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Abstract

Research has investigated mappings among data sources under two perspectives. On one side, there are studies
of practical tools for schema mapping generation; these focus on algorithms to generate mappings based on visual
specifications provided by users. On the other side, we have theoretical researches about data exchange. These study
how to generate a solution – i.e., a target instance – given a set of mappings usually specified as tuple generating
dependencies. Since the notion of a core solution has been formally identified as an optimal solution, it is very
important to efficiently support core computations in mapping systems. In this paper we introduce several new
algorithms that contribute to bridge the gap between the practice of mapping generation and the theory of data
exchange. We show how, given a mapping scenario, it is possible to generate an executable script that computes
core solutions for the corresponding data exchange problem. The algorithms have been implemented and tested using
common runtime engines to show that they guarantee very good performances, orders of magnitudes better than those
of known algorithms that compute the core as a post-processing step.

1 Introduction

Integrating data coming from disparate sources is a crucial task in many applications. An essential requirement of any
data integration task is that of manipulating mappings between sources. Mappings are executable transformations – say,
SQL or XQuery scripts – that specify how an instance of the source repository should be translated into an instance of
the target repository. We may identify two broad research lines in the literature.

On one side, we have studies on practical tools and algorithms for schema mapping generation. In this case, the focus
is on the development of systems that take as input an abstract specification of the mapping, usually made of a bunch
of correspondences between the two schemas, and generate the mappings and the executable scripts needed to perform
the translation. This research topic was largely inspired by the seminal papers about the Clio system [26, 27]. The
original algorithm has been subsequently extended in several ways [17, 5, 2, 29, 7] and various tools have been proposed
to support users in the mapping generation process. More recently, a benchmark has been developed [1] to compare
research mapping systems and commercial ones.

On the other side, we have theoretical studies about data exchange. Several years after the development of the initial
Clio algorithm, researchers have realized that a more solid theoretical foundation was needed in order to consolidate the
practical results obtained on schema mapping systems. This consideration has motivated a rich body of research in which

∗Portions of this paper have appeared under the title Core Schema Mappings in the Proceedings of the ACM SIGMOD 2009 Conference.
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the notion of a data exchange problem [12] was formalized, and a number of theoretical results were established. In this
context, a data exchange setting is a collection of mappings – usually specified as tuple generating dependencies (tgds) [4]
– that are given as part of the input; therefore, the focus is not on the generation of the mappings, but rather on the
characterization of their properties. This has brought to an elegant formalization of the notion of a solution for a data
exchange problem, and of operators that manipulate mappings in order, for example, to compose [14] or invert [11, 3]
them.

Figure 1: Mapping Bibliographic References

1.1 Motivation

There are many possible solutions for a data exchange problem. A natural question is the following: “which solution
should be materialized by a mapping system?” A key contribution of data exchange research was the formalization of
the notion of core [13] universal solution, which was identified as the “optimal” solution. Informally speaking, the core
universal solution has a number of nice properties: it is “irredundant”, since it is the smallest among the solutions that
preserve the semantics of the exchange, and it represents a “good” instance for answering conjunctive queries over the
target database. It can therefore be considered a natural requirement for a schema mapping system to generate executable
scripts that materialize core solutions.

Example 1.1 Consider the mapping scenario informally described in Figure 1, where also a source instance is shown.
The source database contains tables about books coming from three different data sources, namely the Internet Book
Database (IBD), the Library of Congress database (LOC), and the Internet Book List (IBL).

The desired mapping can be expressed using the following set of tuple-generating dependencies (tgds):.

m1. ∀t, p : LOC(t, p)→ ∃I: Book(t, I) ∧ Publisher(I, p)
m2. ∀t, id : IBLBook(t, id)→ Book(t, id)
m3. ∀id, p : IBLPublisher(id, p)→ Publisher(id, p)
m4. ∀t : IBDBook(t)→ ∃N: Book(t,N)
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It can be seen how each source has a slightly different organization wrt the others. In particular, the IBD source contains
data about book titles only; mapping m4 copies titles to the Book table in the target. The LOC source contains book
titles and publisher names in a single table; these are copied to the target tables by mapping m1, which also “invents” a
value to correlate the key and the foreign key. Finally, the IBL source contains data about books and their publishers in
separate tables; these data are copied to the target by mappings m2,m3; note that in this case we do not need to invent
any values.

These expressions materialize the target instance in Figure 1, called a canonical universal instance. While this instance
satisfies the tgds, still it contains many redundant tuples, those with a gray background. Consider for example the tuple
t1 = (The Hobbit, N1); it can be seen that the tuple is redundant since the target contains another tuple t2 = (The
Hobbit, 245) for the same book, which in addition to the title also gives information about the publisher. The fact
that t1 is redundant with respect to t2 can be formalized by saying that there is an homomorphism from t1 to t2. A
homomorphism, in this context, is a mapping of values that transforms t1 into t2. A similar argument holds for the
tuple (The Lord of the Rings, N3), and for tuples (The Catcher in the Rye, I2) and (I2, Lb Books), where I2 is the
value invented by executing tgd m1. The presence of such homomorphisms means that the solution in Figure 1 has an
endomorphism, i.e., a homomorphism into a sub-instance – the one obtained by removing all redundant tuples.

The fact that tgds produced by a schema mapping algorithm may generate redundancy in the target is well known and
has motivated several practical proposals (e.g. [17]) towards the goal of removing such redundant data. Unfortunately,
these proposals are applicable only in some cases and do not represent a general solution to the problem. In [13] the
notion of core universal solution has been introduced as a “more desirable” solution than the one in Figure 1. The core is
the smallest among the solutions for a given source instance that has homomorphisms into all other solutions. The core
of the solution in Figure 1 is in fact the portion of the target tables with a white background.

�

It can be seen how it is crucial to develop algorithms that natively produce executable scripts to compute the core. On
the contrary, schema mapping systems typically generate canonical universal solutions, which may contain quite a lot of
redundancy. This is partly due to the fact that computing cores is a challenging task.

A possible approach to the generation of core solutions for a relational data exchange problem is the following: (i) first,
to generate a canonical solution by chasing the source-to-target tgds; to do this, a mapping system typically generates
an SQL or XQuery script that performs this step very efficiently, even on large source instances; (ii) then, to apply a
post-processing algorithm for core identification.

Several polynomial algorithms have been identified to this end [13, 18]. These algorithms provide a very general answer
to the problem of computing core solutions for a data exchange setting. Also, an implementation of the core-computation
algorithm in [18] has been developed [30] by using a combination of SQL for database access and a controlled form of
recursive control-logic implemented in Java.

Although polynomial, experience with these algorithms shows that they hardly scale to large mapping scenarios. In
fact, they exhaustively look for endomorphisms inside the canonical universal solution in order to identify which null values
and which tuples can be removed. This kind of computation can take very high computing times, even on databases of
a few thousand tuples, as shown in our experiments.

This paper makes several important contributions towards the goal of making the computation of core solutions a
scalable functionality of mapping systems. More specifically:

• given a mapping scenario consisting of source-to-target tgds, we introduce a rewriting algorithm that generates a
new set of dependencies that can be used to generate core solutions for the original tgds; these dependencies can be
translated into an SQL script and ran inside any conventional database engine, thus achieving a very high degree
of flexibility and performance;

• the algorithm has been implemented into the +Spicy mapping system; in the paper, we conduct an experimental
evaluation on large mapping scenario that confirms the scalability of our solution;
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• the rewriting algorithm is based upon a new characterization of the core, in terms of expansions; we introduce the
notion of expansion and show how they represent a natural tool for the rewriting of the given tgds.

The algorithms developed in this paper concentrate on mapping scenarios made of source-to-target tgds only. However,
how it will be discussed in Section 2.1, they represent an essential building block for more general algorithms that handle
larger classes of constraints.

