
A Formal Model of the Semantic Web Service Ontology

(WSMO)

Hai H. Wanga, Nick Gibbinsb, Terry R. Paynec, Domenico Redavidd

aSchool of Engineering and Applied Science, Aston University, Birmingham, UK
h.wang10@aston.ac.uk

bSchool of Electronics and Computer Science, University of Southampton, Southampton,
UK nmg@ecs.soton.ac.uk

cSchool of Computer and Mathematical Sciences, University of Liverpool, Liverpool, UK
T.R.Payne@liverpool.ac.uk

dDipartimento di Informatica, Universit degli Studi di Bari, Bari, Italy
redavid@di.uniba.it

Abstract

Semantic Web Service, one of the most significant research areas within
the Semantic Web vision, has attracted increasing attention from both the
research community and industry. The Web Service Modelling Ontology
(WSMO) has been proposed as an enabling framework for the total/partial
automation of the tasks (e.g., discovery, selection, composition, mediation,
execution, monitoring and etc.) involved in both intra- and inter-enterprise
integration of Web Services. To support the standardisation and tool support
of WSMO, a formal model of the language is highly desirable. As several vari-
ants of WSMO have been proposed by the WSMO community, which are still
under development, the syntax and semantics of WSMO should be formally
defined to facilitate easy reuse and future development. In this paper, we
present a formal Object-Z formal model of WSMO, where different aspects
of the language have been precisely defined within one unified framework.
This model not only provides a formal unambiguous model which can be
used to develop tools and facilitate future development, but as demonstrated
in this paper, can be used to identify and eliminate errors present in existing
documentation.

Keywords:
Semantics Web Service, WSMO, Object-Z

Preprint submitted to Information Systems August 3, 2011

1. Introduction

The emergence of Web services as a near-ubiquitous standards-based
technology has greatly facilitated the uptake and use of this service-oriented
paradigm, due to its being built upon de facto Web standards for syntax,
addressing, and communication protocols. The use of syntactic frameworks
such as XML has enabled the representation and publication of machine-
readable, declarative specifications that can be obtained and used by de-
velopers and applications alike. This standards-based approach is generally
considered as one of the best ways to lead the Web and its related tech-
nologies to their full potential. By developing open protocols and guidelines,
software components can easily interact with each other across different plat-
forms and different languages in a standardized manner. However, despite
the uptake and adoption of standards for services, there are still at least two
major obstacles for facilitating (and automating) the construction of large-
scale workflows within open environments: semantic and schematic hetero-
geneity. The semantics of Web service standards are well-defined (if perhaps
implicitly so within Web service tools), and the XML Schema definitions for
these standards can be used to validate the service descriptions published
by service providers. However, a problem emerges when one considers the
definitions of the services themselves, and their messages. Although XML
was designed to define the syntax of a document, it says nothing about the
semantics of entities within a document, and consequently does not assist in
the interpretation or comprehension of messages or exchange sequences [1].

Semantic Web Services [2, 3] address this problem by providing a declar-
ative, ontological framework for describing services, messages, and concepts
in a machine-readable format that can also facilitate logical reasoning. Thus,
service descriptions can be interpreted based on their meanings, rather than
simply a symbolic representation. Provided that there is support for rea-
soning over a Semantic Web Service description (i.e. the ontologies used
to ground the service concepts are identified, or if multiple ontologies are
involved, then alignments between ontologies exist that facilitate the trans-
formation of concepts from one ontology to the other), workflows and service
compositions can be constructed based the semantic similarity of the used
concepts.

Semantic Web Services can be viewed as “Semantics + Web Services”,
whereby existing Web service descriptions are annotated with semantically
rich descriptions, which can be used by applications and middleware to dis-

2

cover, compose, and validate services and workflows. This approach neces-
sitates the development of a Semantic Web Service infrastructure, and it
supports the migration of syntactically defined Web services through the in-
clusion of an additional semantic descriptions (by providing annotations of
data, message and service elements that facilitate reasoning). Current Se-
mantic Web Service research has therefore focused on defining models and
languages for the semantic markup of all relevant aspects of services, which
are accessible through a Web service interface [4, 5].

The Web Service Modelling Ontology (WSMO) is one of the most signifi-
cant Semantic Web Service frameworks proposed to date [5]. It complements
the existing syntactic Web service standards by providing a conceptual model
and language for the semantic markup of all relevant aspects of general Web
services. The language characteristics are defined through the description of
each term’s syntax, static semantics and dynamic semantics, across a number
of documents, in terms of the WSMO metamodel. To achieve a consistent us-
age of WSMO, all three aspects must be therefore precisely and consistently
defined. However, one of the major problems with the existing WSMO def-
inition is that on closer inspection, it is possible to find small deviations
in the way the model is defined. This is mainly due to ambiguities in the
way they are represented, and more specifically, in the fact that the descrip-
tions are primarily in a natural language (i.e. English), complemented with
some XML schemas and simple axioms). These different descriptions con-
tain redundancy and sometimes contradiction in the information provided.
Furthermore, with the continuous evolution of WSMO it has been very diffi-
cult to consistently extend and revise these descriptions. More importantly,
the use of natural language is ambiguous and can be interpreted in different
ways. This lack of precision in defining the semantics of WSMO can result
in a difference in comprehension and hence interpretation for different users
(including Web service providers and tool developers) for the same WSMO
model. To support a common understanding, and facilitate both standard-
isation1 and tool development for WSMO, a formal model of its language
is therefore highly desirable. Also, being a relatively young field, research
into Semantic Web services and WSMO is still ongoing, and consequently a
formal representation of WSMO needs to be reusable and extendable in a
way that can accommodate this evolutionary process.

1http://www.w3.org/Submission/WSMO

3

We therefore define and present a complete formal denotational model of
WSMO using Object-Z (OZ) [6]. A denotational approach has been proved to
be one of the most effective ways to define the meaning of a language, and has
been used to give formal semantics for many programming and modelling lan-
guages [7, 8]. In our work, Object-Z is used to provide a single formal model
for the syntax, the static semantics and the dynamic semantics of WSMO.
Also, because these different aspects have been described within a single
framework, the consistency between these aspects can be easily maintained.
Object-Z (OZ) [6] is an extension of the Z formal specification language to
accommodate object orientation. The main reason for this extension is to
improve the clarity of large specifications through enhanced structuring.

The paper is organised as follows. Section 2 briefly introduces WSMO,
whereas Section 3 presents how to model the WSMO constructs using Object-
Z. Section 4 is devoted to a formal Object-Z model of WSMO syntax and
static semantics, whereas Section 5 presents a formalisation of the dynamic
(execution) semantics of the WSMO model constructs. In Section 6, we
use Amazon Web services as a case study to demonstrate how the Object-Z
model can be used to specify a WSMO service model. Section 7 discusses
some of the benefits of this formal model, before we conclude the paper and
discuss possible future work in Section 8.

2. WSMO

The Web Service Modelling Ontology (WSMO) [5] is one of the major
proposed approaches for modelling services semantically, and it is based on
the earlier work on the Unified Problem Solving Method, which was part of
a “...framework for developing knowledge-intensive reasoning systems based
on libraries of generic problem-solving components...”[9]. WSMO provides a
framework for semantic descriptions of Web services and acts as a meta-model
for such services based on the Meta Object Facility (MOF) [10]. Semantic
service descriptions, according to the WSMO meta model, can be defined
using one of several formal languages defined by WSML (Web Service Mod-
elling Language) [11], and consist of four core elements deemed necessary to
support Semantic Web Services, namely: Ontologies , Goals , Web Services
and Mediators .

Ontologies are described in WSMO at a meta-level. A meta-ontology
supports the description of all the aspects of the ontologies that provide
the terminology for the other WSMO elements. A typical ontology con-

4

sists of non-functional properties (from the existing set of predefined core
properties), imported ontologies, and the definition of concepts, relations,
axioms, functions, and instances of the ontology. In addition, it declares
the ooMediators (see below) that are used for importing ontologies for which
alignment, merging or transformation problems must be solved.

Goals are defined in WSMO as the objectives that a client may have
when consulting a Web service. They consist of non-functional properties,
imported ontologies, mediators used, postconditions and effects. Postcondi-
tions and effects describe the state of the information space and the world,
desired by the requester, respectively. Ontologies can be directly imported
as the terminology to define the goal when no conflicts need to be resolved.
However, if any aligning, merging, or conflict resolution is required, they are
imported through ooMediators .

Web service descriptions in WSMO provide a semantic description of the
semantically annotated Web services themselves, including their functional
and non-functional properties, as well as other aspects relevant for interop-
erating with them. The required terminology, as for goals, can be imported
directly or via ooMediators when conflicts need to be resolved. In addition,
the capability and interfaces of the service are described: a capability defines
the functional aspects of the offered service, modelled in terms of precondi-
tions, assumptions, postconditions and effects; whereas interfaces represent
the data-centric interfaces of a service (such as those defined using WSDL),
and provide details about its operation in terms of its choreography and its
orchestration (described in Section 4.3.2).

The notion of Mediators is introduced by WSMO in order to resolve het-
erogeneity problems and they are special elements used to link heterogeneous
components involved in the modelling of a Web service. They define the nec-
essary mappings, transformations or reductions between the linked elements.
Four different types of mediators are defined as ggMediators , ooMediators ,
wgMediators and wwMediators .

• ggMediators: These link two goals, expressing the reduction of a
source goal into a target goal. They can use ooMediators to bypass
the differences in the terminology employed to define these goals. In
addition, WSMO allows linking not only of goals, but also of goals to
ggMediators, thus allowing the reuse of multiple goals to define a new
one.

