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ABSTRACT

The demand for so called living or real time data warehouses is increasing in many
application areas such as manufacturing, event monitoring and telecommunications. In
these fields, users normally expect short response times for their queries and high
freshness for the requested data. However, meeting these fundamental requirements is
challenging due to the high loads and the continuous flow of write only updates and
read only queries that might be in conflict with each other. Therefore, we present the
concept of workload balancing by election (WINE), which allows users to express their
individual demands on the quality of service and the quality of data, respectively. WINE
exploits these information to balance and prioritize both types of transactions—queries
and updates—according to the varying user needs. A simulation study shows that our
proposed algorithm outperforms competing baseline algorithms over the entire

spectrum of workloads and user requirements.

1. Introduction

The high popularity and success of data warehousing
as well as the need for up to date information within
organizations have led to the new demand for so called
living or real time data warehouse environments. In the
context of data warehouses, real time means that every
time a change occurs in the modeled environment, it is
automatically captured and pushed into the data ware
house. This is different to the traditional pull based batch
ETL processing, where users have to specify the data they
want to see. The trend towards real time data warehouses
is enforced by the increasing number of globally oriented
companies, which are characterized by their heteroge
neous structure that results in the temporally dispersed
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production of data; this makes it almost impossible to find
a suitable point in time to load the warehouse. The push
based data integration leads to a continuous stream of
write only updates, which compete for system resources
with read only queries from the user side (Fig. 1). This
paper addresses the problem of how to schedule the two
conflicting types of transactions in order to satisfy the
user requirements; these are outlined in the following.
In applications on top of a data warehouse, such as
OLAP or data mining tools, users expect short response
times for their queries (quality of service, QoS) and high
freshness of data, i.e., they want the number of unapplied
updates for their query results to be as low as possible
(quality of data, QoD). Ideally, if enough computing
resources are available, both needs can be satisfied, i.e.,
the highest data freshness associated with updates and
the shortest response times associated with queries can
be guaranteed. Due to periods of high load in the data
warehouse or unpredictable data request and update
patterns, however, it may be very hard to comply with
both requirements at the same time. To tackle the
problem of allocating system resources in the most
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Fig. 1. From traditional ETL processing to real-time data warehousing.

efficient way and to find a reasonable balance between
both needs, the order in which queries and updates are
executed needs to be scheduled under consideration of
the user’s preferences. We believe that some users might
be willing to accept a certain degree of staleness as a
trade off for very fast answers, whereas other users may
prefer a high degree of freshness that comes with longer
execution times. This trade off between QoS and QoD
needs to be specified by the user for all queries and will be
applied by the underlying system to control the query and
update flow in an appropriate manner. Thus, the user
requirements specified for each query (QoS or QoD) can be
seen as a simple vote to prioritize either queries (query
mode) or updates (update mode).

We claim that there are certain visible trends in the
behavior of user groups. For example, the majority of users
will prefer fast but less up to date responses during their
everyday work, whereas at the end of the month, when
business reports need to be drafted, the same users will
accept slower response times in favor of up to date
responses.

1.1. Example

We will sketch our main principles with the help of an
example as illustrated in Fig. 2. To balance between the
usually independent transactions, both the update trans
actions from the staging area and the user queries need to
be coupled through a common middleware, called the
workload balancing unit (WBU). The WBU is responsible
for the global scheduling; thus, it allocates resources
either to the query or the update queue, depending on the
user demands. In our example, the WBU would allocate
the underlying data warehouse to the query queue, since
the sum of QoS values exceeds the sum of QoD values, i.e.,
on average, the users favor short response times. At a
lower level, queries and updates can be prioritized
according to the user demands. For example, query g
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Fig. 2. WINE workload balancing system.

would be executed before query g, since the QoS value of
q, is greater than the QoS value of q,. Similarly, we
propose a prioritization algorithm for updates. So, our
overall optimization goal is to minimize the retention
time for queries with high currency priorities (QoS) and to
maximize the freshness for queries with high freshness
demands (QoD). In contrast to the response time, which
denotes the overall time for a query execution, the
retention time just denotes the time the query has to
wait for system resources and it should be minimized by
our scheduling algorithm.

1.2. Contributions

Our main contributions are:

e We identify different user groups regarding their
demands for data freshness and query retention times,
respectively.

e We propose a partitioning scheme to find correlations
between queries and updates, i.e., to find those queries
and updates that access the same data items.

o We utilize the user preferences and develop a two
level scheduling algorithm:

o First, we balance over the query and update queues
(steps 2 and 3 in Fig. 2).

o Second, queries and updates are prioritized con
cerning the QoS and QoD values, respectively (steps 4a
and 4b in Fig. 2).
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To illustrate the impact of our scheduling algorithm, we
conducted a set of experiments using synthetic and real
world datasets. We simulate the traditional transaction
processing, which handles query and update transactions
independent of each other, using three common schedul
ing policies:

(1) First In, First Out (FIFO [1]): This is to simulate a
schedule where queries and updates are executed
according to their arrival times. FIFO is a special case
of our scheduling algorithm and occurs when all users
abstain from voting, i.e.,, when they assign the same
weight to QoS and QoD.

FIFO Query High (FIFO QH [2]): This consists of two

queues: one for queries and one for updates. The FIFO

query queue has a higher priority than the FIFO
update queue. Thus, FIFO QH achieves the highest

QosS.

(3) FIFO Update High (FIFO UH FIFO QH [2]): This con
sists of two queues similar to FIFO QH, and the FIFO
update queue has a higher priority than the FIFO
query queue. Thus, FIFO UH performs best regarding
QoD.

2

~—

1.3. Structure of this paper

The paper is organized as follows. Section 2 provides a
review of related work and describes the requirements
our scheduling algorithm has to meet. We outline our
system structure in Section 3. We introduce WINE, our
two level scheduling algorithm, in Section 4. Next, in
Section 5, we describe the experimental setup and present
our experimental results. Finally, we conclude in Section 6
and discuss topics of future research.

2. Related work

The terms active data warehouse and real time data
warehouse are closely linked and unfortunately often
erroneously used as synonyms in the database literature.
The concept of active data warehousing refers to a
paradigm where the warehouse itself actively reacts to
occurring events. That is to say, analyses previously
performed by using OLAP are now automated and
processed by the data warehouse itself. This technique is
usually implemented by employing so called event, con
dition, action (ECA) rules [3]. That means active data
warehousing represents the change from a pull based
architecture to a push based architecture.

In contrast to that, the goal of real time data ware
houses, also known as zero latency or living data ware
houses, is to minimize the latency time, i.e., the time
between the event in the real world and the moment that
the data record becomes available for analyses in the data
warehouse. That is to say, the term real time in this
context refers to the fast addition of data without the need
to obey defined time limits.

Often, the argument is brought up that real time data
warehouses are obsolete, since the requirements imposed

on them are already addressed by operational data stores
(ODSs). Both are subject oriented and include integrated
data with the goal to reduce latency times. Despite its very
low latency time, however, the real time data warehouse
has to be classified as an analytical system, whereas the
ODS resulted from the demand for the integration of
operational data. That is to say, the data stock of an ODS is
volatile, while the stock of a data warehouse is not.