2 Overview

The main intuition behind our approach is that it is much more efficient to prevent the generation of redundant tuples in
a solution, than trying to remove them after they have been generated by the chase. Following this intuition, given a set
of s-t tgds Σst, our goal is to rewrite them as a new set of dependencies Σ′st, such that, for any source instance I, chasing
Σ′st yields the core universal solution for Σst and I.

To do this, we need to analyze the given tgds in order to recognize when one of them may generate redundant tuples
in the target. A key concept in order to do this is the notion of a witness block. Intuitively, a witness block is a set of
facts that guarantee that a tgd is satisfied for some assignment of constants to the universal variables.

Example 2.1 Consider the tgds in Example 1.1. To simplify the notation, let us rename the source relations as
A,B,C,D, and the target relations as S, T . In order to discuss our approach, as it will be detailed in the following,
we find it useful to label atoms in tgd conclusions in order to properly distinguish them.

m1. ∀x1, x2 : A(x1, x2)→ ∃Y1 : S1(x1, Y1) ∧ T 2(Y1, x2)
m2. ∀x3, x4 : B(x3, x4)→ S3(x3, x4)
m3. ∀x5, x6 : C(x5, x6)→ T 4(x5, x6)
m4. ∀x7 : D(x7)→ ∃Y0 : S5(x7, Y0)

Consider now the source instance I = {A(1, 2), B(1, 3), C(3, 2), D(1)}, and the canonical universal solution: J =
{S(1, N0), T (N0, 2), S(1, 3), T (3, 2), S(1, N1)}.

Let us restrict our attention to tgd m1. The premise of m1 is satisfied by the source atom A(1, 2) in I. We call the
set of atoms w = {S(1, N0), T (N0, 2)} in J a witness block for m1 and A(1, 2), since the atoms in w guarantee that I and
J satisfy m1.

However, for the same tgd and source atom there can be many alternative witness blocks in a solution. Consider for
example atoms w′ = {S(1, 3), T (3, 2)}: the two atoms taken together are also a witness block for m1 and A(1, 2).

Notice how, for core computation purposes, w′ is “preferable” with respect to w. In fact, w′ contains less nulls than
w. This can be formalized by saying that there is a homomorphism of w into w′, as discussed above, and therefore that
the atoms in w are made redundant by those in w′.

Witness blocks are at the foundations of our algorithm. We want to emphasize that other algorithms for core
computation [13, 18, 31] rely on the contrary on the notion of fact blocks. Witness blocks are different from fact blocks,
as it will be discussed in Section 5.

Notice however that witness blocks are sets of facts; in order to perform the rewriting, we need to reason about
formulas; however, an important property of witness blocks is that they can be captured by a set of first-order queries on
the target database called expansions.

Consider again tgd m1 in our example. It has two expansions, as follows:

ε1 = S1(x1, Y1) ∧ T 2(Y1, x2) (the base expansion, i.e., the tgd conclusion)
ε2 = S3(x3, x4) ∧ T 4(x5, x6) ∧ x4 = x5 ∧ ∃Y1 : (S1(x3, Y1) ∧ T 2(Y1, x6))

Considered as a query over the target database, expansion ε1 selects witness block w. Expansion ε2 witness block w′.
Notice that, while expansions are formulas over the target database, they can be easily rewritten as formulas over the

source. The source rewritings of ε1, ε2 are as follows:
sourceRew (ε1) = A(x1, x2) (the tgd premise)
sourceRew (ε2) = B(x3, x4) ∧ C(x5, x6) ∧ x4 = x5 ∧ (A(x3, x6))
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Based on these ideas, in the paper we undertake the following approach:

• we formalize the notion of a witness block, and introduce a partial order among witness blocks; based on this, we
show that it is possible to provide a new characterization of the core of the universal solutions for a mapping scenario
in terms of a set of “maximal” witness blocks;

• we formalize the notion of an expansion for a tgd, and provide algorithms for generating all expansions for a tgd;

• in order to generate core solutions, we need to select, among all witness blocks generated by an expansion, only
the maximal ones; to do this, we introduce a notion of formula homomorphism among expansions; whenever, for a
tgd m, we find that expansion e has a formula homomorphism into expansion e′, we know that e generates witness
blocks for m that might be made redundant by those generated by e′; in essence, in order to prevent the generation
of homomorphisms among facts, we study homomorphisms among the formulas that generate them;

• based on formula homomorphisms, we rewrite expansions by introducing negations. In this way, we are able to
formalize an alternative characterization of the core in terms of expansions, which represents the basis for the actual
rewriting algorithm;

• given a set of s-t tgds, Σst, we rewrite the original tgds as a new set of dependencies; we call these dependencies
First-Order rules (FO-rules), since they are strictly more expressive than ordinary tgds; more specifically, they allow
for negations in the premise and Skolem functions [21, 27] in the conclusion. The rewritten set of rules is called a
core schema mapping.

Consider again the scenarioM in Example 2.1. The rewritten rules generated from the algorithm – i.e., the core schema
mapping for M – are as follows:

r1. ∀x1, x2 : A(x1, x2) ∧ ¬(∃x4, x5 : B(x1, x4) ∧ C(x5, x2) ∧ x4 = x5)→
S(x1, f(x1, x2)) ∧ T (f(x1, x2), x2).

r2. ∀x3, x4 : B(x3, x4)→ S(x3, x4).
r3. ∀x5, x6 : C(x5, x6)→ T (x5, x6).
r4. ∀x7 : D(x7) ∧ ¬(∃x2 : A(x7, x2)) ∧ ¬(∃x4 : B(x7, x4))→ S(x7, f(x7)).

If we go back to the original names in Example1.1, we obtain the following rules:

r1. ∀x1, x2 : LOC(x1, x2) ∧ ¬(∃x4, x5 : IBLBook(x1, x4) ∧ IBLPublisher(x5, x2) ∧ x4 = x5)
→ Book(x1, f(x1, x2)) ∧ Publisher(f(x1, x2), x2).

r2. ∀x3, x4 : IBLBook(x3, x4)→ Book(x3, x4).
r3. ∀x5, x6 : IBLPublisher(x5, x6)→ Publisher(x5, x6).
r4. ∀x7 : IBDBook(x7) ∧ ¬(∃x2 : LOC(x7, x2)) ∧ ¬(∃x4 : IBLBook(x7, x4))

→ Book(x7, f(x7)).

Once the original scenario M has been rewritten as a set of FO-rules, given a source instance I, in order to generate
a core solution for M and I it is sufficient to chase the rules over I; this can be done very efficiently using common
runtime languages like SQL (or XQuery) and guarantees very good performances, orders of magnitude better than those
of previous core-computation algorithms.

In fact, we have implemented the algorithms developed in the paper as part of the +Spicy [25, 6] working prototype.
Experimental results based on the use of the system show that our strategy scales up to large databases in practical
scenarios.

In light of this, we believe that this paper makes a significant advancement towards the goal of bridging the gap
between the practice of schema mapping systems and the theory of data exchange.

5



2.1 Target Constraints

Note that in this paper we restrict our attention to data exchange settings expressed as a set of source-to-target tgds
only. We do not consider target tgds and target egds [4]. For this class of mappings we show that it is always possible to
generate a core schema mapping.

This result is somehow optimal. In fact, with respect to target tgds, it was shown in [31] that it is in general not
possible to rewrite a scenario with s-t tgds and target tgds into a laconic mapping [31]. The authors conjecture that the
same also holds for target egds. Notice that, while very similar in spirit, the notion of a laconic mapping is not the same
as the notion of a core schema-mapping that we use in this paper. In fact, a laconic mapping is required to be logically
equivalent [16] to the given scenario, while we do not require this for core-schema mappings. However, the proof of [31]
was given without the assumption of logical equivalence, and extends to core schema-mappings as well.

To see this, consider the following simple scenario M [31], with one s-t tgd and one full target tgd:

r1. ∀x1, x2 : A(x1, x2)→ R(x1, x2).
r2. ∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z).

It can be seen that, on a source instance I, the core solution J0 contains in R the transitive closure of A. If there were
a core-schema mapping for M, i.e., a set of FO-rules to compute J0, then it would be possible to compute the transitive
closure of A using first-order logic, which is obviously a contradiction.

