation
and (iii) pattern discovery and model building (see Fig. 1).

The user supervises the whole process not only by
defining the parameters of the three tasks, but also by
evaluating the quality of the outcome of each step and
possibly re-tuning the parameters of any step. Moreover,
the user is in charge of interpreting and evaluating the
extracted knowledge, even if the system must provide
adequate support for this task.

Data
Selection

Interpretation and Evaluation

Pattern
Discovery

Data
Transformation

DATA KNOW-
LEDGE

Fig. 1. CONQUEST knowledge discovery process.

F. Bonchi et al. / Information Systems 34 (2009) 3–274

Author's personal copy
ARTICLE IN PRESS

In Fig. 2 an example of SPQL mining query is shown. We
will describe the details of the language later, in Section 3.
Here we just want to highlight how the three main tasks
of the knowledge discovery process can be expressed
using the query language. In fact, a standard SPQL mining
query is essentially made up of three parts:

(1) The data source selection, by means of an SQL select-
from-where statement (lines 2–4 of the query in
Fig. 2).

(2) The data preparation parameters (lines 5 and 6), to
transform the relational database into a transactional
one before starting the mining process.

(3) The mining parameters and constraints (line 1 for
the minimum frequency constraint, and line 7 for the
other constraints).

1.1. Paper organization

In the rest of this article we describe in full details the
main design choices and features of CONQUEST. The article
is organized as follows. In Section 2 we provide the formal
definitions and the theoretical framework underlying our
system. In Section 3 we discuss the SPQL query language.
Section 4 provides a state-of-the-art of the algorithms for
constraint-based frequent pattern mining that leads to a
detailed description of the CONQUEST’s ME and the
algorithmic choices underlying it. Then a thorough
experimental analysis of CONQUEST’s ME is reported. In
Section 5 we discuss the overall CONQUEST’s architecture,
by also giving several details concerning the main
modules that constitute the system. In particular, Section
5.2 describes the GUI and how the interactions between
the user and the system actually happens; Section 5.3
describes the query interpreter (QI) and pre-processor
modules. Finally, in Section 6 we draw some conclusions.

2. Pattern mining from relational databases

In this section we provide the formal definition of
the constraint-based pattern mining framework, that is
the theoretical background for the data analysis for which
CONQUEST has been devised. In particular, we highlight the
gap that exists between the theoretical framework
definition, which is the basis of all the algorithms
presented in the literature, and the real data stored in a
commercial DBMS. Closing this gap is one of the main
design objectives and contributions of CONQUEST.

Devising fast and scalable algorithms able to crunch
huge amount of data has been so far one of the main goal
of data mining research. Recently, researchers realized
that in many practical cases it does not matter how much
efficiently knowledge is extracted, since the volume of the
results themselves is often embarrassingly large, and
creates a second order mining problem for the human
expert. This situation is very common in the case of
association rules and frequent pattern mining [13], where
the identification of the fragments of interesting knowl-
edge, blurred within a huge quantity of mostly useless
patterns, is very difficult.

In traditional frequent pattern mining, the only interest
measure is the frequency of a pattern.

Definition 2.1 (Frequent itemset mining). Let I ¼ fx1; . . . ;
xng be a set of distinct items, any subset X � I is an
itemset. Given a transactional dataset D, i.e., a multiset of
transactions/itemsets t � I, the support of an itemset X is
defined as suppDðXÞ ¼ jft 2 DjX � tgj. Given a minimum

support threshold dX1, an itemset X is said to be frequent if
suppDðXÞXd. The frequent itemset mining problem requires
to compute all the frequent itemsets occurring in the
transactions of D: fX � IjsuppDðXÞXdg

The minimum support requirement is a particular
selection constraint CfreqðXÞ :: 2I

! f0;1g, depending solely
on the transactional dataset D, the appearances of X

within it, and the minimum support threshold d. We
have that CfreqðXÞ ¼ 1 ðTrueÞ if X satisfies the constraint
(i.e., suppDðXÞXd), and CfreqðXÞ ¼ 0 ðFalseÞ otherwise (i.e.,
suppDðXÞod). However, many other interesting constraints
can be defined over the set of properties (e.g., price,
weight, category, etc.), characterizing the different items
that compose a pattern.

The constraint-based pattern mining paradigm has
been recognized as one of the fundamental techniques for
inductive databases: by taking into consideration an
additional set of user-defined constraints, we can solve
the data/pattern abundance problem, allowing the analyst
to drive, iteratively and interactively, the mining process
toward potentially interesting patterns only. Moreover,
constraints can be pushed deep inside a mining algorithm,
in order to deal with the exponential search-space curse
and achieve better performance.

2.1. Constraint-based pattern mining

In the following we formally define the constraint-
based pattern mining problem. The input data for such

Fig. 2. An example SPQL mining query.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 5

Author's personal copy
ARTICLE IN PRESS

problem is composed of a transactional dataset and the
aforementioned properties of items. We name the combi-
nation of these two entities mining view, and denote it by
MV .

Definition 2.2 (Mining view). We call mining view MV

a pair hD;Pi, where D is a transactional dataset (see
Definition 2.1), and P ¼ fp1; . . . ; pmg is a set of m functions
(mX0), denoting the properties of interest for each item in
I, such that pjðxiÞ denotes the j-th property value of the
i-th item. An example of mining view is given in Fig. 3.

We can now define a set of constraints over the item
properties P:

CP ¼ fC
1
P; . . . ;C

n
Pg

where each of these constraints is defined as
Ch

P :: 2I
! f0;1g, Ch

PðXÞ ¼ 1 ðTrueÞ if X satisfies the con-
straint, and Ch

PðXÞ ¼ 0 ðFalseÞ otherwise. Hereinafter,
where it is clear from the context, we omit constraint
parameters other than the itemset X itself.

For the sake of readability of this section, we do not
discuss other constraints supported by CONQUEST that are
not defined in terms of the property set CP. In particular,
structural and syntactical constraints that define the form

of the valid itemsets that must be extracted from D.
For example, constraints regarding the length of the
itemsets extracted, or constraints forcing the presence/
absence of item subsets in each itemset extracted.

The constrained frequent itemset mining problem can
finally be defined as follows:

Definition 2.3 (Constrained frequent itemset mining). Given
a mining view MV ¼ ðD;PÞ, a minimum support threshold
dX1, and a set (possibly empty) of user-defined con-
straints CP ¼ fC

1
P; . . . ;C

n
Pg, the constrained frequent itemset

mining problem requires to compute all the valid itemsets

occurring in the transactions of D:2

fX � I j CfreqðXÞ ^ C1
PðXÞ ^ � � � ^ Cn

PðXÞg

Example 1. The following is an example of constraint-
based mining query over the mining view in Fig. 3:

suppDðXÞX3 ^ sumðX:priceÞX30

where the support constraint is CfreqðXÞ :: suppDðXÞX3,
while the only constraint defined over P is C1

PðXÞ ::
sumðX:priceÞX30.

The result of such query are the two following itemsets

fbeer;wineg and fbeer;wine; chipsg.

This is the theoretical setting in which all the research
on constrained frequent itemset mining has been devel-
oped. Unfortunately, when we come to real-world data
stored in relational DB, we find a gap between how data
are actually organized and a mining view like the one in
Fig. 3.

Firstly, data are stored in relations, and thus we have to
transform them in order to build the transactions of our
input transactional dataset D. Secondly, in the mining
view we defined each property of interest of an item as a
function. So, for each database attribute selected as an
item property, a functional dependence with the items
must exist, i.e., each property has not to change along the
database entries. This is rarely the case in real-world data.
As an example consider property price of item beer in a
sales database, during a period of six months: such a
property is obviously floating during the period. As
discussed below, in this case we have to force a functional
dependency before creating the mining view, in order to
apply our constraint-based mining framework.

In the following we thus describe how CONQUEST

actually closes the gap existing between the formal
computational framework introduced above and the
actual data stored in relational databases.

2.2. Building a mining view from a relational database

Consider the two relational tables in Figs. 4(a) and (b):
they contain all the information needed to build the
mining view MV in Fig. 3. We can now formalize this data
transformation process.

Let R be a relational expression over a relational
database DB, such that R contains all and only the
information needed to answer a given mining query. The

Fig. 3. An example of mining view MV for constraint-based pattern mining.

2 Note that the minimum frequency constraint CfreqðXÞ must always

be part of the conjunction of constraints in the query, at least with a

minimum support threshold d ¼ 1.

F. Bonchi et al. / Information Systems 34 (2009) 3–276

Author's personal copy
ARTICLE IN PRESS

corresponding mining view MV is uniquely determined by
specifying a partition of its attributes, and then generating
items and transactions, and the table of the properties
associated with each item.

Definition 2.4 (Mining view definition). Given a relation R

over a relational database DB, let schðRÞ denote its
schema. We can induce a mining view MV � hD;Pi, in
accordance with Definition 2.2, by partitioning its attri-
butes into three sets T , I and P, i.e., schðRÞ ¼ T [I [P,
where T \ I ¼ ;, T \ P ¼ ; and I \ P ¼ ;. We call this
partition and the consequent generation of MV a mining

view definition. Moreover we denote it as RT ;I;P �

MV � hD; Pi. In order to formally define RT ;I;P , in the
following we will use s, p and � to denote the usual
selection, projection and cartesian product operators of the
relational algebra.

The induced transactional dataset D is thus defined as

follows. We construct a transaction ttid for each distinct

tuple tid in pT ðRÞ:

D ¼ fttidjtid 2 pT ðRÞg

In turn, each transaction ttid is a set of items, where each

item is defined in terms of the attribute partition I of R.

More specifically, each item is a pair attribute’s name–

attribute’s value, i.e. hatt_name; valuei, where att_name 2 I.

Therefore, we have a distinct item hatt_name; valuei for

each possible distinct value value in the domain of

att_name. Hence we can define each transaction ttid 2 D as

ttid ¼
[
i2I

ðfig � piðsT¼tidðRÞÞÞ

Finally, the properties functions P ¼ fp1; . . . ;png are

defined as follows, in terms of the attribute partition P,

one for each attribute occurring in the partition P:

pjðhatt_name; valueiÞ ¼ pjðsatt_name¼valueðRÞÞ

att_name 2 I; j 2 P

Example 2 (Defining a mining view). Let R be the relation
sales titem¼name product in Fig. 4(c). Given the
following partition of its attributes:

T ¼ f date,custg ; I ¼ f nameg ;

P ¼ f price,typeg

we obtain RT;I;P that corresponds to the mining view of
Fig. 3. Note that, for the sake of readability, instead of
representing the various items with a pair hatt_name;

valueiÞ, in Fig. 3 we represent them simply as value. For
example, the items hname;beeri and hname;chipsi are
represented as beer and chips. In this example we have
constructed the transactions grouping tuples by date and
customer, considering the object of our analysis the
purchases made by the same customer in the same day. In
an alternative analysis we could be interested in the
purchases of each customer in the whole period, con-
sidering all her/his basket in the period as a unique

Fig. 4. An example sales table (a), a product table (b) and the table resulting from the join sales titem¼name product (c).

F. Bonchi et al. / Information Systems 34 (2009) 3–27 7

Author's personal copy
ARTICLE IN PRESS

basket. In this case we would construct transactions by
grouping tuples only by customer (i.e., T ¼ {cust}).

It is worth noting that the simple mechanism described
above allows CONQUEST to deal with both intra-attribute
(as in the example above) and inter-attribute pattern
mining (as discussed in the following example). In
particular, the last can be easily obtained by specifying
more than one attribute as belonging to I.

