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Abstract

To support heterogeneity is a major requirement in current approaches to integration and transformation of data. This
paper proposes a new approach to the translation of schema and data from one data model to another, and we illustrate
its implementation in the tool MIDST-RT.

We leverage on our previous work on MIDST, a platform conceived to perform translations in an off-line fashion.
In such an approach, the source database (both schema and data) is imported into a repository, where it is stored in
a universal model. Then, the translation is applied within the tool as a composition of elementary transformation
steps, specified as Datalog programs. Finally, the result (again both schema and data) is exported into the operational
system.

Here we illustrate a new, lightweight approach where the database is not imported. MIDST-RT needs only to know
the schema of the source database and the model of the target one, and generates views on the operational system
that expose the underlying data according to the corresponding schema in the target model. Views are generated in an
almost automatic way, on the basis of the Datalog rules for schema translation.

The proposed solution can be applied to different scenarios, which include data and application migration, data
interchange, and object-to-relational mapping between applications and databases.

Keywords: model management, data model, schema translation

1. Introduction

The problem of translating schemas between data
models is acquiring progressive significance in hetero-
geneous environments and has received attention in
many projects, including MIDST and its predecessors
(Atzeni et al. [5, 6]), DBMain (Hainaut [18]), AutoMed
and its predecessors (McBrien, Smith and Poulovassilis
[21, 27]), Chameleon (Papotti and Torlone [26]), and
the work by Mork, Bernstein and Melnik [25]. This is
motivated by the fact that applications are usually de-
signed to deal with information represented according
to a specific data model, while the evolution of systems
(in databases as well as in other technology domains,
such as the Web) led to the adoption of many represen-
tation paradigms. For example, many database systems
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are nowadays object-relational (OR) and so it is reason-
able to exploit their full potentialities by adopting such
a model while most applications are designed to inter-
act with a relational database. Also, object-relational
extensions are often non-standard, and conversions are
needed. Moreover, there is currently a significant adop-
tion of XML repositories that manage native XML data.
This fact has increased the heterogeneity of representa-
tions.

In general, the presence of several coexisting mod-
els introduces the need for translation techniques and
tools. In fact, Model Management (Bernstein [9]), a
high-level approach to meta data management that of-
fers high-level operators to deal with schemas and map-
pings, includes an operator (called ModelGen) for trans-
lating schemas from a model to another.

We have recently proposed MIDST [5], a platform for
model-independent schema and data translation in order
to provide a paradigm to face issues of this kind, and
to implement the ModelGen operator. MIDST adopts
a metalevel approach towards translations by perform-
ing them in the context of a universal model (called
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the supermodel1), which allows for the management of
schemas in many different data models. The tool has
been experimented with many models, including rela-
tional, object-oriented (OO), object-relational, entity-
relationship (ER), XML-based, each in many different
variants. Translations are organized according to the
following pattern. First, the source database is imported
into the tool and described in its dictionary in terms of
the supermodel. Then, the translation is performed by
means of a sequence of elementary steps (rules), each
dealing with a specific aspect to be eliminated or trans-
formed. Finally, the obtained database is exported into
the target operational system.2 This approach provides
a general solution to the problem of schema translation,
with model-genericity (as the approach works in the
same way for many models) and model-awareness (in
the sense that the tool knows models, and can use such
a knowledge to produce target schemas and databases
that conform to specific target models). However, as
pointed out by Bernstein and Melnik [10], this approach
is rather inefficient. In fact, the necessity to import and
export a whole database in order to perform translations
is out of step with the current need for interoperability
in heterogeneous data environments.

Here we propose a new platform, MIDST-RT: it is
based on a runtime approach to the translation problem,
where data is not moved from the operational system
and translations are performed directly on it. What the
user obtains at runtime is a set of views (defining the
target schema) conforming to the target model. The
approach is model-generic and model-aware, as it was
the case with MIDST, because we leverage on MIDST
dictionary for the description of models and schemas
and also on its key idea of having translations based on
the supermodel, obtained as composition of elementary
ones. However, the management of the involved data
is completely different. In fact, the import process con-
cerns only the schema of the source database. The rules
for schema translation are used here as the basis for the
generation of views in the operational system. In such a
way, data is managed only within the operational system
itself. In fact, our main contribution is the definition of
an algorithm that generates executable data level state-
ments (view definitions) out of schema translation rules.

A major difference between an off-line and a run-
time approach to translation is the following. For an
off-line approach, as translations are performed within

1The use of a universal model has been adopted, in different forms,
by the various projects mentioned above [5, 6, 18, 21, 25, 26, 27].

2We use the term operational system to refer to the system that is
actually used by applications to handle their data.

the translation tool (MIDST in our case), the language
for expressing translations can be chosen once, for all
models. A significant difficulty is in the import/export
components, which have to mediate between the opera-
tional systems and the tool repository, in terms of both
schemas and data. In fact, in the development of the
original, off-line version of MIDST, a lot of effort was
devoted to import/export modules, whereas all transla-
tions were developed in Datalog. In a runtime approach,
instead, the difficulties with import/export are minor,
because only schemas have to be moved, but the trans-
lation language depends on the actual operational sys-
tems. In fact, if there is significant heterogeneity, then
stacks of languages may be needed (involving for ex-
ample, SQL, SQL/XML, XQuery, and combinations of
them). Also, different dialects of the various languages
may exist, and our techniques need to cope with them.

In order to handle the heterogeneity of the involved
languages, we propose an approach that, after a prelim-
inary abstract representation, first generates views or-
ganized according to the target model, but independent
of the specific languages, and then actually concretizes
them into executable statements on the basis of the spe-
cific language supported by the operational system.

In this paper we provide a general solution to the lan-
guage independent step, whereas for the final one we
concentrate on SQL, with respect to a set of models that
include many variations of the object-relational model
and of the relational one, and their extension with XML.

The paper is organized as follows. Section 2 is an ex-
planation of scenarios in which our work can be placed.
Section 3 is an overview of the work and introduces a
running example. Section 4 gives the necessary back-
ground on MIDST. Sections 5 and 6 present our ap-
proach, by first illustrating its principles and then the
technical details. In Section 7 we show how our ap-
proach can contribute to the scenarios discussed in Sec-
tion 2, with actual samples of code. In Section 8 we dis-
cuss some related work. Finally in Section 9 we draw
our conclusions.

2. Motivating scenarios

The main result of our work is the ability to define
views over the operational system, in order to execute a
light transformation that needs only to import the source
schema in our dictionary. The meaning of “view” de-
pends on the operational system: for an RDBMS or
an ORDBMS, a “view” is a stored query leading to a
virtual table that shows data in a different way; for an
object-oriented language, a “view” is a set of objects
that reference each other; for the Web, a “view” can be
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Figure 1: The data migration scenario

an XML document that shows data extracted from a re-
lational database.

In this section we briefly describe some representa-
tive problems in this context and explain how MIDST-
RT can support them.

2.1. Data and application migration
“Data-migration” is a process of data movement be-

tween different storage systems (and different technolo-
gies) caused by changes in the technology or in the or-
ganization of data. In order to obtain an effective mi-
gration, it is important to keep in mind that applica-
tions have to be migrated as well. As argued by Brodie
and Stonebraker [12], migration needs to be incremen-
tal, and some legacy functions should coexist with the
newly developed ones. MIDST-RT can support this, by
offering two different interfaces to the same database.
Let us consider the following practical problem in order
to see how to solve it using MIDST-RT:

• let A be an ORDBMS used by some applications
of an enterprise;

• the enterprise decides to change its commercial
partner, so it will use B, another DBMS (with a
different version of the object-relational model or
with the relational one);

• given the actual differences between systems A and
B, the original schema is not compatible with B
and so current applications do not work with it.
New applications need to be developed and tested,
without interrupting operation.

Figure 1 explains how we can support this problem:

1. MIDST-RT can generate a set of views over system
A that show a schema compatible with the specifi-
cation of system B. In such a way, the enterprise

can gradually update its applications: the modified
components will use the new schema shown by the
set of generated views, while the other ones will
use the original schema;

2. then, after all applications have been modified, the
data can be actually migrated, by executing the
same queries that define the views, this time ma-
terializing their results.

It is important to observe that this approach would sup-
port the intermediate phase where the old data exist
together with the new schema, while off-line or data-
exchange approaches [5, 17, 18, 27] would support only
the last step.

2.2. XML for data interchange
XML is widely used in the process of data move-

ment between applications or DBMSs, especially via
a network. Thus, a user can benefit from the usage of
XML formats for different reasons: she can migrate a
database using the network, she can allow the communi-
cation between incompatible systems, she can use such
an XML file as an input for an application, and so on.
MIDST-RT is able to create an XML view over a rela-
tional or object-relational database. We talk about an
“XML view” because we perform a runtime translation:
first, we do not import data into MIDST-RT, but only the
schema of the source database; then, we produce exe-
cutable statements, so the XML file is always up to date
even when the source database is frequently updated.
As an example, we can consider the following simple
scenario. A user has a relational database and she wants
to send data to a Java application through the network.
She needs to produce an XML document that contains
such a data, and then she needs a framework for the
marshalling/unmarshalling of the document. MIDST-
RT helps the creation of the XML document in a flexible
way with three interesting features which differentiate
this approach from the data exchange one [24]: the dy-
namic generation, the handling of various source mod-
els and the possibility of customizing translations. Such
a document will be processed by the destination appli-
cation, possibly by taking advantage of the document
schema (XSD).

In Subsection 7.2 we will show a concrete example
for this scenario by using MIDST-RT.