With respect to target egds, a similar result was recently proven in [23], where the authors show that it is not possible
in general to rewrite a set of s-t tgds and target egds as an equivalent set of FO-rules.

Nevertheless, the techniques developed in this paper represent an important building block towards the goal of devel-
oping scalable core-computation techniques for large classes of scenarios that include target constraints, as follows.

Let us first consider target tgds. These are typically used in mapping applications to encode foreign-key constraints
on the target schema. We may say that target tgds corresponding to foreign-key constraints have received quite a lot of
attention, and are handled quite nicely by schema-mapping systems [26, 27]. The main idea is that, whenever the set of
target tgds has an appropriate boundedness property, they can be rewritten into the source-to-target tgds [16]. In fact,
the intuition of chasing foreign keys to generate source-to-target tgds is at the core of the original Clio mapping-generation
algorithm. Once the target tgds corresponding to foreign keys have been rewritten under the form of s-t tgds, then the
techniques developed in this paper can be used to generate core universal solutions.

Let us now consider target egds. Egds are typically used to encode key constraints and functional dependencies over
the target. Handling key constraints is a delicate task, due to the particular form of processing that they require on the
target instances – essentially equating values. However, in [23] it was shown that, for a very large fraction of cases, it is
possible to rewrite a mapping scenario containing s-t tgds and target egds as a set of FO-rules, and then use these rules
to compute core universal solutions for the original scenario. The results in [23] heavily rely on the algorithms developed
in this paper in order to perform the rewriting, thus confirming the relevance of our contributions.

2.2 Paper Outline

The paper is organized as follows. Sections 3 and 4 provide some background. Section 5 introduces the notion of a witness
block, and a characterization of the core in terms of witness blocks. Section 6 introduces the notion of an expansion and
the notion of a formula homomorphism. Then, the alternative characterization of the core in terms of expansion is in
Section 7. Section 8 shows how to rewrite expansions over the source database. Based on these results, the actual
rewriting algorithm is introduced in Section 9. Skolemization strategies are discussed in Section 10. A complete example
of application of the algorithm is in Section 11. A discussion on complexity is in Section 12. Experimental results are in
Section 13. A discussion of related work is in Section 14.
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3 Background

Data Model We fix two disjoint sets: a set of constants, consts, a set of labeled nulls, vars. We also fix a set of
labels {A0, A1 . . .}, and a set of relation symbols {R0 ,R1 , . . .}. With each relation symbol R we associate a relation
schema R(A1, . . . , Ak). A schema S = {R1 , . . . ,Rn} is a collection of relation schemas. An instance of a relation schema
R(A1, . . . , Ak) is a finite set of tuples of the form R(A1 : v1, . . . , Ak : vk), where, for each i, vi is either a constant or a
labeled null. An instance of a schema S is a collection of instances, one for each relation schema in S. In the following, we
will interchangeably use the positional and non positional notation for tuples and facts; also, with an abuse of notation,
we will often blur the distinction between a relation symbol and the corresponding instance.

Given an instance I , we shall denote by consts(I ) the set of constants occurring in I , and by vars(I ) the set of labeled
nulls in I . Its active domain, denoted by dom(I ), is the set consts(I ) ∪ vars(I ). A ground instance is an instance I
without labeled nulls (where dom(I ) = consts(I )).

Given two disjoint schemas, S and T, we shall denote by 〈S,T〉 the schema {S1 . . .Sn , T1 . . .Tm}. If I is an instance
of S and J is an instance of T, then the pair 〈I , J 〉 is an instance of 〈S,T〉.
Dependencies Given two schemas, S and T, an embedded dependency [4] is a first-order formula of the form ∀x(φ(x)→
∃y(ψ(x, y)), where x and y are vectors of variables, φ(x) is a conjunction of atomic formulas such that all variables in x
appear in it, and ψ(x, y) is a conjunction of atomic formulas. Formulas φ(x) and ψ(x, y) may contain equations of the
form vi = vj , where vi and vj are variables.

An embedded dependency is a tuple generating dependency if φ(x) and ψ(x, y) only contain relational atoms. It is an
equality generating dependency (egd) if ψ(x, y) contains only equations. A tgd is called a source-to-target tgd if φ(x) is a
formula over S and ψ(x, y) over T. It is a target tgd if both φ(x) and ψ(x, y) are formulas over T.

Mapping Scenario A mapping scenario (also called a data-exchange scenario or a schema mapping) is a quadruple
M = (S,T,Σst,Σt), where S is a source schema, T is a target schema, Σst is a set of source-to-target tgds, and Σt is a
set of target dependencies that may contain tgds and egds. In the case of interest for this paper, i.e., the case in which
the set of target dependencies Σt is empty, we will use the notation (S,T,Σst).

Solutions A source instance for M is a ground instance I of the source schema S. A target instance for M is an
instance J of the target schema. A target instance J is a solution ofM and a source instance I (denoted J ∈ Sol(M, I ))
iff 〈I , J 〉 |= Σst ∪ Σt.

Given two instances J , J ′ over a schema T, a homomorphism h : J → J ′ is a mapping from dom(J ) to dom(J ′) such
that for each c ∈ consts(J ), h(c) = c, and for each tuple t = R(A1 : v1, . . . , Ak : vk) in J it is the case that h(t) = R(A1 :
h(v1), . . . , Ak : h(vk)) belongs to J ′. Homomorphism h is called an endomorphism if J ′ ⊆ J ; if J ′ ⊂ J it is called a proper
endomorphism. We say that two instances J , J ′ are homomorphically equivalent if there are homomorphisms h : J → J ′

and h′ : J ′ → J .
A solution J is universal [12] iff for every solution K there is a homomorphism from J to K . The set of universal

solutions for M and I is denoted by USol(M, I ). Associated with scenario M is the following data exchange problem:
given a source instance I , return none iff no solution exists, or return a universal solution J ∈ USol(M, I ).

4 Dependencies and the Chase

Traditionally, tgds are formulas of the form ∀x(φ(x) → ∃y(ψ(x, y)), where both φ(x) and ψ(x, y) are restricted to be
conjunctive formulas in which only relational atoms appear.

Tgds are executed using the classical chase procedure. There are several variants of the chase. In this paper, we
concentrate on the standard chase and on the naive chase. In order to define these, we need to introduce the notion of
an assignment.

Definition 1 [Assignments] Given a formula ϕ(x, y), where x is a vector of universally quantified variables, and y is
a vector of existentially quantified variables, an assignment for ϕ(x, y) is a mapping a : x ∪ y → consts ∪ vars that
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associates with each variable xi ∈ x a constant a(xi) ∈ consts, and with each variable yi ∈ y a value a(yi) that can be
either a constant or a labeled null.

We say that an assignment a for ϕ(x, y) is canonical if it injectively associates a labeled null with each existential
variable yi ∈ y. The set of facts a(ϕ(x, y)) is called a canonical block if a is canonical.

Given a formula ϕ(x, y), an instance of ϕ(x, y) is a set of facts of the form ϕ(a(x), a(y)), for some assignment a,
obtained by replacing each variable vi by a(vi). Consider for example ϕ(〈x0, x1, x2〉, 〈y0, y1〉) = S (x0, x1, y0)∧S (x2, y1, y0).
Following are two of its canonical blocks: S (a, b,N0)∧S (c,N1, N0), S (a, b,N2)∧S (a,N3, N2). Here are two other instances
of the formula that are not canonical blocks: S (a, b,N4) (in this case a(〈x0, x1, x2〉) = 〈a, b, a〉, a(〈y0, y1〉) = 〈N4, b〉),
and S (a, b,N5) ∧ S (c, d,N5). Consider now the formula ϕ(〈x0, x1〉, 〈y0〉) = S (x0, y0) ∧ S (x1, y0); the following blocks are
canonical: S (a,N0) ∧ S (b,N0), S (a,N1) (in this case a(〈x0, x1〉) = 〈a, a〉).