• ooMediators: These import ontologies and resolve possible represen-

5

tation mismatches between them, such as differences in representation
languages or in conceptualizations of the same domain.

• wgMediators: They link a Web service to a goal. This link represents
the (total or partial) fulfilment of the goal by the Web service. The
wgMediators can use ooMediators to resolve heterogeneity problems
between the Web service and the goal.

• wwMediators: These link two Web services, containing the ooMedi-
ators necessary to overcome the heterogeneity problems that may arise
in cases where the services use different vocabularies.

WSMO utilises F-Logic [12] as the underlying semantic framework for
describing (and reasoning over) concepts and service descriptions.

3. OZ Approach to WSMO Semantics

The existing specification of WSMO informally or semi-formally de-
scribes the language from three different aspects – its syntax (a WSMO
model is well-formed), static semantics (a WSMO model is meaningful) and
dynamic semantics (how is a WSMO model interpreted and executed), sep-
arately. We propose the use of Object-Z to provide a formal specification
of all three aspects of WSMO in one single, unified framework, so that the
meaning of the language can be more consistently defined and revised as the
language evolves.

Object-Z [6] is an extension of the Z formal specification language to
accommodate object orientation. The essential extension to Z in Object-Z is
the class construct, which groups the definition of a state schema with the
definitions of its associated operations. A class is a template for objects of
that class: the states of each object are instances of the state schema of the
class, and its individual state transitions conform to individual operations of
the class. An object is said to be an instance of a class and to evolve according
to the definitions of its class. The motivation for using this extension is that
it improves the clarity of large specifications through enhanced structuring.

Operation schemas have a ∆-list of those attributes whose values may
change. By convention, no ∆-list means that no attribute changes value. OZ
also allows composite operations to be defined using different operation op-
erators, such as the conjunction operator ‘∧’, parallel operator ‘‖’, sequential

6

}

}

}

Class attribute: models WSMO syntax

Class Invariant: models WSMO static

semantics

Class operation: model WSMO dynamic

semantics

Class...

att : Type
......

predicate
......

operation...
......

Figure 1: The framework used to formally model WSMO in Object-Z.

operator ‘o9’, choice operator ‘ [] ’ and etc. The standard behavioral interpre-
tation of Object-Z objects is as a transition system [13], which consists of a
series of state transitions each effected by one of the class operations.

Object-Z is chosen over other formalisms for specifying WSMO because:

• The object-oriented modelling style adopted by Object-Z has good sup-
port for modularity and reusability.

• The semantics of Object-Z itself is well studied. The denotational
semantics [14] and axiomatic semantics [15] of Object-Z are closely
related to Z standard work [16]. Object-Z also has a fully abstract
semantics [13].

• Object-Z provides some handy constructs, such as Class-union [17],
which can define the polymorphic and recursive nature of language con-
structs effectively. Z has previously been used to specify the Web Ser-
vice Definition Language (WSDL) [18]; however, as Z lacks the object-
oriented constructs found in OZ, a significant portion of the resulting
model focused on solving several low level modeling issues, such as the
usage of free types, rather than the WSDL language itself. Thus, using
OZ can greatly simplify the model, and hence avoid users from being
distracted by the formalisms itself rather than focusing on the resulting
model.

• In our previous work [19, 20], OZ has also been used to specify the
OWL-S language, which is another significant Semantic Web Service
alternative. Modeling both OWL-S and WSMO in the same language

7

provides an opportunity to formally compare the two approaches and
identify possible integration and translation between the two languages.

Figure 1 shows the general approach of the modelling framework. The
WSMO elements are modeled as different Object-Z classes. The syntax of
the language is captured by the attributes of an Object-Z class. The predi-
cates are defined as class invariants, used to capture the static semantics of
the language. The class operations are used to define WSMO’s dynamic se-
mantics, which describes how the state of a Web service changes. Our model
is based on the latest version of WSMO (D2v1.3)2.

4. Formal Object Model of the WSMO Syntax and Static Seman-
tics

In this section, we first formalise the first two aspects of WSMO, i.e., its
syntax and static semantics in Object-Z. The dynamic semantics (i.e. how a
WSMO model is interpreted and executed) appears in Section 5.

4.1. Modeling identifiers, WSMO elements and annotations

ID AID ,URIID ,VID : P ID

VID ∩AID = ∅

VID ∩URIID = ∅

URIID ∩AID = ∅

VID ∪AID ∪URIID = ID

Every WSMO element is identified by an identifier that can either be
classified as a URI reference or an anonymous ID. Furthermore, WSMO can
also identify variables. We therefore use the Object-Z class ID to denote
all possible identifiers. Note that rather than modeling the identifiers as a Z
given type ([ID]) (the approach adopted by the Z specification of WSDL[18]),
modeling them as a class allows us to further extend it and apply various
Object-Z class modifiers. URIID , AID and VID are disjoint subsets of ID ,
representing the URI reference, anonymous ID and variable ID (in the above
invariant, we only provide an abstract view of the class ID without any

2http://www.wsmo.org/TR/d2/v1.3/

8

attributes). These concepts can be modeled in more detail, e.g., a URIID
reference can be expressed by a qualified name and etc.

WSMO refers to the concepts it defines as “elements”, which are modeled
as WSMOElement .

WSMOElement

id : ID

hasAnnotation : PAnnotation

Annotation

hasContributor : PDC Contributor

hasDate : PDC Date; ...

Each WSMOElement has one ID and optionally a set of annotations .
Annotation, being modeled as an Object-Z class, is used in the definition
of WSMO elements. It contains different annotation values which can be
applied to any WSMO element, such as DC Contributor , DC Date, and
etc. The ‘DC ’ prefix refers to the Dublin Core 3, which provides a set
of commonly used cross-domain metadata definitions (usually used when
authoring documents). These values are also defined as Object-Z classes, but
they are not shown in this paper. The WSMO specification does not define
any cardinality constraint on the number of annotation values an element can
have. For example, a WSMO element can have more than one creation date.
We model this by specifying that the value of attribute hasDate is a set of
DC Date values; thus, tool developers have the freedom to extend the model
and add extra constraints, e.g., by adding the predicate ‘#hasDate ≤ 1’ to
ensure that a WSMO element can only have at most one creation date.

The elements defined within WSMO models can be divided into two
groups – top-level elements (TopLevelComponent) and nested elements (NestedComponent).
WSMO has four kinds of top-level elements: Ontology , Service, Goal and
Mediator – as the main concepts to describe Semantic Web Services (as de-
scribed above in Section 2). Each of these can be modeled as a subclass
of WSMOElement (described in more detail in the following subsections).
TopLevelComponent is modeled as a class union4.

TopLevelComponent =̂ Ontology ∪Goal ∪ Service∪ ↓ Mediator

3Details on the Dublin Core can be found at http://dublincore.org/.
4↓ is a special convention in OZ denoting a class and all derivatives of this class.

9

Essentially, nested elements are attached to some other WSMO elements.
In our model, NestedComponent denotes all possible nested elements. A
nested component has the attribute parentID , that refers to the WSMO
element that it is attached to. A WSMO element can not be attached to
variables or to itself.

NestedComponent

WSMOElement

parentID : ID

parentID 6∈ VID ∧ id 6= parentID

OntologyElement

NestedComponent [inOntologyID/parentID]

∆

inOntology : Ontology

∃1 o : Ontology • (inOntologyID = o.id

∧ inOntology = o)

4.2. Top-level element – Ontologies

The need to share diverse knowledge and/or information with other ap-
plications already built has given rise to a growing interest in research on
ontology. Ontologies are domain theories that specify a domain-specific vo-
cabulary of entities, classes, properties, predicates, and functions as a set of
relationships that exist among those vocabulary terms [21]. Through the rep-
resentation of domain-specific knowledge, ontologies provide a way of sharing
and reusing domain knowledge among people and heterogeneous applications.
Ontology is one of the key elements defined in WSMO, and they provide the
terminology used by other WSMO elements to describe the relevant aspects
of the domains of discourse. Ontologies conceptualise a problem domain by
defining a set of concepts , relations , instances and some axioms . We provide
the formal invariant for Ontology below.

4.2.1. Ontology elements

The class OntologyElement , defined as a subclass of NestedComponent ,
denotes all the possible WSMO elements defined within the WSMO Ontolo-
gies. We rename the attribute parentID to inOntologyID for the reason of
clarification and also define a secondary attribute [22] inOntology to denote
the Ontology to which inOntologyID refers. The invariant shows that there
exists one and only one Ontology given an inOntologyID .

10

4.2.2. Concepts

Concepts constitute the basic elements of the agreed terminology for some
problem domains, and thus the Concept class is derived from OntologyElement .
The hasSuperConcept attribute denotes the super-concepts of a concept.
hasAttribute and hasInstance denote the attributes and instances explicitly
defined for a concept, whereas the secondary attribute totalSuperConcept
denotes all the ancestor concepts. The ‘total-attributes’ are denoted by
totalAttr – explicitly declared in a concept and implicitly inherited; whereas
totalIns denotes the instances of a concept and its super-concepts. Finally,
hasDefinition denotes the logical expression used to define the semantics of
a concept (the logical expressions used in WSMO are formally defined in
Section 5.1).

Concept

OntologyElement

hasSuperConcept : PConcept ; hasAttribute : PAttribute

hasInstance : P Instance; hasDefinition :↓ Expression

∆

totalAttr : PAttribute; totalIns : P Instance

totalSuperConcept : PConcept

hasSuperConcept ⊆ inOntology.totalConcept

self ∈ inOntology.hasConcept

∀ i : hasInstance • self ∈ i .type

∀ a : hasAttribute • self = a.inConcept

hasDefinition ∈ LeftImpExp ∪ RightImpExp ∪DualmpExp

hasDefinition.left ∈ MemberOfExp

hasDefinition.left .con = self

#(hasDefinition.left .hasVariables ∪ hasDefinition.right .hasVariables) = 1

hasDefinition.usedTerms ⊆ inOntology.totalTerm

totalAttr = hasAttribute ∪∪{s : hasSuperConcept • s.totalAttr}

totalSuperConcept = ...