2.3. O/R mapping
The need for mapping object-oriented applications

and relational databases arises in many contexts [23,
25], and various technologies have been developed to
support it. The problem can be seen in two major forms:
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(i) given a relational schema (or an object-relational
one) it is convenient to produce object-oriented wrap-
pers, that is, software artifacts that ensure an object-
oriented access to a relational database; (ii) given a set
of classes that define objects in an object-oriented lan-
guage it is often useful to obtain the schema of a rela-
tional database for the persistent storage of the corre-
sponding data.

As far as the first scenario concerns, MIDST-RT can
contribute with the generation of wrappers, which can
be seen as a form of views, with benefits in the flexibil-
ity both in the source model (many variations of the rela-
tional and object-relational ones) and in the target model
(different languages and programming conventions), as
well as in the mapping (which can be customized, for
example for performance issues). We will see in Sub-
section 7.3 a concrete example for this scenario.

In the second scenario we want to automatically gen-
erate a database from a set of classes. Even with respect
to existing technologies that support this problem (such
as JDO [20], Hibernate [8], or ADO.NET Entity Frame-
work [23]), or in combination with them, MIDST-RT
can provide specific benefits:

• flexibility in the database management, thanks to
the knowledge of different representations of the
object-relational model;

• flexibility in the definition of the target schema,
thanks to the possibility of transforming the source
schema before the creation of the mapping.

At the moment, we have not implemented this sce-
nario in MIDST-RT, but we are working on it, since it
is an important application for our tool. This can be re-
alized by introducing an object-oriented importer that
translates a set of Java or C# classes into MIDST-RT
internal representation.

3. Overview

As we said in the Introduction, the starting point
for this work is MIDST [5], a platform for model-
independent schema and data translation based on a
meta-level approach over a wide range of data mod-
els. In MIDST the various data models are described
in terms of a small set of basic constructs. Schemas
of the various models are described within a common
model, the supermodel, which generalizes all of them,
as it involves all the basic constructs. Translations are
performed within the supermodel and are obtained as a
composition of elementary steps (which we call basic
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Figure 2: The runtime translation procedure

translations). In the current implementation, they are
specified in Datalog.

In this paper we describe a new approach and an
enhanced version of our platform (called MIDST-RT)
which enables the creation of executable statements
generating views in the operational system. Let us il-
lustrate the runtime translation procedure, by following
the main steps it involves, with the help of Figure 2:

1. given a schema S s (of a source model Ms) in the
operational system, the user (or the application
program) specifies a target model Mt;

2. schema S s (but not the actual data) is imported
into MIDST-RT, and specifically in its dictionary,
where it is described in supermodel terms;

3. MIDST-RT selects the appropriate translation T
for the pair of models (Ms,Mt), as a sequence of
basic translations available in its library;

4. the schema-level translation T is applied to S s, still
within the tool, to obtain the target schema S t (ac-
cording to the target model Mt);

5. on the basis of the schema-level translation rules
in T, MIDST-RT generates views in the specific
language available in the operational system;

6. MIDST-RT exports and executes the produced
statements over the operational system, in order to
create a set of views that perform the translation.

Let us observe that steps 1-4 appear also in the pre-
vious version of MIDST, whereas 5 is completely new,
in all its phases, and clearly significant. Step 6 is a re-
vised form of the export step of MIDST: it exports and
executes the view creation statements, rather than ex-
porting the data.

As a running example, let us consider an environ-
ment where some applications interact with an object-
relational database. Then, assume we want to write an
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Figure 3: An object-relational schema

application that uses the same data but interacting with
a relational data model. We can consider a version of
the OR model that has the following features:3 tables,
typed tables (i.e. tables with identifiers), references and
foreign keys between typed tables and generalizations
over typed tables.

In this scenario, our tool generates relational views
over the object-relational schema, which can be directly
used by the new application program.

A concrete case for this example involves the OR
schema sketched in Figure 3. The boxes are typed ta-
bles: employee (EMP) is a generalization for engineer
(ENG), which is in turn a generalization for IT-engineer
(IT ENG); office (OFFICE) is referenced by employee.

The goal of the runtime application of MIDST is to
obtain a relational database for this, such as the one that
involves the following tables with the foreign keys sug-
gested by the names of the attributes (details omitted for
the sake of space):4

OFFICE (OFFICE OID, offName, city)
EMP (EMP OID, lastName, OFFICE OID fk)
ENG (ENG OID, school, EMP OID fk)
IT ENG (IT ENG OID, specialty, ENG OID fk)

Given the schema in Figure 3, our tool first imports it
into its dictionary. Then, given the specification of the
target model (the relational one), the tool automatically
selects an appropriate schema-level translation, which
is a sequence of basic translations, each specified by
means of a Datalog program. The user can customize

3This is just a possible version of the OR model, and our tool can
handle many others.

4As it is well known, there are various ways to map generalizations
to tables, and this is one of them.

the proposed sequence, in order to execute a person-
alized translation. The customization may include the
addition, removal or reorder of the basic translations of
the sequence chosen by the tool.

In the example, the schema-level translation performs
the following tasks: it first eliminates the multiple lev-
els of generalizations (in the example, the one between
ENG and EMP and the one between IT ENG and ENG)
and then transforms the typed tables (all tables in the
source) into value-based tables. In MIDST this would
be done in four steps, with a first Datalog program for
the elimination of generalizations and a fourth one for
the transformation of typed tables into value-based ones
with two auxiliary intermediate steps for the introduc-
tion of keys and the replacement of references with for-
eign keys, respectively. The tool we propose here gen-
erates a set of view statements for each of these Datalog
programs.

The following is a sketch of one of the view defini-
tions generated in the first step:

CREATE VIEW ENG A ... AS

SELECT ... SCHOOL, ... EMP OID

FROM ENG ;

We use the name ENG A to distinguish the new version
from the original one.5 View ENG A extends ENG with
a supplementary attribute, EMP OID. It implements a
strategy for the elimination of generalizations, where
both the parent and child typed tables are kept, with a
reference from the child to the parent.

In Section 5 and 6, we will see in detail how we pro-
duce views of this kind, by showing the principles, the
complete description of the algorithm, and the specific
details that are needed for the SQL statements. The dis-
cussion will need some background on MIDST, which
is given in the next section.

4. Translations in MIDST

MIDST (Atzeni et al. [5]) is based on the idea that the
constructs of the various models correspond to a lim-
ited set of types of constructs and it is therefore possible
to define a “universal model”, called the supermodel,
that includes, possibly renamed, all the constructs of
interest. Each model, then, is a specialization of the
supermodel, and each schema in any model is also a

5In the technical sections of the paper, we use this convention, with
the suffix, when needed for the sake of readability and conciseness.
In the tool, names are repeated and distinguished by using different
schema names.
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schema in the super- model. Therefore, translations
from a model to another can be performed within the
supermodel.

In order to support the process of generating transla-
tions, similar models are grouped into families [5]. Fig-
ure 4 (taken, with minor variations, from [5]) reports a
list of MIDST generic constructs and shows examples of
their use in most common models managed by our tool:
rows correspond to constructs, columns to families of
models, while each cell shows the name of a construct
in a specific family.

In the tool, each construct has a name, a set of prop-
erties (which allow the specification of variants and de-
tails) and a set of references (which allow constructs to
refer to each other). Each construct is provided with a
unique identifier (OID) and references are then based on
OIDs.

Let us illustrate the main constructs by means of the
running example, the object-relational schema of Fig-
ure 3. Each of the typed tables (EMP, ENG, IT ENG
and OFFICE) is seen as an Abstract in the supermodel.
Then, each column of the typed tables (specialty for
IT ENG, school for ENG, lastName for EMP, offName
and city for OFFICE) is a Lexical and is related to the
corresponding Abstract. Similarly, reference fields (of-
fice in this case) are modeled as AbstractAttributes (of
EMP in the example). Finally, Generalizations appear
in the supermodel: ENG is a child of EMP and IT ENG
is a child of ENG.

Each translation step in MIDST is specified as a Dat-
alog program, which is a set of Datalog rules. More
precisely, we use a variant of Datalog with “value inven-
tion” [13, 19], where values for new OIDs are generated.
We use Skolem functors to generate OIDs. For example,
the following rule translates an Abstract (a typed table
in an OR model) into an Aggregation (a simple table):

Aggregation ( OID: SK1(oid),

Name: name )

<- Abstract ( OID: oid,

Name: name );

Notice the use of a Skolem functor, SK1 in the example,
which, given the OID of an Abstract, produces a corre-
sponding OID for an Aggregation. We use Skolem func-
tions to generate new identifiers for constructs, given a
set of input parameters, as well as for referring to them
whenever needed, given the same set of parameters.
Skolem functions are injective. So, in this case SK1
will generate a different OID, and so a different new Ag-
gregation, for each Abstract in the source schema. For
a given target construct many functors can be defined

(denoted by numeric suffixes in the examples), each tak-
ing different parameters in dependence on the source
constructs the target one is generated from. As a con-
sequence, in order to guarantee the uniqueness of the
OIDs, the ranges of the Skolem functions are disjoint.
Other functors for Aggregation (which exist in the tool,
but not shown in this paper) generate a different set of
OIDs.

Translations taking place in real scenarios require
several Datalog programs to specify the transformation
of each construct. We pursue a modular approach and
decompose translations into simple steps (each return-
ing a coherent schema of a specific model that is then
used by the subsequent step). This is done by means of
a library of Datalog programs implementing elementary
steps and of an inference engine which can determine
the appropriate sequence of steps to be applied.