Example 3 (Inter-attribute pattern discovery). As an ex-
ample of inter-attribute pattern discovery, consider each
tuple in a relational table as a transaction. Let R a table
recording information of our customers:

customer(cid,name,age,gender,

marital_status,occupation,education),

and suppose that we want to compute frequent patterns
over the various characteristics of our customers. We can
define our mining view RT;I;P by setting:

� T ¼ {cid},
� I ¼ {age,gender,marital_status,occupatio-
n,education}, and
� P ¼ ;.

In the case a primary key (such as cid) to identify
transactions is not available, CONQUEST allows the user to
define the intrinsic tuple identifier as the transaction
identifier tid. In this case a distinct transaction will be
created from each tuple in the table.

2.2.1. Solving conflicts on properties

Finally, as mentioned above, the constraint-based
mining paradigm only considers properties P in functional

dependence with items. When we select a property
attribute in relation R that does not satisfy such
requirement, we have a property conflict.

Definition 2.5 (Property conflict). Given a relation R, and
a mining view definition RT;I;P , we get a property conflict
whenever 9p 2 P such that the functional dependency I!

p does not hold in R.

In order to mine patterns according to the constrained
frequent itemset mining framework of Definition 2.3, we
have to modify input data in order to force the functional
dependency for each p 2 P. For example, suppose that, in
the tuples of R, attribute pj takes different values
whenever each attribute in I assumes a given value. In
order to resolve the conflict we will assign to pj the value:

pjðhatt_name; valueiÞ ¼ f ðpjðsatt_name¼valueðRÞÞÞ

att_name 2 I; j 2 P

where the function f can be for instance minimum,
maximum, average. Other methods are possible to solve
the same conflict.

2.3. Crisp versus soft constraints

In Section 2.1 we presented a classical framework for
constrained frequent itemsets mining: all exploited con-

straints correspond to crisp Boolean functions, whose
codomain is either 0 ðFalseÞ or 1 (True).

In CONQUEST we are also interested in exploiting soft

constraints, according to the new paradigm for pattern
discovery introduced in [14]. The codomain of such
constraints is the continuous interval ½0;1�. Roughly
speaking, the use of soft constraints allows the user to
describe what is the ‘‘shape’’ of the patterns of interest,
and receive back those patterns that ‘‘mostly’’ exhibits
such shape.

The paradigm of pattern discovery based on soft
constraints has various merits over the crisp ones:

� It is not rigid: a potentially interesting pattern is not
discarded for just a slight violation of a constraint.
� It can order patterns with respect to interestingness

(level of constraints satisfaction): this allows us to say
that a pattern is more interesting than another, instead
of strictly dividing patterns in interesting and not
interesting.
� From the previous point, it follows that our paradigm

allows for naturally expressing top-k queries based on
constraints: e.g., the data analyst can ask for the top-10
patterns with respect to a given description, like a
conjunction of soft constraints.
� Alternatively, we can ask to the system to return all

and only the patterns which exhibit an interest level
larger than a given threshold l.

The paradigm introduced in [14] is based on the
mathematical concept of semiring. In this paper we avoid
entering in unnecessary details. We just mention two
possible instantiations of the framework for soft-
constrained frequent patterns based on the fuzzy and the
probabilistic semirings, as described in the following.
The main difference between the two semirings is the
way the soft constraints are combined to determine the
interestingness of an itemset.

Definition 2.6 (Soft constraints). Given a mining view
MV � hD;Pi, a soft frequency constraint is a functioneCfreqðXÞ :: 2I

! ½0;1�. Similarly we can define a set of
soft constraints over P: eCP ¼ feC1

P; . . . ; eCn
Pg, where eCh

P ::

2I
! ½0;1�.

Therefore, a soft constraints returns a value in the

interval ½0;1�, denoting the level of constraint satisfaction

or interestingness.

For sake of simplicity, we restrict our system to

constraints which behave as those ones in Fig. 5. They

return a value which grows linearly from 0 ðFalseÞ to

1 ðTrueÞ in a certain interval, while they are 0 before the

interval and equal to 1 after the interval.

To describe such a simple behavior, we just need two

parameters: a value t, associated with the center of the

interval (corresponding to an interest value of 0:5), and a

parameter a to adjust the gradient of the function that is

named softness parameter. Therefore, the interval in which

the constraint turns out to be satisfied, with a level of

interestingness ranging from 0 to 1, is ½t � at; t þ at�.

F. Bonchi et al. / Information Systems 34 (2009) 3–278

Author's personal copy
ARTICLE IN PRESS

Example 4. In Fig. 5 we provide graphical representations
of the following soft constraints:

� eCfreq :: suppDðXÞX1500 ða ¼ 0:2Þ,
� eC1

P :: avgðX:weightÞp5 ða ¼ 0:2Þ,
� eC2

P :: sumðX:priceÞX20 ða ¼ 0:5Þ.

Note that when the softness parameter a is equal to 0 we
obtain the crisp version of the constraint.

Given a set of soft constraints, we need to define how
the global interestingness value is computed when a
combination of soft constraints are provided in a mining
query. To this end, we will exploit the two semirings, the
fuzzy and the probabilistic ones.

Definition 2.7. Given a combination of soft constraints
	eC � eC1 	 � � � 	 eCn, we define the interest level of an
itemset X 2 2I as:

� 	eCðXÞ ¼ min ðeC1ðXÞ; . . . ; eCnðXÞÞ in a fuzzy query,
� 	eCðXÞ ¼ � eC1ðXÞ; . . . ; eCnðXÞÞ in a probabilistic query.

Example 5. In this example, we use for the patterns the
notation p : hv1; v2; v3i, where p is an itemset, and
hv1; v2; v3i denote, respectively, the three values suppDðpÞ,
avgðp:weightÞ and sumðp:priceÞ, corresponding to the three
constraints in Fig. 5.

Consider, for example, the following three patterns:

� p1 : h1700;0:8;19i,
� p2 : h1550;4:8;54i,
� p3 : h1550;2:2;26i.

For the pattern p1 : h1700;0:8;19i we obtain that:eCfreqðp1Þ ¼ 0:83, eC1
Pðp1Þ ¼ 1 and eC2

Pðp1Þ ¼ 0:45. Since in a
fuzzy query the constraint combination operator is min,
we get that the interest level of p1 is 0.45. In the same way
we obtain the interest levels for p2 and p3:

� p1 : eCfreq 	
eC1
P 	

eC2
Pð1700;0:8;19Þ ¼minð0:83;1;

0:45Þ ¼ 0:45,
� p2 : eCfreq 	

eC1
P 	

eC2
Pð1550;4:8;54Þ ¼minð0:58;0:6;

1Þ ¼ 0:58,

� p3 : eCfreq 	
eC1
P 	

eC2
Pð1550;2:2;26Þ ¼minð0:58;1;

0:8Þ ¼ 0:58.

Therefore, with this particular instance we obtain that p2

and p3 are the most interesting patterns among the three.

Similarly, since in a probabilistic query the constraint

combination operator is the arithmetic multiplication �,

we get that the interest level of p1 is 0.37. In the same way

we obtain the interest levels for p2 and p3:

� p1 : eCfreq 	
eC1
P 	

eC2
Pð1700;0:8;19Þ ¼ �ð0:83;1;0:45Þ ¼

0:37,
� p2 : eCfreq 	

eC1
P 	

eC2
Pð1550;4:8;54Þ ¼ �ð0:58;0:6;1Þ ¼

0:35,
� p3 : eCfreq 	

eC1
P 	

eC3
Pð1550;2:2;26Þ ¼ �ð0:58;1;0:8Þ ¼

0:46.

Therefore, with this particular instance we obtain that p3

is the most interesting pattern.

We are now ready to define a framework for soft-

constrained frequent itemset mining, by extending Defini-
tion 2.3, concerning the crisp-constrained counterpart.

Definition 2.8 (Soft-constrained frequent itemset mining).
Given a mining view MV ¼ ðD;PÞ, a minimum support
threshold dX1, and a (possibly empty) set of user-defined
constraints eCP ¼ feC1

P; . . . ; eCn
Pg, the soft-constrained fre-

quent itemset mining problem has to mine part of the set
V of valid itemsets occurring in D according to the soft
constraints:

V ¼ fX 2 2I
j 	 eCðXÞ40g

where 	eCðXÞ ¼ ðeCfreqðXÞ 	 eC1
PðXÞ 	 � � � 	 eCn

PðXÞÞ, and 	 can
be either min (fuzzy) or � (probabilistic) according to
Definition 2.7.

In particular, by specifying two further parameters l
and k, we can state the following two sub-problems,

which only select part of all the soft-constrained valid

itemsets V.

l-interesting: given a minimum interest threshold

l 2 ð0;1�, it is required to compute all l-interesting

patterns, i.e., fX 2Vj 	 eCðXÞXlg.

suppD (X)

1000 1200 1400 1600 1800 2000
0.0

0.2

0.4

0.6

0.8

1.0

1.2
fuzzy
crisp

fuzzy
crisp

fuzzy
crisp

avg (X.weight)

2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2
sum (X.price)

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 5. Graphical representation of possible fuzzy/probabilistic instances of three constraints. The dotted lines represent the crisp version of the same

constraints.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 9

Author's personal copy
ARTICLE IN PRESS

top-k: given a threshold k 2 N, it is required to mine the

top-k patterns X 2V with respect to the order determined

by measure 	eCðXÞ, i.e., the most interesting itemsets.

3. The SPQL mining query language

In this section we propose a query language for pattern
discovery named SPQL. We extend a preliminary work of us
[15] by introducing new features in the language. In
particular, two main kinds of SPQL queries exist: standard
mining queries with crisp constraints, and mining queries
with soft constraints. Moreover, SPQL is also used for
defining the mining view, solving problems as the
functional dependency of the property attributes from
the item ones, or for the discretization of numerical
continuous attributes.

As discussed in Section 5.2, CONQUEST offers simple GUI
mechanisms to facilitate SPQL query definition, as well as to
solve conflict regarding property conflicts or to discretize
continuous items attributes. However, all these knowl-
edge discovery tasks can directly be specified in SPQL.

3.1. SPQL mining queries with crisp constraints

In Section 2 we have provided the theoretical back-
ground definitions needed to specify a constraint-based
mining queries on a relational database (see Definitions
2.3 and 2.4). In the following definition we summarize all
the elements that play a role in such queries, used to
specify a complete knowledge discovery process, namely
data selection, data preparation and transformation, and
finally pattern discovery.

Definition 3.1 (Crisp constraint-based frequent pattern

query). A constraint-based frequent pattern query Q over
a relational database DB, is defined by six elements
Q � hR; T ; I; P; d;CPi: a relation R over DB, a mining view
definition RT;I;P , a minimum support threshold d and a
conjunction of constraints CP.

The result of the query is the set of itemsets X (along

with their supports), that are frequent (with respect to d)

in D where MT;I;P � hD;Pi, and that satisfy the conjunc-

tion of constraints CP:

fhX; suppDðXÞi j X 2 2I and suppDðXÞXd ^ CPðXÞg

The result of such mining query can be materialized as
relations in DB. In particular, such materialization creates
three tables:

ITEMS: a table containing for each item i 2 I, belong-
ing to at least one of the returned itemsets, an auto-
matically generated identifier item_id, the literal
associated to the item, and a value for each attribute
property pjðiÞ. The literal associated with each item i 2 I

should have the form hatt_name; valuei, where att_
name 2 I, and value is a value assumed by att_name in R.

SUPPORTS: a table modeling the inclusion relation of
the various items (item_id) within each returned item-
set, in turn identified by an automatically generated
identifier itemset_id.

