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Abstract

In many application contexts, like statistical databases,
scientific databases, query optimizers, OLAP, and so on,
data are often summarized into synopses of aggregate val-
ues. Summarization has the great advantage of saving
space, but querying aggregate data rather than the origi-
nal ones introduces estimation errors which cannot be in
general avoided, as summarization is a lossy compression.
A central problem in designing summarization techniques
is to retain a certain degree of accuracy in reconstruct-
ing query answers. In this paper we restrict our attention
to two-dimensional data, which are relevant for a number
of applications, and propose a hierarchical summarization
technique which is combined with the use of indices, i.e.
compact structures providing an approximate description
of portions of the original data. Experimental results show
that the technique gives approximation errors much smaller
than other “general purpose” techniques, such as wavelets
and various types of multi-dimensional histogram.

1 Introduction

There are several application scenarios where the main
goal is to extract summary information from available data,
rather than inquiring single data. For instance, transaction
recording systems, OLAP applications, data mining activi-
ties, intrusion detection systems, scientific databases, usu-
ally operate on a huge amount of data, but do not return
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detailed pieces of information: they are mainly interested
in aggregating data within a specified range of the domain.
These kinds of aggregate query are called range queries.

In the above contexts, a widely accepted solution to the
problem of efficiently extracting useful knowledge from
the available data is to summarize information into a com-
pressed structure, and issue range queries on the summa-
rized data (rather than the original one), in order to get fast
(but, in general, approximate) answers. The most signif-
icant example of such an approach is represented by his-
tograms [6, 13]. Histograms, initially designed in the con-
text of query optimization for query size estimation, can be
also effectively used to estimate range queries in on-line an-
alytical processing [12]. A histogram is obtained by parti-
tioning the frequency distribution (which is generally rep-
resented as a multidimensional array) into a set of blocks
(called buckets), and storing, for each block, the sum of the
frequencies inside it. The answer to a sum range query eval-
uated on the histogram is computed by summing the contri-
butions of each bucket, i.e. by estimating which portion of
the sum associated to each bucket lies onto the range of the
query. This estimate is evaluated by performing linear in-
terpolation, i.e. by assuming that data distribution inside
each bucket is uniform (Continuous Values Assumption -
CVA), and thus the contribution of the buckets which par-
tially overlap the range of the query is generally approxi-
mate (unless the original distribution of frequencies inside
these buckets is actually uniform).

Histograms, first proposed in the context of mono-
dimensional data, can be extended to the multi-dimensional
case, but their performances, in terms of accuracy, are rather



poor. Better results in the multi-dimensional case are given
by other approaches, such as wavelet based ones [4, 15, 16].
Yet, also in the latter approaches, accuracy is far from being
satisfactory.

Rather searching for a general method which scales up
for any dimension of data, we expect that, in specific appli-
cation domains, higher accuracy can be achieved by design-
ing ad-hoc solutions. In this paper we follow this direction
and consider specifically two-dimensional data. This is not
a severe restriction, as the need to estimate range queries
over these distributions arises in a number of applications:
1. selectivity estimation on spatial databases [1, 8]: this
problem consists of evaluating the number of objects (trian-
gles, rectangles, etc.) which intersect a query rectangle in
a 2-D space. The 2-D space can be approximated as a two-
dimensional histogram whose buckets are associated to the
spatial density of the corresponding regions, i.e. the number
of objects which overlap the range;
2. evaluation of direction queries [14]: it can be shown that
estimating the number of objects which are related by some
direction relation (north, north-west, etc.) to another object
can be translated into evaluating 2-D range queries. The op-
portunity of issuing the query on summary data arises from
the fact that the amount of data is often huge, and thus it
would be unfeasible to get an exact answer accessing the
original tuples;
3. querying time-series databases: data generated by mul-
tiple sources (sensors) can be represented in a 2-D fashion,
where one dimension is associated to the sources and the
other one to the generation time. The need to aggregate
information arises from the fact that sensors produce data
which cannot be stored in detail, as it consists of continu-
ous and “infinite” readings.

Our approach is closely related to histograms which
are suitably extended to the two-dimensional case. In the
same way as for mono-dimensional histograms, the data
distribution is partitioned into blocks, but, differently, the
adopted partition schema is hierarchical, i.e. it consists of
progressively splitting blocks produced by previous splits.

Main Contributions
1. Formal definition of the problem of summarizing two-
dimensional data arrays. We present a quad-tree based par-
tition schema and introduce the notion of Quad-Tree Sum-
mary (QTS) (the summary structure obtained applying our
partition schema on a given data distribution). We define a
metric for measuring the effectiveness of a QTS w.r.t. the
issue of estimating range queries accurately, and discuss
the problem of finding the optimal QTS (called V-Optimal
Quad-Tree Summary) w.r.t. this metric.
2. Analysis of the optimal solution and proposal of a greedy
algorithm. We present a polynomial time solution for find-
ing an optimal partition. As the resulting cost function is

��� � �� � ��� ��, and � is in general very high, we cannot
effort such a cost. Therefore we present a greedy algorithm
with cost ��� � ����� (where � is the available storage
space for the summary structure), so that it can be effec-
tively computed also for very large two-dimensional data
(� is much smaller than ��).
3. Enhancing the estimation accuracy of the greedy algo-
rithm by introducing indices. In order to achieve a better
estimation of range queries over aggregate data, instead of
finding a solution closer to the optimal one, we improve
the estimation inside each block by replacing linear inter-
polation with a a more accurate technique based on a com-
pact structure (called index) designed specifically for two-
dimensional data and containing an approximate descrip-
tion of the original data distribution inside the block. The
experiments we have carried out over a large number of
syntectic two-dimensional data arrays show that the greedy
algorithm with the indices have much better performances
than state of the art “general purpose” approaches.