11

The class invariant of Concept also specifies that:

• all the super concepts must be defined (directly or indirectly) within
Ontology ;

• the concept belongs to the Ontology it is attached to;

• all instances and attributes contained by a concept must belong to the
concept;

• the definition of a concept must be one of the forms of ⇒, ⇐ or ⇔
implication. The left hand side of the implication must be an expression
with the form of ‘memberOf C ’ where C must be the defined concept.
The left-hand side and right-hand side of the expression have only one
common free variable. The terms used in the expression must be defined
in Ontology , and the terms used in the definition must be well defined;

• a concept inherits the attributes of this superconcepts.

The elements defined within Concept are defined as ConceptElement .
It is derived from NestedComponent , the attribute parentID is renamed to
InConceptID and a secondary attribute inConcept is defined. Attribute,
defined for each concept, represents a named slot for data values for instances,
whereas hasType denotes the possible values of that slot. The class invariant
specifies that all the value types must be defined within Ontology .

Attribute

ConceptElement

typeModel ::= ofType | impliesType

hasType : Concept ; hasTypeModel : typeModel

hasType ∈ inConcept .inOntology.totalConcept

Instance

OntologyElement

hasType : PConcept ; hasAttributeValues :

PAttributeValue

∆

totalType : PConcept

...

4.2.3. Instances

WSMO instances are modelled as Instance and hasType denotes the ex-
plicitly asserted concepts of which the instance is an instance, while totalType

12

denotes all asserted and inferred type concepts. The Relation and RelationInstance
of Ontology can be similarly defined.

AttributeValue

InstanceElement

hasAttribute : Attribute

hasValues : P Instance

∀ v : hasValues • hasAttribute.hasType ∈ v .totalType

4.2.4. Ontologies

It is not a trivial task to develop and use an ontology for a particular
problem domain, where the modelling of the domain can depend on a num-
ber of factors, such as the relevant characteristics of a domain, the type of
reasoning required from the domain model itself and likewise the questions
that it should be able to answer. There has been a significant focus on
ontology reuse, and one common mechanism for identifying self-contained
ontological fragments that can be shared and reused is through ontology
modularization [23, 24]. Thus, ontologies can be modularised, shared, and
reused (through inclusion or reference) to construct other ontologies for sim-
ilar tasks. WSMO uses two different mechanisms – import and mediator , to
design ontologies in a modular way. Importing can be used as long as no
conflict to be resolved, otherwise an ooMediator will be necessary. Mediators
will be described in more detail in Section 4.5.

The basic blocks of an ontology are concepts , relations , functions , concept instances ,
relation instances and axioms . They are all modelled as the attributes of
Ontology . The secondary attribute, totalOntologies , denotes the set of on-
tologies whose terms can be used within the defined ontology. totalConcept ,
totalRelation, totalFunction, totalInstance and totalRelationInstance denote
the elements defined within an ontology and imported from other ontologies
or ooMediators. We present a partial model of the Ontology invariant below,
which denotes that:

• an ontology can use the terms defined by the target ontologies of oo-
Mediators, and those imported ontologies which are not sources of any

13

ooMediators used;

• the total Concepts , Relations , Functions and other ontology elements
in an ontology include those elements defined directly in this ontology,
and all the elements defined in those ontologies in totalOntologies .

Ontology

WSMOElement

importsOntology : POntology; usesMediator : P ooMediator

hasConcept : PConcept ;

∆

totalOntologies : POntology; totalConcept : PConcept

...

totalTerm : P ↓WSMOElement

totalOntologies = (importsOntology − {o : Ontology |

∃m : usesMediator • m.sourceOntology = o})

∪{o : Ontology

| ∃m : usesMediator • m.targetOntology = o}

totalConcept = hasConcep∪

∪{o : totalOntologies • o.totalConcept}

∀ c : hasConcept • c.inOntology = self

...

totalTerm = totalConcept ∪ totalRelation ∪ ...

4.3. Top-level element – Web services

A Web service description in WSMO consists of five sub-components:
non-functional properties, imported ontologies, used mediators, a capability
and interfaces (further details of these elements will be discussed later in this
section). The secondary attribute, totalOntologies , denotes the ontologies
whose terms may be used by a Web service, which include the target ontolo-
gies of any ooMediators used, and those imported ontologies which are not
sources of any of those ooMediators. ServiceElement denotes all the Web ser-
vice components, and it is defined as a subclass of NestedComponent with a
renamed attribute and a secondary attribute inService. NonFunctionalProperty

14

is a set of properties which strictly belongs to a service other than functional
and behavioral, e.g. the security level to which a service must comply. We
omit the definition of ServiceElement and NonFunctionalProperty classes
here and present only part of the Service model.

Service

WSMOElement

importsOntology : POntology

usesMediator : P(ooMediator ∪WWMediator)

hasNonFunctionProperty : PNonFunctionalProperty

hasCapability : Capability; hasInterface : P Interface

totalOntologies = ...

4.3.1. Capability

A Web service has exactly one capability, which defines the function-
ality of the service. A Web service capability is defined by specifying the
precondition, postcondition, assumption, and effect , each of which is a set of
expressions . A Web service capability also declares a set of variables shared
between expressions. The terms used in these expressions must be formally
defined in some ontologies which must be imported either directly or via oo-
Mediators. A capability, and therefore a Web service, may be linked to cer-
tain goals that are resolved by the Web service via special types of mediators,
named wgMediators (these are described below). The last two predicates in
Capability invariant ensure that the shared variables have appeared in some
used expressions, and the expressions must have used well-defined terms.

15

Capability

ServiceElement

importsOntology : POntology

usesMediator : P(ooMediator ∪WGMediator)

hasNonFunctionProperty : PNonFunctionalProperty

hasSharedVariable : PVariable

hasPrecondition, hasPostcondition : P ↓ Expression

hasAssumption, hasEffect : P ↓ Expression

∆

totalOntologies : POntology

......

∀ oo : usesMediator • oo ∈ ooMediator ⇒ oo.sourceOntology ∈ importsOntology

totalOntologies = ...

hasSharedVariable ⊆

∪{e : hasPrecondition • e.hasVariables} ∪ ...∪

∪{e : hasAssumption • e.hasVariables}

∀ e : hasPrecondition ∪ hasPostcondition ∪ hasEffect ∪ hasAssumption

• ∀ t : e.usedTerms •

∃ o : totalOntologies ∪ inService.totalOntologies • t ∈ o.totalTerm

4.3.2. Interfaces

An interface describes how the functionality of a Web service can be
achieved from both a choreographic and an orchestral view. These views
determine how the interface is utilised when being attached to several other
services. We define the notions of orchestration and choreography below.

Orchestration is a declarative specification that describes a workflow
to support the execution of a specific business process, operation or ser-
vice. Languages such as BPEL4WS describe both the data and process flow
through the workflow; i.e. the pattern of interactions that a Web service
agent must follow; as well as notions such as transactions and role-back
(in case of service failure). For example, a supply chain process orchestra-
tion might describe the business protocol that formalises: 1) the information
elements a product-order may consist of; 2) the order (and references to

16

interfaces defined in WSDL) that these elements should be provided; and
3) what exceptions may have to be handled. Orchestrations are typically
enacted by a single workflow engine, which is responsible for managing the
communication and data flow between services. The role of orchestration has
been a significant factor in the development of both eBusiness and eScience
workflows, and many semi-automated tools and workbenches have evolved
to facilitate the construction of these workflows [25, 26, 27].

Choreography defines the sequence (and conditions) under which multi-
ple, cooperating, independent agents exchange messages in order to perform
a task to achieve a goal state. Languages such as WS-Choreography (which is
based on Pi-Calculus [28]) describe the interactions with an invoking party
(which might be other Web Services, applications or human beings), and
may consist of multiple separate interactions whose composition constitutes
a complete transaction. This composition, along with its message protocols,
interfaces, sequencing, and associated logic, is considered to be a choreogra-
phy5.

Thus, to summarise, the Choreography describes the communication pat-
tern that allows one to consume the functionality of the Web service, whereas
the Orchestration describes how different Web service providers can operate
to achieve the overall functionality of the Web service.

Besides Choreography and Orchestration, an interface also declares a set
of imported ontologies and ooMediators. InterfaceElement denotes all the
components defined within an Interface.

5Adapted from the W3C Glossary - http://www.w3.org/2003/glossary/

17

Interface

ServiceElement

importsOntology : POntology;

usesMediator : P ooMediator

hasNonFunctionProperty :

PNonFunctionalProperty

hasChoreography : PChoreography;

hasOrchestration : POrchestration

∆

totalOntologies : POntology

......

Choreography

InterfaceElement

hasNonFunctionProperty : PNonFunctionalProperty

hasStateSignature : StateSignature; hasState : State

hasTransitionRules : P ↓ TransitionRule

In this paper we only present the specification of Choreography , as the
WSMO community is still working on defining the Orchestration, and thus
is not yet stable enough to warrant modelling. WSMO Choreography models
how a client deals with the Web service and it has three main components:
StateSignature, State and TransitionRule. The StateSignature defines the
static part of the state descriptions. State (or ground facts) models the
dynamic part of the state descriptions, and TransitionRule models the state
changes by changing the values of the ground facts as defined in the set of
the imported ontologies.

operation ::= READ |WRITE

mode : (Relation ∪ Concept) 7→ P operation

18

StateSignature

ChoreographyElement

importsOntology : POntology; usesMediator : P ooMediator

hasNonFunctionProperty : PNonFunctionalProperty

hasStatic, hasIn, hasOut , hasShared , hasControlled : PConcept ∪ Relation

∆

totalOntologies : POntology; totalConcept : PConcept

totalRelation : PRelation

...