ITEMSETS: a table containing, for each returned
itemset X (itemset_id), its support suppDðXÞ.

Example 6. Consider the mining query in Example 1. The
result of that query is materialized as shown in Fig. 6.

An SPQL query Q adopts an SQL-like syntax. An example
has already been shown in Fig. 2, for which we have
identified how the three main tasks of the knowledge
discovery process (i.e., source data selection, data pre-
processing and pattern discovery) can be expressed.

In Fig. 7 we provide a more complex example query: in
the following we summarize the correspondence between
all the parameters of Q � hR; T ; I; P; d;CPi and the various
statements of a standard SPQL query:

(1) The minimum frequency threshold d (line 1 of the
query in Table 7).

(2) The relational table R from which we can define the
mining view RT;I;P (lines 2–4).

(3) The partition of the attributes of R in the sets T , I and
P, or, in other terms, the mining view definition RT ;I;P

(lines 5–7).
(4) A conjunction CP of constraints defined over the item

properties (line 8).

As stated in Section 2, if we select as item property an
attribute that is not in functional dependency with an
item attribute, we have a property conflict. CONQUEST is
able to handle such constraints appropriately. It first
analyzes the mining view definition given in the query,
and if there is any conflict, it raises a warning. The user can
either take the conflict into consideration, and resolving it
by using one of the method provided by the system, or
proceed to the query evaluation without caring the
warning. In the latter case CONQUEST automatically applies
the default method to resolve the conflict. In more details,
given a conflicting property attribute Pi, the defaults
method is take average, which re-assigns to Pi the average

Fig. 6. Materialization of the result of the query in Example 1.

F. Bonchi et al. / Information Systems 34 (2009) 3–2710

Author's personal copy
ARTICLE IN PRESS

of all its original values that were associated with the item
attribute. Other available methods to solve conflicts are
take maximum, take minimum, sum, first or last.

The user can specify one of these methods to solve
conflicts in the SPQL query, by adding a TAKE clause in
the property attribute definition. For example, consider
the query in Fig. 7. In the property attribute definition in
line 7, we could have:

PROPERTY product.gross_weight TAKE Avg

In CONQUEST we have chosen a well-defined set of classes
of constraints. Many of them are defined in terms of the
property attributes P, others concern the structural and
syntactical forms of the valid itemsets to extract from D.
These constraints have been deeply studied and analyzed
in the past few years, in order to find nice properties that
can be used at mining time to reduce the computational
cost. In particular, as discussed later in Section 4, our
system is able to deal with anti-monotone, succinct [2],
monotone [16], convertible [17] and loose anti-monotone
[18] constraints. Such classes include all the constraints
based on the aggregates listed in Table 1.

So far we have presented an SPQL query in its basilar
form. Other SPQL queries can be expressed: in particular
queries that specify soft constraints [14], and discretization

tasks, as presented in the following subsections.
Finally, note that CONQUEST’s SPQL is a superset of SQL, in

a double sense: first any SPQL query contains an SQL query
needed to define the data source; second, in CONQUEST we
allow the user to define any SQL query in place of an SPQL

query, which could be useful, for instance, to pre-process
the data or post-process the extracted patterns.

3.2. SPQL mining queries with soft constraint

In CONQUEST we have introduced the possibility of
defining queries according to the new paradigm of pattern
discovery based on soft constraints [14], according to the
framework discussed in Section 2.3.

A soft-constrained frequent pattern query Q over a
relational database DB can be either l-interesting or top-k,
but also probabilistic or fuzzy, depending on the way the
soft constraints must be combined. Thus, besides defining
the soft constraints along with the associated softness
levels, in Q we have to specify the query kind. The SPQL

syntactic sugar to define such queries is provided by
means of the following example.

Example 7. Fig. 8 shows a complex SPQL query exploiting
the soft constraint paradigm. In particular it is a
probabilistic query requiring to mine the top five patterns
with respect to a given combination of three soft
constraints: the frequency constraint, support larger than
5 with 0.4 softness, plus two aggregate soft constraints
defined over the properties product.gross_weight and
product.units_per_case. This is a true mining query,
defined within CONQUEST on the famous foodmart2000

datamart.

In line 1 we specify the query type definition (in this
case we have a top-k one with the appropriate threshold)
and the semiring (in this case we have a probabilistic one)
in which the query must be evaluated. In line 2 a
minimum frequency constraint is defined with threshold
5 and 0.4 softness level. From lines 3 to 5 we have the
usual SQL select-from-where statement, defining the data
source R for the query. Lines from 6 to 8 contain the
transactional mining view definition. Line 9 contains
the two other constraints defined over the item properties
with their associated softness parameters. How queries
based on soft constraints are evaluated is described in
Section 4.

3.3. Discretization queries

Discretization is often a needed step when preparing
data for associative analysis. CONQUEST provides the user
with a functionality for discretizing continuous attributes

Fig. 7. An example SPQL mining query defined within CONQUEST on the famous foodmart2000 datamart.

Table 1
The set of available constraints

subset subset supset superset

asubset attributes are subset len length

asupset attributes are superset acount attributes count

min minimum max maximum

range range sum sum

avg average var variance

std standard deviation spv sample variance

md mean deviation med median

F. Bonchi et al. / Information Systems 34 (2009) 3–27 11

Author's personal copy
ARTICLE IN PRESS

of a table. The following discretization methods are
provided:

Equal width: the domain of a continuous attribute is
partitioned into bins of the same length.

Equal depth: the domain of a continuous attribute is
partitioned into bins containing same number of elements.

Free partitioning: the partition is defined by the user.
The smoothing defines the type of information that

will be stored in the new attribute generated by the
discretization. The following smoothing methods are
provided:

Bin boundaries: the bin boundaries are stored as text.
Average: the average value for the elements in the bin.
Count: the count of the elements in the bin.
Given these methods, the syntax of possible CONQUEST

discretization queries is described in Fig. 9.

3.4. Related work on data mining query languages

In this section we discuss other approaches to the data
mining query language definition issue. For the sake of
presentation we focus only on few, most relevant,
approaches: we are aware that this presentation does
not exhaustively cover the wide state-of-the-art of the
research (and also the development) on data mining
systems and query languages.

The problem of providing an effective interface
between data sources and data mining tasks has been a

primary concern in data mining. There are several
perspectives upon which this interface is desirable, the
most important ones being (i) to provide a standard
formalization of the desired patterns and the constraints
they should obey to; and (ii) to achieve a tighter
integration between the data sources and the relational
databases (which likely accommodate them). The com-
mon ground of most of the approaches can be summar-
ized as follows:

� Create and manipulate data mining models through an
SQL-based interface (thus implementing a ‘‘command-

driven’’ data mining metaphor).
� Abstract away the algorithmic particulars.
� Allow mining tasks to be performed on data in the

database (thus avoiding the need to export to a special-
purpose environment).

Approaches differ on what kinds of models should be
created (which patterns are of interest), and what
operations we should be able to perform (which con-
straints the patterns should satisfy). The query language
proposed in [19,20] extends SQL with the new operator
MINE RULE, which allows the computation and coding of
associations in a relational format. Let us consider the
relation transaction(Date, CustID, Item, Value)

that contains the transactions of a sales representative.

Fig. 8. An example SPQL probabilistic mining query defined within CONQUEST on the foodmart2000 datamart.

Fig. 9. An SPQL equal-width or equal-depth discretization query (above), and an SPQL free-partitioning discretization query (below): (l1,u1),...,(ln,un)

are the user-defined bin boundaries.

F. Bonchi et al. / Information Systems 34 (2009) 3–2712

Author's personal copy
ARTICLE IN PRESS

The following rule allows the extraction of the rules with
support 20% and confidence 50%:

MINE RULE Associations AS

SELECT DISTINCT 1..n Item AS BODY,

1..1 Item AS HEAD, SUPPORT,CONFIDENCE

WHERE BODY.Value 4 100 AND HEAD.Value 4 100

FROM transaction

GROUP BY CustID

HAVING COUNT(Item) 4 4

CLUSTER BY Date

HAVING BODY.Date o HEAD.Date

EXTRACTING RULES WITH SUPPORT: 0.2, CONFIDENCE: 0.5

The above expression specifies the mining of associations
of purchased items such that the right part of the rule
(consisting of only one item) has been purchased after the
left part of the rule (that can consist of more than one
item), and related to those customers who bought more
than four items. Moreover, we consider items only with a
value greater than 100.

The above approach reflects the following features:

� The source data is specified as a relational entity, and
data preparation is accomplished by means of the
usual relational operators. For example, the source
table can be specified by means of usual join opera-
tions, selections and projections.
� The extended query language allows mining of uni-

dimensional association rules. The GROUP BY keyword
allows the specification of the transaction identifier,
while the item description is specified in the SELECT

part of the operator.
� Limited forms of background knowledge can be

specified, by imposing some conditions over the
admitted values of BODY and HEAD, and by using
multiple source tables. Notice, however, that relying
directly on SQL does not allow direct specification
of more expressive constructs, such as, e.g., concept
hierarchies. A limited form of data reorganization
is specified by the CLUSTER keyword, that allows
the specification of topology constraints (i.e., member-
ship constraints of the components of rules to
clusters).
� Concerning interestingness measures, the above op-

erator allows the specification of the usual support and
confidence constraints, and further constraints over
the contents of the rules (in particular, the SELECT

keyword allows the specification of cardinality con-
straints).
� Extracted knowledge is represented by means of

relational tables, containing the specification of four
attributes: Body, Head, Support and Confidence.

Similarly to MINE RULE, the DMQL language [21,22] is
designed as an extension of SQL that allows to select
the primary source knowledge in SQL-like form. However,
the emphasis here is on the kind of patterns to be
extracted. Indeed, DMQL supports several mining tasks

involving rules: characteristic, discriminant, classification
and association rules. The following query:

use database university_database find

characteristic rules

related to gpa, birth_place, address, count(�)%
from student where status ¼ "graduate" and major ¼

"cs"

and birth_place ¼ "Canada"

with noise threshold ¼ 0.05

specifies that the database used to extract the rules is the
university database (use database university_data-
base), and the kind of rules you are interested in are
characteristic rules (find characteristic rules) with
respect to attributes gpa, birth_place, and address

(related to ...). The query specifies also that this rules
are extracted on the students who are graduated in
computer science and born in Canada. As for MINE RULE,
the specification of primary source knowledge is made
explicit in the from and where clauses.

DMQL exploits a decoupled approach between speci-
fication and implementation, since the extraction is
accomplished by external algorithms, and the specifica-
tion of the query has the main objective of preparing the
data and encoding them in a format suitable for the
algorithms. Interestingly, DMQL allows the manipulation
of a limited form of background knowledge, by allowing
the direct specification of concept hierarchies.

Unfortunately, neither MINE RULE nor DMQL provide
operators to further query the extracted patterns. The
closure principle is marginally considered in MINE RULE
(the mining result is stored into a relational table and
can be further queried), but not considered at all within
DMQL. By contrast, Imielinkski and others [23] propose a
data mining query language (MSQL) which seeks to
provide a language both to selectively generate patterns,
and to separately query them. MSQL allows the extraction
of association rules only, and can be seen as an extension
of MINE RULE. The pattern language of MSQL is
based on multidimensional propositional rules, which
are specified by means of descriptors. A descriptor is
an expression of the form Ai ¼ aij, where Ai is an attribute,
and aij is a either a value or a range of values in
the domain of Ai. Hence, the rules extracted by MSQL
have the form Body) Consequent, where Body is a
conjunctset (i.e., the conjunction of an arbitrary number
of descriptors such that each descriptor in the set refers to
a different attribute) and Consequent is a single
descriptor. Rules are generated by means of a GetRules

statement which, apart from syntax issues, has similar
features as MINE RULE and DMQL. In addition, MSQL
allows for nested queries, that is, queries containing
subqueries.