2 Summarizing two-dimensional data: the
problem

In this section we present our quad-tree based partition
schema for summarizing two-dimensional data arrays, and
introduce the notion of Quad-Tree Summary (QTS) (the
summary structure obtained applying our partition schema
on a given data distribution). We define a metric for measur-
ing the effectiveness of a QTS w.r.t. the issue of estimating
range queries accurately, and discuss the problem of finding
the optimal QTS (called V-Optimal Quad-Tree Summary)
w.r.t. this metric.

The basic idea underlying the choice of a simple hierar-
chical schema for partitioning the array of data arises from
the following remarks. The main drawbacks limiting the
effectiveness of any approach producing an arbitrary parti-
tion (i.e. with no constraints on where the boundaries of
the blocks can be placed) are related to the amount of space
required to store the partition itself. In fact, the advantage
of these approaches is that they can derive a very “good”
partition avoiding that large differences of values occur in
each block of the partition. But, as the space bound is gen-
erally “small”, this advantage is often deleted by the cost of
representing the structure of the compressed data (i.e. the
boundaries of the blocks), so that only partitions consisting
of a few blocks can be stored.

A way for solving the above problem consists of find-
ing partitions whose representation can be done compactly.
A naive solution consists of dividing each dimension into
equally sized ranges (equi-range partition). In this way, no
additional information has to be stored for representing the
partition itself, and thus partitions consisting of much more
blocks (w.r.t. the arbitrary approach) are obtained. Unfortu-



nately, blocks produced using this technique do not fit any
requirement about the variance of contained values, since
the partition technique is done “blindly”.

Our partition technique is neither too blind nor too arbi-
trary: it fits the actual distribution of data (defining finer-
grain blocks where data is more skewed) and, at the same
time, it needs not use a large amount of space for storing the
partitioning structure.

2.1 Quad-Tree Partition

We are given a two-dimensional data distribution �
which can be also viewed as a two-dimensional array of
size �� � ��. A range �� on the 	-th dimension of � is an
interval �

�, such that � � � � � � ��. Boundaries � and �
of �� are denoted by �
���� (lower bound) and �
���� (upper
bound), respectively.

Given a range�� on the dimension 	, we denote by ������
(left half) the range �
����

���
���� � �
�������� on 	, and
by ������ (right half) the range ���
���� � �
�������� �
�

�
����.

A block � (of D) is a pair ���� ��� where �� is a range
on the dimension 	, for each � � 	 � �. �� and �� are
said sides of �. A pair ���� ��� such that �� is either �
����
or �
���� and �� is either �
���� or �
���� is said a vertex
of �. Informally, a block represents a “rectangular” region
of �. A block � of � containing no non-zero elements is
called a null block.

Given a block � we denote by ������ (������, resp.)
the sum (the average, resp.) of the array elements occurring
in the block �.

Given two ranges ��� �� defining the block � � ���� ���,
a quad-split block of � is any block ���� ��� such that �� is
either ������ or ������. Observe that, for a given block �
of �, there are � different quad-split blocks; each of these
correspond to one of quadrants of �.

Given a block � � ���� ��� of �, we denote by ����
the 4-tuple ���� ��� ��� ��� such that �� � �������� �������,
�� � �������� �������, �� � �������� �������, and �� �
�������� �������. ���� is said the quad-split partition of
�. Often, with a little abuse of notation we refer to ���� as
a set. Informally, the quad-split partition of � contains the
four quadrants of �.

Given a ��ary tree � , we denote by ������� � the set
of nodes of � , by������ � the singleton containing the root
of � , �������� � the set of leaf nodes of � . We define
����� � as the set of nodes of � 	� 
 ������� � � �� 

������� �
p is the right-most child node of q�.

A quad-tree partition ��� ��� of � is a ��ary
tree whose nodes are blocks of � such that: 1)
�������� ���� � ��

��� �

���, 2) for each � 
 �����
���� ���� � ���������� ���� the tuple of children of �
coincides with its quad-split partition ����, and 3) for each

� 
 ����� ���� ���� � ���������� ���� it holds that
������ �� �.

Given a quad-tree partition� , we denote by������ � the
set 	� 
 �������� � � ������ � ��. From condition 3 in
the definition of quad-tree partition, it follows that������ �
contains all the nodes with sum zero, as there cannot exist
any internal node whose sum is zero. Moreover we denote
by  ������ � the set ������� � � 	����� �

�
������ ��.

2.2 Quad-Tree Summary

A quad-tree summary �� ��� of � is a pair ���  �
where � is a quad-tree partition of � and  is the set of
pairs ��� ������� where � 
  ������ �. That is, each pair
in  denotes a range of � (belonging to  ������ �) and
the value of the corresponding sum. Informally,  ������ �
represents the set of nodes whose sum must be necessarily
stored, whereas ����� � contains the nodes whose sum can
be evaluated using the sums of nodes in  ������ �. More
precisely, for each node � in����� �, ������ � ��������

�����������	���
� ������, where � is the parent node of
� and !�	�������� represents the set of child nodes of �.
That is, the sum of a node � which is the right-most child
of a node � can be evaluated by summing the values of the
three siblings of �, and subtracting this sum from the value
of �.

Given a quad-tree summary �� � ���  � of �, �
is said the partition-tree of �� , and we denote it by
������� �;  is said the content set of �� and we de-
note it by !������ �. A node � of � is said a terminal
block if � 
 �������� �, a non-terminal block otherwise.

With a little abuse of notation, throughout the paper
we will adopt the shortcuts ������� �, �������� �,
��������� �,  ������� � and ������� � de-
noting ������������ ��, ������������� ��,
�������������� ��,  ������������ �� and
������������ ��, respectively.