Given a formula φ(x) with free variables x, and an instance I , we say that I satisfies φ(x) with assignment a if
I |= φ(a(x)).

Definition 2 [Standard Chase] [12] Given an instance 〈I, J〉, during the standard chase a tgd ∀x : φ(x)→ ∃y(ψ(x, y))
is fired by a value assignment a if I |= φ(a(x)) and there is no vector of values b such that J |= ψ(a(x), b). To fire the tgd,
a is extended to a canonical assignment a′ by injectively assigning to each variable yi ∈ y a fresh null, and then adding
the facts in ψ(a′(x), a′(y)) to J .

It can be seen how the standard chase, before actually firing a tgd on a value assignment, checks that the tgd conclusion
is not already satisfied for that assignment. An interesting variant of the chase is the so-called naive chase, during which
this check is not performed.

Definition 3 [Naive Chase] [31] Given an instance 〈I, J〉, during the naive chase a tgd ∀x : φ(x) → ∃y(ψ(x, y)) is
fired for all value assignments a such that I |= φ(a(x)) by extending a to a canonical assignment a′ by injectively assigning
to each variable yi ∈ y a fresh null, and then adding the facts in ψ(a′(x), a′(y)) to J .

Given a scenario M = (S,T,Σst), we call a canonical solution any solution obtained by chasing the dependencies in
Σst (with either the standard or the naive chase). Any canonical solution is a universal solution [12]. Since all solutions
obtained by using the naive chase are equal up to the renaming of nulls, we shall often speak of the canonical universal
solution.

Example 4.1 Consider the following scenario M:

m1. A(x1, x2, x3)→ ∃Y1 : S(x1, Y1) ∧ S(Y1, x2) ∧ T (Y1, x3)
m2. B(x4, x5)→ S(x4, x5)
m3. C(x6, x7) ∧D(x7, x8)→ S(x6, x7)

and the source instance: I = {A(1, 2, 3), B(1, 2), C(1, 2), D(2, 3)}. The naive chase generates the following canonical
universal solution J for M over I :

J = {S(1, N0), S(N0, 2), T (N0, 3), S(1, 2)} �

We find it useful to introduce a labeling system to identify the provenance [8] of tuples in the canonical solution.
More specifically, for each tgd m in Σst and each atom R(. . .) in the conclusion of m, we associate with R(. . .) a unique
integer label, i. Then, given a source instance I , for each tuple t in the canonical universal solution J , we keep track of
its provenance, provenance(t), as a set of labeled relation symbols. More formally, whenever t′ is generated during the
chase by firing tgd m and instantiating atom R(. . .) in the conclusion of m, we add to the set provenance(t) the symbol
Ri, where i is the label of R.

In Example 4.1, assume tgds are labeled as follows:

m1. A(x1, x2, x3)→ ∃Y1 : S 1(x1, Y1) ∧ S 2(Y1, x2) ∧ T 3(Y1, x3)
m2. B(x4, x5)→ S 4(x4, x5)
m3. C(x6, x7) ∧D(x7, x8)→ S 5(x6, x7)

8



The provenance of tuples in J would be as follows:

J = { S(1, N0)[{S 1}], S(N0, 2)[{S 2}], T (N0, 3)[{T 3}], S(1, 2)[{S 4,S 5}] }

Based on the labeling system that we have introduced, in the following we shall use labeled formulas of the form
Ri(. . .) as queries that retrieve from an instance all tuples t in relation R such that Ri ∈ provenance(t). More specifically,
given an atom Ri(x, y), where x is a set of universally quantified variables, and y a set of existentially quantified variables,
an assignment a for x, y, and a canonical instance J , we say that J |= a(Ri(x, y)) if the following hold: (i) J contains a
tuple t = R(a(x), a(y)); (ii) Ri ∈ provenance(t). Similarly for a conjunction of labeled atoms of the form ϕl(x, y).

The canonical solution has the nice property of being a universal solution [12]. Also, the naive chase of a set of s-t
tgds can be implemented very efficiently using first-order languages as SQL as a set of queries on the source and insert
statements into the target.1 However, the canonical solution is not, in general, a core solution, and it is known that it
may contain quite a lot of redundancy.

In the next Sections, we concentrate on the following problem: given a data-exchange scenario M = (S,T,Σst),
generate an executable script in a first-order language like SQL that, when run on a source instance I computes the core
universal solution for M on I .

A central idea behind our approach is that the computation of core solutions can be implemented by properly rewriting
the original scenario into a new set of source-to-target dependencies. However, in order to properly perform the rewriting,
we resort to dependencies that are strictly more expressive than ordinary tgds. In particular, we will make extensive use
of negation in the premise, and of Skolem terms in the conclusion. We call these more expressive dependencies FO-rules.

4.1 First-Order Rules

Before introducing the definition of what a FO-rule is, we need to formalize the notion of a Skolem term.

Definition 4 [Skolem Term] Given a set of variables x, a Skolem term over x is a term of the form f(x1, . . . , xk)
where f is a function symbol of arity k and x1, . . . , xk are universal variables in x.

Skolem terms are used to create fresh labeled nulls on the target. Traditionally, Skolem functions are considered as
uninterpreted functions. Given an assignment of values c for x, with an uninterpreted Skolem term f(x) we (injectively)
associate a labeled null Nf(c(x)). As an alternative, we may consider Skolem functions as being interpreted. In this second

case, we associate with each function symbol f of arity k a function f i : constsk → vars, and, for each value assignment
c for x, we compute the labeled null as the result of f i over c(x), f i(c(x)).

If we assume a linear order, <, over the underlying set of constants, consts, then, a special class of interpreted
Skolem functions are those that rely on the linear order. We shall refer to these functions as linear-order dependent. In
this paper, we concentrate on a subset of these functions, obtained by composing two simple functions:

• append(v1, v2), where v1 and v2 may be either a constant string or a universally quantified variable, whose result is
the string obtained by concatenating the two values;

• sort(x1, x2), where x1 and x2 are universally quantified variables; this function returns a string in which the values
of the variables appear in increasing order according to the given linear order; for example, if x1 = d, x2 = c and
c < d, sort(x1, x2) is the string “[c, d]”;

To give an example, consider the function: f(x1, x2) = append(“f”, sort(x1, x2)); on inputs x1 = 1, x2 = 2, 1 < 2, the
Skolem function generates “f [1, 2]”, while on inputs x1 = 4, x2 = 3, 3 < 4, generates “f [3, 4]”.

Definition 5 [FO-Rule] Given a source schema S and a target schema T, an FO-rule is a dependency of the form
∀x : φ(x)→ ψ(x) where φ is a first-order formula over S and ψ is a conjunction of atoms of the form R(t1, . . . , tn), with
R ∈ T and each term ti is either a variable ti ∈ {x} or a Skolem term over x.

1Notice that this is not the case if we also allow target constraints, i.e., target tgds or target egds.
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Consider the scenario in Example 2.1. Following is a FO-rule from its rewriting:

r. ∀x1, x2 : A(x1, x2) ∧ ¬(∃x4, x5 : B(x1, x4) ∧ C(x5, x2) ∧ x4 = x5)→
S(x1, f(x1, x2)) ∧ T (f(x1, x2), x2)

Whenever a set of FO-rules {r1, . . . , rn} uses linear-order dependent Skolem functions, we shall say that {r1, . . . , rn}
is also linear-order dependent, and denote it by R< = {r1, . . . , rn}.

To execute a set of FO-rules, we now introduce an extension of the naive chase procedure.

Definition 6 [Chasing FO-Rules] Given an FO-rule ∀x : φ(x) → ψ(x), we call Qφ(x) the first-order query over S
obtained from φ(x) considering x as free variables. We denote by Qφ(I ) the set of tuples c ∈ dom(I )|x| such that c is
an answer of Qφ over I . Given c ∈ Qφ(I ), we then denote by ψ(c) the set of atoms obtained from ψ by replacing each
variable xi ∈ x by the corresponding ci ∈ c and replacing each Skolem term by the corresponding labeled null.