The extracted rules are stored in a RuleBase, from
which they can be further queried, by means of the
SelectRules statement. It is possible to select a subset
of the generated rules that verify a certain condition

SelectRules(R)

where Body has { (Age ¼ �), (Sex ¼ �) }
and Consequent is { (Address ¼ �) }

F. Bonchi et al. / Information Systems 34 (2009) 3–27 13

Author's personal copy
ARTICLE IN PRESS

as well as to select the tuples of the input database that
violate (satisfy) all (any of) the extracted rules:

Select� from Actor where VIOLATES ALL(

GetRules(Actor)

where Body is { (Age ¼ �) }
and Consequent is { (Sex ¼ �) }
and confidence 4 0.3

)

A novel and completely different perspective to inductive
databases querying has been devised in [24]. The basic
intuition is that, if the pattern language L were stored
within relational tables, any constraint predicate Q could
be specified by means of a relational algebra expression,
and the DBMS could take care of implementing the best
strategy for computing the solution space. Assume, for
example, that sequence patterns are stored within a
relational engine by means of the following relations:

� Sequences (sid,item,pos), representing each se-
quence by means of a sequence identifier, an item and
its relative position within the sequence.
� Supports (sid,supp) which specifies, for each

sequence, its frequency.

Then, the following SQL query, asking for sequences such
that either their frequencies are greater than 60%, or item
a occurs before item b within transactions, can be
expressed as follows:

SELECT Supports.sid

FROM Sequences S1, Sequences S2, Supports

WHERE S1.sid ¼ Supports.sid AND S2.sid ¼ S1.sid

AND Supports.supp 4 60

OR (S1.item ¼ a AND S2.item ¼ b AND S1.pos o
S2.pos)

Clearly, the pattern language can be extremely huge, and
hence it is quite unpractical to effectively store it. Indeed,
the pattern language is represented as a virtual table, i.e.,
an empty table which has to be populated. In the above
example, although the Sequences and Supports tables
are exploited within the query, they are assumed to be
virtual tables, i.e., no materialization actually exists for
them within the DBMS. The idea here is that, whenever
the user queries such pattern tables, an efficient data
mining algorithm is triggered by the DBMS, which
materializes those tuples needed to answer the query.
Afterwards, the query can be effectively executed. Thus,
the core of the approach is a constraint extraction
procedure, which analyzes a given SQL query and
identifies the relevant constraints. The procedure builds,
for each SQL query, the corresponding relational algebra
tree. Since virtual tables appear in the leaf nodes of the
tree, a bottom-up traversal of the tree allows the detection
of the necessary constraints. Finally, specific calls to a ME
can be raised in order to populate those nodes represent-
ing virtual tables.

This approach has the merit of providing a real tight
coupling between the ME and the DBMS, or, in other

terms, between the mining queries and the database
queries. Indeed, this approach does not even require the
definition of a data mining query language, since it is SQL
itself to play such role. However, it is not clear how such
approach could support a complex knowledge discovery
process. For instance, the pre-processing step is comple-
tely overlooked by this approach: preparing data for
mining would require long and complex SQL queries.
Moreover, since we got no reference to the source data, it
is not clear how the mining view could be defined and/or
changed within a mining session. Consider again the
Sequences and Supports relations in the above exam-
ple, and suppose that the support of sequences patterns
are computed with respect to a database of sequences of
events with a weekly timescale: what does it happen if the
analyst decides to move to the daily timescale?

The problem of providing little support to the pre-
processing and evaluation phase of the knowledge
discovery process, is common to all the query languages
discussed above. In CONQUEST, differently from the pre-
processing phase (e.g., easy mining view definition,
attributes discretization), the evaluation phase is not
supported at the language level. However, as described
later in Section 5, we provide pattern browser capabilities
such as the on-the-fly constraints tuning. More sophisti-
cated post-processing of the extracted patterns, visualiza-
tion and reasoning techniques, will be the subject of our
on-going and future work.

4. Algorithms and ME

Several researchers have focused their efforts in
designing new frequent itemsets mining algorithms
during the last decades, resulting in a overwhelming
spectrum of completely different approaches as well as
tiny effective optimizations. However, none of them
showed to be faster or better (whatever this may mean)
than all the others. The goodness of an algorithm depends
on the characteristics of data being analyzed, the para-
meters of the mining task, and many other features of the
computational environment.

While developing the CONQUEST’s ME, one of our main
goals was efficiency, in order to provide a prompt
interaction with users. But also robustness, since we aimed
at developing a software able to mine every kinds of
datasets on every kinds of hardware. More importantly,
our software must be able to exploit the high expressive-
ness of the SPQL language, thus pushing all these constraints
deep down in the frequent pattern computation, rather
than performing a mere post-processing filtering.

CONQUEST’s ME exploits the state-of-the-art frequent
pattern algorithms and constraint pushing techniques, as
those ones developed in the last three years in our labs
[25,26,16,27,18].

4.1. Frequent itemsets mining

The CONQUEST ME is based on direct count and intersect
(DCI) [25], a state-of-the-art high performance frequent
itemsets mining algorithm.

F. Bonchi et al. / Information Systems 34 (2009) 3–2714

Author's personal copy
ARTICLE IN PRESS

DCI explores the search space level-wise, like Apriori,
by first discovering the frequent itemsets of length one,
then the frequent itemsets of length two, and so on until
no longer frequent itemset exists. As other Apriori-like
algorithms, DCI reiterates two basic steps. Given a collec-
tion of frequent itemsets of length k, a new set of possibly
frequent itemsets of length kþ 1 is produced via the
candidate generation function. Then, their actual support is
calculated by scanning the dataset via the support counting

function. These two steps are repeated until all the
frequent itemsets have been discovered.

Although the depth-first visit is now considered a more
fashionable strategy, DCI is as fast as other algorithm
thanks to its internal vertical bitmap representation of
the dataset, and the associated list-intersection counting
method, based on fast bitwise operations. In mode detail,
this counting method permits DCI to compute the
supports of candidate itemsets on-the-fly, also exploiting
a small cache storing the most recently used list
intersections. In the next section we will show how the
level-wise visit of the search space adopted by DCI
allowed us to adopt a unifying framework for constrained
itemsets mining.

The added value that really makes DCI different from
other algorithms is its nice feature of being resource and

data aware.

� It is resource aware because, unlike other algorithms, it
performs the first iterations out-of-core, and at each step
prunes useless information from the original dataset
thus reducing the amount of data to be used in the
following iterations. When the reduced dataset is small
enough to be loaded in main memory, it is converted and
stored in-core as a vertical bitmap. The compact vertical
representation allows a fruitful use of CPU’s cache due to
the spatial and temporal locality in accessing data.
� It is data aware because its behavior changes in

presence of sparse or dense datasets. It uses an ad
hoc representation (similar to the run length encoding)
in the case of sparse datasets, and detects highly
correlated items to save bitwise works in the case of
dense datasets.

Being resource and data aware is not only a nice feature of
DCI, but it is also a strong requirement of CONQUEST, due to
the need of quickly mining real world datasets. This is the
reason of our choice of DCI as the main building block of
our ME. CONQUEST, by inheriting the same characteristics as
DCI, turns out to be an extremely robust and fast software.

4.2. A generalized unifying framework for constrained

pattern mining

Constraint-based frequent pattern mining has been
studied as a query optimization problem, i.e., developing
efficient, sound and complete evaluation strategies for
constraint-based mining queries. To this aim, properties of
constraints have been studied comprehensively, e.g., anti-

monotonicity, succinctness [2,28], monotonicity [16,29,30],
convertibility [31], loose anti-monotonicity [18], and on the

basis of such properties efficient computational strategies
have been defined. However, the proposed strategies
cannot be exploited altogether in a comprehensive
algorithm. A preliminary effort to propose a general
framework for constrained frequent itemsets mining is
[32]: CONQUEST is the actual realization of that framework,
and thus it is the first software that is able to deal with all
of these classes of constraints at the same time.

In the following, together with an exhaustive presenta-
tion of the different constraints classes, we will review the
algorithms proposed to exploit constraints properties in
order to reduce the computational cost of data mining
algorithms by means of search-space and data reduction.

The first interesting property is the anti-monotonicity,
which was already introduced with the Apriori [13]
algorithm, since the minimum frequency is actually an
anti-monotone constrains.

Definition 4.1 (Anti-monotone constraint). Given an item-
set X, a constraint CAM is anti-monotone if 8Y � X :

CAMðXÞ) CAMðYÞ.

This anti-monotonicity property can be used to reduce
both the search space and the data. A large portion of the
search space can be pruned whenever we meet an itemset
X that does not satisfy Cfreq, since no superset of X can
satisfy Cfreq. Additionally, many well-known related
properties can be used to shorten the transactions in the
dataset. These properties boil down to the following: if an
item in a transaction is not included in k frequent itemsets
of length k supported by that transaction, then it will not
be included in any frequent itemset of length 4k. These
items can be discarded after the k-iteration of a level-wise
algorithm. Eventually the whole transaction can be
pruned from the dataset.

Definition 4.2 (Succinct constraint). An itemset Is � I is
a succinct set, if it can be expressed as spðIÞ for some
selection predicate p, where s is the selection operator.
SP � 2I is a succinct power-set, if there is a fixed number
of succinct sets I1;I2; . . . ;Ik � I, such that SP can be
expressed in terms of the strict power-sets of I1;I2;

. . . ;Ik using union and minus. Finally, a constraint Cs is
succinct provided that the set of itemsets satisfying the
constraint is a succinct power-set.

Informally, a succinct constraint CS is such that, whether
an itemset X satisfies it or not, can be determined based on
the singleton items which are in X. An example of succinct
constraints, is CSðXÞ � ‘‘X contains items of type food’’.

This class of constraints was introduced with the CAP

algorithm [2]. In general it is possible to understand if no
supersets of a given itemset can satisfy the constraint, and
remove those supersets from the search space. However,
since supersets of invalid itemsets cannot be pruned, this
strategy does not provide an effective reduction as anti-
monotone ones. On the other hand, constraints that are
both anti-monotone and succinct can be pushed once and

for all at pre-processing time, by removing invalid items
from the dataset.

Definition 4.3 (Monotone constraint). Given an itemset X,
a constraint CM is monotone if: 8Y
 X : CMðXÞ) CMðYÞ.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 15

Author's personal copy
ARTICLE IN PRESS

Handling monotone constraints in conjunction with the
minimum frequency constraint (that it is always present
in any query) and with other anti-monotone constraints,
turns out to be very difficult due to their symmetrical
behavior: valid patterns w.r.t. Cfreq are in the lower part of
the itemsets lattice, while itemsets that satisfy CM are in
the upper part. A typical bottom-up as well as a top-down
visit introduced by DUAL-MINER [30] algorithm will inevi-
tably traverse many invalid itemsets w.r.t. one of the two
classes of constraints.

Also consider that only little work can be saved due to
the CAM–CM trade-off: if an itemset does not satisfy the
monotone constraint, we could avoid the expensive
frequency count for this itemset. On the other hand, if
the same itemset was actually infrequent, it could have
been pruned with its supersets from the search space,
thus saving many more frequency counts.