In Figure 1 a graphical representation of a quad-tree
summary is reported. White nodes are those of the set
����� �. In the same figure we have also depicted the
graphical representation of the partition � .

The storage space for a quad-tree summary �� �
���  � is the space occupied by the representations of� and
 . � can be represented by a string of bits: each pair of bits
is associated to a node of � and indicates whether the node
is a leaf or not (i.e. whether the block corresponding to the
node is split or not) and, if it is a leaf, whether it is null or
not. In particular: (1) ��� �� means non null terminal node,
(2) ��� �� means null terminal node, (3) ��� �� means split
node (i.e. non terminal node). Observe that it remains one
available configuration (i.e., ��� ��) which will be used in
Section 4.2. Clearly, in case (2), the sum of the block is not
kept, thus saving 32 bits. Therefore, the string representing
the partition ������� � contains � � ��������� �� bits.



Figure 1. A quad-tree based partition

The storage space needed for representing  is the space
occupied by the set 	������ 
  ������ � 
 ���� ��� 
  �.
Therefore,  can be efficiently stored by means of an ar-
ray of size � ������ �� � �� bits, whose elements are the
sums calculated inside each block in  ������ �. The order
in which the sums are stored in this array expresses their
connection to the blocks in  ������ �.

Figure 2 reports the strings representing the sums and the
structure of the quad-tree of Fig. 1.

Figure 2. Quad-tree structure encodement

Thus, the overall storage space for a quad-tree summary
�� is �	"���� � � ����������� ���� ������� ���
��. Often, throughout the paper, we refer to �� ��� also
as the compressed representation of the array �.

2.3 Estimating range queries on a QTS
We focus our attention on sum range queries. Let � be the

range of the query. The estimate is computed by visiting the
quad-tree underlying the QTS starting from its root (which
corresponds to the whole data array). When a node is being
visited, three cases may occur:
1. the range corresponding to the node is external to �: the
node gives no contribution to the estimate;
2. the range corresponding to the node is entirely contained
into �: the contribution of the node is given by its sum;
3. the range corresponding to the node partially overlaps
�: if the node is a leaf, linear interpolation is performed
for evaluating which portion of the sum associated to the
node lies onto �. Otherwise, the contribution of the node
is the sum of the contributions of its children, which are
recursively evaluated.

The crucial issue is how to build �� ��� in order to
maintain satisfactory accuracy in (range) query estimation.
This is the matter of the next section.

2.4 V-Optimal Quad-Tree Summary

Let � be the available storage space for representing
the quad-tree summary of �. The value of � defines
the set of all the quad-tree summaries �� ��� such that
�	"���� ���� � �. Among this set we could choose
the best partitioned array w.r.t. some metrics. The met-
rics certainly has to be related to the approximation er-
ror, but a number of possible ways to measure the er-
ror of a compressed representation of a data array can be
adopted. Following a well-accepted approach in litera-
ture, we measure the “goodness” of the compressed rep-
resentation of a data array by using its SSE. Formally,
given a quad-tree summary �� :   #��� ���� ��


�����
�������
  #����, where, given a terminal block

��:   #���� �
�

��
�
��	$
� ��������

�, where by
�

��
�
we denote that the summation is extended to all the ele-
ments of the original array � belonging to the block � �.
Clearly, the smaller   #��� ����, the “better” the rep-
resentation provided by �� ��� is, in terms of accuracy.

Definition 1 Given a two-dimensional data distribution
�, we call V-Optimal Quad-Tree Summary on �
(for a bounded storage space �) a Quad-Tree Sum-
mary �� ���� such that, �	"���� ����� � � and
  #��� ����� � �	����	  #�%���, where� is the
set of all Quad-Tree Summaries on � with space bound�.

3 Summarizing two-dimensional data: exact
and greedy solutions

In this section we address the problem of finding the op-
timal quad-tree summary w.r.t. the SSE metric (V-Optimal
QTS). We study the complexity of computing the optimal
solution, drawing the conclusion that it is unfeasible on
large data distributions. Therefore, we propose a greedy
algorithm finding a sub-optimal solution efficiently. We re-
mark that all the complexity results which are provided in
this section and in the following one are given under the as-
sumption that, for any block � of a partition, the time com-
plexity of evaluating ������ as well as   #��� is constant.
In other words we are assuming to pre-compute and keep
enough information to derive the sum and the SSE of each
block of a partition. For instance, given the array of partial
sums & of size ����� such that& 		� $
 � ������

	� �

$��,
the sums of the elements of a block of any size can be com-
puted accessing 4 elements of & (see [5] for more details).

Theorem 1 Given a two-dimensional data distribution
� of size �����, a V-Optimal Quad-Tree Summary



�� ���� with space bound � can be computed in time
��� ��� � ��� ��.

In theory the algorithm could work in exponential time,
as � is not bounded. In practice � � ����� since the size
of the compressed array (i.e �) must be much less than the
size of the original one (i.e. �� � ��, assuming that each
value of the array is represented using 32 bits). Therefore,
from Theorem 1 we have that a V-Optimal Quad-Tree
Summary can be computed in polynomial time.

Remark. We point out that finding an arbitrary partition (i.e. with no

constraints on its structure) minimizing SSE is a NP-Hard problem, as

shown in [11]. Our problem is tractable because of the restrictions on

the type of partition underlying the summary. Optimization problems on

quad-tree partitions, similar to ours, have been studied in the context of

motion estimation for video compression. The main difference w.r.t. our

optimization problem is the resource bound given on the admissible parti-

tions. In particular, the problem of finding the optimal quad-tree partition

w.r.t. a large class of metrics (including SSE) with a bound on the num-

ber of leaves has been studied in [9], and an algorithm working in time

���� � ����� has been proposed. However the problem addressed in the

latter work is even simpler than ours, since our bound is more “general”.