With reference to our running example, let us take
into account the translation from the version of the OR
model we are considering towards a classical relational
model. In MIDST [5] this could be done as a process in
four steps:

A elimination of generalizations;
B generation of identifiers for typed tables;
C elimination of reference columns with the intro-

duction of value-based columns and foreign keys;
D transformation of typed tables into tables.

In each translation step we copy, with a simple “copy
rule”, all the constructs that are not modified. For ex-
ample, in order to copy an Abstract, we have the copy-
abstract rule (R1):

R1 Abstract ( OID: SK2(oid),

Name: name )

<- Abstract ( OID: oid,

Name: name );

The tool has a copy rule for each construct automati-
cally generated out of the definition of the supermodel.

When actual transformations are needed, rules are
more complex. Let us illustrate the main points.

As for Step A, there are various ways to eliminate
generalizations. Let us refer to the one that keeps both
the parent and the child typed tables and connects them
with a reference. This requires that we copy all typed ta-
bles with their columns and then add a new column for
each child typed table with a reference to the respective
parent typed table. In terms of MIDST constructs, this
means that, for each Generalization between two Ab-
stracts, an AbstractAttribute (a reference column) refer-
ring to the parent Abstract must be added to the child

6



Metaconstruct relational OR OO ER
Abstract - typed table class entity
Lexical column column field attribute

BinaryAggregationOfAbstracts - - - binary relationship
AbstractAttribute - reference reference field -

Generalization - generalization generalization generalization
Aggregation table table - -
ForeignKey foreign key foreign key - -

StructOfAttributes - structured column structured field -

Figure 4: Simplified representation of MIDST metamodel

Abstract. The Datalog rule implementing this last step
is the following (in the following denoted as R4, or elim-
gen):

R4 AbstractAttribute (

OID: SK3(genOID, childOID),

Name: name,

IsNullable: "false",

abstractOID: SK2(childOID),

abstractToOID: SK2(parentOID) )

<- Generalization ( OID: genOID,

parentAbstractOID: parentOID,

childAbstractOID: childOID ),

Abstract ( OID: parentOID, Name: name),

Abstract ( OID: childOID);

Let us observe that the Skolem functor SK3 has two
arguments, because we need to create a new Abstrac-
tAttribute for each Generalization and for each of its
child Abstracts: indeed a Generalization may have var-
ious children and an Abstract may be a child in various
Generalizations.

In order to obtain a coherent schema we also need to
copy all the constructs in the schema, other than gen-
eralizations. This is done by the copy-abstract rule
(R1) we have seen above, together with similar ones
for the other constructs, copy-lexical (R2) and copy-
abstractAttribute (R3) reported below.

R2 Lexical ( OID: SK7(lexOID),

Name: name,

IsNullable: isN,

IsIdentifier: isI,

abstractOID: SK2(absOID) )

<- Lexical ( OID: lexOID,

Name: name,

IsIdentifier: isI,

IsNullable: isN,

abstractOID: absOID ),

Abstract( OID:absOID );

R3 AbstractAttribute( OID: SK8(oid),

Name: name,

isNullable: isN,

abstractToOID: SK2(absToOID),

abstractOID: SK2(absOID) )

<- AbstractAttribute (

OID: oid,

Name: name,

isNullable: isN,

abstractToOID: absToOID,

abstractOID: absOID ),

Abstract( OID:absOID ),

Abstract( OID:absToOID );

Step B is needed because it is not guaranteed that
typed tables (in the OR model) have key attributes,
whereas, in order to transform references into value-
based correspondences (subsequent Step C), keys are a
precondition. The following Datalog rule (R5), where
the “!” character denotes a negation, implements this
strategy: for each Abstract without any identifier, it gen-
erates a new key Lexical for it.

R5 Lexical ( OID: SK4(absOID),

Name: name + "_OID",

IsNullable: "false",

IsIdentifier: "true",

Type: "integer",

abstractOID: SK2(absOID) )

<- Abstract ( OID: absOID,

Name: name ),

! Lexical ( IsIdentifier: "true",

abstractOID: absOID );

As in the previous step, we need copy rules for all the
constructs in the model (the same as above, R1, R2, R3).

Step C replaces reference columns with value-based
ones and connects them to the target table with a refer-
ential integrity constraint. The following rule (R6) spec-
ifies this: for each AbstractAttribute (reference), it repli-
cates the key Lexicals of the referred typed table into the
referring one.
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R6 Lexical ( OID: SK5(oid,lexOID),

Name: lexName,

IsIdentifier: "false",

Type: type,

abstractOID: SK2(absOID) )

<- AbstractAttribute ( OID: oid,

abstractOID: absOID,

abstractToOID: absToOID),

Lexical ( OID: lexOID,

Name: lexName,

abstractOID: absToOID,

IsIdentifier: "true",

Type: type ),

Abstract( OID:absOID ),

Abstract( OID:absToOID );

Here we just need the application of two copy rules (R1
and R2).

Finally, in Step D, typed tables are eliminated and
this is simply performed by means of two Datalog rules.
The first translates Abstracts into Aggregations (R7), the
second transforms Lexicals referring to Abstracts into
Lexicals referring to Aggregations (R8). We omit R7 and
R8 for sake of space, as they would not add much to the
discussion.

With respect to the running example of Figure 3, we
have the following:

• Step A eliminates the hierarchies, hence connects
ENG to EMP with a reference and IT ENG to ENG
with another reference;

• Step B creates an identifier for each of the typed
tables: EMP OID for EMP, ENG OID for ENG,
and so on;

• in Step C, references are translated into
value-based correspondences: a new Lexical
EMP OID fk is added to ENG, with foreign
key constraint towards the identifier EMP OID
of EMP; similarly OFFICE OID fk is added to
EMP and ENG OID fk to IT ENG, each with the
appropriate foreign key;

• finally, Step D performs the actual translation of
EMP, ENG, IT ENG and OFFICE into tables.

The final result is indeed the relational schema we
have already seen in Section 3:

OFFICE (OFFICE OID, offName, city)
EMP (EMP OID, lastName, OFFICE OID fk)
ENG (ENG OID, school, EMP OID fk)
IT ENG (IT ENG OID, specialty, ENG OID fk)

5. Generating views

As we said, the core goal of the runtime translation
procedure is to generate executable statements defin-
ing views. This is obtained by means of an analysis
of the Datalog programs used to translate schemas as
discussed in Section 4. In this section we discuss the
major ideas of how views are constructed: which views,
which components for them, where values come from
and how they have to be correlated if needed (in the rela-
tional case, in SQL terms: which views, and, for each of
them, which columns, which sources in the FROM clause
and which join conditions). Then, in the next section,
we will discuss the details in terms of a complete algo-
rithm.

5.1. The general approach

The first issue to be considered is how to find which
views are needed in a translation step, on the basis of
the Datalog program that implements it. A key idea
in this respect is a classification of MIDST metacon-
structs (those in Figure 4) according to the role they
play. There are three categories: container, content,
and support constructs.6 Containers are the constructs
that correspond to sets of structured objects in the oper-
ational system (i.e. Aggregations and Abstracts corre-
sponding to tables and typed tables, respectively). Con-
tent constructs represent elements of more complex con-
structs, such as columns, attributes, or references: usu-
ally a field of a record (i.e. Lexical and AbstractAt-
tribute) in the operational system. Support constructs
do not refer to structures where data are logically stored
in the system (for example relations), but are used to
model relationships and constraints between them in
a model-independent way. Examples are Generaliza-
tions (used to model hierarchies) and ForeignKeys (used
to specify referential integrity constraints). This sharp
distinction is not sufficient in practice, since there are
some constructs that can be content and container at the
same time: we call them dual constructs. For exam-
ple, we model nested structures using the metaconstruct
StructOfAttributes: a StructOfAttributes is a content for
the construct in which it is contained (an Abstract or
another StructOfAttributes) and a container for the con-
structs it aggregates.

In turn, Datalog translation rules can be classified ac-
cording to the construct their head predicate refers to.
Therefore, we have container- (for example, rules R1

6This classification shares some similarity with that proposed by
McBrien and Poulovassilis [21], which has however a different goal.
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and R7 in Section 4), content- (all other rules in Sec-
tion 4) , support- and dual-generating rules.

The introduction of this classification is motivated by
the observation that in all models we have constructs
that have an independent existence (and are used to or-
ganize data or to represent real-world concepts), other
constructs that exist only as components of independent
constructs (and maintain component information), con-
structs that play both these roles, and finally constructs
that describe properties of constructs of the previous
two categories. These are the four categories we have
just illustrated: container, content, dual, and support,
respectively.

Exploiting the above observations, the procedure de-
fines a view for each container construct, with fields that
derive from the corresponding content (and dual) con-
structs. Instead, as support constructs do not store data,
they are not used to generate view elements (while they
are kept in the schemas). More precisely, given a Dat-
alog schema rule H ← B, if H refers to a container
construct, we will generate one view for each instantia-
tion of the body of the rule. If H refers to a content or a
dual, then we define a field of a certain view.

We will present the translation procedure with its
technical details in Section 6. In the rest of this sec-
tion, we first illustrate the procedure with reference to
the running example, and then discuss two major issues
in the procedure, namely: (i) the provenance of data
(that is, where to derive the values from or how to gen-
erate them) for the single field (Subsection 5.2) and (ii)
the appropriate combination of the source constructs,
which, from a relational point of view, corresponds to
a join (Subsection 5.3).