Among the many algorithms introduced for mining
frequent patterns under a cojunction of monotone and
anti-monotone constraints, [30,33–35], a completely
orthogonal approach was introduced in [16,26]. In fact, a

transaction that does not satisfy the monotone constraint
CM , can be removed since none of its subsets will
satisfy CM either, and therefore the transaction cannot
support any valid itemsets. This data reduction, in turns
reduces the support of other frequent and invalid itemsets
thus reducing the search space and improving anti-
monotone pruning techniques. This virtuous circle,
and in general the synergy between data reduction and
search space reduction, will inspire our algorithmic
framework.

Another class of constraints was introduced in [31].

Definition 4.4 (Convertible constraints). A constraint CCAM

(CCM) is convertible anti-monotone (monotone) provided
there is an order R on items such that whenever an
itemset X satisfies CCAM (violates CCM), so does any prefix
of X. If a constraint is both convertible monotone and anti-
monotone, then it is called strongly convertible.

In [31], two FP-GROWTH based algorithms are introduced.
During the construction of the initial FP-tree, items are
ordered according to R, and then a slightly modified FP-
GROWTH starts the mining. In presence of a CCAM constraint,
the visit of the search space can stop whenever an invalid
itemset is found. While, in presence of a CCM constraint,
no pruning is performed, only monotone checks are saved
for the supersets of valid itemsets. Unfortunately, the
order R may significantly affect the performances of the
algorithm.

The same classes of constraints can also be exploited in
a level-wise framework, as shown in [32]: if transactions
are sorted according to the same order R, some advanced
pruning strategies may take place, since CCAM and CCM

impose stronger requirements for an item of a given

Loose Anti-Monotone
Monotone

Convertible
Monotone

Anti-Monotone

Convertible
Anti-Monotone Strongly

Succinct

Fig. 10. Characterization of classes of constraints.

Table 2
A summary of search space and data-reduction strategies for the different classes of constraints

Constraint Algorithms Search space Data

Anti-Monotone CAM Apriori [13] Discard supersets of infrequent itemsets Remove useless items in each transaction

Monotone CM ExAnte [26] Implicitly from the data reduction Repeatedly remove invalid transactions and singletons that

become infrequent

ExAMiner [16] Implicitly from the data reduction Remove invalid transactions

Dual Miner

[30]

Top Down visit –

Succinct anti-

monotone CAMS

CAP [2] Implicitly from the data reduction Remove all itemsets that do not satisfy the constraint from the

database

Succinct monotone CMS CAP [2] Remove invalid itemsets that are not subset of

a valid one

–

ExAMiner [16] Implicitly from the data reduction The same of a monotone constraint

Convertible CCAM , CCM FICA , FICM [31] Bottom-up depth-first with item reordering –

ExAMiner Lam

[18]

Implicitly from the data reduction Remove useless items from transactions. Exploit loose anti-

monotonicity

Loose anti-monotone

CLAM

ExAminer Lam

[18]

Implicitly from the data reduction Remove transactions that do not contain any valid itemset

F. Bonchi et al. / Information Systems 34 (2009) 3–2716

Author's personal copy
ARTICLE IN PRESS

transaction to be useful in the subsequent iterations of a
level-wise strategy.

Another class of constraint has been introduced in [18].

Definition 4.5 (Loose Anti-monotone constraint). Given an
itemset X with jXj42, a constraint is loose anti-monotone

(denoted CLAM) if: CLAMðXÞ) 9i 2 X : CLAMðXnfigÞ.

Loose anti-monotone constraints are a proper superset
of convertible constraints, also related to many interesting
statistical functions. Every constraint in this class can be
exploited in a level-wise computation by means of data
reduction. In fact, if a at level k41 a transaction is not a
superset of any valid itemset of size k, then it will not
contain any valid larger itemset.

A characterization of the various classes of constraints
is given in Fig. 10, while in Table 3 we report the
classification of some commonly used constraints.

4.3. A new framework for constrained pattern mining

In Table 2 we summarize the aforementioned classes of
constraints and some representative algorithms that
exploit their properties. For each constraints, there exist
both data reduction and search space reduction algorithm.
Recall that our system should be able to answer
conjunctive queries possibly containing many constraints
belonging to different classes.

Unfortunately, most of the search space reduction
based strategy cannot be exploited at the same time. For
instance, Dual Miner top-down search can hardly be
adapted to traditional bottom-up strategies, and reorder-
ing items as FICAand FICM[31] algorithms may not be
possible in presence of multiple convertible constraints
requiring different orderings.

On the other hand, all the other data-reduction
strategies are orthogonal, i.e., they can be applied at
the same time independently without producing any
interference. Conversely, they will help each other
in reducing the size of the mining problem. In fact, the
data reduction operated by one constraint, i.e., the
shortening of transaction or even their removal, may
introduce new pruning chances for other constraints
regardless whether they operate on the search space, as
we have shown with the CAM–CM trade-off, or the operate
on the data.

Supported by these consideration, we designed the ME
of CONQUEST as a level-wise bottom-up data-reduction
boosted algorithm for constrained pattern mining, that
uses DCI as its computational skeleton. After each iteration,
each transaction is subject to every data-reduction
opportunity given by the constraints specified by the
mining query. Therefore, after each iteration, the data on
which the support counting step is exploited becomes
smaller and smaller.

Table 3
Classification of commonly used constraints

Constraint Anti-monotone Monotone Succinct Convertible CLAM

minðS:AÞXv Yes No Yes Strongly Yes

minðS:AÞpv No Yes Yes Strongly Yes

maxðS:AÞXv No Yes Yes Strongly Yes

maxðS:AÞpv Yes No Yes Strongly Yes

countðSÞpv Yes No Weakly A Yes

countðSÞXv No Yes Weakly M No

sumðS:AÞpv ð8i 2 S; i:AX0Þ Yes No No A Yes

sumðS:AÞXv ð8i 2 S; i:AX0Þ No Yes No M No

rangeðS:AÞpv Yes No No Strongly Yes

rangeðS:AÞXv No Yes No Strongly Yes

avgðS:AÞpv No No No Strongly Yes

avgðS:AÞXv No No No Strongly Yes

medianðS:AÞpv No No No Strongly Yes

medianðS:AÞXv No No No Strongly Yes

varðS:AÞXv No No No No Yes

varðS:AÞpv No No No No Yes

stdðS:AÞXv No No No No Yes

stdðS:AÞpv No No No No Yes

varN�1ðS:AÞXv No No No No Yes

varN�1ðS:AÞpv No No No No Yes

mdðS:AÞXv No No No No Yes

mdðS:AÞpv No No No No Yes

F. Bonchi et al. / Information Systems 34 (2009) 3–27 17

Author's personal copy
ARTICLE IN PRESS

Algorithm 1. CONQUEST mining engine.

Input: D; d;C . where C ¼ CAM [CM [CMS [CAMS [CCAM [CLAM

Output: fX 2 2I
jsuppDðXÞXd ^ CðXÞg

1: k 1

2: Ck fiji 2 I ^ CAMSðfigÞ ^ CAMðfigÞg . Candidate

itemsets

3: Lk ; . Frequent

itemsets

4: Rk ; . Valid itemsets

5: Dk pCk
ðDÞ

. Ex-Ante Loop

6: while pruning is possible do
7: hCk ; Lk;Dki Ex-AnteðDk; d;Ck ;CM Þ

8: end while
9: Rk fX 2 LkjCðXÞg

. Horizontal

Loop

10: while Dk does not fit in main memory AND jLkj4k do

11: Ckþ1 gen_candidatesðLk ;CAM ;CMS ;CCAM ;CLAMÞ

12:

hLkþ1 ;Dkþ1i horizontal_countðDk ;Ckþ1 ; d;CM ;CCAM ;CLAMÞ

13: Rkþ1 fX 2 Lkþ1 jCðXÞg

14: k kþ 1

15: end while
. Vertical Loop

16: VD ¼ build_verticalðDkÞ

17: while jLkj4k do

18: Ckþ1 gen_candidatesðLk ;CAM ;CMS ;CCAM ;CLAMÞ

19: Lkþ1 vertical_countðVD;Ckþ1 ; dÞ
20: Rkþ1 fX 2 Lkþ1 jCðXÞg

21: k kþ 1

22: end while

23: return
S

Ri . The collection

of interesting

itemsets

The simplified pseudo-code of CONQUEST ME is given in
Alg. 1. Notice how this framework fits and enhances each
single algorithmic contribution participating to the ME.

During the first stage (lines 6–9) we exploit a data
reduction loop inspired by ExAnte: transactions that do
not satisfy monotone constraints are removed from the
dataset, thus lowering the support of singletons. If any
item turns out to be infrequent it can be removed thus
providing new chances to prune useless transactions by
re-checking monotone constraints. This loop can be
repeated until no more pruning is possible. At the end of
the process, the algorithm produces the set of frequent
singletons and a possibly reduced dataset.

Then the horizontal loop starts (lines 10–15). The
horizontal_count procedure reads the disk resident data-
set and calculates the support of the candidate itemsets
Ckþ1 in order to produce the set of frequent itemsets Lkþ1.
Also, data-reduction properties are exploited in order to
remove useless items and transactions, thus producing a
new reduced dataset Dkþ1 to use during the subsequent
iteration.

At every iteration the algorithm will work on a smaller
and smaller amount of data. When the dataset is small
enough, it will be entirely stored in the main memory by
using a vertical bitmap. The bitmap format does not allow
to prune the dataset further during the vertical loop (lines
16–22). Nonetheless, the compact memory resident image
of the dataset will enhance the temporal and spatial locality
of DCI, which can complete the mining with its efficient use
of CPU cache without the need of additional data reduction.

Lastly, as discussed later in Section 5.4, this framework
can be easily extended to handle future user-defined
constraints by exploiting their data-reduction properties
in a similar way.

4.4. Performance evaluation

In our experiments we used four different datasets,
which are well known in the pattern mining community.
In Table 4 we report their main characteristics.

The first dataset is retail, a collection of market
baskets coming from the Belgium. The second one is
accidents, resulting from a Belgian study on car
accidents. Dataset webdocs, the largest one (about
1.2 GB), comes from a large collection of web documents.
The last one, census, contains census information about a
very small portion of U.S. population. Notice that all of
these datasets are not synthetic.

These four datasets are very different one from each
other. The first two, respectively a sparse one and a dense
one, are quite small. While the latter two are definitively
much bigger, and they will show a more complex nature.
In evaluating a pattern mining system it is very important
to test different datasets because each of them raises
different difficulties for a pattern mining algorithm.
Sparse and small datasets are usually very easy to mine,
since the overall number of extracted frequent itemsets is
not large. On the other hand, dense datasets produce a
much larger number of frequent itemsets, and since they
are usually characterized by having long transactions, it is
usually difficult to effectively apply frequency-based or
other pruning techniques to them. Additionally, the two
large datasets force the algorithm to explore a huge
number of candidates, thus increasing its memory
requirements. Since these datasets are pure transactional
datasets, items have no associated attribute. We thus
generated a synthetic attribute for each distinct item by
using random values drawn from a uniform distribution in
the interval ½0;1000�. This is not a limitation, since the aim
of our performance experiments was to asses the pruning
power of our data-reduction techniques, to show the
absolute effectiveness of the system compared with other
specialized constrained frequent pattern mining algo-
rithm, and, finally, to show the goodness coming from the
synergy of a powerful data-reduction approach with a fast
mining algorithm.

4.4.1. Dataset pruning power

We tested CONQUEST pruning power on the first three
datasets by using three different constraints. We forced

Table 4
Characteristics of the datasets used in our experiments

Dataset Size # Items # Transactions Avg. Tr. length

retail 4 MB 16,469 88,162 10.3

accidents 34 MB 468 340,183 33.8

webdocs 1.2 GB 5,267,656 1,692,082 177

census 521 MB 396 2,458,295 68

F. Bonchi et al. / Information Systems 34 (2009) 3–2718

Author's personal copy
ARTICLE IN PRESS

the algorithm to perform the horizontal setup only, i.e.,
the only one where data-reduction is performed. During
each iteration the algorithm produces a reduced dataset,
whose size is plotted in order to evaluate the effectiveness
of the different pruning strategies.