That is, our bound on the space available to represent the QTS could be re-

duced to a bound on the number of leaves only if we were guaranteed that

the partition did not identify any null block. Moreover our approach can

work better than ���� � ��� ��, as � is often much smaller than �� � �� .

We point out that the problem of minimizing the SSE is tractable even with

less restricted types of partition, such as binary hierarchical partitions (i.e.

hierarchical partitions corresponding to binary trees which are not con-

strained to split blocks into equal sub-blocks). The problem of finding the

binary hierarchical partition which minimizes SSE has been shown to be

polynomial in [11], but its bound (i.e. ���� � ���) is even greater than

ours. Indeed the problem investigated in the latter work is rather differ-

ent from ours, as the hierarchical partition is not constrained to split blocks

into equal sub-blocks; moreover, the issue of re-investing the storage space

saved by efficiently representing null blocks is not addressed.

Nevertheless, for large data distributions, the bound
��� ��� � ��� �� makes finding the optimal solution too in-
efficient. In order to reach the goal of minimizing the SSE,
in favor of simplicity and speed, we propose a greedy ap-
proach, accepting the possibility of obtaining a sub-optimal
solution. Our approach works as follows. It starts from the
quad-tree summary whose partition tree has a unique node
(corresponding to the whole �) and, at each step, selects a
leaf of the quad-tree (according to some greedy criterion)
and applies the quad-split partition to it. Every time a new
split is produced, 4 new born nodes are added to the quad-
tree. If any of such nodes corresponds to a block with sum
zero, we save the 32 bits used to represent the sum of its el-
ements. Anyway, recall that only 3 of the 4 nodes have to be
represented, since the sum of the remaining node can be de-
rived by difference, by using the parent node. A number of

possible greedy criteria for choosing the block which is the
most in need of partitioning can be adopted. For instance,
we can choose the block with maximum SSE, or the block
whose split produces the maximum global SSE reduction,
or the block with maximum sum, and so on. However, after
comparing all the above mentioned greedy criteria by means
of experiments, we have chosen to use the greedy criterion
of the maximum SSE.

The resulting algorithm is the following:

Greedy Algorithm 1
Let � be the storage space available for the summary.

begin
� �� � ��� ����		
�� �		
��� ��
���		
�� �		
����� �;
� �� � � ��� �;
// 32 bits are spent for the sum of the whole array;
// 2 bits are spent for recording the structure of the partition;
while �� � ��

Select a node � in ��������� such that:
������ � 
���������������������;

Let ����� be the set of nodes obtained by splitting � and
selecting its non null children except the right-most one;
� �� � � ������� � ��� � � �;
if (� � �)
� �� � �������������� �� �

������� �
�

�������
���� ��
���� � �;

// � is modified according to the split of �;
end if

end while
return �;

end

Therein: (i) �� is the partition tree containing only one node
(corresponding to the whole array), and (ii) the function
 ��	� takes as arguments a partition tree �� and a leaf node
� of ��, and returns the partition tree obtained from � � by
inserting ���� (i.e., the quad-split partition of �) as children
nodes of �.

Theorem 2 Given a two-dimensional data array � of size
�����, a space bound � � �����, Greedy Algorithm
1 computes a Quad-tree Summary �� ��� with space
bound� in time ��� � �����.

4 Improving the greedy solution using in-
dices

In this section we propose a technique for improving the
estimation accuracy of the QTS returned by Greedy Algo-
rithm 1. This is done by storing, beside the overall sum of
the elements occurring in each block, further information
helping us in reconstructing range queries inside the blocks.
The use of this further information, in general, allows us to
get a more accurate estimate than that provided by linear
interpolation, as, after partitioning the array of data, we are



not guaranteed that blocks contain so uniform data distribu-
tions that CVA can be effectively applied. This information
is encoded into a 64-bits compact structure (called index),
and consists of an approximate description of the actual data
distribution contained in a block. That is, instead of trying
to improve the “quality” of the partition w.r.t. the optimal
one, we concentrate on improving intra-block estimation,
replacing linear interpolation with a a more accurate tech-
nique.

In the following, we first define the structure of indices
and describe how they can be used for estimating range
queries inside blocks. Then we show how to embed indices
in a QTS, thus obtaining a new summary structure called In-
dexed Quad-Tree Summary (IQTS). Finally, we provide an
efficient greedy algorithm producing an IQTS and analyze
its complexity.

4.1 Indexing two-dimensional data blocks

Experience acquired in [2, 3] for one-dimensional his-
tograms inspired us in storing approximate sums of internal
sub-blocks of a given block 
 in an hierarchical fashion, by
means of a quad-tree partition with a fixed depth.

We define three index types with different organization
of sub-blocks, so that we may select the index which better
approximates data distribution inside a block: (1) 2/3LT-
index, which is suitable for distributions with no strong
asymmetry, (2) 2/4LT-index, which is oriented to biased dis-
tributions, (3) 2/p(eak)LT-index which is designed for cap-
turing distributions having a few high density peaks. The
three types of index use the same amount of storage space,
64 bits, and are next described in detail.
2/3LT-index. The block is partitioned into 4 sub-blocks (its
quadrants) which in turn are further divided into other 4 sub-
sub-blocks. The aggregation leads to the balanced tree in-
dex with 3 levels of Figure 3 where nodes correspond to
sub-blocks of the block � of the figure. The node at level 1

Figure 3. 2/3LT-index

(i.e. corresponding to the sum of the entire block) is explic-

itly represented by 32 bits (with no approximation). As for
the other levels, the simplest approach would be to store the
sums corresponding to the grey nodes of the index, whereas
the other sums can be derived by difference, using the par-
ent node. We instead use a different storing scheme. At
level 2, we keep only approximated sums of regions '�,
�� and !�, as shown in Figure 4.