Let us consider the running example again. Step
A includes rules R1, R2, R3, R4. The only container-
generating rule is R1, which copies all the typed tables,
hence we generate a view for each typed table of the
operational system: EMP A, ENG A, IT ENG A and
OFFICE A.7

The other rules are content-generating. Rules R2 and
R3 copy Lexicals (simple fields) and AbstractAttributes
(references), respectively. From rule R2, the procedure
infers the owner view, name, and type for each field. For
AbstractAttributes the procedure works likewise (rule
R3) with the addition that it has to handle the values en-
coding the references between constructs in an object-
oriented fashion.

The main rule of Step A is R4, which eliminates gen-
eralizations by maintaining the parent and the child and

7As we said, we use the suffix here to distinguish the versions of
tables and views in the various steps.

connecting them with a reference. Here the problem of
data provenance for fields is evident: while in rules R2
and R3 the values are copied from the source fields, in
rule R4 an appropriate value that links the child table
with the parent one has to be generated. We will discuss
this issue in Section 5.2.

Let us now extend the same reasoning to the non-
copying rules of the other steps.

In Step B we generate a key attribute for each typed
table using rule R5. It is a content-generating rule since
it generates a key Lexical for every Abstract without an
identifier. Hence we add another field to the views that
correspond to those Abstracts.

Once Step B has guaranteed the presence of a key,
in Step C we translate references into value-based
(foreign-key) correspondences.8 Rule R6 addresses the
need to copy the identifier values of the referred con-
struct into the referring one in order to allow for the
definition of value-based correspondences. It implies
the addition of a new field to the view that corresponds
to the referring Abstract.

Step D is simpler, since the only transformation in-
volves turning typed tables into tables once they do not
have any generalizations nor references and the pres-
ence of identifiers is guaranteed. The issue is then lim-
ited to the internal representation of views handled by
the operational system. In fact, many systems have both
views and typed views, and so we have to transform the
former into the latter, or vice versa, according to the tar-
get model.

This procedure does not depend on the specific con-
structs nor on the operational system or language. It
is not related to constructs because we only rely on
the concepts of container and content to generate state-
ments. Other constructs may be added to MIDST su-
permodel without affecting the procedure: it would be
sufficient to classify them according to the role they
play (container, content, support, or dual). Moreover,
it is not related to the operational system constructs or
languages since the statements are designed as system-
generic structures. A specification step, exploiting the
information coming from the operational system, will
then be needed to generate system-specific statements.
Furthermore, this approach is flexible because (as we
will see shortly) it allows annotations on Datalog pro-
grams whenever conditions get more complex and in or-
der to handle specific cases.

8Notice that we refer to foreign-key values, as we use them, but not
to foreign-key constraints because they are not usually meaningful in
views.
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5.2. The provenance of field values
In this subsection we consider the problem of the data

provenance of the individual fields. We discuss how the
procedure finds for every value either a source field to
derive the value from or a generation technique for it.
Our procedure, for a given rule, collects information
about the provenance of values by analyzing the Skolem
functor used in the head of the rule.

If the Skolem functor has only one parameter and this
parameter is the OID of another content field, then the
value comes from the instance of the construct having
that OID. In the example, this is what happens when-
ever a Lexical is copied using rule R2 (with the functor
SK7(lexOID) that copies the content construct Lexical
from a unique source content). Similarly, if the Skolem
functor has more than one parameter and only one of
them refers to a field, then a source construct can be de-
termined as well. For example, let us refer to a transla-
tion step in our repository, which implements the elimi-
nation of hierarchies by removing parent Abstracts and
moving their attributes to child Abstracts. Such a step
includes the following rule, shown here in simplified
form:

R18 Lexical( OID: SK15(lexOID, childOID),

...

abstractOID: SK2(childOID) )

<- Lexical( OID:lexOID,

...

abstractOID:parentOID ),

Generalization( OID: genOID,

parentAbstractOID: parentOID,

childAbstractOID: childOID ),

Abstract ( OID: childOID ),

Abstract ( OID: parentOID );

In the rule, the functor SK15 has two parameters: lex-
OID, referring to a content (the attribute), and childOID,
referring to a container (the child Abstract). Clearly, the
value is derived from the attribute, in many cases just
copied. Concretely, this could have been used to copy
the attribute school into IT ENG.

Instead, if more than two or none of the functor pa-
rameters refer to a content construct, the result value
has to be retrieved in some other way. This is exactly
what happens in steps A and B with rules R4 (functor
SK3(genOID,childOID)) and R5 (SK4(absOID)) respec-
tively. This case can be handled with the use of annota-
tions, which specify where values come from. Here we
present an informal description of this approach to give
an intuition of the adopted strategy while technical de-
tails will be shown in Subsection 6.2.1. In rule R4, func-
tor SK3 generates the OID for a reference field (Abstrac-

tAttribute) from the OID of a Generalization (a support
construct) and from the OIDs of an Abstracts (container
construct). Here an annotation is used to specify that
the reference from the child table to the parent can be
implemented by means of the tuple ID (TID)9 used as
value for the field. A reason for this choice is the fact
that every instance of a child typed table is an instance
of the parent table too. Then for each tuple of the child
container there is a corresponding tuple in the parent
one with a restricted set of attributes, but with the same
TID. Therefore, the reference can be made by means
of some manipulation of this TID. In detail, the rules
of Step A in the running example lead to the following
system-generic pseudo-SQL statements:

CREATE VIEW ENG A ... AS

SELECT ... SCHOOL,

REF(ENG OID) AS EMP OID

FROM ENG ;

CREATE VIEW IT ENG A ... AS

SELECT ... SPECIALTY,

REF(IT ENG OID) AS ENG OID

FROM IT ENG ;

ENG participates in a Generalization with EMP, so the
rule copies its attributes and adds the values for the field
referencing the parent EMP by casting the tuple TID. A
similar thing happens for IT ENG, which participates in
a Generalization with ENG.

Similarly, in rule R5, the functor generates the OID
for a Lexical from the OID of an Abstract therefore it
conveys the fact that the value of the field corresponding
to that Lexical derives from a container. Our strategy
involves the transformation of the TID into a value for
this field. This solution would guarantee the presence of
a unique identifier.

5.3. Combining source constructs
On the basis of the discussion in the previous subsec-

tion, it turns out that, for each field in a view, we have ei-
ther a provenance or a generation. Provenance can refer
to different source constructs, in which case it is needed
to correlate them. In database terms, a correlation intu-
itively corresponds to a join. However, in practice, this
is not always necessary. If two fields can be accessed
from the same container, then the join can be avoided.
For instance, considering an object-relational schema, if
a construct C has a reference to a construct D, then we

9In OR systems, every typed table usually has a supplementary
field, which we call TID, a system-managed identifier which can be
used to base reference mechanisms on.
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can use that reference to derive the values c of C and d
of D, without any join.

In our paradigm we associate join conditions to Dat-
alog rules and Skolem functors whenever necessary. In
fact we handle typed functors, in the sense that they gen-
erate OIDs for specific constructs given the OIDs of a
fixed set of constructs.

Let us see an example with an application of this
technique. Consider another way of eliminating gen-
eralizations: moving the child attributes into the par-
ent and deleting the child; obviously the parent will
preserve its original attributes as well. In a multilevel
case, this means that only the “top ancestor” is main-
tained, and attributes of all the “descendants” are moved
to it. This requires, as a preliminary step (handled by
a recursive rule), to detect the top ancestor for each
child. These pairs are maintained in an auxiliary ta-
ble and the Lexicals are copied from a child to the
corresponding ancestor by means of a rule that uses a
Skolem functor SK6(ancestorOID, childOID, lexOID).
Conversely, Lexicals from the source ancestor would be
copied to the target one by means of the simpler functor
SK7(lexOID). Functor SK6 relates two Abstracts (con-
tainers) and generates a new OID for the Lexical whose
OID is lexOID. Instead, SK7 generates OIDs for Lexi-
cals given the OID of another Lexical.

The adopted combination of content-generating func-
tors {SK6, SK7} encodes the sourcing of data as follows:
as we will clarify in Section 6.2, it is a left join on TIDs
between the ancestor and the child; in such a way, all
the instances of the ancestor that are also instances of
the child, appear in the result view as a single tuple.
Moreover, the left join guarantees the inclusion of the
tuples that represent instances of the ancestor that do
not belong to the child.

In the running example, we have a two level general-
ization and so Lexicals have to be copied (if they exist)
from two different child tables, thus leading to two left
joins:

CREATE VIEW EMP A

(..., LASTNAME, SCHOOL, SPECIALTY) AS

SELECT ...EMP.LASTNAME,

ENG.SCHOOL, IT ENG.SPECIALTY

FROM (EMP LEFT JOIN ENG ON

(CAST (EMP.OID AS INTEGER) =

CAST (ENG.OID AS INTEGER)))

LEFT JOIN IT ENG ON

(CAST (EMP.OID AS INTEGER) =

CAST (IT ENG.OID AS INTEGER)) ;

Notice that, in this statement, the pattern bases joins on
the sharing of TIDs that takes place between parent and

child instances. Moreover, consider that it is not always
necessary to perform a join operation. In fact, there are
some ORDBMSs (like DB2) that allow to perform our
translation by accessing only the top level table of the
hierarchy. For example, our query in DB2 will be char-
acterized by the use of the OUTER keyword in the FROM

clause, which exposes all the columns of the parameter
table and of its subtables:

CREATE VIEW EMP A

(..., LASTNAME, SCHOOL, SPECIALTY) AS

SELECT ...EMP.LASTNAME,

EMP.SCHOOL, EMP.SPECIALTY

FROM OUTER(EMP) ;

As mentioned before, there might be cases in which
fields of different containers can be accessed by just
referring to a single container by means of references.
This is what happens in Step C where the values for the
fields in the referring typed table can be derived from
the key fields in the referred one (rule R6).