The subject of scheduling algorithms has been dis
cussed extensively in the research community and thus, a
variety of works exist. However, at this point, we only
refer to [1]. Scheduling algorithms are often classified as
online or offline and as preemptive or non preemptive
algorithms. In this paper, we focus on online and non
preemptive scheduling. That is to say, query attributes
such as, for example, the estimated execution time, are
not known in advance and we do not interrupt any queries
or updates that are in the process of being executed. In
order to test the scheduling features of WINE, we there
fore only use algorithms of the same class (FIFO, FIFO QH
and FIFO UH) for our comparisons. The scheduling
algorithms FIFO QH and FIFO UH, which prefer queries
or updates, respectively, are slightly modified versions of
the algorithms found in [2], since we do not employ an
economic model. Scheduling algorithms such as, for
example, shortest job first (SJF), which is known to be
optimal for minimizing the mean response time (corre
sponds to our QoS metric), have not been considered for
this paper, since the application of these algorithms
necessitates a priori knowledge of the execution time.

Economic based resource allocation and pricing
schemes have been considered by many recent research
ers: Fergison et al. [4,5], Kurose et al. [6], Stonebraker et al.
[7] and Carl et al. [8,9]. However, in most cases similar to
our data warehouse scenario, it is impossible for the user
to determine the valency of a specific QOD or QoS
criterion; it is particularly difficult to weigh the different
service criteria by assigning varying values. Additionally,
there is a lack of accounting models for computer systems
in general and for the OLAP world in particular.

The idea of an economic approach was picked up by Qu
et al. [2,10] and assigned to the problem of workload
balancing in data intensive Web applications. To max
imize the overall system profit, they proposed an adaptive
algorithm called QUTS, where users are able to indicate
their preferences by expressing the potential economic
benefit of given queries through appropriate values for
their quality criteria, i.e., for different levels of query
deadlines and unapplied updates. Even though their work
is the closest in spirit to ours, there are still several
significant problems and differences: First, there is a lack
of economic approaches for users of databases in general,
as mentioned above. Second, it is not possible for users of
databases and OLAP tools to specify query deadlines; and
neither are they able to decide on the number of
unapplied updates they are willing to accept. A solution
would be to enrich the user interface by additional
information, such as average query deadlines, the actual
load of the system, and the number of unapplied updates
on data items of interest. Nevertheless, due to complex
system components, such as buffer management and
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I/0 scheduling, it is very hard to predict query runtimes
and to decide for a specific query deadline, respectively.
Qu et al. circumvented this problem by focusing on main
memory databases only, i.e., they reduced the problem to
CPU scheduling.

For these reasons, we provide users with a simple scale
to express their preferences; hence, they explicitly vote for
a system mode that either supports freshness by prefer
ring updates or that provides fast query processing by
focussing less on the query freshness. Instead of following
approaches that process queries in order of their economic
benefit, we propose a democratic system, where each vote
has the same weight, which avoids the problems of
economic approaches mentioned above.

Yet another difference to QUTS can be found in the
granularity of queries and updates. In the Web database
environment, they are only processed one tuple at a time,
which makes the correlation very easy, whereas in data
warehouses, they are processed on an arbitrary part of the
multi dimensional dataset. In order to ensure a correla
tion between queries and updates anyway, we divide the
multi dimensional data into comparable partitions.

Our query prioritization shares some similarities with
the transaction scheduling techniques in real time data
base systems [11 14]. These approaches often work with
deadline semantics, where a transaction only adds value
to the system if it finishes before its deadline expires. For
this purpose, the DBA of a system specifies the acceptable
miss ratio threshold, i.e., the DBA defines the number of
transactions that may be aborted without negatively
affecting the functionality of the system. The abortion of
transactions is necessary to ensure that guarantees in
terms of real time properties of the system will be met.
However, real time in our context refers to the insertion of
updates that happens as quickly as possible or as quickly
as needed, respectively, depending on the user require
ments. Nevertheless, the approaches found in several
algorithms from the field of real time databases are still
interesting for this paper.

The data warehouse maintenance process, i.e.,
the insertion of updates, can be split into two phases:
(1) The external maintenance phase denotes the main
tenance process between the information sources (IS)
and the warehouse or its base tables. (2) The external
maintenance phase refers to the process of maintaining
materialized views with the base tables used as founda
tion. In this paper, we focus on the first phase and initially
assume a model with a single queue and a single thread.
That is to say, updates are inserted sequentially and in
order of their importance for the query side. The
maintenance of materialized views and the various
aspects of this discipline, such as incremental mainte
nance or concurrent updates [15 20], are not in the center
of attention of this paper. On the other hand, the
partitioning schema proposed here may also be used to
detect correlations between queries and updates in order
to spot conflicts of concurrent updates when maintaining
the materialized views.

For replicated and cached data, the authors of [21,22]
presented a model for currency and consistency con
straints in queries and developed techniques to allow the

DBMS to guarantee compliance with these constraints.
Given explicit user constraints, as in our approach, the
DBMS tries to find the best routing decision (to replicates
of different freshness) for each query in a consistent
manner. This is similar to WINE, where quality constraints
are used to decide whether or not updates or queries need
to be preferred and which of them deserve prioritization.

Since the deferred insertion of updates is demand
driven, it may occur that at a given point in time, several
updates exist in the waiting queue that all need to access
the same data object. In case these modifications mutually
neutralize themselves, these redundant updates may be
removed from the queue, thus saving valuable system
resources. In [23], a condensed operator is presented in
the context of maintenance of materialized views.
A similar operator could also work for our application
but we will not go into detail here. Also, it might be
possible to group updates, as it is done with many view
maintenance algorithms [15,24,25].

The vertical and horizontal partitioning of databases,
with special consideration given to the optimization of
performance, is addressed in [26]. They propose an
algorithm that analyzes the workload and generates
interesting column groups. In a slightly different form,
this algorithm can also be used for the candidate
generation of the partitioning attributes. The partitioning
of data in so called cubelets to determine the complete
ness of aggregates was the subject of one of our earlier
papers [27].

3. System structure

As previously mentioned, we assume a real time data
warehouse environment. Our scenario setup consists of
the following three components: (1) a central RDBS to
represent the data warehouse, (2) a staging area to
provide a permanent stream of updates trickling into the
data warehouse, and (3) some application on top of the
data warehouse to feed it with user defined queries.
Further infrastructure components such as aggregate
tables or data marts are omitted due to limited space.

3.1. Workload model

In our scenario, the workload W consists of two kinds
of transactions: read only user queries q; € Wy and write
only updates u; € Wy, where W =W,UW, (Table 1).
Mixed transactions do not occur, since the push based
approach means that both queries and updates are
submitted independently to the system and added to the
query queue Q and the update queue U, respectively. The
set of all user queries in the query queue is denoted as
Q = {q;/i=0}; the set of all updates in the update queue is
U= {y;|j>0}. The length of the queues increases or
decreases with the number of incoming or processed
transactions, respectively. Potential overflows caused
either by very high arrival rates of transactions or by a
very low system throughput cannot be considered
here, since these problems can only be solved via an
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Table 1
Notation table

Symbol Description

w Workload to be processed: W W, U W,, where W, denotes
the set of queries and W, is the set of updates in the workload

Q Query queue of length |Q|

0 Update queue of length |U|

posg,/ Position of a query/update in the query/update queue
POSUI

tq, [ty Arrival time of a query g; [ an update u;, the time of inclusion in
the respective queue
rtg, Retention time of a query g;

Pq, /Py Set of partitions processed by a query g; / an update u;
uu(p) Number of unapplied updates on a partition p

qosy, QoS value of a query g;, qosg, € [0,1]

qod,, QoD value of a query g;, qodg, € [0,1]

w(u;) Weight of an update u;

appropriate scaling of the system but not with the help of
the approach proposed here.