Figure 4. '�, ��, !� regions inside a block

From the sums of '�, �� and !�, we can derive sums
corresponding to all the nodes of the level 2 of the index:
������������!��
������������'��� ����!��
���������������� ����!��
�������������������'���������������!��

We adopt the same storage scheme at level 3. Thus, for
the sub-block �� (for � � 	 � �), we keep the sums of
'�� , ��� and !�� , respectively. An example of index for
a block with sum �� is shown in Figure 5.

Figure 5. Building a 2/3LT-index

The figure also indicates the number of bits used for
each sub-block sum. The overall storage space of 64 bits
is used as follows. For the region '� we use a string of
6 bits, denoted by ��������, which represents the sum
of '� as a fraction of the sum of �. More precisely,

�������� � �����
�
�������
������ � ������

�
. The approxi-

mate value ����'�� of ����'�� can be obtained from

�������� as
��������

���� � ������. We do the same for
the region ��, as the two regions have the same size and
we thus expect, on the average, that they contain sums of
the same magnitude. For the region !� we decrease by 1
the number of employed bits, and exploit them for repre-



senting the sum of !� as a fraction of the minimum be-
tween the sum of '� and the sum of �� — let '�� be
this minimum. The 5-bit string associated to !� thus con-

tains �������� � �����
�

�������
��������

� ������
�

, and con-

sequently the approximate value ����!�� of ����!��

can be computed as
��������

���� � ����'���. The reduc-
tion of 1 bit (w.r.t. '� and ��) for representing the sum
of !� is justified by the observation that the size of !� is
in the average half of that of '� and ��) and then we ex-
pect a sum in !� that is half of their sums. For the lowest
level, we use 4 bits for '�� and ��� , and 3 bits for !��

(for � � 	 � �) – see Figure 5.
In sum, the final storage space balance is �����������

� � �� � �� bits. Observe that (some of) the 3 remaining
bits to two words will result useful for identifying the type
of index being used — this issue will be detailed later on.
2/4LT-index. This index is unbalanced, and tries to cap-
ture “heterogeneous” data distributions. A 2/4LT-index is
built as follows. First the block is partitioned into four
quadrants. Then, the two quadrants containing the most
skewed data distributions are further split. In particular,
the more skewed quadrant is split into 16 equally sized
portions, and the other one into four quadrants. For in-
stance, the index in Fig. 6 describes a block where the
region �� contains a very skewed data distribution, the re-
gion�� is less skewed than��, whereas the regions�� and
�� contain quite uniform distributions. Observe that, for a

given block, there are � �

�
�
�

�
possible different kinds

of 2/4LT-indices (depending on which pair of quadrants is
chosen to assign resolution 4 and 3, respectively). Thus we
need 4 bits to identify one 2/4LT-index among all possible
ones. The overall storage space required for a 2/4LT-index
is � � � � � � � � �� � � � �� � � � �� � � � �� � �
 bits.
Thus, with 4 of the 5 remaining bits we identify the kind of
2/4LT-index. We will see in the following that the remain-
ing bit is enough to identify 2/4LT-index among the other
ones (i.e. 2/3LT-index and 2/pLT-index).

Figure 6. The structure of a 2/4LT-index

2/pLT-index. This index is designed to capture the case
of a few density peaks concentrated in a quadrant of the
block � to which the index is applied. In particular, the
2/pLT-index has levels 1 and 2 as the 2/3LT-index. More-
over, the node of the level 2 corresponding to the quad-

rant with maximum SSE, say ��, is associated with 43 bits
recording the sum of 5 sub-blocks of the quadrant� �. Such
5 sub-blocks are the 5 sub-blocks with highest sum among
all sub-blocks obtained from �� by dividing its sides into 8
equi-size ranges. The 5 sub-blocks are identified by 5 pairs
of 3-bit coordinates (each pair, consisting of 6 bit, identi-
fies one sub-block among the 64 possible ones). Each of
the 3 highest sums is represented by 3 bits, whereas each
of the other 2 sums is represented by 2 bits. Therefore, we
have � � � � �� bits for representing the coordinates and
� ���� �� � �� bits for the sums. Thus, the overall storage
space spent for the “internal” description of � � is ��. The
overall storage space of the 2/pLT-index is �� bits, obtained
by summing 43 bits to the bits needed for representing the
level 2, that are � � � � � � ��. The remaining 4 bits are
used, as we shall see, to identify the 2/pLT-index among the
other kinds, and to identify the quadrant which is provided
with the internal description.

Overview of the representation of 2/nLT-indices. The
64 bits of the indices are organized as a 2-words frame & :
2/3LT-index requires 61 bits, 2/4LT-index 59 bits and 2/pLT-
index requires 60 bits. The frame has a header consisting of
& 	�

�
 (i.e. the first 3 bits of & ) for the 2/3LT-index, of
& 	�

�
 for the 2/4LT-index, and of & 	�

�
 for the 2/pLT-
index. This header is exploited to encode the structure of
the index. In particular,& 	�
 � � identifies the 2/4LT-index,
& 	�

�
 � ��� �� identifies the 2/3LT-index, and & 	�

�
 �
��� �� identifies the 2/pLT-index. For the 2/3LT-index no
further information has to be encoded about the structure of
the index, so that the bit & 	�
 is not used. For the 2/4LT-
index, the remaining 4-bits portion of the header & 	�

�

is used to identify which kind of 2/4LT-index (among the
12 possible ones) is contained in & (that is, which is the
quadrant with resolution 4 and which is the quadrant with
resolution 3). Finally, for the 2/pLT-index, the remaining
2-bits portion of the header & 	�

�
 identifies the quadrant
to which the 43-bits internal description is associated.