The constraints we tested were sumðS:AÞXv (herein-
after denoted sumgeq for simplicity) that is monotone,
avgðS:AÞXv (avggeq) that is convertible, and varðS:AÞpv

(varleq) that is loose-antimonotone.
Fig. 11 shows the results of these tests, where we varied

the threshold values of each constraint. For each set of
tests we also report the baseline case, where all the
frequent itemsets satisfy the constraint (e.g., sumðX:AÞX0).
In this way we can compare our data-reduction techniques
with the sole anti-monotone frequency based pruning.

With the retail dataset, the avggeq and varleq were
effective only for very selective thresholds, and only
starting from the fourth iteration. However, they will
soon prune a large number of transactions almost
emptying the dataset in a few successive iterations. The
sumgeq constraint requires more iterations to reduce
significantly the dataset, but it immediately removes a

large part of transactions starting from the very first
iterations. Moreover, its behavior is more consistent with
respect to the selectivity of the constraint.

Since accidents is a dense dataset, the pruning here
is more difficult. In fact, the frequency-based pruning is
not able to remove a valuable number of transactions
during the first ten iterations. Even the pruning given by
the sumgeq constraint is poor for every thresholds used,
because it works at a transaction granularity: it removes
the whole transaction or does nothing. Conversely, the
other two constraints perform much better. The advanced
pruning of avggeq works at item granularity, and allows to
remove many items from each transaction, in turn
increasing chances for the removal of the whole transac-
tion. The last constraint varleq, behaves pretty well
because of its quasi-antimonotone properties: computa-
tion may actually end after a few iterations.

In the last dataset, the frequency-based anti-monotone
pruning works better than with the accidents dataset,
but is not effective as with the retail one. This means
that, while being generally sparse, there are many dense
portion of the dataset. As a result the monotone pruning

Fig. 11. Effectiveness of the various pruning strategies. We used the following minimum support thresholds: d ¼ 3 for retail, d ¼ 100 000 for

accidents and d ¼ 180 000 for webdocs dataset.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 19

Author's personal copy
ARTICLE IN PRESS

helps in mining the sumgeq constraint by removing a small,
but significant number of transactions, just from the first
iterations. The other two constraints work much better and
consistently for every threshold used, even if they are not
able to perform any pruning in first two iterations.

As expected, monotone pruning is more effective when
the dataset is sufficiently sparse, i.e., when a lot of short
transactions can be easily pruned. On the other hand it
allows to remove transactions from the very beginning of
the algorithm. The other two pruning strategies need
instead a few iterations to make their contribution
evident. However, after such initial stage, they can
immediately remove a large portion of transactions, often
allowing the algorithm to end some iterations in advance
due to the emptied dataset at that point.

4.4.2. Comparison with other algorithms

In Fig. 12 we compare the performance of CONQUEST

with other two state-of-the-art algorithms FICAand FICM.
We used the same three datasets discussed above, and the
convertible constraint avggeq. In this test we wanted to
stress all the algorithms, and for this reason we used
highly selective constraint thresholds. In fact, the number
of valid patterns is less than 100 in every experiment,
having size up to seven items, while the number of
candidates, i.e., the size of the search space, is in the order
of hundreds of thousand itemsets.

As expected, FICM was never able to compete with FICA,
since, as we discussed above, it does not perform an actual
pruning of the search space. Note the bars of Fig. 12 where
an exclamation mark appears: in these cases we artifi-
cially interrupted FICAor FICM.

In all the tests with all the three datasets CONQUEST was
the clear winner. Even if it was designed to handle several
classes of constraints at the same time, still it resulted to
be much faster than specialized algorithms such as FICA.
Great part of this effectiveness has to be credited to the
mining core coming from DCI.

Finally, in mining the largest dataset among the three
(i.e., webdocs) CONQUEST was the only one able to run to
completion. Both the other two algorithms terminated
because of segmentation fault errors.

4.4.3. Synergy of the two approaches

In the previous two sections we showed the effective-
ness of the data-reduction process, and the high perfor-

mance of the pattern mining core. Notice that dataset
pruning is possible only during the horizontal iterations,
while it is not applicable during vertical iterations.

In this section we will show the synergy of the
combination of these two approaches. A few first horizontal
iterations will speed up the vertical phase of the algorithm.

For this test we used the census dataset and the
avggeq constraint. Even if this dataset is smaller than
webdocs, it has a larger number of transactions. Addi-
tionally, if we consider that the average transaction length
(68) is large compared to the total number of items (396),
it is clear that this dataset is very dense. In other words,
we chose a large dataset so that to have a large number of
possible frequent itemsets. Moreover, since the dataset is
dense, we can expect that this feature makes the pruning
process very complex.

We run CONQUEST by varying the number of initial
horizontal iterations from 2 to 6, and the obtained results
are shown in Fig. 13. The rationale was to find out the
(possibly small) number of horizontal iterations that
improves the overall performance of the mining process.

Consider the constraint avggeq with threshold 700:
Fig. 13(a) shows that the running time of the algorithm
increases dramatically when increasing the number of
horizontal iterations. The reason of this behavior is shown
in Fig. 13(b), which reports the number of candidate itemsets
explored by the algorithm for different number of horizontal
iterations performed. For avggeq with threshold 700, this
number does not change significantly for the various
iterations. In this case, the horizontal iterations are not able
to introduce a significant pruning, and, being slower than
the vertical ones, they only degrade the performance.

When increasing the selectivity of the constraint to
avggeq with threshold 750, the running time decreases
significantly due to the reduced size of the dataset, that
also reduces by two or more orders of magnitude the
number of candidate itemsets. It is clear that the best
choice is to have three horizontal iterations and to exploit
the vertical loop from the fourth iteration, since the cost of
additional horizontal pass is not worth the dataset
reduction provided.

The conclusion is that the horizontal technique is not
efficient enough to bear the mining effort, but it can
highly reduce the cost of the following phases of the
mining process. However, the combination of the two
approaches results to be definitely successful.

ConQueSt
FiC–A

FiC–M850
900

950

0

2000

4000

6000

8000

Dataset: RETAIL. Constraint: AVG ≥

Ti
m

e
(s

ec
.)

ConQueSt
FiC–A

Fic–M850
900

950

0

50

100

150

200

250

Dataset: ACCIDENTS. Constraint: AVG ≥

Ti
m

e
(s

ec
.)

ConQueSt
FiC–A

Fic–M850
900

950

0

500

1000

1500

2000

2500

3000

Dataset: WEBDOCS. Constraint: AVG ≥

Ti
m

e
(s

ec
.)

Fig. 12. CONQUEST versus other algorithms. We used the following minimum support thresholds: d ¼ 3 for retail, d ¼ 100 000 for accidents and

d ¼ 180 000 for webdocs dataset. The exclamation mark means that the algorithm aborted before completion.

F. Bonchi et al. / Information Systems 34 (2009) 3–2720

Author's personal copy
ARTICLE IN PRESS

4.5. Mining with soft constraints

In the following we describe how SPQL queries with soft
constraints, introduced in Section 3.2, are effectively
evaluated in CONQUEST.

We rely on the theoretical results of [14]. In that work
it is shown that computing all the l-interesting patterns
can be done by solving a crisp problem where all the
constraint instances with interestingness level lower than
l correspond to false, and all the instances with interest-
ingness level greater or equal to l correspond to true. In
fact, if a pattern does not satisfy such conjunction of crisp
constraints, it will not be interesting w.r.t. the soft
constraints [14].

Using this theoretical result, and some simple arith-
metic we can:

(1) transform each soft constraint in a corresponding
crisp constraint,

(2) push the crisp constraint in the mining computation
to prune uninteresting patterns,

(3) and when needed, post-process the solution of
the crisp problem, to remove uninteresting patterns
from it.

Definition 4.6 (Crisp translation of a soft constraint).
Given a soft constraint eC � AggðAttÞ ytðaÞ (where Agg

represent the aggregate on which the constraint is
defined, Att an attribute, y ¼ fX;pg, and a is the softness
parameter), and a minimum interest threshold l, we
define the crisp translation of C w.r.t. l as

Cl
crisp �

AggðAttÞXt � at þ 2lat; if y ¼X;

AggðAttÞpt þ at � 2lat; if y ¼p:

(

Example 8. The crisp translation of the soft constraint
hsum; price;X;20;0:5i is sumðX:priceÞX26 for l ¼ 0:8,
while it is sumðX:priceÞX18 for l ¼ 0:4.

This is exactly the translation that CONQUEST performs to
transform a query based on soft constraints in a query
based on crisp constraints, which can hence be evaluated
by the ME described in Section 4.3.

In the fuzzy case, since the combination operator is the
min which is idempotent, we got the nice property [14]
that the solution set resulting from the translated crisp
query, will correspond exactly to the solution set of the
original soft-constrained query. In fact, all patterns
satisfying the conjunction of crisp constraints would for
sure reach an interestingness level larger than l.

Instead, in the probabilistic case, since we must take the
arithmetic times of a set of values between 0 and 1, we need
some post-processing to select, among the solution set
resulting from the translated crisp query, whose pattern
really have a total interestingness value larger than l.

Both the translation from soft to crisp constraints, and
the post-processing needed in the probabilistic case, are
handled by CONQUEST’s QI module (see Section 5.3).

So far we have described how CONQUEST handles
l-interesting queries. It remains to explain how top-k are
handled.

The main difficult to solve top-k queries is that we can
know the number of solutions only after the evaluation of
a query. Therefore, given k, the simple idea is to repeatedly
run l-interesting queries with different l thresholds: we
start from extremely selective l (fast mining) decreasing
in selectivity, until we do not extract a solution set which
is large enough (more than k).

Considering for instance the fuzzy semiring, where
the best semiring value is 1: we could start by per-
forming a 0:95-interesting query, and if the query re-
sults in a solution set of cardinality larger than k, then
we sort the solution according to their interestingness
and return the best k, otherwise we slowly decrease
the threshold, for instance l ¼ 0:9, and so on. Notice
that it is important to start from a very high threshold
in order to perform fast mining extractions with
small solution sets, and only if needed decrease the
threshold to get more solutions at the cost of longer

800
750

700
2

3
4

5

0

0.5

1

1.5

2
x 104

avg ≥

Running Time

Horizontal Iterations

Ti
m

e
(s

ec
.)

800
750

700
2

3
4

5

0

0.5

1

1.5

2
x 107

avg ≥

Number of Candidates

Horizontal Iterations

C
an

di
da

te
s

Fig. 13. Effectiveness of the combined horizontal and vertical approach on census dataset with a minimum support threshold d ¼ 1 500 000.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 21

Author's personal copy
ARTICLE IN PRESS

computations. The user can use the CONQUEST’s general
options to set the step parameter, which determines
how l must be progressively decreased in a top-k query
evaluation.

5. The CONQUEST system

This section illustrates the functionalities of CONQUEST,
and the main components of its architecture. We first
focus on its user interface, which permits the user not
only to access powerful tools for analyzing and visualizing
the input data, but also to express queries, involving data
selection and mining, in both textual and graphical way.
Using the same interface, also the extracted patterns can
be visualized and manipulated. The others two main
blocks of the overall architectures of CONQUEST roughly
corresponds to the QI and the ME. The interpreter has to
prepare the data for the mining task by also communicat-
ing with the underlying database, to invoke the ME, and,
finally, to store the returned data. The ME, which
efficiently solves the constrained pattern mining problem,
allows the user-provided constraints to be pushed in the
mining algorithm.