Each query or update is associated with a timestamp tg,
or ty, respectively, which reflects the arrival time of the
query or update in the system. The position of a
transaction in the appropriate queue is denoted with
pos,, for queries and pos,, for updates. The value O for both
position parameters specifies the head of the queue, i.e.,
the transaction at this position is executed in the next run
if the appropriate queue is selected. Additionally, each
query g is enriched by a pair (qos,,qod,,), where qos; €
[0, 1] and gos,, + qod,, = 1. A higher value for gos, denotes
a higher demand for fast response times by the appro
priate user, whereas a higher value for god, signifies a
higher freshness demand. The time between the arrival
and the execution of a query is called retention time rtg,,
and it is used to measure the overall response time (QoS).

The scheduling of queries and updates in the context of
data warehouses is not necessarily suited for every type of
query. In this paper, we only want to focus on ad hoc
queries that can be parameterized individually by the user
who issued the query. However, on the analysis side, there
are more query types, such as batch query workloads and
user sessions. Regarding batch query workloads, the
following tasks are usually addressed: the building or
updating of materialized views, the refreshing of indexes,
and the execution of batch queries with the purpose to
build complex reports. These individual operations are not
independent regarding the time dimension and, given the
provided consistency requirements, there is absolutely no
flexibility to switch certain operations. Aside from that,
the parameterization in terms of QoS and QoD values
does not make a lot of sense for batch workloads because
these are executed at times defined by the system
administrator.

User sessions represent a different approach; here,
multiple queries are grouped to form one transaction.
Typically, the user begins a session with a very raw
view on the data and then approaches the relevant data
details via drill downs or via the addition of predicates.
Modifications on the base data within a session have to be
handled by special routines in order to avoid that the user

sees inconsistent data. Typical approaches here tackle this
challenge with the help of multi version concurrency
control [28,29]. It might be possible though that the user
specifies the desired consistency requirements before the
start of a session; as a consequence, this would allow
updates within a session. In other words, a user is willing
to take the risk to be confronted with inconsistent data
within a session but in exchange, the same user receives
more up to date query results. The QoS or QoD values can
then be specified either globally for the full session or in a
query related way within the session.

3.2. Partitioning

To measure the freshness of a query g, the updates that
correlate with this query have to be identified. The
simplest assumption would be to treat the whole data
warehouse as one large data item, i.e., each update
correlates with each query; however, this leads to
unfeasible system premises, since a prioritization of
updates is not possible under these circumstances. To
improve the flexibility regarding the update prioritization
(see Section 4.2.2), we subdivide the data warehouse
(DWH) into a set of disjoint partitions P, DWH =
{p;I1<i<n}, where n is the number of partitions. There
fore, we choose some dimensional elements of the multi
dimensional data model to define the granularity of the
partitions. A closer look at different partitioning models
and their impact on the scheduling quality can be found in
Section 5. The bottom line at this point is that we are able
to control the accuracy of query/update correlations by
applying different partitioning schemes. A fine partition
ing scheme allows a more precise mapping between
queries and updates with the trade off that a higher
number of partitions need to be maintained.

Each user query g and each update u reads or writes,
respectively, one or more partitions (|Py|>1 and |Py|>1).
The number of unapplied updates in a partition p with
respect to the available updates in the update queue is
denoted as uu(p) and is used to measure the freshness
(QoD), as illustrated in the next section.

3.3. Performance measures

In this section, we describe our QoS and QoD metrics to
measure the quality of our scheduling algorithm operating
on a workload W (a set of queries and updates within a
given time period).

3.3.1. QoS metric

The QoS criterion for a given workload W is defined by
the average retention time, i.e., the average time between
the arrival (tg,) and the execution (ety,) of all queries gq; €
W processed by the system:

Pgew,Cle,  tg

S(W) =
Qos(W) A

Hence, the retention time denotes the time the query had
to wait for system resources and does not take into
account the execution time.
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3.3.2. QoD metric

In order to measure the quality of data, we use a lag
based approach, i.e.,, we take the number of unapplied
updates to measure the staleness of a query result. More
precisely, the QoD metric of a query g; is affected by an
update u; if both access the same partition (|Pg, N Py| = 1)
and if the arrival of the update lies before the arrival of the
query: t,, <tq. The second condition assures that staleness
is computed only from those unapplied updates that are
already in the system at the time the user runs the query;
this is because the user does not expect to see “future
results.” To compute the overall QoD metric of a query, we
select the most out dated partition p; € Pg:

. 1
@0 =i (1)

We normalized the QoD metric, so that QoD(q) of a
query q is 1 if there are no pending updates and it
converges to 0 with an increasing number of unapplied
updates. Due to the straightforward aggregation seman
tics of the lag based approach, we decided against other
schemes such as time or divergence based approaches.
The QoD metric for a complete workload is then computed
as follows:

QoDW) = 1 3™ QoD(q).

|Wq| qieWq

3.4. Optimization goal

Given a workload W with concurrent queries and
updates, where each query g; € W is enriched by a vote
pair (qos;,qod;), the overall optimization goal is to
minimize the retention time (QoS metric) for each query
q € Wyes, where Wy ={q € Wqlqos,>0.5}, and to max
imize the freshness (QoD metric) for each query q € W g,
where Wyos = {q € Wylgod,>0.5}. Both metrics, QoS and
QoD, cannot be compared with each other, i.e., a specific
in /decrease of unapplied updates for a query g; is not
comparable to a specific in /decrease of the retention time
of the same query g;. Therefore, users have to decide for
one side, i.e., they have to opt for a specific optimization
criterion and they may do so with varying intensity.
Considering the total weight of all votes, the system tries
to find a compromise to meet the user requirements as
closely as possible.

4. Scheduling

Since the requirements defined by the data warehouse
users change over a certain period of time and since
different users have different or even conflicting demands,
we need a scheduling algorithm that dynamically adjusts
itself to the workload changes and that ensures a fair
balancing between the different parties of user groups (to
avoid starvation). Traditional hard coded scheduling
schemes such as FIFO, FIFO QH and FIFO UH cannot
achieve this goal, since they do not adapt to workload
changes and either prefer queries or updates, i.e., they
support QoS or QoD user requirements. Therefore, we

propose WINE, a two level scheduling scheme with two
separated queues for queries and updates. At a higher
level, we allocate resources by majority vote to either the
query queue or the update queue (QoS versus QoD). At a
lower level, we pick queries to prioritize according to their
QoS values and we prioritize updates according to the
QoD values of the affected queries.

4.1. First level scheduling

The scheduling algorithm on the whole is sketched in
Algorithm 1. First level scheduling is straightforward:
before a transaction, query or update is executed, the
total sum of all the queries’ QoS and QoD values in the
queue is calculated (see line 18). If a query is executed or a
new query arrives at the queue, both " QoS and >~ QoD
can be incrementally maintained. For an example, see
Fig. 3, where Y QoS=3.7 and } QoD = 2.3; hence, a
query is executed in the next step. So, by holding the
simple majority, the dominating user group is able to
determine the appropriate system mode: the query or the
update mode. Independent of the first level scheduling, we
introduce a second level scheduling, which additionally
supports the enforcement of the user preferences.
This second level scheduling is done for queries if
>~ QoS> >" QoD and for updates if > QoS< > QoD (see
lines 9 14).

4.2. Second level scheduling

In the presence of user requirements, WINE dynami
cally allocates system resources to one of the transaction
queues under consideration of the sums of the QoS or
QoD values, respectively, of all queries. The user require
ments, however, can be instrumentalized with much more
detail, e.g., by prioritizing queries with large QoS values or
by inserting updates much earlier when their associated
queries dispose of large QoD values. In the following, we
will show two techniques to prioritize single queries and
updates based on the respective user demands.