Evaluation of a query using a 2/nLT-index. The con-
tribution of a block equipped with an index to the estimate
of a range query can be done by visiting the quad-tree un-
derlying the index in the same way as it has been shown in
Section 2.3. Linear interpolation is used on the leaves of the
quad-tree. In particular, for a 2/pLT-index, the contribution
of the node containing the peaks is evaluated by summing
the contribution of every peak inside the query range with
the contribution of the remainder portion of the node.

We remark that the choice of the hierarchical partition
underlying indices aims to reduce numerical approximation
errors deriving from the use of few bits for representing
the sums. It can be shown that it produces smaller errors
than a flat partitioning of the block into a number of sub-
blocks[3]. Indeed, in the latter case, the sum of a single
sub-block should be represented as a fraction of the entire



sum of the block. On the contrary, using the hierarchical
approach, the sum corresponding to a node is represented
as fraction of the sum of its parent, which, in general, has a
smaller value than the sum of the entire block.

Selection of the best 2/nLT-index. We select the best
2/nLT-index for a block � on the basis of the actual distri-
bution of data inside the block, by measuring the approxi-
mation error carried out by the index. As a measure of the
approximation error of an 2/nLT-index ( we use:

����� �

���
		�

������	�� ���
��	��
� (1)

where 
� represents the 	�th (among �� ones) sub-block of
� obtained by dividing its sides into � equal-size ranges, and
�����
�� represents the estimation of the sum of elements
occurring in 
� which can be done by using the 2/nLT-index
( and the knowledge of ������ (recall that the estimation
of such sums can be done as explained above). For a block
�, we choose the 2/nLT-index ( with minimum )
�(�. In-
deed, instead of computing )
�(� for all the possible in-
dices of �, we consider as candidates only three indices:
the 2/3LT-index, the 2/4LT-index which investigates the two
quarters of � with largest variance (describing the quarter
with maximum variance using the highest resolution) and
the 2/pLT-index which investigates the quarter with largest
variance. We denote such a set of indices associated to the
block � by �������. It could be easily shown that choosing
the best 2/nLT-index can be done with a number of opera-
tions constant w.r.t. the size of the block, under the assump-
tion of Section 3.

4.2 A greedy algorithm using 2/nLT-indices

In this section we show how the use of the already de-
scribed 2/nLT-indices can be embedded in the construction
of a new type of quad-tree summary in order to improve the
estimation accuracy. The new summary structure is called
Indexed Quad-Tree Summary (IQTS). The basic idea is to
embed indices in a quad-tree summary equipping each ter-
minal block with an appropriate 2/nLT index (to be used
in intra-block interpolation). Indeed, the application of the
2/nLT-index does not necessarily give a real benefit (w.r.t.
CVA) to the estimation accuracy. There might be nodes
such that the application of the 2/nLT-index fails. For in-
stance, for a block containing a perfectly uniform data dis-
tribution, the use of indices introduce some approximation
in the estimates (as values are stored with some loss of pre-
cision in every type of index), whereas CVA provides ex-
act answers. To detect such nodes, we need to define how
we measure both the error carried out by the (best) 2/nLT-
index and the error produced by CVA estimation (used in
absence of 2/nLT-index). Concerning the former type of er-
ror we evaluate: )���
 � �	��������
�)
�(�, where )
�(�
is defined by (1) in Section 4 and������� is defined in Sec-

tion 4, just after (1). Concerning CVA estimation we de-
fine: )���
 �

���
�	������
�� � �������
���

�, where �
is a non null block of �, 
� represents the 	�th (among ��
ones) sub-block of � obtained by dividing its sides into �
equal-size ranges, and �������
�� represents the estima-
tion of the sum of elements occurring in 
 � done by using
CVA and the knowledge of ������. We evaluate, for each
node �, the difference: Benefit
 � )���
 �)���
 , which will
be used for deciding whether � has to be equipped with an
index. We expect, in most of the cases, a negative value of
Benefit
 as result. But for some blocks, it might happen that
CVA works better than the indexing technique, and thus we
would have a positive value for the above difference. If so,
we decide not to store any index for the block, in order to
save storage space that can be reinvested in further splits.

The two bits (per node) describing the structure of the
quad-tree summary (see Section 2.2) can now be used to
encode every possible type of node. In particular: (1)
��� �� means non null terminal node without any 2/nLT-
index, (2) ��� �� means null terminal node, (3) ��� ��
means non null terminal node with 2/nLT-index, and (4)
��� �� means split node (i.e. non terminal node). Re-
call that, in case (2), the sum of the block is not kept,
saving thus 32 bit. Given an Indexed Quad-Tree Sum-
mary (�� , the definitions of the sets ������(�� �,
 �����(�� �, �������(�� � and �����(�� � can be
trivially extended from the ones given in the context of
Quad-Tree Summaries. Also the notion of   #�(�� �
is analogous to the one introduced for Quad-Tree Sum-
maries. Moreover, we denote by (���������(�� � the
set 	� 
 �������(�� �� Benefit
 * ��, i.e. the set of
leaves which are equipped with an index. The overall stor-
age space for an Indexed Quad-Tree Summary (�� is:
�	"��(�� � � � � �������(�� �� � � �����(�� �� �
��� �(���������(�� �� � ��. A greedy algorithm for the
construction of an indexed quad-tree summary can be ob-
tained from the one building a QTS by taking into account
the storage consumption of the indices needed on the termi-
nal blocks, at each partition step. In more detail, at each step
the new algorithm performs a new split. Then, the follow-
ing quantities are subtracted from the amount of currently
available storage space �: 1) the space needed to represent
the sums of the children of the current node �, 2) the space
needed to equip every child � with Benefit
 * � with an in-
dex, 3) the space needed to update the quad-tree structure.
Finally, 64 bits are added back to � if Benefit	 * �, i.e. if,
at some previous step, the space needed to equip � with an
index was subtracted from�. The resulting algorithm is the
following:

Greedy Algorithm 2
Let ���
��� be a function receiving a set of blocks � and returning the
maximal subset � of� such that 	� 
 � Benefit� � � (i.e. the application
of a 2/nLT-index is fruitful).