5.1. Architecture overview

The modular architecture of CONQUEST reflects the
needs of realizing a complete KDD process, even if limited
to the mining of frequent constrained patterns. The main
building blocks of the system are the following:

� The GUI is responsible for every interaction between
the user and the other modules. Thanks to the GUI, the
user is able to navigate any DBMS, to define a mining
task and to evaluate its results.
� The QI has the main task of transforming relational

tables into a transactional dataset, defined in terms of a
mining view of the database. Moreover, since any
interaction with the underlying DBMS is caused by the
user-provided SPQL queries that are processed by the
QI, it is also in charge of other optimization tasks, such
as caching, to improve the overall system usability.
� The core of the pattern extraction process is performed

by the ME, which encloses the state of the art of high
performance and constrain-based pattern mining
algorithms in a novel unifying framework.

Fig. 14 depicts the main architectural blocks of the
architecture of CONQUEST. While the GUI and the QI were
developed in Java, the ME was developed in Cþþ for
efficiency reasons, and wrapped in Java to allow the rest of
the software package to invoke its methods. Note that the
three main blocks interacts with the DBMS through a JDBC
abstraction layer. Using the JDBC interface, the current
version of the CONQUEST prototype can exchange data with
PostgreSQL, Microsoft Access, Oracle, MySQL and SQL
Server. Additional DBMSs can be interfaced by adding the
suitable JDBC plug-in.

This subdivision in three distinct blocks reflects the
main functionalities of our tool. It provides a better
maintainability and extensibility of the software, and even
a smart deployment when required. In fact, as a proof of
the good separation between independent tasks, the
various modules could be disjoint software packages,
running on different machines and cooperating through
Java RMI. For instance, the GUI may run on the user
machine, while the QI may be located in a different site
where a fast access to the database is provided and finally
the ME may be run on a high performance cluster serving
many users with many different tasks. Finally, note that
the JDBC layer allows us to ignore the physical location of
the DBMS server.

5.2. GUI

The GUI helps the user in specifying and tuning every
phase of the KDD process, and in evaluating the outcome
of the mining process. It is simple and user-friendly.
Moreover, many high level information and statistics
about data are provided.

Even if the GUI includes a text area in which the user
can directly specify its SPQL query, it is worth noting that
the same task can be carried out just by means of mouse-
clicks. All the actions that are specified in the graphical
part also affect the textual SPQL query, and vice versa.

In the following, we discuss in depth the features of the
CONQUEST GUI, corresponding to each fundamental phase
of the KDD process.

5.2.1. Data selection and transformation

As soon as the user connects to the database, a set of
information and statistics are collected and presented in
many ways. The idea is to provide the user a simple and

QUERY INTERPRETER MINING ENGINE

SP
Q

L
 q

ue
ry

Constraints

Aggregating
Parameters

SQLquery
Data Selection

CONSTRAINT-BASED
PATTERN MINER

Data
Pre-Processor

Monotone Anti-Monotone UserDefined

GUI

Data Browser

Pattern Visualizer

CONSTRAINTS MODULES

JDBC - Database Access Interface

SPQL Generator

Fig. 14. CONQUEST architecture.

F. Bonchi et al. / Information Systems 34 (2009) 3–2722

Author's personal copy
ARTICLE IN PRESS

high level mean for navigating the database, select the
data source, possibly discretize some numerical fields and
define the mining view.

� Navigating the structure of the database: The desk area

(Fig. 15 [1]) occupies the most part of our GUI. Here the
tables that are present in the database are shown as a
graph structure, where each vertex represents a table,
and each edge corresponds to a logical link between a
foreign key and a primary key. For each vertex of the
graph, the user may choose either to see the fields of
the corresponding table, or to visualize it as a simple
node. Finally, a tables list (Fig. 15 [2]) helps the user to
select, hide or un-hide any of the graph vertices. In
conclusion, this gives the user a high level view of the
database, allowing her/him to grasp all the database
relations and connections at a glance, and to focus on
the portion of data of interest.
� Table-field information and statistics: The currently se-

lected table may be visualized in a table visualization pane

(Fig. 15 [5]). Since aggregate information is very useful for
the analyst in order to define his SPQL query, CONQUEST

shows the data type and statistics associated with each
selected field (e.g., number of distinct values, average,
minimum and maximum) in the table information pane

(Fig. 15 [3]). In addition, in order to help the analyst to
prepare the transactional mining view, and decide the
constraints of an SPQL query, CONQUEST visualizes a bar or a
pie chart (Fig. 15 [4]) showing the distribution of the
values of the selected field. This is important to decide,
for example, the discretization of a numeric field.
� Definition of the mining view: The user may define the

mining view by clicking on the table fields that must
play the role of transaction identifiers, items or

properties (i.e., the triple T ; I;U of Definition 2.4)
directly on the desk area. These fields will be high-
lighted with different colors in the desk area and also
reported in the mining view definition pane (Fig. 15 [6]).
Note that a click-based data selection may implicitly
require relational joins, e.g., transaction identifier and
items belong to different tables. All these data selec-
tion actions and implicit joins are automatically
inserted in the first part of the SPQL query, which
appears in the SPQL Query pane (Fig. 15 [5]).
� Discretization: In CONQUEST discretization can be hand-

led at query language as described in Section 3.3, or
directly by interacting with an adhoc window of the
GUI (Fig. 16). This allows not only to use the common
discretization methods, like equal width and equal

depth, but also the discretization task can be done
graphically, by clicking in a pane and setting the
partitions’ boundaries manually.
� Property conflicts: Also property conflicts (defined in

Section 2.2) can be handled not only by the language
(as shown in Section 3.1) but also interacting directly
with the GUI desk area.
When the functional dependency between an item and
one of its properties (i.e., I! P) does not hold, a
warning icon appears close to the conflicting property.
The user can click with the mouse right button on the
attribute, and select one of the resolution methods in a
scroll-down window.
� Mining view preview: Before executing the SPQL mining

query, a preview of the mining view, according to its
current definition, is provided in the mining view pane
(Fig. 15 [5]). This is useful to confirm to the user that
the data preparation defined in the query is the one
desired, thus avoiding a useless mining.

Fig. 15. The GUI main window. [1] Desk area; [2] table list; [3] table information pane; [4] distribution graph; [5] table visualization pane, SPQL query and

mining view pane; [6] mining view definition pane; [7] constraints pane.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 23

Author's personal copy
ARTICLE IN PRESS

� Advanced SPQL query definition: At any moment, the user
can edit by hand the query in the SPQL query pane. Any
modification of the query will be reflected in the rest of
the GUI, e.g., by updating the mining view pane. The
possibility to edit directly the query, rather than using
the GUI, does not provide any additional expressive
power from a mining point of view. Anyway, since part
of an SPQL query is pure SQL, we can allow the user to
exploit more complex SQL queries and additional
constraints that are not part of the mining task, but
rather they are part of the data preparation phase.
Moreover, any SQL query can be submitted in place of
an SPQL query, providing additional control to the
analyst.

5.2.2. Pattern mining

After the selection of the data source, and the needed
data transformation and preparation, the actual mining
process can start once that the suitable constraints have
been defined.

� Minimum support constraint and frequency constraints:
Constraints may be set by either left-clicking on the
desk area or using the constrains pane (Fig. 15 [7]), or
also writing them into the SPQL query. Selecting the add

new function in the constraints pane, the system shows
a window (Fig. 17) where the user can select one of the
item attributes i 2 I, the desired constraint and thresh-

old. Additionally, the user can choose the soft option,
and, in this case, the alpha value must be specified. In
the constraints pane, the user must also provide a
frequency value to define the classical minimum
support constraint. In case the user specified a query
with soft constraints, in this same pane he can choose
between l-interesting and top-k query and he can
provide the desired values for l or k.

5.2.3. Interpretation and evaluation

� Pattern browser: The result of a mining query is shown
in a specialized interface (Fig. 18), which provides
additional functionalities to navigate the set of pat-
terns, such as various kinds of pattern sorting. The
system also shows the SPQL query that generated the
patterns, and it also allows the user to tune the query
parameters (e.g., the constraints’ thresholds) according
to his needs, thus focussing on the interesting patterns.
Such tuning could require to re-run the query from
scratch (if constraints are relaxed), or simply to filter
the previous results (if constraints are tightened): in
both cases the pattern browser is updated on-the-fly
without the need to reformulate a new query. Finally,
two actions can be performed in the pattern browser:
(i) materialize the set of extracted patterns as relations
into the underlying database, or (ii) extract association

rules from such patterns.

Fig. 16. (a) The discretization window (b) the distribution graph show the partition selected.

Fig. 17. The constraints definition window and the plot of a soft constraint.

F. Bonchi et al. / Information Systems 34 (2009) 3–2724

Author's personal copy
ARTICLE IN PRESS

� Rule browser: By specifying the minimum confidence
threshold from a menu of pattern browser, the user can
extract association rules from the extracted patterns.
The rules with their support and confidence are shown
in a new window, and similar to frequent patterns,
they can be materialized and permanently stored into
the DBMS.

5.3. Query interpreter

Receiving a SPQL query from the GUI, the QI must
perform an analysis of coherency on it. Having a well-
formed SPQL query the QI is in charge to accomplish the
data preparation phase: it retrieves the source data from
the underlying relational database, it transforms it in
transactional format according to the mining view defini-
tion, it generates the item properties possibly resolving
properties conflicts, and finally it passes the mining view
together with all constraint and mining parameters to the
mining engine.

Since each query is very likely to be a slightly modified
version of a previous one, we chose to implement a cache

module within the QI. Each time a new query is executed,
the result of the data transformation step is stored, then
for every new incoming query that needs to access a
mining view that was already prepared, the QI can avoid
the transformation step and directly forward the query to
the ME. Also the mining step can be handled directly by
the cache reusing previously computed mining results.
Obviously, past results can be re-used only if the new
query acts on the same relations, performs the same
transformation and poses more selective constraints of a
past one. For example, suppose that a user submit two
similar queries, where the latter differs from the former
only for the value of the threshold specifying the
frequency constraint. If this threshold is greater than the
threshold of the former query, the latter query is answered

by only filtering out the invalid patterns from the results
stored in the cache. In this case the QI will not invoke the
ME at all, and immediately show the result of the mining
process in the pattern browser window, thus greatly
improving the responsiveness of the system.

The QI also handles discretization queries and even
pure SQL queries.

5.4. ME architecture

The last module is the core of the pattern extraction
process, where itemsets are actually mined from transac-
tional datasets. The ME fulfills many requirements such as
scalability and responsiveness, that have been discussed
in Section 4.

The data-reduction optimizations exploited by CONQUE-
ST are nicely separated from the internal pattern miner,
also thanks to its modular structure. In fact, each class of
constraints is coded as a distinct C++ class that imple-
ments the corresponding data-reduction techniques, and
the core miner invokes them whenever such techniques
can be exploited. In other words, the ME is aware of the
different classes of constraints and of their properties, but
it does not know about the peculiarities of every single
constraint.