The following statement is among the ones generated
for Step C:

CREATE VIEW EMP C ... AS

SELECT ... LASTNAME,

OFFICE->OFFICE OID AS OFFICE OID

FROM EMP B ;

Indeed, EMP has references towards OFFICE (which
does not appear in the statement) via the field office
and OFFICE OID is the identifier for OFFICE added
by rule R5. Then, we need to copy OFFICE OID val-
ues into a field of EMP according to the semantics of
the rule. It is clear that there are two sources: EMP and
OFFICE. However OFFICE OID can be accessed via
office, therefore the join between the two containers is
not needed.

In this way, joins are avoided when possible, by ex-
ploiting dereferencing (as in the example) when such a
feature is supported by the operational system. Other-
wise, when they are necessary, their treatment is glob-
ally encapsulated in Skolem functors that relate con-
structs in a strongly-typed fashion. In general, we can
provide a different combination of Skolem functors for
each needed join condition. The concept is that we ex-
ploit functor expressivity and strong typing to under-
stand how to combine the containers of the different
fields.

6. The view-generation algorithm

We now illustrate our algorithm for generating views
at runtime from Datalog rules encoding schema-level
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Procedure translateAsView(source schema, target model, targetDBMS )

Input: a source schema, a target model and a target DBMS
Output: SQL statements that perform the runtime translation

0 schema := importFromTargetSystem(schema name);
1 translation := findAutomaticTranslation();

for each translation step in translation do
2.a view generators := computeViewGenerators(translation step);

for each view generator in view generators do
2.b l independent views.add(instantiateViewGenerator(view generator, source schema));

for each l independent view in l independent views do
3 pseudoSQL statements.add(computePseudoSQLstatement(l independent view));

for each pseudoSQL statement in pseudoSQL statements do
4 executable statements.add(computeExecutableStatement(pseudoSQL statement, targetDBMS));
5 return executable statements

Figure 5: The view-generation algorithm

translations. The procedure is shown in Figure 5 and in-
cludes tasks from the previous version of MIDST (Tasks
0 and 1) as well as new ones (all the others). Let us com-
ment on them.

The algorithm takes as input the name of the source
schema and the indication of the desired target model
and of the target DBMS. The ”import” subprocedure
(Task 0 in the figure) is a function already in the pre-
vious version of MIDST, adopted here in order to build
an internal representation of the source schema. It maps
each construct of the source schema in terms of super-
model constructs. Then (Task 1) we use the target model
parameter to invoke another existing MIDST function:
findAutomaticTranslation. It produces a translation (for
translating the source schema into the target model),
which is composed of a sequence of elementary steps.
Each step is, in turn, a set of Datalog rules. The
rest of the procedure generates the views, on the ba-
sis of the Datalog rules in the translation steps. This
is done in various tasks, with a process that finds
general features first and then specializes them to the
actual target context. Specifically, Task 2 produces
language-independent views, and this is done in two
subtasks: we first produce “view-generators” (Subtask
2.a), which depend only on the model at hand, and
then instantiates them to (language-independent) views,
which refer to the schema elements of interest (Subtask
2.b). Then, Task 3 transforms these views into state-
ments in pseudo-SQL.10 Finally, Task 4 compiles exe-
cutable statements in the specific language (e.g. SQL,

10As we will clarify later, this is essentially a simplified version of
SQL, which has the goal of generalizing in a declarative syntax the
various languages of the commercial DBMS’s.

SQL/XML, XQuery) of the target operational system.
We describe the technical details of the procedure

in the next subsections, as follows: the generation of
language-independent views (Task 2) in Subsection 6.1,
their conversion to pseudo-SQL views (Task 3) in Sub-
section 6.2, and finally the compilation of the executable
view-creation statements (Task 4) in Subsection 6.3.

6.1. Language-independent views

As we said, language-independent views are built in
two subtasks. The first of them, which produces “view-
generators” (Subtask 2.a), is performed by means of the
algorithm shown in Figure 6. Its input is an elementary
translation step T , which is a set of Datalog rules. As
we said in Section 5, our goal is to produce a view for
each container construct in the head of rules in T with
components (columns in relational terms) for each of
its content constructs. The classification of constructs
is part of our supermodel, and so it is immediate for
our procedure to discover which schema elements have
to become views and which components thereof. In
fact, line 1 in the algorithm finds container-generating
rules by means of a simple inspection. Then, the loop in
lines 2-6 builds a view-generator for each container rule.
The most delicate step is to associate components with
views, that is, to establish, for each component, which
is the view it belongs to. This is done by finding the
content-generating rules associated with the container
rule at hand (line 3) and then building a view generator
for the container rule and the associated content rules
(line 4).

Let us introduce a bit of notation. Given a trans-
lation T , we denote the set of content-generating and
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Procedure computeViewGenerators(translation step)

Input: a set of Datalog rules of a translation step
Output: the view-generators corresponding to the translation step

1. containerRules := findContainerRules(translation step);
2. for each containerRule in containerRules do;
3. contentRules := findContentRules(containerRule, translation step);
4. view generator := createViewGenerator(containerRule, contentRules);
5. view generators.add(view generator);
6. return view generators;

Figure 6: The algorithm for finding view-generators

dual-generating rules in it as Contents(T ) and the set of
container-generating rules as Containers(T ). Given T
and a container-generating rule R in T , we denote as
content(R,T ) the set of rules in Contents(T ) generating
content (and dual) constructs for R.

So, line 3 in the algorithm computes the associa-
tion between container and content rules: given a con-
tainer rule in a translation step, it finds the correspond-
ing content rules. This is is determined by analyzing
the Skolem functors in the rules in T . In our context,
each Skolem functor SK is associated with a given con-
struct, the one which it generates OIDs for. Each func-
tor always appears with the same arity and arguments,
each one having a fixed type. The associated function is
injective and function ranges are pairwise disjoint. For
example, consider functor SK5 of Section 4, used in rule
R6 (which eliminates the references). As it can be seen
from the rule, and especially its head, SK5 takes as input
the OID of an AbstractAttribute and the OID of a Lexi-
cal and generates a unique OID for another Lexical:

SK5 : AbstractAttribute × Lexical→ Lexical

The relationship between content and container con-
structs is determined by the OIDs. Container constructs
have one main OID whose uniqueness is guaranteed by
a primary Skolem functor (the one that generates the
OID in the head). On the other hand, content con-
structs have more than one OID: one of them identi-
fies the content itself while the others relate it to other
constructs such as the container. This second category
of OIDs is generated by a family of secondary Skolem
functors. Our procedure includes in content(R,T ) the
content rules in T that involve, as secondary functor,
the primary functor of the container rule R.

For example, the head of the rule R1 (which copies
Abstracts) has the form:

Abstract ( OID: SK2(oid),

Name: name )

and it is apparent that it is only characterized by its OID,
the one that identifies it. Conversely, a content construct
has at least two functors (one for each characterizing
OID). This is the case for example for Lexical as men-
tioned in the head of rule R2 (repeated here for the sake
of convenience):

R2 Lexical ( OID: SK7(lexOID),

Name: name,

IsNullable: isN,

IsIdentifier: isI,

abstractOID: SK2(absOID) )

<- Lexical ( OID: lexOID,

Name: name,

IsIdentifier: isI,

IsNullable: isN,

abstractOID: absOID ),

Abstract( OID:absOID );

Here, SK7 is the primary functor, used to generate
unique OIDs for instances of Lexical from OIDs of
other Lexicals; SK2 is a secondary one, used to con-
nect each instance of Lexical (content) to the appropri-
ate Abstract (container) by retrieving the OID of the tar-
get Abstract (abstractOID) from the one of the source
(absOID).

Therefore, in our running example, ifT is the transla-
tion of Step A, we have that Containers(T ) = {R1} and
Contents(T ) = {R2, R3, R4} and content(R1,T ) = {R2,
R3, R4}. In fact, each of the rules R2, R3, R4 has SK2 (the
primary functor of R1) as a secondary functor.

This completes the discussion of line 3 of the algo-
rithm in Figure 6. The rest of the algorithm is pretty
easy. Line 4 is based on a definition, as follows. For
each R ∈ Containers(T ) (that is, for each container
generating rule) we define a view-generator as a pair
VG = (R, content(R,T )), composed of the rule itself and
of a set of rules, those that define contents for its con-
tainer. Essentially, a view-generator tells which rules
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define containers (and so will lead to views in the tar-
get schema) and which are the rules that define the re-
spective contents (and so will lead to fields of the corre-
sponding views). Finally, line 5 just prepares the result
to be returned by the algorithm.

In the example, our algorithm will determine, for Step
A, the following view-generator: VG1 = (R1, {R2, R3,
R4}). Intuitively, this view-generator says that in the tar-
get schema we have container constructs as generated
by rule R1 (and so, Abstracts), each with content con-
structs generated by R2, R3, and R4 (Lexicals and Ab-
stractAttributes).

Let us now move to the actual construction of
language-independent views, Subtask 2.b in the main
algorithm in Figure 5. This does not require procedural
details, and is based on some definitions.