4.2.1. Query prioritization

As a first optimization step, we try to minimize the
retention time for queries with high freshness demands,
i.e., queries g; with qos, >0.5 (see Algorithm 1, line 26).
Therefore, the queries g; € Q are sorted in descending
order of their QoS values qgos; (a copy of the original qos,,
values) and in ascending order of their timestamps g,
(line 31). Thus, queries with a high QoS value are favored
by the system, whereas queries with a low QoS value
(and hence with a high QoD value) are delayed in their
execution; this allows to apply corresponding updates in
the meantime, i.e., to reduce the staleness of such queries.
Obviously, this can easily lead to the starvation of queries
with low QoS values if queries with higher QoS values
keep arriving. Hence, with an increasing retention time,
the rank of a query needs to be raised. Therefore, we
increment the QoS value of all elements in the query
queue after each execution of a query (line 29). Over time,
this gives queries with lower QoS values an advantage
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Fig. 3. WINE example.

over queries with later arrival times. The delta d by which
the QoS values are adjusted depends on the query queue
length |Q| (with the length being re determined with
every respective query prioritization) and is computed as
follows:

1
- |Q| 'rmax.

It is the reciprocal of the query queue length |Q]
multiplied by a system parameter rpyq, Which defines
the maximum retention time of a query in the system.
Avalue 1 for rp means that a query needs at most |Q| 1
query executions to be scheduled for execution. For
'max = 5, it needs at most (|Q| 1)-5 executions, and so
on. A significance test on rpyqy is given in Section 6.4. The
original QoS value qos, of a query g; is not changed by the
operation on line 29, and with it, the first level scheduling
remains untouched.

d

Algorithm 1. WINE scheduling algorithm
1: Q: query transaction queue
2: U: update transaction queue

mode: specifies the system mode
'max: Maximum query retention time

WINE:
while|W|>0 do
execute GLOBALSCHEDULING
if mode = querymode and |Q|>0 then
execute QUERYPRIORITIZATION
end if
if mode = updatemode and |U|>0 then
execute UPDATEPRIORITIZATION
end if
end while

GLOBALSCHEDULING:

if >~ QoS> > QoD and |Q|>0 then
execute query q where pos; =0
mode  querymode

else
execute update u where pos, = 0
mode < updatemode

end if
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25:

26: QUERYPRIORITIZATION:
27: d 1Ql - rmax)71

28: forall gcQ do

29: qos,  min(qosy +d, 1)
30: end for

31: sort Q by qos;, tq

32:

33: UPDATEPRIORITIZATION:
34: forallueUdo

35: wy <0

36: for all g where P; = P, do
37: Wy < Wy + qos .ﬁ
38:  end for !
39: end for

40: sort U by w,, t,

As we saw earlier, query prioritization has two benefits:
(1) it decreases the retention time of queries with
increasing QoS values, and (2) it delays the execution of
queries with decreasing QoS values, i.e., the probability
that upcoming updates for these queries are applied
increases (directly supports their QoD demands).

Starvation freedom: As we illustrated earlier, an in
crease in the time a query q exists in the system leads us
to increment the QoS value qos, of this query by d after
every query execution. Since d continuously decreases
with growing queue length, we only need to show at this
point that the scheduling of queries is also starvation free
if new queries with high QoS values continue to trickle
into the system. The notion of starvation free means that
the system guarantees that all ready jobs will eventually
run, regardless of the workload and under the assumption
that the arrival rate of new jobs is smaller than or equal to
the maximal throughput of the system. That is to say, we
want to know whether or not a query g; with a low QoS
value can prevail when faced with a continuous stream of
queries with QoS values of 1. In this case, d slowly
approximates 0 but the sum of the increments added to
the QoS values of the queries never converges, i.e.:

. 1 1

M 2 QT —

That is to say, a query g; with a low QoS value will never
starve, even if new queries with QoS values of 1 are
continuously added to the queue. The reason is that the
QoS value of g; will reach a value of 1 in any case. In case of
identical QoS values, the timestamp tg is used as
prioritization criterion, which means query g; will be
preferred, since it has been in the system for a longer time
period compared to newly arriving queries. In other
words, for all queries with a QoS value of 1, the query
scheduling is based on the FIFO principle. Hence, the
scheduling algorithm for queries is starvation free.

4.2.2. Update prioritization

In addition to the latter improvement, we want to
prioritize updates for which the corresponding queries
will be executed soon, i.e., queries which are closer to the
query queue head. Therefore, we introduce a weight w(u)

for an update u, which is computed as follows:

w(u) = >

Va;,  PqPu#8

qum
1+ posg,

The QoD value of each query that requests the same
partition as the update (|Pg, N Py|+##) is weighted by its
position in the query queue. The sum of all those weighted
QoD values gives the overall weight w(u) (see lines 34 39).
The sooner a query is executed, the higher the weights
of the corresponding update. The update queue is sorted
in decreasing order of the resulting weights w, and in
increasing order of the timestamps t, (see line 40).
The second order criterion is very important in terms
of consistency as it avoids that a sequence of updates that
refer to the same partition get interchanged. Two updates
u; and u; that refer to the same partition p and are thus in
a potential conflict with each other always have the same
weight (w(u;) = w(y)); hence, the timestamps t,, and t,
preserve the original update order.

In contrast to query scheduling, the scheduling of
updates is not starvation free. That is to say, workloads
may be constructed that will never allow the execution of
a specific update. However, since update scheduling takes
the user demand into consideration, this does not
represent a disadvantage but a desired feature of the
system. In detail, the following differentiation options
arise:

(1) If there are no queries g; for an update u; that meet the
condition Pg NPy #@, this results in a weight of
w(u;) =0 (line 35 in Algorithm 1). That is to say,
update u; is only executed if no other updates with a
weight larger than O exist in the system at the given
point in time. Update u; will be put on hold until a
correlated query is sent to the data warehouse.

(2) If there is at least one query g; for an update u; that
meets the condition Pg NPy #¢, this means that u;
will be scheduled in dependence on all other updates
and their correlated queries. Since queries never
starve, as shown in Section 4.2.1, the value pos, of
the correlated query g; slowly converges to 0, which
results in the continuous increase in the weight of
update u; and hence, the execution likelihood of u;
also increases.

4.2.3. Example

We will sketch the query and update prioritization
with an example. In Fig. 3, we see the initial state of the
system with six queries and five updates in the queues
and three partitions A, B and C. For illustration purposes,
each query and each update refer to exactly one partition.
The QoS and QoD values of the queries are highlighted by
the gray boxes. The order of the query queue after query
prioritization (ordered by qos,) is as follows: g, g3, gs, g1,
q4 and q,, with g, at position 0. This new query schedule is
utilized by the update prioritization to compute the
weight of each update. The computation of the weights
is sketched by the gray box in the update elements. We
pick update u, to illustrate this step: we have query g, at
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position 0 and query g, at position 2; they both refer to
partition A and have QoD values of 0.1 and 0.3,
respectively. Now, the weight w(u;) is computed as
follows:

1
w(Up) = qod,, -E +qod,, 'posq
2 1
1 1

:0.1-T+0.3~§:0.2.

The new order of the update queue after the update
prioritization is uy, Uy, us, u; and ug, with ug at position 0.
So, u, is ranked at the 4th position, since the QoD values of
the correlating queries q; and g, are comparatively low,
i.e., the freshness demands of the users having initiated
these queries are not very high.

5. Partitioning model

In Section 3.2, we stressed that the partitioning of data
is necessary in order to detect correlations between
queries and updates and to exploit these information for
the scheduling of updates (second level scheduling). For
this purpose, we introduced a very abstract model but we
did not go into details in terms of the criteria relevant for
the data partitioning, and neither did we consider how the
partitioning affects the scheduling and how partitions are
addressed by queries and updates. These items shall be
analyzed in more detail in the following section.