Let � be the storage space available for the summary.
begin
� �� � ��� ����		
�� �		
��� ��
���		
�� �		
����� �;
� �� � � ��� ����
����		
�� �		
����� � 	�� �;
// 32 bits are spent for the sum of the entire array;
// ����
����		
�� �		
����� � 	� counts the bits spent to
// apply the 2/nLT-index to the entire array;
// 2 bits are spent to record the structure of ��;
while �� � ��

Select a node � in ��������� such that:
������ � 
���������������������;

Let ����� be the set of nodes obtained by splitting � and
selecting its non null children except the right-most one;
� �� � � ������� � ��� ����
������� � 	�



����
������ � 	�� � � �;
if (� � �)
� �� � �������������� �� �

������� �
�

�������
���� ��
���� � �;

end if
end while
Apply the most suitable 2/nLT-index to
each block in ���
�����������;
return �;

end

where (i) �� is the partition tree containing only one node
(corresponding to the whole array), and (ii) the function
 ��	� takes as arguments a partition tree �� and a leaf node
� of ��, and returns the partition tree obtained from � � by
inserting ���� (i.e., the quad-split partition of �) as children
nodes of �.

Theorem 3 Given a two-dimensional data array � of size
�����, Greedy Algorithm 2 computes an Indexed Quad-tree
Summary (�� ��� with space bound � � ����� in time
��� � �����.

Remark. We point out that the solution provided by Greedy Algorithm

2 is even worse (w.r.t. the SSE metric) than the one computed by Greedy

Algorithm 1. In fact, the space needed to keep indices reduces the number

of nodes of the partition that can be stored within a given space bound,

thus reducing the number of splits that can be performed while partition-

ing data. As each split reduces the overall SSE of the partition (SSE is

a super-additive metric), the partition computed by Greedy Algorithm 2

has an SSE which is never smaller than the one of the solution returned

by Greedy Algorithm 1. However, as we will show in the next section,

the index-based approach shows better performances w.r.t. greedy QTS,

allowing us to draw the conclusion that it is better to invest some space for

adding quantitative data (thus improving intra-block estimation), rather

than to use all the available space for producing partitions with finer-grain

blocks.

5 Experimental Results

In this section we present some experimental results
about the accuracy of estimating sum range queries on
quad-tree summaries, comparing our method with the state-
of-the-art techniques in the context of compressed data. In

particular, we compare our technique with the histogram-
based technique MHIST proposed in [13], and with the
wavelet-based techniques proposed respectively in [15] and
[16]. In order to prove that the usage of 2/nLT-indices im-
proves the accuracy of quad-tree summaries, we have tested
both �� and (�� . The experiments were conducted at
the same storage space.

First, we briefly describe such three techniques; next, we
present the test bed used in our experiments.
MHIST (Multi-dimensional Histogram). An MHIST his-
togram is built by a multi-step algorithm which, at each
step, chooses the block which is the most in need of par-
titioning (as explained below), and partitions it along one
of its dimensions. The block to be partitioned is chosen as
follows. First, the marginal distributions along every di-
mension are computed for each block. In the 2-D case, the
marginal distribution of a block 
 � �+�

+�� ,�

,�� along
the first dimension is obtained by computing, for each + �
(	 � �

�), the value �����+�

+�� ,�

,���. The block 

to be split is the one which is characterized by a marginal
distribution (along any dimension - �) which contains two
adjacent values �� , ��
� with the largest difference w.r.t.
every other pair of adjacent values in any other marginal
distribution of any other block. 
 is split along the dimen-
sion -� by putting a boundary between �� and ��
�. For
each block, three values are stored: the sum of its elements
and the positions of its front corner (w.r.t. the linear order of
the cells) and its far corner. Denoting the amount of avail-
able storage space as �, the number of blocks which can be
stored is given by: �����.

Wavelet-based Compression Techniques. Wavelets are
mathematical transformations implementing hierarchical
decomposition of functions. They have been originally used
in different research and application contexts (like image
and signal processing), and recently have been applied to se-
lectivity estimation [10] and to the approximation of OLAP
range queries over data cubes [15, 16]. The compressed
representation of a data distribution is obtained in two steps.
First, a wavelet transformation is applied to the data distri-
bution, and � wavelet coefficients are generated (the value
of � depends both on the size of the data and on the partic-
ular type of wavelet transform which has been used). Next,
among such � coefficients, the � * � most significant
ones (i.e. the largest coefficients) are selected. For each
selected coefficient, two numbers are stored: its value and
its position. Thus, denoting the amount of available storage
space as �, the number of coefficients which can be stored
is given by: �����.

The compression technique described in [15] does not
apply the wavelet transform directly to the source array of
data. First, the partial sum data array is generated, and each
of its cell values is replaced with its natural logarithm (it has
been shown that the combination of the logarithm transfor-



mation with the approximation technique generally reduces
the relative error of the approximation). Then, the above de-
scribed compression process is applied to such an obtained
array.