Given a set R = {r1, . . . , rn} of FO-rules of the form above ri.∀x : φi(x) → ψi(x) and a source instance I, we define
the result of the chase of R over I as follows:

R(I ) =
⋃

i∈[1,n]

( ⋃
c∈Qφi (I )

(
ψi(c)

))
Based on this, it should be apparent how FO-rules lend themselves to a natural implementation as an SQL script.

Consider for example rule r above from the rewriting of the tgds in Example 2.1. Based on the rule, we can materialize
tuples in the S table by the following SQL statement (similarly for T ). Notice how string manipulation functions are used
to generate the needed Skolem terms:

INSERT into S
SELECT A.a, append(‘f(’, A.a, ‘,’, A.b,‘)’)
FROM ( SELECT A.a, A.b FROM A

EXCEPT
SELECT B.a, C.b FROM B, C WHERE B.b = C.a )

4.2 Computing Core Solutions

Given a scenario M = (S,T,Σst), and an instance I , the core [13] of a universal solution J ∈ USolM(I ), C, is a
subinstance of J such that there is a homomorphism from J to C, but there is no homomorphism from J to a proper
subinstance of C. It is known [13] that cores of the universal solutions for a scenario M and source instance I are all
isomorphic to each other, and therefore it is possible to speak of the core universal solution.

We are now ready to introduce the notion of a core schema-mapping :

Definition 7 [Core Schema Mapping] Given a scenarioM = (S,T,Σst), a set of FO-rules R is called a core schema
mapping for M if, for any source instance I , the canonical target instance R(I ) is the core universal solution for M over
I .

The main contribution of the paper is a set of algorithms that, given a mapping scenario, rewrite the given tgds as a
set of FO-rules, R<, that represent a core schema mapping. Notice that – as it is common in practical applications – we
shall assume a linear order on the underlying set of constants, consts, and exploit the linear order in our Skolemization,
as will be detailed in Section 10.

A very similar notion of laconic schema mapping was introduced in [31]. Notice, however, that a laconic schema
mapping is required to be logically equivalent to the original scenario, i.e., to have the same set of solutions. We do not
require the same.

As it was discussed earlier, we concentrate on mapping scenarios composed of a set of s-t tgds Σst and do not consider
target constraints. Without loss of generality we require that the input tgds are in normal form, i.e., each tgd uses distinct
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variables, and no tgd can be decomposed in two different tgds having the same left-hand side.2 To formalize this notion,
let us introduce the Gaifman graph of a formula as the undirected graph in which each variable in the formula is a node,
and there is an edge between v1 and v2 if v1 and v2 occur in the same atom. The dual Gaifman graph of a formula is an
undirected graph in which nodes are atoms, and there is an edge between atoms Ri(xi, yi) and Rj(xj , yj) if there is some
existential variable yk occurring in both atoms.

Definition 8 [Normal Form for Tgds] A set of tgds Σst is in normal form if: (i) for each mi, mj ∈ Σst, (xi ∪ yi) ∩
(xj ∪ yj) = ∅, i.e, the tgds use disjoint sets of variables; (ii) for each tgd mi, the dual Gaifman graph of atoms in the
conclusion of mi is connected.

If the input set of tgds is not in normal form, it is always possible to preliminarily rewrite them to obtain an input in
normal form. In particular, we introduce a transformation, called normalize, that takes a set of dependencies, Σst (tgds
or FO-rules), and generates a new set of dependencies, normalize(Σst), in normal form. To do that, it analyzes the dual
Gaifman graph of a dependency conclusion. If the graph is not connected, it generates a set of new dependencies with
the same premise, one for each connected component in the dual Gaifman graph.

5 A Characterization of the Core

This Section provides an important result upon which we shall build the rewriting algorithms reported in the remainder
of the paper. It introduces the key concept of a witness block, and shows how it is possible to characterize the core of
the universal solutions for a mapping scenario by means of witness blocks. In doing this, it outlines a core computation
strategy that will be exploited in the next Sections.

Consider a scenario M with a set of s-t tgds Σst; given a source instance, I , each tgd in Σst represents a constraint
that must be satisfied by any solution J for M over I . Informally speaking, a witness block is a set of facts in J that
guarantees that a tgd in Σst is satisfied for some vector of constants c. More formally:

Definition 9 [Witness Block] Given a scenario M = (S,T,Σst), a source instance I , and a universal solution J ∈
USolM(I ), for each tgd m. ∀x : φ(x) → ∃y(ψ(x, y)) ∈ Σst and any assignment c for x such that I |= φ(c(x)), a witness
block for 〈I , J 〉, m, and c = c(x) is a set of facts w ⊆ J such that, for some assignment d for y, it is the case that
w = ψ(c(x), d(y)).

In the following we shall use the following notation:

• W<I,J>
m,c will be used to denote the set of all witness blocks for 〈I , J 〉, m, and c;

• W<I,J>
m the set of all witness blocks for 〈I , J 〉 and m;

• W<I,J> the set of all witness blocks of 〈I , J 〉.

A key intuition is that there are usually multiple ways to satisfy a tgd m for some vector of constants a, i.e., a solution
usually contains multiple witness blocks for m and a. The following examples show how the core can be characterized in
terms of witness blocks.

Example 5.1 Reconsider the scenario in Example 2.1:

m1. ∀x1, x2 : A(x1, x2)→ ∃Y1 : S(x1, Y1) ∧ T (Y1, x2)
m2. ∀x3, x4 : B(x3, x4)→ S(x3, x4)
m3. ∀x5, x6 : C(x5, x6)→ T (x5, x6)
m4. ∀x7 : D(x7)→ ∃Y0 : S(x7, Y0)

2This requirement is pretty common [13, 31, 19].
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and the solution: J = {S(1, N0), T (N0, 2), S(1, 3), T (3, 2), S(1, N1)} for source instance: I = {A(1, 2), B(1, 3), C(3, 2), D(1)}.
Following are the witness blocks for J :

W<I,J>
m1,〈1,2〉 = {{S(1, N0), T (N0, 2)}, {S(1, 3), T (3, 2)}} W<I,J>

m2,〈1,3〉 = {{S(1, 3)}}
W<I,J>
m4,〈1〉 = {{S(1, N1)}, {S(1, N0)}, {S(1, 3)}} W<I,J>

m3,〈3,2〉 = {{T (3, 2)}}
The core of J is as follows: J0 = {S(1, 3), T (3, 2)}. The witness blocks for J0 are as follows:

W<I,J0>
m1,〈1,2〉 = {{S(1, 3), T (3, 2)}} W<I,J0>

m2,〈1,3〉 = {{S(1, 3)}}
W<I,J0>
m4,〈1〉 = {{S(1, 3)}} W<I,J0>

m3,〈3,2〉 = {{T (3, 2)}}
�

In Example 5.1 witness blocks are quite simple due to the absence of duplicate symbols in tgd conclusions. Whenever
the conclusion φ(x) of a tgd m is such that the same relation symbol occurs more than once, we say that m contains
self-joins. The following example shows the witness blocks of a scenario with self-joins in tgd conclusions.