5.1. Motivation

Before we take a closer look at the partitioning model,
we want to illustrate with an example how the selection
of a certain partitioning schema affects the scheduling. For
this, we take the base relation from Fig. 4, which consists
of two dimension attributes A and B and a measure
attribute M. There are four possibilities to aggregate this
relation: (1) aggregation without considering the dimen
sion attributes, (2) aggregation based on attribute A,
(3) aggregation based on attribute B, or (4) aggregation
based on A and B (see Fig. 4 from top to bottom). Now, we
would like to show how the scheduling process is affected
by the selection of the partitioning schema. To do so, let us
have a look at the workload from Fig. 5, which consists of

A B 1 2 (1)
| — 1 l-_a-—--t?-:
PS;={0} 2 :_ o __.d
A B M AB 1 W ©
oa e ——> MM a___b_
PS2={(A)} 2000 _c___d_;
1 2
b ANEl Iz )
2 1 c — N 5_: i b
2 2 d PS; = {(B)} 20 1o 1 d.
A B 1 2 4
A0 (a2 [BD
PS=(AB) [N {31 (30
base relation partitioning tables

Fig. 4. Partitioning example.

two queries and two updates, which address partitions a
and b or c and d, respectively. Now, in order to measure
the influence of the different partitions on the scheduling,
we have to take a look at the weightings w(ug) and w(u,),
which result from the different partitions.

Partition schema w(Up) w(uq)

Py 0 08-1+01-1 05 08-1+01-1 05
Py (A 01-1 01 08-1 04

P; (B 08-1+01-1 05 08-1+01-1 05
Py (AB) 01-1 01 08-1 04

As we can see, the weightings differ depending on the
partition. For P; = () and P; = (B) (also refer to Fig. 4(1) and
(3)), the weightings are identical for uy and u,, respectively,
since the exact assignment of updates to the appropriate
queries is impossible due to wrong partitioning, and thus,
the QoD values of the queries are equally distributed to
both updates. This has the effect though that the updates
cannot be prioritized by using their weightings and that
they can only be scheduled based on their arrival times.
When using partitionings P, = (A) and P4 = (A, B), however
(also refer to Fig. 4(2) and (4)), update ug can be assigned to
query g, and update u; can be assigned to query q;, which
means that a precise calculation of the weightings becomes
possible. Even though both partitionings P, and P4 return
the correct result, we would decide for partitioning schema
P, for the workload at hand because it takes up less space,
i.e., it comprises only 2 instead of 4 tuples. From this
example, it becomes clear that the selection of the
partitioning schema affects the quality of the scheduling
for updates significantly. Furthermore, we see that different
partitioning schemas may return the same result but differ
in the size of the resulting data structure. The size,
however, directly affects the look up costs, i.e., the duration
of the calculation of correlations between queries and
updates; these should be kept as low as possible. The
semi automatic determination of the partitioning schema
for a given workload under consideration of these two
criteria will be analyzed in detail in the following section.

5.2. Workload aware partitioning

As our example in the previous section illustrated, the
partitioning schema required for the realization of

queue head AB 1 20 (1)
0 PS=(0} e
. 20, c__d!

XK qq: cd Jo: a,b o A B 1 2 (2)
PSo={(A)} AN & Do B!
0.2 08| 09 01 o 2 (¢!

1 0 AB 1 2 (3)
iyiod|w:ap| PSFE) BT o

v or e 4)
=2 =2 ~
W= | S PS4={(A.B))IIE (3} b
20 Cgl oLdl

Fig. 5. Example workload for different partitioning schemas.
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scheduling must not be defined arbitrarily or independent
from the workload, since this would undermine the
prioritization of updates. Therefore, we will use the next
section to take a look at the generation of attribute
candidates that will be decisive for the partitioning. First,
we will explain the term partitioning schema.

Partitioning schema: A partitioning schema PS consists
of a set of attribute sets that constrain the granularity and
range of data within the multi dimensional data struc
ture; PS:={AS;, ...,ASy}. Each attribute is prefixed with the
dimension identifier.

A valid partitioning schema for the TPC H database, for
example, would be {(Store.Nationkey, Customer.Nationkey)}.

In order to support the scheduling of queries and
updates to the best possible extent, we need to identify
those predicates and attributes that appear rather fre
quently and often together in the queries and updates. In
order to do so, attribute sets AS; appearing in the WHERE
clauses of all queries and updates are considered and
annotated with their frequency of appearance, resulting in
pairs, (as;,0;), each containing an attribute set and its
occurrence frequency; these will be stored in two separate
lists. The resulting lists, L, for the query attribute sets and L,
for the update attribute sets, are then merged to compose
the list of partitioning attribute sets, L. The individual steps
involved here are shown in Algorithm 2. We scan through
both attribute lists, L; and Ly, and insert those value pairs
into the result list L, whose attributes appear in both lists
and whose occurrence frequency in at least one of the lists is
larger than the threshold o,,;,. For the occurrence frequency,
we decide for the maximum from the two occurrences.
Additionally, the empty set is also an element of Lj.

As can be seen easily, the selection of the system
parameter 0,,;, strongly depends on the workload. If the
workload consists of queries and updates with many
attribute sets of a low occurrence frequency, o,,;;, has to be
set to an appropriately low value in order to receive
sufficient coverage in the attribute sets of the result list L.
However, we believe that in practical scenarios, the
frequency of an attribute is not distributed equally but
there always exist a few attribute sets that are of strong
interest and that are subsequently addressed more often
in the workload. In this case, parameter o0,,;, has to be set
to a value that guarantees that precisely those frequent
attribute sets will be the result of Algorithm 2.

Algorithm 2. Generation of partitioning attribute
candidates
Require Lg: list of query attributes
Require L,: list of update attributes
Require 0,,;,: minimum ratio
Require L, < ¢: result list of partitioning attributes
forall g € L,
forallu c L, do
if g.as = uw.as A (q.0>o0p, vV U.0>0p,;,) then
L, < L, U (q.as, MAX(q.0,u.0))
end if
end for
end for
L, Lyug

ONOU A WN =

10

The attribute sets AS; from the result list L, form a
lattice L. = (N, E), with the node set being defined as the
power set of all attribute sets of the result sets Ly, i.e.,
N = P(Lp), and with the edge set being defined as E <
N x N with (x,y) € E if and only if x c y, but there is no
element between x and y, i.e.,, =3z with x czAz Cy. An
example for such a lattice £, derived from the result list L,
with the minimum occurrence frequency o, = 5%, is
illustrated in Fig. 6. Aside from the attribute sets, Fig. 6
also shows the sum of the occurrence frequency accumu
lated from the root to the leaves. Since the result list L,
only contains the attribute sets whose occurrence fre
quency is larger than the threshold o,,;,, the accumulated
sum of the occurrence frequencies is strictly monotonic
increasing. The cumulated sum of the occurrence fre
quencies of the attribute sets (A,B), for example, is
calculated from the occurrence frequencies of the attri
bute sets (A), (B) and (A,B) itself (o4 + 0p+ 045 =
10% + 10% + 5%). Attribute sets such as (D, E), for example,
whose occurrence frequency is too small (here: 2%),
are not part of the tree and thus shaded in gray in Fig. 6.
In order to keep the number of attribute sets in the
partitioning schema as small as possible, those attribute
sets that allow to derive all predecessor attribute sets
are to be selected at the leaves of the tree. In our example,
these are the underlined attribute sets (A, B,C), (D) and
(F,G,H). In the worst case scenario, all attribute sets are
disjoint, i.e., no attribute set can be derived from another
one (except for the empty set), and thus the number
of attribute sets in the resulting partitioning schema is
IL,| 1. Due to the explorative character found in multi
dimensional data analyses, however, this case rarely
occurs in practical settings. Often starting from a raw
view on the data, the user will drilldown to navigate to the
actual data object of interest, e.g., from (A) to (A,B) to
(A,B,C) in Fig. 6.