∀ c : totalConcept • c 6∈ (hasIn ∪ hasOut ∪ hasShared ∪ hasControlled)⇒ c ∈ hasStatic

∀ c : totalRelation • c 6∈ (hasIn ∪ hasOut ∪ hasShared ∪ hasControlled)⇒ c ∈ hasStatic

∀m : hasIn •WRITE ∈ mode(m)

∀m : hasOut • READ ∈ mode(m)

∀m : hasShared • {WRITE ,READ} = mode(m)...

StateSignature defines the state ontology used by the service. importsOntology
denotes a non-empty set of ontologies which defines the state signature over
which the transition rules are executed and usesMediator denotes a set of
ooMediators which solves possible heterogeneity issues among the imported
state ontologies.

StateSignature also defines the mode (or rule) for each concept and re-
lation in the state ontology. We model mode as a function which maps a
Concept or Relation to some defined grounding mechanisms. Focusing on the
WSMO model itself, we ignore the details of grounding mechanisms and ab-
stract them as either read or write operations. There are five different types
of roles for concepts and relations : static, in, out , shared , and controlled .
These are defined below:

• static is the default type for all concepts and relations imported by
the signature of a choreography, unless defined otherwise in the state
signature header. It denotes that the extension of the concept cannot
be changed.

• in corresponds to the extension of the concept or relation which can
only be changed by the environment and read by the choreography

19

execution. A grounding mechanism for this item that implements write
access for the environment must be provided.

• out means that the extension of the concept or relation can only be
changed by the choreography execution, and read by the environment.
As with in, a grounding mechanism that implements read access for
the environment must be provided.

• shared means that the extension of the concept or relation can be
changed and read by the choreography execution and the environment.
A grounding mechanism that implements read/write access for the en-
vironment and the service, may be provided, and thus is optional.

• controlled means that the extension of the concept is changed and read
only by the choreography execution.

The partial invariant of StateSignature is presented to capture some of
these constraints.

State shows the status of a service at a certain point of time and it is
defined as a set of ground facts.

State

ChoreographyElement

groundInstance : P Instance

groundRelationInstance : PRelationInstance

∀ i : groundInstance • ∃ t : i .hasType •

t ∈ inChoreography.hasStateSignature.totalConcept

∀ i : groundRelationInstance • ∃ t : i .hasType •

t ∈ inChoreography.hasStateSignature.totalRelation

The transition rules are used to represent how the service states change.
They are triggered when the current state fulfils certain conditions. We will
formally define them in the next section. Likewise, the dynamic semantics
of WSMO, which can be formally modeled as a set of Object-Z operations,
will be addressed in next section.

20

4.4. Top-level element – Goals

Goals in WSMO are representations of an objective for which fulfilment is
sought through the execution of a Web service. WSMO Goal can be similarly
modelled as WSMO Service, but due to the limited space, we will not show
the details of its formal specification. The only difference is that gwMediator
and ggMediator can be used to resolve possibly occurring mismatches be-
tween Goals and Web Services .

Goal

WSMOElement

importsOntology : POntology

usesMediator : P(OOMediator ∪GWMediator ∪GGMediator)

hasNonFunctionProperty : PNonFunctionalProperty

hasCapability : Capability; hasInterface : P Interface

totalOntologies = ...

4.5. Top-level element – Mediators

Mediator is concerned with the handling and management of heterogene-
ity, and achieves this by resolving possibly occurring mismatches between
resources. WSMO uses four specific mediator types to connect different
WSMO elements (hasSource and hasTarget) and resolve the mismatches be-
tween them using different mediating services (hasMediationService).

Mediator

WSMOElement

importsOntology : POntology

hasSource, hasTarget , hasMediationService :↓WSMOElement

4.5.1. ooMediators

21

ooMediator

Mediator

MediatingOO : Ontology×

(Service ∪Goal ∪WWMediator) 7→ Ontology

∆

sourceOntology, targetOntology : Ontology

hasSource ∈ Ontology ∪ ooMediator

hasSource ∈ Ontology ⇒ sourceOntology = hasSource

hasSource ∈ ooMediator ⇒

sourceOntology = hasSource.targetOntology

hasTarget ∈ Ontology ∪Goal ∪ Service ∪ ooMediator

hasTarget ∈ Ontology ⇒ targetOntology = hasTarget

hasTarget ∈ ooMediator ⇒ targetOntology.id = hasTarget .id

hasTarget ∈ Service ∪Goal ⇒

sourceOntology ∈ hasTarget .importsOntolgy

hasMediationService ∈ Service ∪Goal ∪WWMediator

MediatingOO(sourceOntology, hasMediationService) = targetOntology

Ontology to Ontology Mediators (ooMediator) are mainly used to resolve
terminological mismatch; and they represent bridging entities between dif-
ferent ontologies. ooMediator is modelled as a subclass of Mediator with
two extra secondary attributes: sourceOntology and targetOntology , which
denote the ontologies used as the input and result of a mediation process.

The class invariant denotes that:

• the source of an ooMediator can be either an Ontology or an ooMediator .

• if the source is an ontology, the mediation process will be to this on-
tology.

• if the source is an ooMediator, the role of the source ontology for the
defined ooMediator will be played by the target of its source ooMedia-
tor.

22

• the target of an ooMediator can be either an Ontology , a Goal , a Service
or an ooMediator .

• if the target is an ontology, the result of the mediation process will also
be that ontology.

• if the target is an ooMediator, the result of mediation contains terms
made available in the name space of the target ooMediator itself.

• an ooMediator with a Goal or a Service as a target component, re-
solves the heterogeneity problems between its source ontology and the
ontologies imported by the Goal. Therefore, the sourceOntology must
be included in the imported ontologies of the ooMediator’s target Goal
or Service.

• a Service, wwMediator or Goal can be declared as the hasMediationService
representing the link, which realises the meditation process. As we
are not interested in any concrete mediation techniques, the relation
MediatingOO is used to abstract the links between a source ontology,
mediationService and targetOntology.

The invariants for other mediator types are similar to that of ooMediator ,
as illustrated in the ggMediator (below), and thus the invariants for wgMediator
and wwMediator are not included here.

The class invariant for ggMediator denotes that:

• the source of a ggMediator can be either a Goal or a ggMediator .

• if the source is a goal, the mediation process will be to this goal.

• if the source is a ggMediator, the role of the source goal for the defined
ggMediator will be played by the target of its source ggMediator.

• the target of a ggMediator can be either a Goal , or a ggMediator .

• if the target is a goal, the result of the mediation process will also be
this goal.

• a Service, wwMediator or Goal can be declared as the hasMediationService
representing the link, which realise the mediation process.

23

ggMediator

Mediator

MediatingGG : (Goal ∪ ggMediator)×

(Service ∪Goal ∪WWMediator) 7→ (Goal ∪ ggMediator)

∆

sourceGoal , targetGoal : Goal

hasSource ∈ Goal ∪ ggMediator

hasSource ∈ Goal ⇒ sourceGoal = hasSource

hasSource ∈ ggMediator ⇒

sourceGoal = hasSource.targetGoal

hasTarget ∈ Goal ∪ ggMediator

hasTarget ∈ Goal ⇒ targetGoal = hasTarget

hasTarget ∈ ggMediator ⇒ targetGoal .id = hasTarget .id

hasMediationService ∈ Service ∪Goal ∪WWMediator

MediatingGG(sourceGoal , hasMediationService) = targetGoal

5. Formal Object Model of the WSMO Dynamic (Execution) Se-
mantics

In this section, we extend the syntax and static semantics model of
WSMO defined in the previous section and formalise the third aspect of
WSMO, i.e., its execution semantics, in Object-Z. As the model of the dy-
namic behaviours of WSMO requires the understanding of some basic WSMO
entities, such as values, variables, expressions and etc., we start from these
basic constructs.

5.1. Values, Variables and Logic Expressions

In WSMO, the value space includes both WSMO element values and
literal values. We also define two special value types which are used to define
how variables are bound: nil and void , which are modelled as class Nil and
VoidVal respectively. A variable that equates to nil means that the variable
has no value (not being bound yet), whereas a variable that equates to void

24

means that it has a value but we do not care what it is. The meaning of
a void value is simply just the value itself. When an object of class Nil or
VoidVal is instantiated, the identifier self denotes the identity of the object
self.

Nil

V : Value

V = self

VoidVal

V : Value

V = self

Bool

VoidVal

val : B

Bool and LiteralValue denote both boolean and literal values (defined as
OZ classes).

literal

LiteralValue

VoidVal

val : Literal

WSMOElement

VoidVal

......

Value == LiteralValue∪

VoidVal ∪Nil ∪ Bool

∪ ↓WSMOElement

As all the elements defined by WSMO are also of type values , we extend
the class WSMOElement (defined in the previous section) as a subclass of
VoidVal . The WSMO Value is modeled as a class union. Variable has two
attributes: id which denotes the name of a variable (variable names are
modelled as VID); and v which denotes the value to which a variable is
bounded. Furthermore, three operations defined in Variable; i.e. OutVal ,
Assign and ToNil , which allow it to output its value, change its value and
reset it to a nil value respectively.

25

Variable

id : VID

V : Value

OutVal

val ! : Value

val ! = V

Assign

∆(V)

val? : Value

V ′ = val?