Example 5.2 Consider now the following scenario M:

m1. A(x1, x2, x3)→ ∃Y1, Y2 : S(x1, Y1, Y2) ∧ S(x2, x3, Y2)
m2. B(x4, x5)→ ∃Y3, Y4 : S(x4, x5, Y3) ∧ S(Y4, x5, Y3)

and the source instance: I = {A(3, 1, 2), B(1, 2)}. The canonical universal solution is:

J = {S(3, N0, N1), S(1, 2, N1), S(1, 2, N4), S(N5, 2, N4)}

Following are some sets of witness blocks for J :

W<I,J>
m1,〈3,1,2〉 = { {S(3, N0, N1), S(1, 2, N1)} }
W<I,J>
m2,〈1,2〉 = { {S(1, 2, N4), S(N5, 2, N4)}, {S(1, 2, N4)}, {S(1, 2, N1)} }

The core of J is as follows: J0 = {S(3, N0, N1), S(1, 2, N1)}.
The witness blocks for J0 are as follows:

W<I,J0>
m1,〈3,1,2〉 = {{S(3, N0, N1), S(1, 2, N1)}} W<I,J0>

m2,〈1,2〉 = {{S(1, 2, N1)}}
�

An important observation is that other algorithms for core computation ([13, 18, 31]) have so far concentrated on a
different notion of “blocks”, namely fact blocks. Informally speaking, a fact block in an instance is a set of facts that are
joined via labeled nulls. More formally, it is a connected component in the dual Gaifman graph of an instance, in which
facts are the nodes, and there exists an edge between any two facts in which the same labeled null appears.

We want to emphasize that witness blocks are a different concept with respect to fact blocks, since they are essentially
instances of tgd conclusions. In some cases the witness blocks of a tgd are also fact blocks. In other cases, they are unions
of fact blocks. However, the following example shows that there may be witness blocks in an instance that are neither
fact blocks nor unions of fact blocks.

Example 5.3 Consider now the following scenario M:

m1. A(x0, x1, x2, x3) ∧B(x3, x4)→ ∃Y0, Y1, Y2, Y3 : S(x3, x0, Y0, x1)∧
S(Y1, x0, Y0, x0) ∧ S(Y1, x2, Y2, Y3)

and the source instance: I = {A(1, 1, 2, 1), A(2, 1, 2, 1), B(1, 4)}. The core universal solution for M over I is J0 =
{S(1, 1, N0, 1), S(1, 2, N5, 1), S(N6, 2, N5, 2)}.

The witness blocks for J0 are as follows:

W<I,J0>
m1,〈1,1,2,1〉 = { {S(1, 1, N0, 1), S(1, 2, N5, 1)} }
W<I,J0>
m1,〈2,1,2,1〉 = { {S(1, 2, N5, 1), S(N6, 2, N5, 2)} }

Notice how the witness block in W<I,J0>
m1,〈1,1,2,1〉 is not a fact block, nor the union of two fact blocks (it is rather the union

of a fact block and a fragment of another fact block). �
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Our goal is to find a characterization of the core in terms of its witness blocks. However, as it can be seen from
the examples above, some of the witness blocks in the canonical solution are redundant, and therefore the corresponding
tuples need to be removed to generate the core. As it is natural, we use the notion of a homomorphism to define what a
“redundant” witness block is.

Recall that, given two instances J , J ′, a homomorphism h : J → J ′ is a mapping from dom(J ) to dom(J ′) that maps
constants to themselves (i.e. for each c ∈ consts(J ), h(c) = c) such that for each tuple t = R(A1 : v1, . . . , Ak : vk) in J it
is the case that h(t) = R(A1 : h(v1), . . . , Ak : h(vk)) belongs to J ′. We say that h is injective if it maps distinct atoms in
J into distinct atoms of J ′. We say that h is surjective, or that it is a surjection, if every atom of J ′ is the image of some
atom of J according to h.

There are several ways in which tuples can be made redundant in a solution. Generally speaking, tuples are redundant
whenever they introduce unnecessary nulls. To formalize this notion, we introduce a classification of homomorphisms, as
follows:

Definition 10 [Classification of Homomorphisms] Given two instances J , J ′, and a homomorphism h : J → J ′:

• h is compacting if it is surjective, and |vars(J ′)| < |vars(J )|; we write J ≺ J ′ if there is a compacting homomorphism
of J into J ′;

• h is proper if it is injective and not surjective, i.e., J ′ contains at least one atom that is not the image of an atom
of J ; in symbols, we write that J < J ′;

• h is an isomorphism if it is surjective and injective and its inverse is also a homomorphism; in this case, we say
that J and J ′ are isomorphic, in symbols J ∼= J ′.

In terms of witness blocks, we can identify two main reasons according to which a witness block w can be made
redundant by another witness block w′ for the same tgd and assignment. The first one is if w′ is more compact than w,
i.e., if there exists a compacting homomorphism of w into w′.

To give an example, consider Example 5.2, and tgd m2:

m2. B(x4, x5)→ ∃Y3, Y4 : S(x4, x5, Y3) ∧ S(Y4, x5, Y3)

The tgd has the following witness blocks:

W<I,J>
m2,〈1,2〉 = { {S(1, 2, N4), S(N5, 2, N4)}, {S(1, 2, N4)}, {S(1, 2, N1)} }

Notice, however, that the witness block w1 = {S(1, 2, N4), S(N5, 2, N4)} has a compacting homomorphism into w2 =
{S(1, 2, N4)}; in fact, w2 contains a lower number of nulls than w1. This means that w1 is redundant for core computation
properties.

It can be seen that the ≺ relation associated with compacting homomorphisms is antisymmetric and transitive, and
therefore induces a partial order on witness blocks. A first intuition of our algorithm is that of selecting, among all possible
witness blocks, only those that represent maximal elements with respect to this partial order, in order to minimize the
null values in the final result.

However, even such maximal elements may still be redundant. In fact, other tgds and assignments may generate
witness blocks that are “more informative”. A witness block w′ is said to be more informative than a witness block w if
there exists a proper homomorphism of w into w′.

Consider again Example 5.2. We have learned that w2 = {S(1, 2, N4)} is a maximal element with respect to compacting
homomorphisms for m2 and 〈1, 2〉. However, it is still redundant in terms of core computation. In fact, among the witness
blocks of m1 we find w3 = {S(3, N0, N1), S(1, 2, N1)}. It can be seen that w2 has a proper homomorphism into w3. In
essence, the null N1 carries “more information” than N4. We need therefore to discard w2 and consider w3 only to
generate the core.

Again, proper homomorphisms induce a partial order on the set of witness blocks. In light of this, our core computation
procedure will proceed as follows:
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• we shall first select the most compact witness blocks in any set W<I,J>
m,a , i.e., all maximal elements with respect to

the ≺ partial order;

• then, we will exclude all elements such that there are more informative witness blocks, i.e., we will select the maximal
elements with respect to the < partial order.

More formally, given a set of witness blocks W, we define:

mostCompact(W) = {w | w ∈ W ∧ ¬∃ w′ ∈ W : w ≺ w′}
mostInformative(W) = {w | w ∈ W ∧ ¬∃ w′ ∈ W : w < w′}

By doing this, we are able to remove most of the redundancy in the original solution. Unfortunately, not enough to
generate the core. In fact, it may be the case that multiple isomorphic copies of a witness block survive in the result. To
see this, consider the following example:

Example 5.4 Consider again the mapping scenario in Example 5.2:

m1. A(x1, x2, x3)→ ∃Y1, Y2 : S(x1, Y1, Y2) ∧ S(x2, x3, Y2)
m2. B(x4, x5)→ ∃Y3, Y4 : S(x4, x5, Y3) ∧ S(Y4, x5, Y3)

and a different source instance: I = {A(1, 1, 2), B(1, 2)}, for which the canonical universal solution is

J = {S(1, N0, N1), S(1, 2, N1), S(1, 2, N4), S(N5, 2, N4)}

Following are some sets of witness blocks for J :

W<I,J>
m1,〈1,1,2〉 = { {S(1, N0, N1), S(1, 2, N1)}, {S(1, 2, N4)}, {S(1, 2, N1)} }
W<I,J>
m2,〈1,2〉 = { {S(1, 2, N4), S(N5, 2, N4)}, {S(1, 2, N4)}, {S(1, 2, N1)} }

By taking the union of the set of maximal witness blocks, we obtain the following solution: J∗ = {S(1, 2, N4), S(1, 2, N1)}
that is obviously not the core. In fact, the two maximal witness blocks are isomorphic to each other, and we need to
consider only one of them. We may say that, by selecting maximal witness blocks, we are able to identify two alternative
subsets of J that correspond to the core, so that we need to pick one of them. �

After we have selected a set of maximal witness blocks, to generate an isomorphism-free solution we introduce a
minimization algorithm, called reduce, that works as follows:

• given a set of witness blocks W, it identifies all equivalence classes E0, . . . , Ek of isomorphic witness blocks in W;

• for each equivalence class, it (nondeterministically) selects exactly one representative, wEi ;

• then, it returns the subset of W obtained by taking the representative of each equivalence class, i.e., W = {wEi |i =
0, . . . , k}.