Given a Datalog rule R, we define an instantiated
body IB as a specific assignment of values for the con-
structs appearing in the body of R. It means that, for
each construct in the body, we have values for name,
properties, references, and OID that satisfy the predi-
cates in the body of the rule itself with respect to the
considered schema. For example, given the body of rule
R2 (copy-lexical), an instantiated version of it is the fol-
lowing one:

Lexical ( OID: 100,

Name: "lastName",

IsIdentifier: "false",

IsNullable: "false",

abstractOID: 3 ),

Abstract( OID: 3 );

In the running example, it expresses the fact that we are
copying the Lexical “lastName” (with OID 100) from
the Abstract “EMP” (with OID 3). We remark that in
general the conditions expressed in the bodies of Data-
log rules (which are evaluated within MIDST-RT super-
model) may refer to container, content, and dual con-
structs as well as to support ones.

We define an instantiated head IH for a given instan-
tiated body IB, as a construct whose name, properties,
references, and OID are instantiated as a consequence
of the instantiation of variables in IB. Again with refer-
ence to R2, we have the following instantiated head:

Lexical ( OID: SK7(100),

Name: "lastName",

IsNullable: "false",

IsIdentifier: "false",

abstractOID: SK2(3) )

This head defines a new Lexical for a given Abstract
(with OID obtained applying the functor SK2 to the ar-

gument 3) that is a copy of the original Lexical of the
Abstract with OID 3.

Finally, an instantiated Datalog rule IR is a pair
(IH, IB) where IH is an instantiated head for the instan-
tiated body IB of R.

Then, Subtask 2.b in the algorithm in Figure 5 com-
putes a set of language-independent views for a view-
generator VG, where each of them is defined as V = (IR,
{c1, c2, . . . cn}), and is composed of an instantiation IR

of rule R and of the set of all the possible instantiations
of rules in content(R,T ) that are coherent with IR.

In the example, the language-independent views for
VG1 are:11

V1 = (EMP→copy-abstract EMP ,

{ EMP(lastName)→copy-lexical EMP(lastName),

EMP(office)→copy-abstractAttribute EMP(office)})
V2 = (OFFICE →copy-abstract OFFICE ,

{ OFFICE(offName)→copy-lexical OFFICE(offName),

OFFICE(city)→copy-lexical OFFICE(city)})
V3 = (ENG→copy-abstract ENG ,

{ ENG(school)→copy-lexical ENG(school),

Gen(EMP,ENG)→elim-gen ENG(EMP)})
V4 = (IT ENG→copy-abstract IT ENG ,

{ IT ENG(specialty)→copy-lexical IT ENG(specialty),

Gen(ENG, IT ENG)→elim-gen IT ENG(ENG)})

In plain words, this means that we will have to produce
four views, each with the associated components. For
example, V1 says that there will be a view EMP, with
columns lastName and office.

It is worth noting that in our tool language-
independent views contain additional information be-
sides the one shown above. In particular, a language-
independent view is a map of actual values assigned
to the variables of the rules (content- and container-
generating) that belong to the view-generator. As a con-
crete example, the language-independent view V4 is rep-
resented in our tool as:

CONTAINER: [oid=75; name = IT ENG;

internal oid = IT ENG OID ]

CONTENTS: {
[oid=332; name = SPECIALTY;

absOID=75; isN = false; isId = false],

[oid=6; parentOID=74; childOID=75;

genOID=6; parentName = ENG ]

};

11The descriptive names of the rules are inserted for the sake of
readability of the example. Notice that we have omitted the suffix A
as no ambiguity arises.
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where “CONTAINER” represents the instantiation of
the container-generating rule that copies the Abstracts
(in the example the typed table IT ENG), while “CON-
TENTS” represent the useful instantiations of the
content-generating rules that copy Lexicals and remove
Generalizations.

6.2. Pseudo-SQL view creation statements

Let us now devote our attention to Task 3 of the pro-
cedure in Figure 5. It performs the translation of a
language independent view into a pseudo-SQL view-
creation statement and it follows the algorithm shown
in Figure 7. Its input is a language-independent view,
V = (IR, {c1, c2, . . . cn}) instantiation of a view-
generator VG = (R, content(R,T )), for a container rule
R. The resulting pseudo-SQL statement has the follow-
ing structure:

CREATE VIEW name(col1, col2, . . . , coln) AS

SELECT a1(s j1 .col1), a2(s j2 .col2), . . ., an(s jn .coln)
FROM sources;

Line 1 of the algorithm in Figure 7 obtains name from
V (the variable named l independent view) by retrieving
the name of the head construct of the instantiation ir of
the container-generating rule R. This is the name of the
actual view to be created.

Next, line 2 derives the names for the columns of
the view, col1, col2, . . . , coln, by getting the names of
the constructs generated by the heads of the instantiated
rules {c1, c2, . . . cn} in V , and so each of them is a con-
tent (or dual) construct.

In line 3, the algorithm identifies, on the basis of
the primary Skolem functor of the container rule R,
the main source containers for the view: essentially,
these are the containers (usually just one12) in the source
schema that are transformed in to the view being con-
structed here. In the example, we will have that EMP A
is the source container for EMP B and so on.

Then the algorithm proceeds by producing the details
for the SELECT statement in the view:

(a) the identification of the source container (let us call
it source(s ji .coli)) for the provenance of each con-
tent element coli and of the respective actual value
for it (indicated with the functional symbols ai);
this is done in lines 4-5, discussed in detail in Sub-
section 6.2.1

12In the sequel, in order to simplify the discussion, we will assume
that there is only one main source container for each view. The more
general case is intricate but straightforward.

(b) the actual construction of sources in the FROM

clause, with a refinement and the merge of the vari-
ous elements source(s ji .coli), with the possible use
of suitable join conditions (lines 6-10, illustrated in
Subsection 6.2.2).

At the end the procedure creates and returns the
pseudo-SQL statement putting together the elements
produced in the previous steps (lines 11-12).

Let us consider the aspects, (a) and (b) above, in turn.

6.2.1. Finding value provenance
Let us now discuss how the algorithm identifies, in

lines 4-5, the sources of each content coli. Specifically,
this involves the decision on whether the value can be
copied (if so, from where) or has to be generated (if
so, how). This is done on the basis for the information
given by the Skolem functors of the rules that generate
coli and the annotations possibly specified on them. Let
us provide some detail. Given a content-generating rule
R′, its secondary functor links the generated content to
its source container (the one the functor is applied to).
The parameters of the functor are instantiated as a con-
sequence of the instantiation of the body of R′. The
primary functor conveys information about the prove-
nance of data (that is, the content to derive the value
from) for the content under examination. In general, the
joint instantiation of both primary and secondary func-
tors indicates where to retrieve the values from. Specifi-
cally, if the primary functor can link the head content to
a source construct, then the secondary functor allows to
determine the corresponding container construct. It may
happen that it is not possible to associate the primary
functor to a source content (and thus to a source con-
tainer) uniquely. In such cases the strategy we follow
relies on the possibility of using of annotations, frag-
ments of pseudo-SQL code that can be associated with
Datalog rules, and more precisely to functors in them.
Specifically it is possible to associate the primary func-
tor with a generation technique for the value. This is
essential for the functors that have two or more content
arguments (or no content arguments at all). For example
in Rule R4 we have the primary functor SK3 that has no
content argument. As we will shortly see, an annotation
is needed here.

Then, our algorithm proceeds as follows.

(a.1) Default case: there is no annotation on the pri-
mary functor; this is possible when (i) the func-
tor has exactly one parameter, a content, or (ii) it
has more parameters, with at least a content one
and at most a container one. In case (i) the col-
umn of the view comes from the container in the
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Procedure computePseudoS QLstatement(l independent view)

Input: a language-independent view
Output: the pseudo-SQL view creation statement

1. name := l independent view.getContainerName();
2. columns := l independent view.getContentNames();
3. sourceContainers := instantiated container rule.getSource();
4. for each instantiated content rule in l independent view do
5. targetList.add(instantiated content rule.calculateSource());
6. fromClause.add(sourceContainers);
7. for each instantiated content rule in l independent view do
8. if instantiated content rule.getSourceContainer < sourceContainers then
9. fromClause.add(instantiated container rule.getJoinCondition());

10. fromClause.simplify();
11. pseudo-SQL statement := create pseudo-SQL statement(name, columns, targetList, fromClause);
12. return pseudo-SQL statement;

Figure 7: The creation of pseudo-SQL view statement

source indicated by the secondary functor. In case
(ii) the column of the view comes from the con-
tainer mentioned in the functor. In both cases, the
algorithm finds a target list element for the SQL
statement composed of the names (in the source
schema) of the container and of the content ele-
ment. The algorithm computes also the provenance
for such an element (to be used in the subsequent
steps to build the FROM clause): it is the container
mentioned above; if it does not coincide with the
main source container for the view, the provenance
is defined as a join of the two containers (and pos-
sibly others) on the basis of repeated OIDs in the
body of the rule.

(a.2) Annotation case: if the primary functor is anno-
tated with a query fragment a, then a is applied in
order to calculate the value. Notice that the query
can be written referring to all the literals in the in-
stantiated content-generating rule. Usually, these
queries are simple and involve a small number of
parameters. The provenance is handled as in case
(a.1), on the basis of the containers involved in the
rule and in the annotation.

As an example of case (a.1), consider again the rule
R3 of Step A (which we partially show here again for
convenience), which copies the AbstractAttributes:

R3 AbstractAttribute( OID: SK8(oid),

Name: name,

isNullable: isN,

abstractToOID: SK2(absToOID),

abstractOID: SK2(absOID) )

<- ...