This internal architecture allows the user to add his
own constraints of interest, given that they belong to
the aforementioned classes. In this case we refer to an
expert user who can edit the source code of the ME. It is
sufficient to implement the data-reduction functions
corresponding to the properties of the user-defined
constraint, and then the miner will take care of exploiting
such properties whenever possible. In Fig. 19 we report an
example of how constraints classes are implemented.
Anti-monotone constraints are implemented as an ab-
stract classes with three methods. Another class is created
for the sumleq constraint. This implements the three

Fig. 18. The pattern browser window.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 25

Author's personal copy
ARTICLE IN PRESS

methods of the antimonotone abstract class. The first
method is invoked at the very beginning, where the
constraint threshold has to be extracted from the ME
arguments and parsed. The second method is called
before the visit of the search space starts, with the goal
of reducing the input transactions. In this case, items
associated with a high attribute value can be pruned. The
third method is called during the visit, in order to check
whether an itemset satisfies the constraint or not.

In the design of the ME, we applied the principle of the
well-known inversion of control. The control is not given to
the user, but it is coded inside the ME framework. Only the
framework knows when certain methods of certain
classes of constraints has to be invoked. The implementa-
tion of such methods is left to the user. In our case, the
implementation of the constraints data-reduction proper-
ties are left to the user, and they are exploited by the
framework when needed.

6. Conclusions and future work

In this paper we described and motivated the design of
CONQUEST, an exploratory pattern discovery system, aimed
at assisting the analyst in iteratively and interactively
extracting useful and interesting knowledge from data.

CONQUEST is, to the best of our knowledge, the first
system exploiting extensively constraint-based pattern
mining as a query optimization tool: it supports a very
large (and extendible) set of different constraints, and
bases the mining process on the effective exploitation of
the particular data-reduction properties of each class of
constraints used.

We have shown that our system represents a unique
example in the framework of Mannila’s inductive data-
bases, where the raw data along with the patterns and the
knowledge extracted from them coexist elegantly in a
single relational database. By using CONQUEST the analyst
can perform easily all the tasks involved in a typical
knowledge discovery process based on constraint patterns
mining: (i) source data selection, (ii) data preparation and
pre-processing and (iii) pattern discovery and model
building.

This is possible thanks to the accurate integration
within the CONQUEST system of three key components:
(1) a simple, yet powerful, query language for specifying
formally data selection and the mining query; (2) a

friendly GUI for accessing the underlying DBMS, for data
visualization, preparation and transformation, and for
visual query formulation; and (3) an efficient and robust
ME exploiting effectively all data-reduction possibilities in
order to give to the user the capability of mining
interactively also huge datasets.

Behind the design and development of CONQUEST there
was a significant theoretical background work that
conducted us to the definition of an original and general
framework for constrained frequent patterns mining.
Within this framework we introduced our definition of
mining view, we accommodated soft and crisp con-
straints, we specified data transformation and discretiza-
tion methods and we classified constraints on the basis of
their properties. All the CONQUEST system was implemen-
ted within this framework. As a direct consequence the
CONQUEST code itself is particularly modular, extendible,
and modifiable: new constraints and data pre-processing
methods can be easily added and cleanly integrated in the
actual system.

Throughout the paper we tried to give to the reader
some flavor of the usability and power of CONQUEST. We
described several short examples off usage, and reported
the results of performance tests conducted on publicly
available large datasets. We invite the reader to visit the
CONQUEST website,3 where it is possible to download
the latest version of the software. The site also contains
the installation instructions, a user manual and many
video tutorials.

Even tough CONQUESTis already fruitfully usable on real-
world problems, many directions must be explored in the
next future: efficient incremental mining, advanced
visualization techniques, more complex post-processing,
building global models from the interesting patterns,
mining patterns from complex data such as sequences and
graphs. We are continuously developing new functional-
ities of CONQUEST.

References

[1] R. Srikant, Q. Vu, R. Agrawal, Mining association rules with item
constraints, in: Proceedings of the 3rd ACM International Con-
ference on Knowledge Discovery and Data Mining (SIGKDD’97),
1997.

Fig. 19. Inversion of control in CONQUEST mining engine.

3 http://www-kdd.isti.cnr.it/�conquest/

F. Bonchi et al. / Information Systems 34 (2009) 3–2726

Author's personal copy
ARTICLE IN PRESS

[2] R.T. Ng, L.V.S. Lakshmanan, J. Han, A. Pang, Exploratory mining and
pruning optimizations of constrained associations rules, in: Pro-
ceedings of the ACM International Conference on Management of
Data (SIGMOD’98), 1998.

[3] J. Han, L.V.S. Lakshmanan, R.T. Ng, Constraint-based, multidimen-
sional data mining, Computer 32 (8) (1999) 46–50.

[4] R.J. Bayardo Jr. R. Agrawal, D. Gunopulos, Constraint-based rule
mining in large, dense databases, in: Proceedings of the 15th
International Conference on Data Engineering (ICDE’99), Sydney,
Australia, 23–26 March 1999.

[5] J.-F. Boulicaut, B. Jeudy, Constraint-based data mining, in:
O. Maimon, L. Rokach (Eds.), The Data Mining and Knowledge
Discovery Handbook, Springer, Berlin, 2005, pp. 399–416.

[6] C. Ordonez, L. de Braal, C.A. Santana, Discovering interesting
association rules in medical data, in: ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery
(DMKD’00), 2000.

[7] C. Ordonez, E. Omiecinski, L. de Braal, C.A. Santana, N. Ezquerra, J.A.
Taboada, D. Cooke, E. Krawczynska, E.V. Garcia, Mining constrained
association rules to predict heart disease, in: Proceedings of the 1st
IEEE International Conference on Data Mining (ICDM’01), 2001.

[8] A. Lau, S. Ong, A. Mahidadia, A. Hoffmann, J. Westbrook, T. Zrimec,
Mining patterns of dyspepsia symptoms across time points using
constraint association rules, in: Proceedings of the 7th Pacific–Asia
Conference on Knowledge Discovery and Data Mining (PAKDD’03),
2003.

[9] J. Besson, C. Robardet, J. Boulicaut, S. Rome, Constraint-based
concept mining and its application to microarray data analysis,
Intelligent Data Anal. J. 9(1) (2005) 59–82.

[10] H. Mannila, H. Toivonen, Levelwise search and borders of theories in
knowledge discovery, Data Mining and Knowledge Discovery 1 (3)
(1997) 241–258.

[11] F. Bonchi, F. Giannotti, C. Lucchese, S. Orlando, R. Perego, R. Trasarti,
Conquest: a constraint-based querying system for exploratory
pattern (demo), in: IEEE International Conference on Data Engi-
neering, 2006.

[12] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, The kdd process for
extracting useful knowledge from volumes of data, Commun. ACM
39 (11) (1996) 27–34.

[13] R. Agrawal, R. Srikant, Fast algorithms for mining association rules
in large databases, in: Proceedings of the 20th International
Conference on Very Large Databases (VLDB’94), 1994.

[14] S. Bistarelli, F. Bonchi, Interestingness is not a dichotomy: introdu-
cing softness in constrained pattern mining, in: Proceedings of the
9th European Conference on Principles and Practice of Knowledge
Discovery in Databases, 2005, pp. 22–33.

[15] F. Bonchi, F. Giannotti, C. Lucchese, S. Orlando, R. Perego, R. Trasarti,
On interactive pattern mining from relational databases, in:
International Workshop on Knowledge Discovery in Inductive
Databases, 2006.

[16] F. Bonchi, F. Giannotti, A. Mazzanti, D. Pedreschi, ExAMiner:
optimized level-wise frequent pattern mining with monotone
constraints, in: Proceedings of the Third IEEE International
Conference on Data Mining (ICDM’03), 2003.

[17] J. Pei, J. Han, L.V.S. Lakshmanan, Mining frequent item sets with
convertible constraints, in: 17th IEEE International Conference on
Data Engineering (ICDE’01), 2001.

[18] F. Bonchi, C. Lucchese, Pushing tougher constraints in frequent
pattern mining, in: Proceedings of the 9th Pacific–Asia Conference

on Knowledge Discovery and Data Mining (PAKDD’05), Hanoi,
Vietnam, 2005.

[19] R. Meo, G. Psaila, S. Ceri, A new SQL-like operator for mining
association rules, in: T.M. Vijayaraman, A.P. Buchmann, C. Mohan,
N.L. Sarda (Eds.), Proceedings of 22th International Conference on
Very Large Data Bases (VLDB’96), Mumbai (Bombay), India, 3–6
September 1996, pp. 122–133.

[20] R. Meo, G. Psaila, S. Ceri, A tightly-coupled architecture for data
mining, in: International Conference on Data Engineering (ICDE98),
1998, pp. 316–323.

[21] J. Han, Y. Fu, K. Koperski, W. Wang, O. Zaiane, DMQL: a data mining
query language for relational databases, in: SIGMOD’96 Workshop
on Research Issues on Data Mining and Knowledge Discovery
(DMKD’96), 1996.

[22] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Morgan
Kaufman, Los Altos, CA, 2000.

[23] T. Imielinski, A. Virmani, MSQL: a query language for database
mining, Data Min. Knowl. Discovery 3 (4) (1999) 373–408.

[24] T. Calders, B. Goetals, A. Prado, Integrating pattern mining in
relational databases, in: Proceedings of the 10th European Con-
ference on Principles and Practice of Knowledge Discovery in
Databases (PKDD’06), 2006, pp. 454–461.

[25] S. Orlando, P. Palmerini, R. Perego, F. Silvestri, Adaptive and
resource-aware mining of frequent sets, in: Proceedings of the
2002 IEEE International Conference on Data Mining (ICDM’02),
Maebashi City, Japan, December 2002, pp. 338–345.

[26] F. Bonchi, F. Giannotti, A. Mazzanti, D. Pedreschi, ExAnte:
anticipated data reduction in constrained pattern mining, in:
Proceedings of the 7th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD’03), 2003.

[27] F. Bonchi, C. Lucchese, On closed constrained frequent pattern
mining, in: Proceedings of the 4h IEEE International Conference on
Data Mining (ICDM’04), 2004.

[28] L.V.S. Lakshmanan, R.T. Ng, J. Han, A. Pang, Optimization of
constrained frequent set queries with 2-variable constraints, in:
Proceedings of the ACM International Conference on Management
of Data (SIGMOD’99), 1999.

[29] S. Kramer, L.D. Raedt, C. Helma, Molecular feature mining in hiv
data, in: Proceedings of the 7th ACM International Conference on
Knowledge Discovery and Data Mining (SIGKDD’01), 2001.

[30] C. Bucila, J. Gehrke, D. Kifer, W. White, DualMiner: a dual-pruning
algorithm for itemsets with constraints, in: Proceedings of the 8th
ACM International Conference on Knowledge Discovery and Data
Mining (SIGKDD’02), 2002.

[31] J. Pei, J. Han, Can we push more constraints into frequent pattern
mining? in: Proceedings of the 6th ACM International Conference
on Knowledge Discovery and Data Mining (SIGKDD’00), 2000.

[32] F. Bonchi, C. Lucchese, Extending the state-of-the-art of constraint-
based pattern discovery, Data Knowl. Eng. (DKE) 60 (2) (2007) 377–399.

[33] L.D. Raedt, S. Kramer, The levelwise version space algorithm and its
application to molecular fragment finding, in: Proceedings of the
17th International Joint Conference on Artificial Intelligence
(IJCAI’01), 2001.

[34] B. Jeudy, J.-F. Boulicaut, Optimization of association rule mining
queries, Intelligent Data Anal. J. 6 (4) (2002) 341–357.

[35] F. Bonchi, F. Giannotti, A. Mazzanti, D. Pedreschi, Adaptive
constraint pushing in frequent pattern mining, in: Proceedings of
the 7th European Conference on Principles and Practice of Knowl-
edge Discovery in Databases (PKDD’03), 2003.

F. Bonchi et al. / Information Systems 34 (2009) 3–27 27