Based on this intuition, we are ready to formalize our characterization of the core.

Theorem 1 Given a scenario M = (S,T,Σst), and a source instance I , suppose J is a universal solution for M over
I . Consider the subset J0 of J defined as follows:

J0 =
⋃

reduce(mostInformative(mostCompact(W<I,J>))) (1)

Then, J0 is the core of J .

The proof is in the Appendix.
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6 Expansions

Given a mapping scenario, M = (S,T,Σst), our goal is to rewrite the given tgds under a set of FO-rules that represents
a core schema mapping for M, and then to generate an SQL script from them. In the following, we assume that the
input scenario, M, is fixed. To simplify the notation, from now on, we shall omit explicit references to M whenever this
is clear from the context.

In order to perform the rewriting, we shall rely on the characterization of the core introduced in Section 5. A central
intuition is that it is possible to select the needed witness blocks by using a set of first-order rules. In this Section we
introduce the central notion of an expansion of a tgd conclusion, that we shall use in the next sections to perform the
rewriting.

More specifically:

• in this Section we formalize the definition of an expansion for a tgd, and discuss the relationship among expansions
and witness blocks;

• in order to do this, we introduce the notion of a formula homomorphism; we use formula homomorphisms to rewrite
expansions in such a way to select only maximal witness blocks;

• in the next Section, we provide an alternative characterization of the core that mirrors the one in Section 5, but it
is based on expansions and their homomorphisms;

• finally, in Section 8 we show that expansions, which are formulas over the target, can be fairly easily rewritten as
formulas over the source database; in this way, we provide a solid foundation for the rewriting algorithm developed
in the following sections.

Throughout this section, we shall mainly refer to the scenario in Example 5.2, of which we report the tgds here, complete
of labels.

m1. A(x1, x2, x3)→ ∃Y1, Y2 : S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)
m2. B(x4, x5)→ ∃Y3, Y4 : S3(x4, x5, Y3) ∧ S4(Y4, x5, Y3)

Recall that in our labeling system, atom S i corresponds to all tuples in relation S whose provenance contains label i. In
fact, in this Section we will systematically make use of labeled formulas. We use the notation ϕl(x, y) to denote a labeled
conjunctive formula with universally quantified variables x, and existentially quantified variables y.

In the discussion we shall mainly make reference to the source instance

I = {A(3, 1, 2), A(1, 1, 2), B(1, 2)}

and to the canonical universal solution J , which we report here along with the provenance of the various tuples, as
discussed in Section 4:

J = { S(3, N0, N1)[S 1], S(1, 2, N1)[S 2], S(1, N2, N3)[S 1], S(1, 2, N3)[S 2],
S(1, 2, N4)[S 3], S(N5, 2, N4)[S 4] }

The witness blocks in J are as follows:

W<I,J>
m1,〈3,1,2〉

= {{S(3, N0, N1), S(1, 2, N1)}}
W<I,J>

m1,〈1,1,2〉
= {{S(1, N2, N3), S(1, 2, N3)}, {S(1, 2, N1)}, {S(1, 2, N3)}, {S(1, 2, N4)}}

W<I,J>
m2,〈1,2〉

= {{S(1, 2, N4), S(N5, 2, N4)}, {S(1, 2, N1)}, {S(1, 2, N3)}, {S(1, 2, N4)}}
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6.1 Introducing Expansions

Once the canonical universal solution J for I has been generated by chasing the original tgds, our next step is to select
the witness blocks that belong to the core. Notice that, since J is a finite instance, W<I,J> is a finite set, and therefore
the set of witness blocks for each tgd is finite. Our intuition is to generate a set of queries, called expansions, that capture
the witness blocks in W<I,J>.

To give an example, consider mapping m1 above. Tgd m1 states that the target must contain a number of tuples in
S that satisfy the tgd conclusion. The formula:

ε11 = S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)

is called the base expansion of m1, and by running the corresponding query over J we find a number of witness blocks for
m1. In our example, it selects the witness blocks w0 = {S(3, N0, N1), S(1, 2, N1)} and w1 = {S(1, N2, N3), S(1, 2, N3)}
(notice that both of these blocks are canonical).

However, it does not capture all witness blocks for tgd m1. In fact, tuples in J that satisfy the conclusion of m1

(i) do not necessarily belong to the extent of S 1, S 2, since they may also come from S 3 or S 4; (ii) these tuples are not
necessarily distinct, since there may be tuples that perform a self-join.

One alternative way to generate valid witness blocks for m1 is to use only one tuple from S 2 in join with itself on
the last attribute – i.e., S 2 is used to “cover” the S 1 atom. However, this may work as long as the two atoms generate
tuples that do not conflict with the constants in the base expansion of m1; in our example, the values generated by the
S 2 atom must be consistent with those that would be generated by the S 1 atom in the base expansion, i.e., x2 = x1.
Generally speaking, any expansion must be consistent with the base expansion, i.e., with the tgd conclusion. We write
this second expansion as follows, first in its extended and more verbose form, to emphasize that an intersection with the
base expansion is required, and then in its simplified form:

ε12 = S2(x2, x3, Y2) ∧ ∃x1, Y1 : (S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2) ∧ x1 = x2)
= S2(x2, x3, Y2) ∧ ∃Y1 : (S1(x2, Y1, Y2))

Expansion ε12 captures witness blocks w2 = {S(1, 2, N1)} and w3 = {S(1, 2, N3)}. To identify the last witness block for
m1, w4 = {S(1, 2, N4)}, we need one final expansion, that uses a single atom for S3 (notice, in fact, that this witness
block contains an atom whose provenance is S3 in mapping m2):

ε13 = S3(x4, x5, Y3) ∧ ∃x1, x2, x3, Y1, Y2 : (S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)∧
x4 = x1 ∧ x4 = x2 ∧ x5 = x3)

= S3(x4, x5, Y3) ∧ ∃Y1, Y2 : (S1(x4, Y1, Y2) ∧ S2(x4, x5, Y2))

A similar approach can be used for tgd m2 above. In this case, the algorithm first generates the base expansion:

ε21 = S3(x4, x5, Y3) ∧ S4(Y4, x5, Y3)

As it was noted [31, 19], the base expansion is hardly useful for core computation purposes. Consider the facts obtained
from ε21 by considering each xi as a constant and each Yi as a labeled null. It is easy to see that this set is not a core.
In fact, the second atom is useless with respect to the first one, since it has identical values on the second and third
attribute, and a null instead of a constant on the first one. More interesting expansions are the following;

ε22 = S3(x4, x5, Y3)
ε23 = S2(x2, x3, Y2) ∧ ∃x4, x5, Y3, Y4 : (S3(x4, x5, Y3) ∧ S4(Y4, x5, Y3)∧

x2 = x4 ∧ x3 = x5)
= S2(x2, x3, Y2) ∧ ∃Y3, Y4 : (S3(x2, x3, Y3) ∧ S4(Y4, x3, Y3))

Notice that no intersection is present in ε22, since we know that atom S3 always covers S4.
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6.2 Formula Homomorphisms

In order to develop an algorithm that finds all expansions of a tgd conclusion, we introduce a notion of formula homomor-
phism, which is reminiscent of the notion of containment mapping used in [22]. We find it useful to define homomorphisms
among variable occurrences, and not among variables.

Definition 11 [Variable Occurrence] Given an atom Rl(A1 : v1, . . . , Ak : vk) in a formula ϕl(x, y), a variable oc-
currence is a pair Rl.Aj : vi. A variable occurrence Rl.Aj : vi in ϕl(x, y) is a universal occurrence if vi ∈ x; it is an
existential occurrence if vi ∈ y.