This rule is not annotated and its functor SK8 takes in
input the OID of the AbstractAttribute. In this case, in
the target list of the view we will have an element s.col,
where s is the name of the Abstract and col the name of
the AbstractAttribute. The provenance of such an ele-
ment will be the Abstract s. In the actual example, we
will have, in the construction of the view EMP A, an el-
ement in the target list of the form (EMP.Office) and its
provenance would be EMP.

On the other hand, as an example of case (a.2), con-
sider the rule R4 of Step A which replaces the general-
izations between two typed tables by adding a specific
reference field (AbstractAttribute) in the child table:

R4 AbstractAttribute (

OID: SK3(genOID, childOID),

Name: name,

IsNullable: "false",

abstractOID: SK2(childOID),

abstractToOID: SK2(parentOID) )

<- Generalization ( OID: genOID,

parentAbstractOID: parentOID,

childAbstractOID: childOID ),

Abstract ( OID: parentOID, Name: name ),

Abstract ( OID: childOID );

Here, SK3, the primary functor, takes in input the OID
of the Generalization and the OID of an Abstract. In
this case, the functor is annotated with:

SELECT INTERNAL_ID FROM ABSTRACT(parentOID)

This annotation specifies that the value of the reference
(indeed AbstractAttributes represent references) must
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coincide with the OID of the Abstract that is the par-
ent of the generalization. In this case, in the target list,
we will have the parent Abstract (in the sense that, as
allowed by most OR systems, we will use the system
managed TID as a value). Such an Abstract will also be
the provenance for the value. However, as the main con-
tainer for the view to be generated is the child Abstract,
the actual provenance is the join of the two Abstracts.
In the actual example, in the elimination of the Gener-
alization between ENG and EMP, we would have the
element EMP in the target list for view ENG A and its
provenance would be the join between ENG and EMP.

A similar strategy should be followed to cope with
rule R5 of Step B. As we have seen, such a rule gener-
ates a key field for every typed table without an iden-
tifier: thus the problem of generating a unique value at
data level arises. In the head of the rule, the primary
functor SK4 takes an Abstract as input parameter, and
so there are no natural sources for the values. A possi-
ble annotation could be the following one:

SELECT INTERNAL_ID FROM ABSTRACT(absOID)

This implies the adoption of the values of internal tuple
identifiers (INTERNAL ID) as elements for the key of
the typed table as explained at the end of Subsection 5.2.

6.2.2. Building the FROM clause
Let us now discuss how point (b) above is performed,

that is, how sources for the various elements are con-
structed and combined.

The FROM clause is initialized (line 6 in Figure 7)
with the source containers for the language-independent
view at hand. Then, the instantiated content rules in the
view are examined one at the time (lines 7-9) and if the
source container is not a main source container, then the
join condition (computed in line 5, as we said above) in-
volving both containers (and additional ones of needed)
is added to the FROM clause.

Let us show a result of the application of this step,
both to illustrate it and to motivate the next one. In
the first example in Subsection 5.3, the algorithm would
generate three elements for the source clause, namely
the main source container EMP, and the two left joins
between EMP and ENG, and between EMP, ENG and
IT ENG.

Finally (line 10), the algorithm examines the ele-
ments in the FROM clause that has been initially gener-
ated, and performs simplifications by merging the vari-
ous join conditions, on the basis of common containers
and of subsumed expressions. In the example, the sim-
ple element EMP and the left join between EMP and

ENG would be removed because they are subsumed by
the double left join over EMP, ENG, and IT ENG.

At the end (lines 11-12), the procedure creates the
pseudo-SQL statement combining the information re-
trieved on the previous steps and returns the statement.

6.3. Executable view-creation statements
After a system-generic SQL statement has been gen-

erated for a Datalog translation, it is customized accord-
ing to the specific language and structures of the opera-
tional database system in order to be finally applied.

With respect to a complex translation involving more
than one phase, each system-generic SQL statement en-
coding an elementary step is translated in terms of a
system-specific and executable one.

The following SQL statements exemplify the elim-
ination of hierarchies (rule R4) which takes place in
step A with reference to IBM DB2. This DBMS adopts
the concept of typed view, which is a view whose type
has to be defined explicitly. This motivates the presence
of the two initial statements defining the types EMP A t
and ENG A t in the result schema. The statements be-
low implement the strategy consisting in using the in-
ternal OID to make the child refer to its parent. It is ap-
parent that a lot of DB2 technical details are introduced
in this last phase (for example, the use of type construc-
tors, the various cast functions and explicit scope modi-
fiers).

CREATE TYPE EMP_A_t AS (lastName varchar(50))

NOT FINAL INSTANTIABLE

MODE DB2SQL WITH FUNCTION ACCESS REF USING

INTEGER;

CREATE TYPE ENG_A_t AS (

toEMP REF(EMP_A_t),

school varchar(50))

...;

CREATE VIEW EMP_A of EMP_A_t MODE DB2SQL

(REF is EMPOID USER GENERATED) AS

SELECT EMP_A_t(INTEGER(EMPOID)), lastName

FROM EMP;

CREATE VIEW ENG_A of ENG_A_t MODE DB2SQL

(REF is ENGOID USER GENERATED,

toEMP WITH OPTIONS SCOPE EMP_A) AS

SELECT ENG_A_t(INTEGER(ENGOID)),

EMP_A_t(INTEGER(EMPOID)), school

FROM ENG;

The produced statements are finally sorted in order to
take care of the dependencies between views, so that a
view that refers to another one is created later.
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Figure 8: An object-relational schema: OR DEMO

7. Views for the example scenarios

In this section we consider three scenarios of exe-
cutable statements, in order to better understand the
concept of “view” with respect of the motivating exam-
ples proposed at the beginning of this paper.

7.1. Relational views

Let us consider the object-relational schema
OR DEMO shown in Figure 8, where we have three
typed tables and two structured types. We have a
generalization (ENG is a subtable of EMP) and a
reference (from EMP to OFFICE). Structured types are
used to build a two-level complex object (the value of
address comes from the address type whose values
involve the street type). We want a translation that
produces a set of relational views with reference to
IBM DB2 [14]. MIDST-RT completely supports this
activity, with a component whose interface is shown
in Figure 9. The user would perform the following
sequence of steps, which are highlighted in the figure:

0. Import of the source schema from the operational
system into the tool dictionary (this step is not
shown in the figure).

1. Selection of the source schema (the one imported
in step 0).

2. Selection of the target schema (relational).
3. Automatic selection of the programs to apply. The

user can modify the set of selected programs in or-
der to customize some steps of the translation.13

4. Insertion of useful information for the generation
of the statements, such as the DB name and the
path in which the statements will be produced.

13For example, the system proposes to remove generalizations
merging the children into the parent, while the user wants to keep
both the children and the parent.

5. Generation of the statements in a text file or direct
execution over DB2.

Let us comment on the produced statements.14 For
brevity and without loss of generality, we describe only
the first step of the translation (that is, the removal of
generalizations). DB2 handles object views with the
concept of typed view, which is a view whose type has
to be defined explicitly. This motivates the presence
of the “create type” statements defining the types OF-
FICE t, EMP t and ENG t in the result schema. The
statements below implement the strategy consisting in
using the internal OID to make the child refer to its par-
ent.

-- ******************************************************
-- STEP 1: removing generalizations
-- ******************************************************
CREATE TYPE OR_DEMO_1.OFFICE_t AS(

CITY varchar(50),
OFFNAME varchar(50))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.OFFICE of
OR_DEMO_1.OFFICE_t MODE DB2SQL

(REF is OIDOFFICE USER GENERATED) AS
SELECT

OR_DEMO_1.OFFICE_t(
CAST(OR_DEMO.OFFICE.OIDOFF AS INTEGER)),

OR_DEMO.OFFICE.CITY,
OR_DEMO.OFFICE.OFFNAME

FROM OR_DEMO.OFFICE;

CREATE TYPE OR_DEMO_1.EMP_t AS(
LASTNAME varchar(50),
FIRSTNAME varchar(50),
ADDRESS OR_DEMO.ADDRESS_t,
OFFICE REF(OR_DEMO_1.OFFICE_t))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.EMP of
OR_DEMO_1.EMP_t MODE DB2SQL

(REF is OIDEMP USER GENERATED,
OFFICE WITH OPTIONS SCOPE OR_DEMO_1.OFFICE) AS
SELECT

OR_DEMO_1.EMP_t(
CAST(OR_DEMO.EMP.OIDEMP AS INTEGER)),

OR_DEMO.EMP.LASTNAME,
OR_DEMO.EMP.FIRSTNAME,
OR_DEMO.EMP.ADDRESS,
OR_DEMO_1.OFFICE_t(
CAST(OR_DEMO.EMP.OFF AS INTEGER))

FROM OR_DEMO.EMP;

CREATE TYPE OR_DEMO_1.ENG_t AS(
SCHOOL varchar(50),
YEARDEGREE integer,
to_EMP REF(OR_DEMO_1.EMP_t))

MODE DB2SQL REF USING INTEGER;

CREATE VIEW OR_DEMO_1.ENG of
OR_DEMO_1.ENG_t MODE DB2SQL

(REF is OIDENG USER GENERATED,
to_EMP WITH OPTIONS SCOPE

OR_DEMO_1.EMP) AS

14Notice that, as we anticipated in Section 3, in the tool the names
are distinguished by means of schema names, and so there is no need
to use suffixes.
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Figure 9: A screenshot of MIDST-RT

SELECT
OR_DEMO_1.ENG_t(
CAST(OR_DEMO.ENG.OIDEMP AS INTEGER)),

OR_DEMO.ENG.SCHOOL,
OR_DEMO.ENG.YEARDEGREE,
OR_DEMO_1.EMP_t(
CAST(OR_DEMO.ENG.OIDEMP AS INTEGER))

FROM OR_DEMO.ENG;

The subsequent steps of the translation process will
refer to the previous ones. This means that, after the
removal of generalizations, we will have a set of views
that represents a new schema without generalizations.
We call this schema OR DEMO 1. The next step is
the elimination of nested types: we define a new set
of views over the views previously defined. Thus, we
will have a schema OR DEMO 2 composed of a set of
views defined over OR DEMO 1. Then we must elim-
inate all the references (we introduce foreign-keys) and
we must transform typed tables into simple tables. At
the end, we have four new schemas (because the trans-
lation is composed of four steps), but only the last one,
OR DEMO 4, represents our target schema, a relational
one.