ToNil

∆(V)

V ′ ∈ Nil

Logical expressions in WSMO can be divided into simple logical expres-
sions and complex logical expressions. Before we model any of them, we
define some of the common attributes of a WSMO expression first. The
hasVariables and usedTerms denote the set of variables and WSMO elements
used in an expression. V represents the truth-value of an expression.

Expression

hasVariables : PVariable; usedTerms : P ↓WSMOElement

V : Bool ∪Nil

There are two basic types of simple logical expressions: molecule ex-
pressions, and relation expressions (RelExp). WSMO molecule expressions
can have several forms. For example, MemberOfExp denotes the instance
molecule with the form of ‘I memeberOf C ’, where I is an instance and C
is a concept. The last two predicates in the class invariant represent the
fact that a MemberOfExp has the value ‘true’ if element ins is an instance
of concept con. hasValue models the relation expression which denotes if
an instance has a particular attribute value. Other forms of simple logical
expressions, such as AttListExp, SubConceptExp, ConAttributeDefExp and
relation expressions (RelExp) and etc., can likewise be defined in a similar
way.

26

MemberOfExp

Expression

con : Concept ∪Variable; ins : Instance ∪Variable

hasVariables = ({con} ∪ {ins}) ∩Variable

usedTerms = ({con} ∪ {ins})∩ ↓WSMOElement

(con.V ∈ Nil ∨ ins.V ∈ Nil)⇒ V ∈ Nil

¬ (con.V ∈ Nil ∨ ins.V ∈ Nil)⇒ (V ∈ Bool ∧ (V .val ⇔ (con.V ∈ ins.V .totalType)))

hasValue

Expression

ins : Instance ∪Variable; att : Attribute ∪Variable; val : Value ∪Variable

hasVariables = ({ins} ∪ {att} ∪ {val}) ∩Variable

usedTerms = ({ins} ∪ {att} ∪ {val})∩ ↓WSMOElement

(ins.V ∈ Nil ∨ att .V ∈ Nil ∨ val .V ∈ Nil)⇒ V ∈ Nil

¬ (ins.V ∈ Nil ∨ att .V ∈ Nil ∨ val .V ∈ Nil)⇒

(V ∈ Bool ∧ (V .val ⇔

(∀ av ∈ ins.V .hasAttributeValues • av .hasAttribute = att ⇒ av .hasValues = {val .V }))

Complex logical expressions are extended form the simple expressions.
For example, LeftImpExp models a ‘⇐’ implication and ForAllExp denotes
a ‘For All’ qualified expression. Other types of complex expression, such as
RightImpExp, DualmpExp, AndExp, OrExp, ExistExp and etc., can also be
defined similarly.

27

LeftImpExp

Expression

left :↓ Expression; right :↓ Expression

usedTerms = left .usedTerms ∪ right .usedTerms

hasVariables = left .hasVariables ∪ right .hasVariables

left .V ∈ Nil ∨ right .V ∈ Nil ⇒ V ∈ Nil

¬ (left .V ∈ Nil ∨ right .V ∈ Nil)⇒ (¬ left .V .val ∨ right .V .val)⇔ V .val

ForAllExp

Expression

var : Variable; operand :↓ Expression

hasVariables = operand .hasVariables

usedTerms = operand .usedTerms

var ∈ hasVariables

V .val ⇔ (∀ v : Value \Nil • var .V = v ⇒ operand .V .val ⇔ true)

5.2. Web Service execution model

As shown in Section 4, WSMO has four top-level elements as the main
concepts which have to be described in order to define Semantic Web Ser-
vices. They are Ontologies , Web Services , Goals and Mediators . Out of
these, the Web Service element is the key element for representing the func-
tional (and behavioural) aspects of a service, and it connects computers and
devices with each other using the standard Web-based protocols to exchange
data and combine data in new ways. Thus, we focus on the execution seman-
tics of Services within this section. In WSMO, each Web service represents
an atomic piece of functionality that can be reused to build more complex
ones. Web services are described in WSMO from two different perspectives:
functionality and behaviour. A Web service can be described by multiple
interfaces, but has one and only one capability . The capability of a Web ser-

28

vice encapsulates its functionality and an interface of a Web Service describes
the behaviour of the Web Service from two perspectives – choreography and
orchestration (as described in Section 4.3.2).

5.2.1. Capability

A Web service capability is defined by specifying the precondition, postcondition,
assumption, and effect , each of which is a set of expressions . Extending the
definition of Capability defined in Section 4, the operation PreAssSat is used
to check if the preconditions and assumptions are true before service execu-
tion. NotPreAssSat denotes the opposite situation which is the existence of
some preconditions or assumptions whose values are not true. PostEffSat is
used to check if the postconditions and effects are true after the execution of
the service.

Capability

......

PreAssSat

∀ pre : hasPrecondition • pre.V .val ⇔ true

∀ ass : hasAssumption • ass.V .val ⇔ true

PostEffSat

∀ post : hasPostcondition • post .V .val ⇔ true

∀ eff : hasEffect • eff .V .val ⇔ true

NotPreAssSat

∃ e : hasPrecondition ∪ hasAssumption

• ¬ (e.V .val ⇔ true)

Interface

ServiceElement

......

enabledChoreography : PChoreography

enabledChoreography = {cho : hasChoreography

| cho.enabledRules 6= ∅}

selectChor

chor ! : enabledChoreography

Execute =̂ selectChor • chor !.Execute

5.2.2. Interface

To model the execution of an Interface, the attribute enabledChoreography
is introduced to denote the set of enabled choreographies, i.e. these Choreography
elements that have enabled transition rules . The operation Execute models
the fact that one of the enabled choreographies defined in an interface will
be chosen and executed. The execution of Choreography is defined below.

WSMO Choreography defines how a client deals with the Web service. As
introduced earlier (Section 4.3.2), Choreography has three main components:
StateSignature, which defines the static part of the state descriptions; State

29

(or ground facts), which models the dynamic part of the state descriptions;
and transitionRule which models the state changes by changing the values of
the ground facts as defined in the set of imported ontologies. The secondary
attribute, enabledRules , denotes all the valid transition rules that can be
currently performed.

Choreography

......

enabledRules : P ↓ TransitionRule

enabledRules = {rule : hasTransitionRules | rule.enable ⇔ true}

selectEnables

toBeExRules! : P ↓ TransitionRule

toBeExRules! ⊆ enabledRules

stateConsistent

consistent ! : B

consistent ! = checkConsistent(hasState)

ReportInconsistent

inconMSG! : MSG

FireRules =̂ [toBeExRules? : P ↓ TransitionRule] •∧r : toBeExRules? • r .Execute

Execute =̂ stateConsistent ‖

([consistent? : B | consistent?⇔ true] • (

([enabledRules 6= ∅] • (selectEnables o
9 FireRules)) o

9 Execute

[]

([enabledRules = ∅]))
[]

[consistent? : B | consistent?⇔ false] • ReportInconsistent)

checkConsistent : (Ontology ∪ State)→ B

[MSG]

30

The behavior of Choreography is defined by the operation Execute. If
the knowledge base is inconsistent, the execution will terminate and an error
message of type ‘MSG’ will be returned. The WSMO ontology consists of
a number of variants based on several different logical formalisms, namely
“Core”, “DL”, “Flight”, “Rule” and “Full” [11]. The semantics of these
variants is different, which may also result in different entailments. Specifying
these different semantics in Z or Object-Z is valuable, as it allows us to reuse
existing formal tools to provide reasoning service for those variant ontologies.
However, the detailed specification of these ontology semantics is beyond the
scope of this paper. Here, the function checkConsistent is used to abstract the
relations between an ontology or service state and its consistency. Dong et.
al. [29, 30] have previously presented a Z semantics for DL based ontologies.

If the knowledge base is consistent, some enabled rules will be selected
and executed. Note that in our model, we impose an additional restriction
as that a subset of the enabledRules is selected as transition rules (operation
selectEnables), whereas WSMO does not define how the enabled rules are
fired. The service providers will have the freedom to implement their own
systems, e.g., by adding the predicate ‘#toBeExRules ! = 1’ in selectEnables
to indicate that the enabled rule will be fired once every time or by adding
‘toBeExRules = enabledRules ’ to indicate that all the enabled rules will be
fired together. These steps are repeated until no more conditions of any rule
are equal to true.

TransitionRule

∆

enable : B

Execute

AddMemberOf

TransitionRule

fact : MemberOfExp

enable ⇔ fact .con ∈ Concept

∧ fact .ins ∈ Instance

getCon

con! : Concept

con! = fact .con

Execute =̂ [enable ⇔ true] • fact .addType o
9 getCon

31

5.2.3. Transition rules

In a choreography specification, the transaction rules express changes of
states by changing the set of instances. TransitionRule denotes a WSMO
transition rule in general. The secondary attribute, enable, denotes whether
or not a TransitionRule is ready to perform. Execute denotes how a TransitionRule
changes the world.

The transition rules can be represented in several alternate formats. The
first corresponds to a set of update rules. For example, AddMemberOf de-
notes the rules used to assert that an instance is a member of a Concept
and UpdateMemberOf denotes the rules to change the membership of an
instance. The UpdateMemberOf transition rule has an optional attribute
oldFact , which if defined (modelled by Execute2), then the execution of the
rule will delete the old fact and add the new fact. Otherwise, execution will
remove all existing memberships of the instance and add the new member-
ship (modelled by Execute1). Due to the space limitation, here we omit the
definitions for some ontology operations like addType removeType and etc.