In [16] a sophisticated wavelet based technique which
mainly aims to improve the I/O efficiency of the compact
data construction is proposed. The main difference with the
approach described above is that it is applied directly on the
source data.

In the following, the two wavelet based techniques will
be denoted respectively as WAVE1 (working on the partial
sum data array) and WAVE2.

5.1 Measuring approximation error

We denote the exact answer to a sum query � � as  �, and
the estimated answer as � �. The absolute error of the es-
timated answer to �� is defined as: ����� � ��� � � ��. The

relative error is defined as: ����� � ���� ����
���������

. Our defi-
nition of relative error is the same as the one used in [16],
and is slightly different from the classical one, which is not
defined when  � � �.

The accuracy of the various techniques has been evalu-
ated by measuring the average absolute error � ���� � and
the average relative error � ���� � of the answers to the range
queries belonging to the following query sets:
1. � �: it contains all the sum range queries defined on a
range s.t. one of its vertices coincides with a vertex of �;
2. � ��������: it contains the sum range queries defined
on all the ranges of size �� � �� (here the vertex of the
query does not necessarily coincide with a vertex of �);
3. � 


� and � 

� �������: they contain all the queries

belonging to � � and, respectively, � ��������, whose
answer is not null;
4. � �

� and � �
��������: they contain all the queries be-

longing to� � and, respectively,� ��������, whose an-
swer is null.

Query sets � 

� and � 


� have been introduced since
it can be meaningful to treat the approximation error of a
query whose exact answer is zero differently w.r.t. the error
of a query with non-zero answer. That is, when the exact
answer is zero, the absolute error of the estimated answer
is a good metrics for the approximation error: if  � � � it
is meaningful to check whether � � is small or not. Thus,
we use different ways for measuring approximation errors:
by computing � ���� � over � � and � �, we “put to-
gether” the relative errors of queries whose answer is not
zero with the absolute errors of queries whose answer is
zero. By computing � ���� � over� 


� , � 
� , and � ���� �
over � �

� , � �� we consider the case  � � � separately
from the case  � �� �. In the following, the values of the
average relative error and the average absolute error eval-
uated on a query set � will be denoted, respectively, as:
� ������ � � and � ������ � �.

5.2 Synthetic Data Sets

The synthetic data sets used in our experiments are sim-
ilar to those of [16]. The synthetic data generator popu-
lates � rectangular regions of a two-dimensional array of
size � � �, distributing into each of them a portion of the to-
tal sum value � . The size of the dimensions of each region
is randomly chosen between ���� and ����, and the regions
are uniformly distributed in the two-dimensional array. The
total sum � is partitioned across the � regions according to a
Zipf distribution with parameter ". To populate each region,
we first generate a Zipf distribution whose parameter is ran-
domly chosen between "��� and "���. Such a distribution
contains as many values as the number of cells inside the
region. Next, we associate these values to the cells in such
a way that the closer a cell to the centre of the region, the
larger its value is. Outside the dense regions, some isolated
non-zero values are randomly assigned to the array cells.

5.3 Results

Experiments on synthetic data show the superiority of
our technique w.r.t. other methods. We consider the accu-
racy of the various methods w.r.t. to several parameters, i.e.
the storage space available for the compressed representa-
tion, the skew inside each region, the size of the queries (us-
ing query set � �), and we consider both dense and sparse
data arrays. The storage space is expressed as the number
of 32 bits integers which are available for the compressed
representation of the array.
Storage space We considered several sparse data arrays of
size ��������� generated by setting ���� � ��, ���� � ��,
"��� � �
�, "��� � �
�, containing about ����� non zero
cells, and dense data arrays of size ��� � ���, with ���� �

�, ���� � ���, "��� � �
�, "��� � �
�, containing
about 
���� non zero cells. The accuracy of the estimates
w.r.t. the storage space (i.e. the number of 32 bit words
used for representing the compressed data array) is depicted
in Fig.7 (sparse data) and Fig.8 (dense data). We used a
logarithmic scale for � ������ 
� � � and � ������ ��� �,
and a linear scale for � ������ �� �. In particular, in the
picture representing the average relative error on � � of
Fig.8, only �� and (�� are compared, as the errors
produced by the other methods are out of scale.

Skew inside regions We considered sparse data arrays
of size ���� � ���� with ���� � ��, ���� � ��, obtained
for different values of the skew inside each region. The ac-
curacy of the estimation (measured using � ������ 
� � �)
w.r.t. the different skew values is depicted in the picture
on the left-hand side of Fig.9. Interestingly, all the tech-
niques are more effective in handling small and large levels
of skew than intermediate ones (" � �
�). When the skew
is high, only a few values inside each region are very fre-
quent, so that the dense regions contains mainly these val-
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Figure 7. Errors of estimates for sparse data
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Figure 8. Results for dense data

ues. MHIST and QTS group these values into the same
blocks causing small errors, and the wavelet decomposi-
tion applied in these regions generates a lot of coefficients
with value zero. Analogously, when the skew is small, the
frequencies corresponding to different values are nearly the
same and thus the data distribution is quite uniform, so that
the CVA assumption generates small errors.

Size of the query We considered the same sparse and
dense arrays used for measuring the accuracy w.r.t. the
storage space, and evaluated the accuracies of the vari-
ous techniques for different query sizes on the compressed
representations obtained using 1600 4-byte integers. In
the picture on the right-hand side of Fig. 9, the value
of � ������ 
� ������ � obtained on sparse data for dif-
ferent values of the query size (i.e. �) is reported. In
the picture on the bottom-right corner of Fig.8, values of
� ������ 
� ������ � obtained for dense data are shown.
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Figure 9. Results for sparse data
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