Figure 10: An object-relational schema

7.2. XML views

Consider the object-relational schema shown in Fig-
ure 10 and suppose we need an XML document that
contains all its data in a structured way. We can do this
with MIDST-RT by choosing XSD as the target model.
In this way, the tool produces a statement that, executed
over DB2, will create an XML document with all data
directly extracted from the original schema. This can be
possible by using an SQL/XML language, specific for
the operational system, that contains functions that help
the user to create XML elements from relational data.
The tool produces the following statement:

SELECT XMLELEMENT(
name "orxml",

XMLCONCAT(
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XMLAGG(
XMLELEMENT(

name "emp",
XMLELEMENT(name "OIDEMP",e.OIDEMP),
XMLELEMENT(name "firstName",e.firstName),
XMLELEMENT(name "lastName",e.lastName),
XMLELEMENT(name "offref",e.off),
XMLELEMENT(

name "address",
XMLELEMENT(name "city", e.address..city),
XMLELEMENT(name "street",e.address..street)

)
)

),
(SELECT XMLAGG(

XMLELEMENT(
name "office",
XMLELEMENT(name "OIDOFF",d.OIDOFF),
XMLELEMENT(name "offName",d.offName),
XMLELEMENT(name "city",d.city)

)
)
FROM OR_XML.OFFICE d)

)
)
FROM OR_XML.EMP e;

The produced XML document will be:

<orxml>
<emp>

<OIDEMP>1</OIDEMP>
<firstName>Mark</firstName>
<lastName>Brown</lastName>
<offref>2</offref>
<address>

<city>Rome</city>
<street>Viale Marconi 1</street>

</address>
</emp>
...
<office>

<OIDOFF>2</OIDOFF>
<offName>ROMA TRE</offName>
<city>Rome</city>

</office>
...

</orxml>

7.3. Object-oriented views

In this last scenario we start from an object-relational
schema in order to obtain a set of Java classes that al-
lows an object-oriented access to the database. This ex-
ample briefly sketches how the generation process of a
piece of Java code from relational tables may be per-
formed.

The example we show produces some classes that
contain CRUD methods (create, retrieve, update, delete)
to access the database. Thus, we are following the
DAO (data access object) design pattern. We are also
able to produce classes by referring to other technolo-
gies, for example using Hibernate annotations. More-
over, thanks to an object-oriented importer, we can im-
port the schema from the Java classes and produce an
object-relational database: this is very simple, in fact,

Figure 11: The produced Java class

inside our metamodel, the object-oriented model is en-
tirely contained into the object-relational one, so we do
not need any translation.

This problem has a lot of solutions in the literature,
but MIDST-RT ensures flexibility: in fact, thanks to
the internal set of rules, the user can decide to modify
the source schema to obtain the preferred translation, or
can perform a translation towards a model that presents
some non-standard features.

Starting from the object-relational schema shown in
Subsection 7.2, one possibility is the creation of three
Java classes using the DAO pattern. So we will have the
objects Emp, Office and Address. Figure 11 shows the
source code of the Java class EmpDAO.

8. Related work

The problem of translating schemas between mod-
els has a largely recognized significance and has been
pursued in the literature according to several perspec-
tives of model management. Bernstein and Melnik [10]
present the recent state of the art in this field and, indi-
rectly, outline an overview of the major approaches and
achievements.
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The starting point for this paper is our MIDST project
(Atzeni et al. [4, 5]), which developed a platform allow-
ing for model-independent schema and data translation,
whose initially ideas and theoretical bases were laid by
Atzeni and Torlone [6]. While we refer to the above pa-
pers for a general discussion on related work, we men-
tion here the work of Hainaut [18] and McBrien, Poulo-
vassilis, and Smith [21, 27], with which we share the
use of some form of metamodeling technique. Indeed,
we have great similarity with both these approaches,
which also adopt a translation process composed of var-
ious steps. There are differences in the kind of universal
metamodel, which is simpler in [21, 27] and more com-
plex (and so closer to ours) in [18].

This paper has the goal to provide the MIDST frame-
work with a runtime design and so to overcome the
limitations mentioned by Bernstein and Melnik [10,
Sec.3.1] with respect to the off-line approach. In this
sense, this paper goes beyond the work of Hainaut [18]
and McBrien, Poulovassilis, and Smith [21, 27], who
can transform the database instance, but it in an essen-
tially static way.

Other proposals have recently appeared with the goal
of supporting dynamic translations, as follows. Mork
et al. [25] also adopt a runtime approach (based on the
work by Atzeni and Torlone [6] as well) to solve the
specific problem of deriving a relational schema from
an extended entity-relationship model. They use a rule-
driven approach and write transformations that are then
translated into the native mapping language. However,
although they face many issues such as schema update
propagation and inheritance, they indeed solve a spe-
cific subset of problems and provide an object-relational
mapping tool. Bernstein et al. [11] adopt a runtime ap-
proach to allow a developer to interact with XML or
relational data in an object-oriented fashion. On the one
hand their perspective is different since they only deal
with a specific kind of heterogeneity; in addition they
address the problem by translating the queries while we
aim at generating views on which the original queries
can be directly applied. Instead, our approach is aimed
at providing a runtime support to the whole range of
translations allowed by MIDST that is not limited to
object-to-relational or XML-to-object, but involves any
possible transformation between a pair of models in our
supermodel (ER, OR, OO, XSD, relational, etc.).

Our approach shares some analogies with Clio [15,
16, 17, 24, 28] too. Clio is aimed at building a com-
pletely defined mapping between two schemas, given a
set of user-defined correspondences. As for our trans-
lations, these mappings could be translated into di-
rectly executable SQL, XQuery or XSLT transforma-

tions. However, in the perspective of adopting Clio
in order to exchange data between two heterogeneous
schemas, the needed mappings should be defined man-
ually; moreover, there is no kind of model-awareness in
Clio, which operates on a generalized nested relational
model. Although this model can be shown to subsume
a considerable amount of models, in a real application
scenario a preliminary translation and adaptation of the
operational system should be performed, leading to the
problems of the initial MIDST approach.

The presented runtime extension of MIDST is a sig-
nificant step with respect to the process of turning the
platform into a complete model management system
[1]. In such a perspective, Datalog rules are not only
seen as model-to-model translations, but encode more
general transformations that implement schema evolu-
tion and model management operators. Therefore the
possibility of applying translation, hence operators, at
runtime allows for the runtime solution to model man-
agement problems with model-independent approaches
like the ones illustrated in [3].

9. Conclusions

The main contribution of this paper is a runtime ap-
proach to data translation, with the development of the
MIDST-RT tool. We have shown how we can generate
executable statements out of translation rules. The ap-
proach aims at being general, in the sense that the final
objective is to derive an executable statement for any
possible translation. Then, we have also shown some
scenarios which may benefit from the usage of MIDST-
RT, in order to allow flexibility and customization.

A major issue is the query language. It is necessary
to specify a language capable of interacting with all the
involved models homogeneously. Although, in some
cases, such a single language would be available, other
situations are more complex and need further investiga-
tion. Examples are the ones involving translations from
object-relational to XML and vice versa. We have used
here combinations of languages including SQL/XML
and XQuery/SQL, over one single platform. In fact, the
solution described in this paper actually refers to trans-
formations taking place in a single system, offering the
logical support to both models. Indeed, it may be the
case that more systems are involved; however the adop-
tion of the appropriate middleware solutions might offer
working solutions based, for example, on a common ex-
change format.

Moreover, in this paper we have shown examples of
relational views. These views have an intrinsic prob-
lem: in fact, when we define a relational view, it is quite
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probable that it will not be updatable. A possible so-
lution to this problem (and possible future work) is the
introduction of the concept of “reverse mapping” [25],
a mapping that keeps trace of the origin of data shown
by views in order to modify the source database when
the user tries to modify a view.

Let us conclude by discussing a few issues where our
approach shows some limitations that we are working
to overcome. From the implementation point of view,
it is clear that the target system will have some restric-
tions on how it deals with views (including material-
ization, persistence, update propagation). However this
limitation is related to the specific target system and it
comes as a direct consequence of the runtime perspec-
tive where no third-party actors interfere. From a the-
oretical point of view, open issues are related with the
generality and correctness of the approach. As for gen-
erality of modeling, MIDST metamodel collects all the
constructs most commonly used in models and can be
extended whenever necessary. Extensions could also go
towards a richer representation of semantics, where in-
tegrity constraints are described and supported, in the
sense that their satisfaction is verified and reasoning on
them can be performed. Clearly, this would require
a different approach on the management of the super-
model, which would require additional features beside
and beyond the relational implementation. In this re-
spect, we are considering approaches based on descrip-
tion logics [7].
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