32

UpdateMemberOf

TransitionRule

oldFact : PMemberOfExp; newFact : MemberOfExp

#oldFact ≤ 1 ∧ (∀ o : oldFact • o.ins = newFact .ins)

enable ⇔ newFact .con ∈ Concept ∧ newFact .ins ∈ Instance

getNewCon

con! : Concept

con! = newFact .con

Execute1 =̂ [oldFact = ∅] •
∧c : {y : Concept | y 6= newFact .con

∧ newFact .con 6∈ y.totalSuperConcept} •

[con! : Concept | con! = c] o9newFact .removeType

∧getNewCon o
9 newFact .addType

Execute2 =̂ [oldFact 6= ∅] •
∧of : oldFact • (of .getCon o

9 newFact .removeType)

∧getNewCon o
9 newFact .addType

Execute =̂ [enable ⇔ true] • (Execute1 [] Execute2)

IfRule denotes the if-then rule which executes a rule if the condition is
satisfied.

IfRule

TransitionRule

condition :↓ Expression; rule : TransitionRule

enable ⇔ (condition.V .val ⇔ true)

Execute =̂ [enable ⇔ true] • rule.Execute

ChooseRule denotes the choose rule which executes an update with an
arbitrary binding of a variable chosen among those satisfying the selection
condition.

33

ChooseRule

TransitionRule

variable : Variable; condition :↓ Expression; rule : TransitionRule

enable ⇔ (∃ v : Value • variable.V = v ⇒ condition.V .val ⇔ true)

variable ∈ condition.hasVariables

Execute =̂ [enable ⇔ true] •
[v? : Value | variable.V = v?⇒ condition.V .val ⇔ true] •

v?.outVal o9 (variable.Assign∧ rule.Execute)

ForAllRule denotes the forall rule which simultaneously executes all the
updates of each binding of a variable satisfying a given condition.

ForAllRule

TransitionRule

variable : Variable; condition :↓ Expression; rule : TransitionRule

enable ⇔ (∃ v : Value • variable.V = v ⇒ condition.V .val ⇔ true)

variable ∈ condition.hasVariables

Execute =̂∧v? : {v : Value|
variable.V = v ⇒ condition.V .val ⇔ true} •

v?.OutVal o9 (variable.Assign∧ rule.Execute)

PipedRule contains a set of rules which is used for non-determinism.
When a PipedRule is executed, an enabled rule from the rule sets will be
randomly selected and executed.

34

PipedRule

TransitionRule

rules : PTransitionRule

rules 6= ∅

enable ⇔ (∃ rule : rules • rule.enable ⇔ true)

SelectRule

ru? : TransitionRule

ru? ∈ rules ∧ ru?.enable ⇔ true

Execute =̂ SelectRule • ru?.Execute

5.2.4. Service execution

35

Service

...

inputVar , outputVar : PVariable

∆

totalStatic, totalIn, totalOut , totalShared , totalControlled : Pmode

totalStatic =∪{c :∪{i : hasInterface • i .hasChoreography}

• c.hasStateSignature.hasStatic}

totalIn = ... ∧ totalOut = ... ∧ totalShared =

......

SelectInterfaces

inter? : hasInterface

∃ cho : inter?.asChoreography • cho.enabledRules 6= ∅

ReadFromEvn

....

WriteToEvn

toVars! : seq Variable

ran toVars! ⊆ outputVar

∀ var : ran toVars! • var .V ∈ Instance ∪ RelationInstance ⇒

var .V .totalType ∩ totalControlled = ∅

∧ var .V .totalType ∩ (totalOut ∪ totalShared) 6= ∅

Execute =̂ ReadFromEvn o
9 (

hasCapability.PreAssSat

o
9SelectInterfaces • inter?.Execute

o
9hasCapability.PostEffSat

[] hasCapability.NotPreAssSat)

o
9WriteToEvn

Before we formally define the overall execution of a Service, we first in-
troduce a few new attributes to assist the specification. WSMO itself does

36

not include any grounding standards6. In our model, the two attributes,
inputVar and outputVar , and the two operations, AssignVarFromEvn and
WriteToEvn, are used to abstract the communication between a service and
its environment. However, further details regarding the concrete grounding
details fall beyond the scope of this paper. ReadFromEvn reads the values
from the environment and assigns them to the corresponding variables. If
the input value is a WSMO ontology Instance or RelationInstance, its type
must have the role (mode) as ‘in’ or ‘shared’ and cannot be ‘controlled’.
The secondary attributes totalIn, totalOut , totalControl and etc. denote
all the Concept and Relation modes defined by the service’s state signature.
WriteToEvn is used to output values to environment. If the output values are
either WSMO ontology Instances or RelationInstances , its type must have
the roles (modes) as ‘out’ or ‘shared’ and cannot be ‘controlled’. To make our
model more readable, we assume that before communicating with an envi-
ronment, all conflicts (if there are any) have been dealt with by ooMediators .

The behaviour of a Service is defined using the operation Execute. Ini-
tially, the service gathers requests from users and initialises any necessary
variables. If the preconditions and assumptions are then satisfied, the ser-
vice will be executed based on the selected interface and postconditions of
the service. After execution, the service will then return any necessary infor-
mation to the users (i.e. outputs or error messages). If, however, the service
is invoked without having satisfied the preconditions and assumptions , then
the behaviour of the service will be undefined. In such cases, tool developers
have the freedom to implement their own scenarios to handle this situation,
such as terminating the execution and reporting an error message, or simply
ignoring it.

6. Case study – Amazon Web services

In this section, we use the WSMO model for Amazon Associates Web
service (A2S) as a case study to illustrate how a WSMO model can be rep-
resented in OZ using the semantic library we just defined. To the best of our
knowledge, the Amazon A2S WSMO description is one of the largest WSMO
models being developed so far.

6A general guide has been given for translating WSMO service to WSDL. (http:
//wsmo.org/TR/d24/d24.2/v0.1)

37

Amazon Web services (AWS) provide developers with direct access to
Amazon’s robust technology platform. By using them, external develop-
ers and businesses can build their own applications on AWS in a reliable,
flexible, and cost-effective manner. Amazon Web services offer a variety of
Web services, such as Amazon Associates Web service (A2S), which exposes
Amazon’s product data and e-commerce functionality, Amazon Elastic Com-
pute Cloud (Amazon EC2), which provides resizable compute capacity in the
cloud, and etc. This paper focused on Amazon A2S.

Amazon Associates Web service (formerly named the Amazon E-Commerce
service “ECS”) exposes Amazon’s product data through an easy-to-use Web
services interface that, when combined with the Amazon Associates Pro-
gram, is a powerful combination for website owners, Web developers, and
Amazon sellers to make money. Developers may use the Amazon Associates
Web service as long as it’s used primarily to drive traffic back to Amazon’s
websites or sales of Amazon products and services.

The functionality of A2S is defined in a WSDL file, which contains more
than 20 operations. These operations support different tasks on Amazon’s
retail website, including:

• search Amazon products, such as ItemSearch, ItemLookup, SimilarityLookup,
SellerListingSearch and SellerListingLookup.

• create a shopping cart of items and purchase them, such as CartCreate,
CartAdd , CartModify , CartClear and CartGet .

• look up publicly available customer content (reviews, wish lists and
Listmania lists), such as CustomerContentSearch, CustomerContentLookup,
ListLookup and ListSearch.

• look up feedback on specific sellers and get seller product listings, such
as SellerLookup.

• other support operations, such as Help which returns information about
how to use an A2S operation or about what to expect from A2S re-
sponse groups.

The full Amazon A2S WSMO model can be found in [31].

38

6.1. WSMO ontology for A2S

This section shows how the WSMO ontologies used for the Amazon ser-
vice datatypes can be modelled in Object-Z using the formal model defined
in the previous sections.

Any concrete WSMO elements are modelled as Object-Z instances. For
example, the following shows the WSMO definition of HelpRequest concept
and instances of this concept are used as input for the help defined in Amazon
A2S framework. HelpRequest concept has three ‘ofType’ kind attributes, i.e.,
about , hasType and responseGroup and their types are all String.

concept helpRequest
about ofType string
helpType ofType string

responseGroup ofType string

They are modelled in OZ as follows, where String is a Z given type.

about , helpType, responseGroup : Attribute
helpRequest : Concept

about .hasType = String ∧ about .hasTypeModel = ofType
helpType.hasType = String ∧ helpType.hasTypeModel = ofType
responseGroup.hasType = String ∧ responseGroup.hasTypeModel = ofType
helpRequest .hasAttribute = {about , helpType, responseGroup}
....

The following WSMO axiom limits the type of help to be ‘Operation’ and
‘ResponseGroup’ only, which is modelled in OZ as well.

axiom helpTypeConstraint //The type of help can only be ’Operation’ or
’ResponseGroup’

definedBy !-
?x memberof helpRequest and
?x[helpType hasValue ?type] and
(?type hasValue “Operation” or
?type hasValue “ResponseGroup”)

39

Operation,ResponseGroup : String
helpTypeConstraintX : Variable
helpTypeConstraintExp1 : MemberOfExp
helpTypeConstraintExp2, helpTypeConstraintExp3 : hasValueExp
helpTypeConstraintExp4 : OrExp
helpTypeConstraint : RightImpExp

helpTypeConstraintExp1.con = helpRequest
helpTypeConstraintExp1.ins = helpTypeConstraintX
helpTypeConstraintExp2.ins = helpTypeConstraintX
helpTypeConstraintExp2.att = helpType
helpTypeConstraintExp2.value = Operation
helpTypeConstraintExp3.ins = helpTypeConstraintX
helpTypeConstraintExp3.att = helpType
helpTypeConstraintExp3.value = ResponseGroup
helpTypeConstraintExp4.operand = {helpTypeConstraintExp2, helpTypeConstraintExp3}
helpTypeConstraint .left = helpTypeConstraintExp1
helpTypeConstraint .right = helpTypeConstraintExp4

All other A2S WSMO ontology concepts, such as HelpResponse, itemSearchRequest ,
ItemSearchResponse and etc. can be similarly defined.