For every attribute set found with the above procedure,
a materialized view is created, which we will denote as
partitioning table PT;. The rule for the creation of the
partitioning table is a SELECT clause with the attributes of
the attribute sets in the GROUP BY clause. For the
attribute set from the example above, (A, B, C), this results
in the partitioning table PT4 5 ).

Example: We want to look at an example from a TPC H
database with the scaling factor 0.1, i.e., the lineitem
table consists of 600,000 tuples. The cardinality of the
partitioning attributes p_brand, s_nationkey, c_nationkey is

5% (

//I\

10% (A)  10% (B)  30% (D) 20% (F)

N A

OA+OB+OAB—25% (A B)

\ |
.
20% (F,G),D

+ +

.
35% (A,B,C)) 35% (F,G,H) )

Fig. 6. Attribute set lattice £ with o0, 5%.
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25 each. That is to say, there are 25 different brands in
the parts table and 25 different nations in the supplier
and customer tables, respectively. For the partitioning
schema

PS,:={(p_brand, s_nationkey, c_nationkey)},

this results in a partitioning table PT; with 15,625 tuples
(= 25%), i.e., an average aggregation ratio of 1:39. For a less
detailed partitioning schema

PS,:={(s_nationkey, c_nationkey)},

the result is a partitioning table PT, with 625 tuples
(= 252%), i.e, an average aggregation ratio of 1:960.

5.3. Correlation between queries and updates

In order to create a correlation between a query g; and
an update u;, these are re written in such a way that they
only reference the attributes of the partitioning schema
and then they are executed in this form on the partition
ing table PT;. If the intersection of the result sets Rg, N Ry,
is not empty, ¢; and u; address the same data and a
correlation has been found. However, this correlation
implicitly comes with a certain probability, since the
partitioning schema only roughly categorizes the data.
A correlation might be detected with probability 1 if
the partitioning attributes were to consist of the key of the
fact table. In return, this would mean, though, that the
partitioning table has the same cardinality as the fact
table, i.e., the execution of queries or updates on the
partitioning table would be identical to their actual
execution. The effects of the granularity of the partitioning
schema on the accuracy of the matching will be
considered in the next section.

5.4. Selectivity based exception handling

As already explained in the previous section, the
partitions are created from the subset of all attributes of
the given workload. This in turn means that the resulting
partitions aggregate and represent several hundreds or
thousands of tuples. Since queries or updates may contain
further attributes in their WHERE clauses in addition to
the attributes of the partitioning schema, matching
partitions from a query q and an update u (Pq NP, #0)
do not necessarily guarantee that the result set of
q matches the updated set of u. This leads to the following
problems: (1) If an appropriate update u, has been found
for query q, via the comparison of partitions, this query
will spend unnecessary time waiting for the insertion of
Ug; the reason is that no overlappings can be found within
the partition when taking a closer look at all predicates.
(2) Update u, is scheduled based on the QoD value of
query q, even though no matchings are detected when
analyzing the result set and the update set in detail, i.e.,
updates are scheduled on wrong assumptions.

We can calculate the probability of overlappings
between the result set of a query q with selectivity sq
and the update set of update u with selectivity s,. Since
the selectivity estimation takes place on the level of
partitions, the selectivity is only estimated from the
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residual predicate attribute set R, which does not belong
to the attributes of the partitioning schema PS, i.e.,
PSNR=¢. In order to estimate for a partition with
cardinality N, we use the hypergeometric distribution.
For this, a random sample of size n is drawn from a basic
population without replacement. The hypergeometric
distribution gives the probability for the event that a
certain number of elements with the desired attributes
appear in the sample. In general, if a random variable X
follows the hypergeometric distribution with parameters
N, M and n, the probability of getting exactly k successes is
given by

wesn= (1) (5 )/ 2)

In order to simplify the problem, we will look at the
opposite case, in which no attribute matchings are found,
i.e,, k = 0. Parameter M is calculated from M =s; - N and
parameter n is found via n=s,-N. That is to say,
the sample of size n is derived from all the tuples
referenced by update u with selectivity s, in the complete
partition of size N. Then, the tuples of query q, sq-N,
are checked against this sample. Now, we can use these
formulas to calculate the probability p(N,sq,s,) for the
event that a query with selectivity s, and an update with
selectivity s, access at least one shared tuple in a partition
of size N:

1 N sq-N
Su-N

p(N,Sqasu) = N 1
s, N |’ Sqg+Su<

1, otherwise.

In case the sum of the selectivities exceeds the value 1,
there is always a shared tuple, i.e., p(N, sq,sy) = 1.

After having derived the analytical formula that
calculates the probability of a matching for a query
update pair, we now want to take a closer look at the
parameters N, sq and s, and examine their impact on the
matching probability p(N,sg,s,). In order to do so, we
assume an average update selectivity s, of 10%, i.e., 10% of
the tuples in a partition are referenced by an update.
Fig. 7a illustrates the matching probability for a growing
query selectivity sq and different partition cardinalities N.
As we can see, the matching probability for larger
partitions already reaches the value 1 for low query
selectivities of 1% and less. Fig. 7b shows this in more
detail for high selectivities between 1% and 10% and
growing partition sizes. As illustrated, the matching
probability for decreasing partitions increases at a slower
pace and it only reaches the value 1 for selectivities close
to 1. However, one might argue that the partitioning
schema of small partitions i.e., of finer granularities
already contains many attributes of the workload and
thus, the selectivity specified by the small number of
additional selection attributes tends to be low. Fig. 7c
shows the matching probability for varying update and
query selectivities. As can be seen, the matching prob
ability for high update selectivities s, between 0.5% and
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Fig. 7. Matching probabilities for different system parameters:
(a) increasing query selectivity s, update selectivity s, 0.1 and
different partition cardinalities N, (b) increasing cardinality N, update
selectivity s, 0.1 and different query selectivities sq, (c) partition
cardinality of 1000, different query selectivities s, and an increasing
update selectivity s, between 0% and 10%.

1% is only significant for accordingly low query selectiv
ities close to 10%.

From the analysis of the matching probability for all
query update pairs of a workload history, we can derive
two conclusions: (1) Given that the matching probability
remains equally high for all query update pairs and
assuming that the workload will not change significantly
in the future, the previous matching criterion Py, NPy #0
is sufficient. (2) For strong fluctuations in the matching
probability within a workload history or in cases when the
exact composition of a future workload is not known, the
matching criterion has to be extended to Py NPy#
@ AP(N,sgq,,su)>MPT. Here, MPT denotes the matching
probability threshold, and its value beyond which a match
is assumed has to be specified by the system adminis
trator. The calculation of the weightings for the updates
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from 4.2.2 then has to be extended as follows:

quQi

wi) = T+ pos,”

vq;, Pqi NPy, # [/]AP(N,Sqi ,Su)>MPT

That means we introduce an exception handling method
for those updates, where either their own selectivity
and/or that of their correlated queries is too high.