6.2. WSMO capability of the Amazon services

The functionality of the Amazon A2S allows clients to search or browse
Amazon’s product catalog; to retrieve detailed product information, reviews,
and images; and to interface with customer shopping carts, and so on. The
WSMO capability of A2S includes that the client can get several types of
information and/or that the client can create and manipulate the content of
shopping charts. In particular, the capability is defined as follows. The pre-
condition and input is that a client wants to get information about Amazon
products or purchase some products (and has some data that distinguishes
the products). The postcondition and output of the A2S is that the client
has information about the Amazon products and/or a shopping cart ready
for manual completion of the purchase [31].

The WSMO model of A2S follows Amazon’s decision to put all five Web
services in a single big Web service description. We model each of the com-
ponents in details.

The precondition of amazonWS captures all the inputs of the Amazon
Web service. Amazon can accept any of the inputs in a given moment and

40

hence the precondition is defined in terms of a disjunction of all the possible
inputs. The only shared variable is ?request which is required in order to
capture what post-condition will take effect given a particular input.

webService amazonWS /∗WSMO definition*/
capability amazonWSCapability

sharedVariables {?request}
precondition

definedBy
//Request for a help topic
?request memberOf helpRequest or
...
//Search for a listing by an identifier
?request memberOf sellerListingLookupRequest.

This can be modelled in OZ as following:

amazonWS : Service

amazonWSCapability : Capability ; request : Variable
capabilityPreExp1, ..., capabilityPreExp15 : MemberOfExp;
capabilityPrecondition : OrExp

amazonWS .hasCapablity = amazonWSCapability
capabilityPreExp1.con = helpRequest
capabilityPreExp1.ins = request
....
capabilityPreExp15.con = sellerListingLookupRequest
capabilityPreExp15.ins = request
capabilityPrecondition.operand = {capabilityPreExp1, ..., capabilityPreExp15}
....
amazonWSCapability .hasSharedVariable = {request}
amazonWSCapability .hasPrecondition = {capabilityPrecondition}

The post-condition, which takes the form of implication rules, means
that given a particular pre-condition, one particular post-condition will take
effect. There is one postcondition for each A2S operation. For example,
for the Help Request operation, the following post-condition shows that for
given a request for a particular type of help, a response with the same type
is returned. In Amazon, the type of help can be either for an operation or a
response group.

41

postcondition
definedBy

(?request[helpType hasValue ?type] memberOf
helpRequest implies

exists ?response (?response[responseType hasValue ?type]
memberOf helpResponse)

) and
... ...

This post-condition can be modelled in OZ as:

capabilityHelpReqPostExp1 : MemberOfExp
capabilityHelpReqPostExp2 : hasValueExp
typeCapabilityHelpReqPost : Variable; response : Variable
capabilityHelpReqPostExp3 : ExistExp
capabilityHelpReqPostExp4 : MemberOfExp
capabilityHelpReqPostExp5 : hasValueExp
capabilityHelpReqPostExp6 : AndExp
capabilityHelpReqPostExp7 : AndExp
capabilityHelpReqPostcondition1 : LeftImpExp

capabilityHelpReqPostExp1.con = helpRequest
capabilityHelpReqPostExp1.ins = request
capabilityHelpReqPostExp2.ins = request
capabilityHelpReqPostExp2.att = helpType
capabilityHelpReqPostExp2.value = typeCapabilityHelpReqPost
capabilityHelpReqPostExp4.con = helpResponse
capabilityHelpReqPostExp4.ins = response
capabilityHelpReqPostExp5.ins = response
capabilityHelpReqPostExp5.att = reponseType
capabilityHelpReqPostExp5.value = typeCapabilityHelpReqPost
capabilityHelpReqPostExp6.operands =
{capabilityHelpReqPostExp4, capabilityHelpReqPostExp5}

capabilityHelpReqPostExp3.var = response
capabilityHelpReqPostExp3.operand = capabilityHelpReqPostExp6
capabilityHelpReqPostExp7.operands =
{capabilityHelpReqPostExp1, capabilityHelpReqPostExp2}

capabilityHelpReqPostcondition1.left = capabilityHelpReqPostExp7
capabilityHelpReqPostcondition1.right = capabilityHelpReqPostExp3

42

Similarly, the post-conditions for other operations can be modelled as
well.

amazonWSCapability .hasPostcondition = {capabilityHelpReqPostcondition1, ...}

6.3. WSMO Choreography for Amazon A2S

This section describes the interface part of the WSMO Amazon service,
which starts with the state signature (defined as follows).

interface amazonWSInterface
choreography
stateSignature

in
concept helpRequest
...
concept sellerListingLookupRequest

out
concept helpResponse
...

This can be represented in OZ as following.

amazonWSInterface : Interface
amazonWSInterfaceChoreography : Choreography
amazonWSInterfaceStateSignature : StateSignature

amazonWS .hasInterface = {amazonWSInterface}
amazonWSInterface.hasChoreography = {amazonWSInterfaceChoreography}
amazonWSInterfaceChoreography .hasStateSignature =

amazonWSInterfaceStateSignature
amazonWSInterfaceStateSignature.hasIn = {helpRequest , ...}
amazonWSInterfaceStateSignature.hasOut = {helpResponse, ...}

For the WSMO choreography of the A2S, a single transition rule is mod-
elled for each of the service’s operations. For example, the following transition
rule is for the “Help” operation.

if (?HelpRequest memberOf helpRequest) then
add(# memberOf helpResponse)

endIf

43

It is can be modelled in OZ as the following.

amazonWSHelpTransitionRule : IfRule
amazonWSHelpTransitionRuleCondition : MemberOfExp
amazonWSHelpTransitionRuleRule : AddMemberOf
amazonWSHelpTransitionRuleHelpV 1 : Variable
amazonWSHelpTransitionRuleRuleFact : MemberOfExp
amazonWSHelpTransitionRuleHelpV 2 : Variable

amazonWSHelpTransitionRule.condition =
amazonWSHelpTransitionRuleCondition

amazonWSHelpTransitionRule.rule = amazonWSHelpTransitionRuleRule
amazonWSHelpTransitionRuleCondition.con = helpRequest
amazonWSHelpTransitionRuleCondition.ins =

amazonWSHelpTransitionRuleHelpV 1
amazonWSHelpTransitionRuleRule.fact = amazonWSHelpTransitionRuleRuleFact
amazonWSHelpTransitionRuleRuleFact .ins = amazonWSHelpTransitionRuleHelpV 2
amazonWSHelpTransitionRuleRuleFact .con = helpResponse
......
amazonWSInterfaceChoreography .hasTransitionRules =
{amazonWSHelpTransitionRule, ...}

Other transition rules can be defined as well. After all the WSMO A2S
model is defined in OZ, OZ tools can be used to check the consistence of the
model as discussed in the next section.

7. Discussion

The formal specification of WSMO provides a single, canonical and un-
ambiguous specification of the WSMO framework, which can be beneficial to
the Semantic Web Service community in many different ways. In this section,
we discuss several of these advantages and present relevant examples.

7.1. Checking the consistency of the WSMO language

WSMO is currently a relatively new technology, and thus may still contain
errors. As our formal model provides a rigorous foundation of the language,
by using existing formal verification tools, it may be possible to find those
errors and improve the quality of the WSMO standard. For example, the cur-
rent WSMO A2S model defines a concept helpRequest which has an attribute

44

Current WSMO specification:
Class attribute sub-Class wsmoElement

hasType type concept
Revised WSMO specification:
Class attribute sub-Class wsmoElement

hasType type concept or dataType

Figure 2: WSMO specification revision.

ResponseGroup, where the range of this attribute is of data type string 7.
This WSMO definition can be translated into Object-Z as follows:

ResponseGroup : Attribute; helpRequest : Concept

ResponseGroup.hasType = String

helpRequest .hasAttribute = {ResponseGroup,}......

Note that the translation from WSMO to Object-Z can be automatically
realised by a tool. However, when we load our formal WSMO model and the
above Object-Z definition into an Object-Z type checker, the type checker
complains that there is a type error. After studying this problem, we realize
that the problem is due to the fact that according to the WSMO documents
(Section 4.2.2), the hasType attribute defined for a concept attribute can only
have a WSMO Concept as its value. As String is a subclass of literal datatype
Value, and many Semantic Web languages consider this to be disjointed with
Concept, this results in a type violation. Thus, to resolve this violation, we
would propose that the WSMO standard should be revised as illustrated in
Figure 2.

7.2. Making the WSMO language precise and removing ambiguity

Large sections of the existing WSMO document are in normative text,
which could result in several divergent interpretations of the language by
different users and tool developers. Furthermore, the documentation makes
many assumptions and implications, which are implicitly defined. This could
lead to inconsistent conclusion being drawn. Our formal model of WSMO

7A full version of this example accompanies the WSMO release, and can be found from
http://www.wsmo.org/TR/d3/d3.4/v0.1/

45

can be used to improve the quality of the normative text that defines the
WSMO language, and to help ensure that: the users understand and use the
language correctly; the test suite covers all important rules implied by the
language; and the tools developed work correctly and consistently.

7.3. Reasoning the WSMO by using exiting formal tools directly

Since Semantic Web Service research in general, and WSMO in particular
are still evolving, current verification and reasoning tools (though rudimen-
tary) are also improving. In contrast, there have been decades of develop-
ment into mature formal reasoning tools that are used to verify the validity
of software and systems. By presenting a formal semantic model of WSMO,
many Object-Z and Z tools can be possibly used for checking, validating
and verifying WSMO model. For example, in our previous work, we have
applied Z/EVES [29, 32] and AA [30] separately to reasoning over Web on-
tologies. In Section 7.1, we also applied an Object-Z type checker to validate
a WSMO model. Instead of developing new techniques and tools, reusing
existing tools provides a cheap, but efficient way to provide support and
validation for standards driven languages, such as WSMO.

NotExp

Expression

operand :↓ Expression

hasVariables = operand .hasVariables

usedTerms = operand .usedTerms

operand .V ∈ Nil ⇒ V ∈ Nil

operand .V 6∈ Nil ⇒ V .val ⇔ ¬ operand .V .val

OrchestrationRule

TransitionRule

target : wgMediator ∪ Service

......

enable =

Execute =̂

7.4. The ease of extendibility

As WSMO is still evolving, an advantage of using an object-oriented
approach in the language model is to achieve the extendibility of the lan-
guage model. Suppose that we want to add a new kind of logic expression,
NotExp, to WSMO core. Then in our model it is necessary to add only the
NotExp class (defined above). Alternatively, consider the case when the de-
velopment of WSMO Orchestration completes and Orchestration is clearly
defined. Then in our model it is necessary to augment the model with a class

46

such as the OrchestrationRule class (defined above) to include this mecha-
nism. The introduction of these extensions does not involve any changes to
the classes defined in the previous sections. Validation tools can then be used
to confirm the validity of the extended model.

8. Conclusion

WSMO is one of the most important technologies within the field of
Semantic Web Service research. This paper has presented an Object-Z se-
mantics model for WSMO, whereby the WSMO constructs are modelled as
objects. The advantage of this approach is that the abstract syntax and static
and dynamic semantics for each the WSMO construct are grouped together
and captured in an Object-Z class; hence the language model is structural,
concise and easily extendible. This Object-Z specification provides an invalu-
able adjunct to the current WSMO documentation and specifications, and
will support further development, validation and verification of WSMO (and
the corresponding tools) as it evolves. This Object-Z specification of WSMO
is not a new Semantic Web service formalism. Rather than replacing WSMO
model, our work complements the existing WSMO specification by adding
rigorous, precise and mathematical foundations to WSMO. It helps users to
understand and use WSMO more easily.

In our previous work [19, 20], OZ has also been used to specify another
significant SWS alternative – the OWL-S language. One of the future works
is to formally compare the two approaches and identify possible integration
and translation between the two languages.

References

[1] C. Bussler, B2B Protocol Standards and their Role in Semantic B2B
Integration Engines, Bulletin of the Technical Committee on Data En-
gineering 24 (1).

[2] S. A. McIlraith, T. C. Son, H. Zeng, Semantic web ser-
vices, IEEE Intelligent Systems 16 (2) (2001) 46–53.
doi:http://dx.doi.org/10.1109/5254.920599.

[3] T. Payne, O. Lassila, Guest editors’ introduction: Semantic
web services, IEEE Intelligent Systems 19 (4) (2004) 14–15.
doi:http://dx.doi.org/10.1109/MIS.2004.29.

47

[4] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, D. Mar-
tin, S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara,
DAML-S: Web Service Description for the Semantic Web, in: First In-
ternational Semantic Web Conference (ISWC) Proceedings, 2002, pp.
348–363.

[5] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, D. Fensel, Web services modeling on-
tology, Journal of Applied Ontology 39 (1) (2005) 77–106.

[6] R. Duke, G. Rose, Formal Object Oriented Specification Using Object-
Z, Cornerstones of Computing, Macmillan, 2000.

[7] S. K. Kim, D. Carrington, Formalizing UML Class Diagram Using
Object-Z, in: R. France, B. Rumpe (Eds.), UML’99, Lect. Notes in
Comput. Sci., Springer-Verlag, 1999.

[8] W. K. Tan, A Semantic Model of A Small Typed Functional Lan-
guage using Object-Z, in: J. S. Dong, J. He, M. Purvis (Eds.), The
7th Asia-Pacific Software Engineering Conference (APSEC’00), IEEE
Press, 2000.

[9] D. Fensel, E. Motta, Structured development of problem solving meth-
ods, in: Proceedings of the 11th Workshop on Knowledge Acquisition,
Modeling, and Management (KAW ’98), Banff, Canada, 1998.

[10] Object Management Group, Meta object facility (MOF) specification,
http://www.omg.org (2002).
URL \url{http://www.omg.org/technology/documents/formal/

mof.htm}

[11] J. Bruijn, H. Lausen, A. Polleres, D. Fensel, The web service modelling
language wsml: An overview, in: Proceedings of the 3rd European Se-
mantic Web Conference, Springer-Verlag, Budva, Montenegro, 2006, pp.
590–604.

[12] M. Kifer, G. Lausen, J. Wu, Logical foundations of object oriented and
frame based languages, Journal of ACM 42 (1995) 741–843.

[13] G. Smith, A fully abstract semantics of classes for Object-Z, Formal
Aspects of Computing 7 (3) (1995) 289–313.

48

[14] A. Griffiths, G. Rose, A Semantic Foundation for Object Identity in For-
mal Specification, Object-Oriented Systems 2 (Chapman & Hall 1995)
195–215.

[15] G. Smith, Extending W for Object-Z, in: J. P. Bowen, M. G. Hinchey
(Eds.), Proceedings of the 9th Annual Z-User Meeting, Springer-Verlag,
1995, pp. 276–295.

[16] J. Woodcock, S. Brien, W : A logic for Z, in: Proceedings of Sixth
Annual Z-User Meeting, University of York, 1991.

[17] J. S. Dong, R. Duke, Class Union and Polymorphism, in: C. Mingins,
W. Haebich, J. Potter, B. Meyer (Eds.), Proc. 12th International Confer-
ence on Technology of Object-Oriented Languages and Systems. TOOLS
12, Prentice-Hall, 1993, pp. 181–190.

[18] R. Chinnici, J. J. Moreau, A. Ryman, S. Weerawarana, Web Services
Description Language (WSDL) Version 2.0 Part 1: Core Language,
http://www.w3.org/TR/wsdl20/wsdl20-z.html (2006).

[19] H. H. Wang, A. Saleh, T. Payne, N. Gibbins, Formal specification of
owl-s with object-z: the static aspect, in: The 2007 IEEE/WIC/ACM
International Conference on Web Intelligence, Silicon Valley, USA, 2007.

[20] H. H. Wang, T. Payne, N. Gibbins, A. Saleh, Formal specification of
owl-s with object-z: the dynamic aspect, in: The 8th International Con-
ference on Web Information Systems Engineering, Springer, 2007.
URL http://eprints.ecs.soton.ac.uk/14395/

[21] T. R. Gruber, A translation approach to portable ontol-
ogy specifications, Knowl. Acquis. 5 (2) (1993) 199–220.
doi:http://dx.doi.org/10.1006/knac.1993.1008.

[22] J. S. Dong, G. Rose, R. Duke, The Role of Secondary Attributes in
Formal Object Modelling, Tech. Rep. 95-20, Software Verification Re-
search Centre, Dept. of Computer Science, Univ. of Queensland, Aus-
tralia (1995).

[23] A. Rector, Modularisation of domain ontologies implemented in descrip-
tion logics and related formalisms including owl, in: J. Genari (Ed.),
Knowledge Capture 2003, ACM, Sanibel Island, FL, 2003, pp. 121–128.

49

[24] P. Doran, V. A. M. Tamma, L. Iannone, Ontology module extraction
for ontology reuse: an ontology engineering perspective, in: M. J. Silva,
A. H. F. Laender, R. A. Baeza-Yates, D. L. McGuinness, B. Olstad,
O. H. Olsen, A. O. Falcão (Eds.), CIKM, ACM, 2007, pp. 61–70.

[25] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. Pocock, A. Wipat, P. Li, Taverna: a tool for the
composition and enactment of bioinformatics workflows, Bioinformatics
20 (17) (2004) 3045–3054.

[26] M. G. Nanda, S. Chandra, V. Sarkar, Decentralizing execution of com-
posite web services, in: OOPSLA ’04: Proceedings of the 19th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, ACM Press, New York, NY, USA, 2004,
pp. 170–187. doi:http://doi.acm.org/10.1145/1028976.1028991.

[27] C. Wroe, C. Goble, M. Greenwood, P. Lord, S. Miles, J. Papay,
T. Payne, L. Moreau, Automating experiments using semantic data on
a bioinformatics grid, IEEE Intelligent Systems 19 (1) (2004) 48–55.
doi:http://doi.ieeecomputersociety.org/10.1109/MIS.2004.1265885.

[28] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes I and
II, Information and Computation 100 (1992) 1 – 41, 42 – 78.

[29] J. S. Dong, C. H. Lee, Y. F. Li, H. Wang, Verifying DAML+OIL and
Beyond in Z/EVES, in: Proc. The 26th International Conference on
Software Engineering (ICSE’04), Edinburgh, Scotland, 2004, pp. 201–
210.

[30] J. S. Dong, J. Sun, H. Wang, Checking and Reasoning about Semantic
Web through Alloy, in: 12th Internation Symposium on Formal Methods
Europe (FM’03), Springer-Verlag, 2003.

[31] K. Jacek, R. Dumitru, S. James, Wsmo use case: Amazon e-commerce
service, unpublished manuscript (2006).

[32] J. S. Dong, C. H. .Lee, Y. F. Li, H. Wang, A combined approach to
checking web ontologies, in: The 13th ACM International World Wide
Web Conference (WWW’04), ACM Press, 2004, pp. 714–722.

50