6. Experiments

We conducted an experimental study to evaluate the
stability and performance of WINE with respect to the
other scheduling algorithms mentioned in Section 1.
Furthermore, we measured the adaptivity of WINE with
respect to different trends of user requirements in the
workload. In summary, we found that WINE has the
following properties:

e It reacts rapidly to changing user preferences.

e It outperforms all competing algorithms in the entire
spectrum of user requirements and workloads. In fact,
WINE performs almost as well as FIFO QH with respect
to QoS and as well as FIFO UH with respect to QoD.
Both baseline algorithms are the best in their dis
ciplines.

6.1. Experimental setup

Our experimental setup consists of a middleware to
implement the scheduling and balancing and a database
server to store the data warehouse. Both are located on
different machines: an Intel Pentium D 3.0 GHz system
running Windows XP with 2 GB of main memory for the
middleware and a dual CPU Xeon 64 Bit 2.8 GHz processor
with 4 GB RAM running Linux and IBM DB2 V9.1 installed
for the database server.

We implemented WINE as well as the FIFO, FIFO QH
and FIFO UH scheduling schemes using Java 1.5. For the
data warehouse, we made use of both synthetic and real
world data. The synthetic datasets are based on the well
known TPC DS database [30] and for our real world
experiments, we used the CDBS database,! which contains
information on radio and television broadcast services in
the United States. The most important setup parameters
for the experiments with the synthetic and the real world
data, respectively, are illustrated in Fig. 8 and examples
will be explained for the TPC DS setup in the following
paragraph.

For the fact table, we took web returns with a scale
factor of 1, i.e., 72,176 tuples. To implement the partition
ing schema, we used the attribute manufact_id from the
dimension table item, which is related to web returns
through the foreign key wr_item_sk. The values of the
attribute manufact_id lie in the range from 1 to 1000,
which enables us to control the granularity in varying
steps. The default granularity for our experiments is set to
50 partitions, with the smallest partition consisting of

! http://www.fcc.gov/mb/cdbs.html
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TPC DS CDBS
(synthetic data) (real world data)
© fact tbl (cardinality) web returns (72,176) application (585,433)
e [ . . "
% dimension tbl item facility
® partitioning attribute manufact_id fac_zip1
o | number 50 200
c
(5]
£ |smallest 101 tuples 12 tuples
@®
S | largest 2,572 tuples 15,432 tuples
number of queries /
» | updates 500/ 500 500 / 500
S | query/ update 100 160 ms / 630 720 ms /
S | execution time 20 40 ms 420 840 ms
(2]
&  |load polling time 100 sec / 75 sec / 1000 sec / 750 sec /
= | LOW/MEDIUM / HIGH 50 sec 600 sec

Fig. 8. Experimental setup.

101 tuples and the largest partition comprising 2572
tuples. To find correlations between transactions, the
TPC DS queries and updates have been re written so that
they address the partition attribute manufact_id.

To measure the behavior of WINE and the other
scheduling algorithms under various workloads, we
generated two sets of query and update traces, both
consisting of 500 queries and 500 updates, which are
polled in a time window of 100 and 1000 s, respectively:
(1) random traces W g qom With a mean of 10 queries
and updates per second and a variance of 10, (2) traces
with either 15 queries and 5 updates or 5 queries and
15 updates per second; alternations are due every 25s
and every 250s, respectively (W gernate)- Query execution
times range from 100 to 160 ms (630 720 ms for CDBS)
and update execution times range from 20 40ms
(420 840ms for CDBS). The workload polling time can
be shrunk to simulate different degrees of load. As a
matter of fact, we denote the original workload with a
polling time of 100 s for the TPC DS dataset and 1000 s for
the CDBS dataset as LOW. The polling times for the
MEDIUM and HIGH workload for both datasets can be
derived from Fig. 8.

The system parameter rqy is set to 5 for the following
experiments. The impact of varying values for ryqx will be
analyzed in detail at the end, in Section 6.4.

6.2. Performance comparison

In the following section, we want to compare WINE
and the three traditional scheduling algorithms FIFO,
FIFO QH and FIFO UH for various given user preferences
and workloads. FIFO, FIFO QH and FIFO UH are one level
scheduling algorithms with different preferences: (1) FIFO
does not prioritize any transaction; hence, transactions
are executed in order of their arrival time. (2) FIFO UH
always favors updates over queries. If the workload tends
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to consist of a lot of updates, FIFO UH is unable to process
any queries. (3) FIFO QH always favors queries over
updates. If queries keep arriving, FIFO QH does not
execute any updates, i.e., the staleness increases.

This set of experiments has the following design: we
measured the QoS and QoD metrics 30 times for both
types of workloads (random and alternating) and varying
values for QoS and QoD. Since the statistics of all these
setup combinations show a very similar character, we
aggregated them to the result outlined in the following.

We plot the QoS metrics (average retention time) for all
four scheduling algorithms in Fig. 9a and b and differ
entiate them into three levels of increasing load. We see
that WINE and FIFO QH have a similar performance and
outperform the other algorithms. For the TPC DS dataset,
WINE performs, on average, 282.98% better than FIFO,
377.86% better than FIFO UH, and 15% worse than FIFO
QH, which is self evident, since FIFO QH always favors
queries over updates, i.e., FIFO QH represents the opti
mum with regard to the QoS metrics. Due to the limited
throughput of the system, the retention time for each
scheduling schema increases with higher loads and the
impact of the individual scheduling algorithms on the QoS
metrics is continuously rising in significance. If the QoS
metrics of the respective scheduling algorithms for the
load level LOW are relatively close to each other (since
there are no overloads of the system and the number of
elements in the queues will always remain low), the
advantage of WINE will become more visible with rising
loads.

For the CDBS dataset, the situation is similar but less
unique. Here, the QoS metrics for the individual schedul
ing algorithms are closer to one another than for the
TPC DS dataset. The reason is found in the fact that the
execution times for the queries and updates were almost
identical (in contrast to the TPC DS setup), which implied
that the load could not be as high, since long updates
represented an additional burden for the system.
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Fig. 9. System performance of WINE and the three baseline scheduling algorithms for synthetic and real-world datasets: (a) QoS performance for TPC-DS,
(b) QoS performance for CDBS, (c) QoD performance for TPC-DS, (d) QoD performance for CDBS.

The direct comparison shows that the average retention
time of WINE was 190.47% better than for FIFO,
274.19% better than for FIFO UH, and 7.49% worse than
for FIFO QH.

Similar, Figs. 9c and d show the QoD metrics for all
scheduling algorithms by varying the degree of load. We
see that WINE and FIFO UH perform best with no
unapplied updates at each load level: LOW, MEDIUM or
HIGH. Note that FIFO UH represents the optimum with
regard to the QoD metrics because it always favors queries
over updates. For FIFO, the QoD metric remains stable
with increasing load, since queries and updates are
executed in order of their arrival time; so, on average,
every other transaction is an update, i.e., the number of
unapplied updates remains at a certain level. For FIFO QH,
the QoD metric gets worse from the LOW to the HIGH load
since an increasing load leads to more and more updates
in the update queue that will not be applied because FIFO
QH favors queries over updates. Here, too, it is apparent
that the differences between the QoD metrics for the
individual load levels are more significant for the TPC DS
dataset than for the CDBS dataset. The reason also lies
with the longer updates in the CDBS setup, since this is a
considerable burden for the load and the difference
becomes less significant.

Summarized, the main weakness of both FIFO QH and
FIFO UH is their fixed preference for queries (QoS) or
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updates (QoD), which is a drawback in workloads with
unpredictable user preferences.

6.3. Adaptability to user requirements

Having shown that WINE performs much better than
the traditional hard coded scheduling algorithms in the
general case, we want to illustrate that WINE quickly
adapts to changing trends in user behavior for the TPC DS
as well as the CDBS dataset. We use a random workload
for each experiment in Figs. 10 and 11 and plot the arriving
queries and updates. To illustrate the adaptability beha
vior, we vary the (qos,qod) vote that comes with each
query q; € Wigngom- More precisely, we divide the work
load into four sections and invert the QoS and QoD values
at each section transition. The QoS and QoD values in the
first section are 0.1 and 0.9 in Figs. 10a and 11a and 0.4 and
0.6 in Figs. 10b and 11b. Thus, we have extreme turn
arounds in trend in the first workload and slightly
changing trends in the second workload.

Figs. 10 and 11 plot the QoS and QoD sums for all
queries in the system during workload execution. Each
vertical line marks a trend inversion, e.g., the QoS value of
the queries changes from 0.1 to 0.9 and vice versa for the
QoD value. We see that for the LOW workload, the QoS and
QoD sums adapt to the changing trends very quickly, and
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Fig. 10. Adaptability to user requirements for different workload settings on TPC-DS dataset: (a) LOW workload, (QoS;,QoD;)

workload, (QoS;,QoD;) (0.4,0.6), (c) MEDIUM workload, (QoS;,QoD;)

with them, the overall system mode changes to query
mode if >-QoS>>"QoD and to update mode in the
contrary case. A drop of the QoD graph in a QoD
dominated section means that the update queue is empty
and therefore queries are executed. The reason for the
higher QoD graphs in all figures is that only a few queries
are executed in QoD dominated sections and therefore,
the QoD sum increases much more, since queries with

(0.1,0.9), (b) LOW

(0.1,0.9).
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high QoS value are executed first. With decreasing
discrepancy between the specific user trends (Figs. 10b
and 11b), the QoS and QoD graphs converge as expected,
but the switch between the system modes during a trend
inversion is accomplished as fast as before.

The two previous experiments on adaptability were
performed with a LOW workload, i.e., a workload that does
not lead to tailbacks in transaction processing. To
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complete our analysis on adaptability, we stressed our
system with a MEDIUM and a HIGH workload (Figs. 10c
and 11c). We see that the adaptation of the QoS and QoD
sums to changing trends needs longer than under the LOW
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workload in Figs. 10a and 11a. The reason is that the data
warehouse is not able to process all queries (and updates)
in time, which leads to a decreasing adaptability at trend
inversions, since more and more old queries interfere with
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Fig. 12. QoS metric against maximum retention time (rmq) (TPC-DS
dataset).

the overall QoS and QoD sums. Note that due to the strong
turnarounds in trend in this experiment, this effect is
particularly visible in both figures.

Note also that we applied a moving average with a
window size of 30 queries to smoothen the data, which is
very bursty in the original.

6.4. Significance of system parameter max

In Section 4.2.1, we saw that the system parameter r,qx
affects the retention time of a query in the system. With a
rising rme, the retention time of a query g increases
because the delta by which the corresponding qgos;, values
are incremented decreases. However, this is only the
direct impact of ruq on one query. Fig. 12 plots the QoS
metric for a random workload, which was executed
30 times, on the TPC DS dataset in dependence on an
increasing rmqy. In case of the LOW workload, we see that a
growing rmqx does not destabilize the QoS metric; for the
MEDIUM workload, however, the metric decreases slightly,
and for the HIGH workload, this trend becomes even more
significant. The explanation is the following: the QoS
metric considers only the queries with qos,>0.5 that
means queries with a high demand for short retention
times. With an increasing load and a constant rpgy, these
queries are increasingly displaced by queries with
qos;<0.5, i.e., the QoS metric gets worse. For higher rmgx
values, queries advance at a slower pace in the query
queue; hence, queries with qos; <0.5 remain at the tail of
the query queue for a longer period, so their negative
effect on the QoS metric is reduced.

Thus, the system parameter rpnq allows us to specify
the trade off between the overall QoS metric and the
response time for queries with qos; <0.5. The retention
time for this group of queries with high freshness
demands (qod,>0.5) is not measured by our system
metrics but should not be left unconsidered in practice.

7. Summary and future work

Living data warehouses have to manage continuous
flows of updates and queries and must comply with
conflicting requirements, such as short response times
and data freshness. In this paper, we proposed a new and
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easy to use approach to combine both requirements in
the presence of user preferences. We developed a two
level scheduling algorithm called WINE that balances and
prioritizes over updates and queries to maximize the user
satisfaction. We compared WINE to three baseline algo
rithms. Our evaluation showed that WINE performs better
than the baseline algorithms under different workloads
and changing trends in user requirements.

The scheduling algorithm represented here initially
focused only on updating the base tables of a data
warehouse and did not consider the ETL process or
the maintenance of data marts. In the general case, the
inclusion of the ETL process is not feasible, since the
operators in the ETL process modify the schema (e.g.,
concatenation of attributes into a key attribute). That is to
say, partitions as the smallest comparable units in our
system model are not available in the ETL process. Thus, in
order to be able to determine the partition a datum d of a
data source belongs to, the complete ETL process would
have to be run. In this case, it would be useless to even
consider the scheduling of d, since d will have been
propagated already. In the special case that the instances
of the partitioning attributes (e.g., product group) are
already known at the beginning of the ETL process, i.e., the
datum d contains all required information, an extension of
the system model to include the ETL process might be
possible. The extension of the system model to cover the
updating of materialized views, however, is possible in
any case and represents a topic for our future work. The
partitioning schema proposed here (see Section 5), which
distributes data into partitions, i.e., into the smallest units
to be considered, would additionally have to be applied to
the data marts.

Furthermore, our proposed scheduling algorithm,
WINE, would have to be extended from its current one
level system model to a multi level system model.
Initially, this could happen in a naive fashion by directly
transferring the model, the two queues and the schedul
ing algorithm to each data mart. For a more sophisticated
solution, however, an additional cost model would have to
be developed in order to be able to decide for queries
which data mart would be most suitable for an efficient
execution and whether or not it might even be preferable
to execute them directly on the data warehouse. For
example, it might be possible that for an environment,
where multiple data marts store the same data or
overlapping sets of data, queries with weak up to
dateness (QoD<0.5) requirements are directed to less
frequently updated data marts, thus taking off some of the
burden of the data marts that have to be updated rather
frequently.

Aside from this extension of the system model, the
processing of queries and updates will have to be
transformed from the current sequential model to a
parallel model (inter transaction parallelism). On the one
hand, it may be possible for this purpose to map the user
requirements to the CPU or memory resources to be used,
and on the other hand, the matching information (derived
from the partitioning) for queries and updates or for
updates themselves may be used as additional input for
the optimizer in order to use them for a more efficient
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processing of transactions in parallel. Aside from that,
additional implications, such as the maintenance of
indices and potential locks for these DB objects, would
have to be considered in the extended model.

In addition to the efforts spent with the model itself, the
parameterization for different setups shall be analyzed, e.g.,
for warehouses with classic disk IO behavior, databases
with solid state disks (no difference between sequential
and random access any longer), OLAP main memory
systems, etc. For each of these setups, guidelines shall be
developed that describe how the scheduling for these
individual special cases will have to be parameterized.

To summarize, we believe that the real time or push
semantics introduced for data warehouses implicate an
extended user model, which describes the varying user
demands. In this paper, we proposed a very fundamental
approach and developed auxiliary methods and algo
rithms to support the prioritization of transactions based
on user requirements. Extensions to a multi level system
model, the shift towards parallel processing, and the
analysis of the impact of different physical designs
represent topics of our future work.
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