In the following, we denote by occ(ϕl(x, y)) the set of all variable occurrences in ϕl(x, y); u-occ(ϕl(x, y)), e-occ(ϕl(x, y))
will denote the set of universal and existential occurrences, respectively. Similarly, occ(v), u-occ(v), e-occ(v) will denote
the set of all (universal, existential) occurrences of a given variable v.

Definition 12 [Formula Homomorphism] Given two conjunctive formulas, ϕl(x, y) and ϕ
′l(x′, y′), a formula homo-

morphism is an injective mapping hf from the set occ(ϕl(x, y)) to occ(ϕ
′l(x′, y′)) such that:

• hf maps universal occurrences into universal occurrences;

• for each atom Rl(A1 : v1, . . . , Ak : vk) ∈ ϕl(x, y), it is the case that R(hf (Rl.A1 : v1), . . . , hf (Rl.Ak : vk)) ∈
ϕ
′l(x′, y′);

• for each pair of occurrences of an existential variable y ∈ y, Rli.Aj : y, Rln.Am : y it is the case that either
hf (Rli.Aj : y) and hf (Rln.Am : y) are both universal, or they are occurrences of the same existential variable y′ ∈ y′.

We say that a formula homomorphism hf is injective if it maps distinct atoms of ϕl(x, y) into distinct atoms of
ϕ
′l(x′, y′). It is surjective if every atom in ϕ

′l(x′, y′) is the image of some atom in ϕl(x, y) according to hf .
Consider for example the two formulas over relations R(A,B,C) and T (A,B,C): ϕl = R1(x1, x2, Y1) ∧ T 2(x3, x1, Y1)

and ϕ
′l = R3(x′4, x

′
5, x
′
6)∧ T 4(x′9, x

′
7, x
′
8). There exists a formula homomorphism hf of ϕl into ϕ

′l, based on the following
mapping of variable occurrences:

hf (R1.A : x1)→ R3.A : x′4 hf (R1.B : x2)→ R3.B : x′5
hf (R1.C : Y1)→ R3.C : x′6 hf (T 2.A : x3)→ T 4.A : x′9
hf (T 2.B : x1)→ T 4.B : x′7 hf (T 2.C : Y1)→ T 4.C : x′8

Consider now the two formulas: ϕl = R1(x1, x2, Y2) and ϕ
′l = R2(x′4, x

′
5, Y

′
3) ∧ R3(Y ′4 , x

′
5, Y

′
3). There exists a formula

homomorphism hf
′

of ϕl into ϕ
′l, based on the following mapping of variable occurrences:

hf
′
(R1.A : x1)→ R2.A : x′4 hf

′
(R1.B : x2)→ R2.B : x′5

hf
′
(R1.C : Y2)→ R2.C : Y ′3

It can be seen that, since formula homomorphisms map variable occurrences into variable occurrences, they may relate
occurrences of the same variable on the left hand side to occurrences of different variables on the right hand side. In the
following, we shall refer to the variable occurrence hf (Rl.Aj : vi) by the syntax Aj : hfRl.Aj (vi), so that hfRl.Aj (vi) will

be the variable whose occurrence is associated with occurrence Rl.Aj of vi. Consider for example hf above. The two

occurrences of variable x1 in ϕl are mapped to occurrences of different universal variables in ϕ
′l; in fact, hfR1.A(x1) = x′4,

while hfT 2.B(x1) = x′7.
Parallel to the classification of homomorphisms among facts introduced in Section 5, it is useful to classify formula

homomorphisms in several categories, as follows.

Definition 13 [Classification of Formula Homomorphisms] Given two formulas, ϕl(x, y) and ϕ
′l(x′, y′), and a

formula homomorphism hf from occ(ϕl(x, y)) to occ(ϕ
′l(x′, y′)),
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• hf is compacting if it is surjective, and either |ϕ′l(x′, y′)| < |ϕl(x, y)| or |y′| < |y|, i.e., either ϕ
′l(x′, y′) is smaller

than ϕl(x, y) or it contains less existential variables;

• hf is said to be proper if it is injective but not surjective, i.e., there is at least one atom in ϕ
′l(x′, y′) which is not

the image of an atom of ϕl(x, y).

In our examples above, formula homomorphism hf is compacting, while hf
′

is proper.
It is very important to discuss the relationship between formula homomorphisms and the corresponding homomor-

phisms among facts. In essence, we study formula homomorphisms in order to detect possible homomorphisms among
facts that are instances of the formulas. However, the presence of a formula homomorphism does not guarantee that
actual homomorphisms arise among facts. Notice, in fact, that homomorphisms among formulas map occurrences of a
universal variable into occurrences of other universal variables. However, these variables do not necessarily receive the
same values when the formulas are instantiated. Therefore, the homomorphism may be “realized” or not among formula
instances depending on values assumed by the universal variables.

Consider for example the formula homomorphism hf of ϕl = R1(x1, x2, Y1)∧T 2(x3, x1, Y1) and ϕ
′l = R3(x′4, x

′
5, x
′
6)∧

T 4(x′9, x
′
7, x
′
8), above. Consider now two instances of the formulas: w = {R(1, 2, N0), T (3, 1, N0)} and w′ = {R(1, 2, 4), T (3, 1,

4)}, respectively. Given this assignments of values to the variables, it can be seen that the set of facts w has in fact a
(compacting) homomorphism into w′. This is in general not true if we change the assignments.

Consider now instances: w′′ = {R(1, 2, N0), T (3, 1, N0)} and w′′′ = {R(1, 4, 6), T (3, 5, 7)}, respectively. There is no
homomorphism of w′′ into w′′′. The reason for this is twofold. (i) First, the formula homomorphism maps the occurrence
of x2 on the left into the occurrence of x′5 on the right. By doing this, the formula homomorphism is imposing a restriction
on the values of variables x2, x

′
5: in order to realize the homomorphism among formula instances, it must be the case that

the two variables receive the same value. (ii) Second, hf maps the two occurrences of N0 into occurrences of x′6, x
′
8; this

means that, in order for the homomorphism to be realized, it is necessary that the value of x′6 equals that of x′8.
More formally, given a formula homomorphism hf , we may introduce several sets of equalities among universal variables

that are associated with hf :

• the set intersecthf states the set of equalities among universal variables of ϕl(x, y) and universal variables of
ϕ
′l(x′, y′) that must hold to realize the homomorphism among instances of the two formulas:

intersecthf (x, x′) = {xi = x′j | hf (R.A : xi) = R.A : x′j , xi ∈ x, x′j ∈ x′}

• the set joinshf states the set of equalities among universal variables of ϕ
′l(x′, y′) whose occurrences are images of

occurrences of the same existential variable in ϕl(x, y):

joinshf (x′) = {x′h = x′l | x′h = hfRi.Aj (yk), x′l = hfRn.Am(yk), yk ∈ y}

The set equalhf will be the union of the two, as follows:

equalhf (x, x′) = intersecthf (x, x′) ∪ joinshf (x′)

Intuitively, a formula homomorphism can be realized only by assignments that satisfy the equalities in equalhf (x, x′). In
our example, we have that:

equalhf (x, x′) = {x1 = x′4, x2 = x′5, x3 = x′9, x1 = x′7} ∪ {x′6 = x′8}

This notion is made more precise in B.2, where we provide several results on the existence of formula and fact
homomorphisms.
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6.3 Defining and Finding Expansions

We are now ready to introduce the notion of an expansion. Given a scenario M = (S,T,Σst), we shall denote by:

• R =
⋃
i ψi(xi, yi) the union of all tgd conclusions in Σst;

• Rpowk the set of all multisets of atoms in R of size k or less; whenever multiple copies of the same atom appear in a
multiset, we assume that they have been properly renamed to avoid variable collisions.

Definition 14 [Expansions of a Tgd] Given a scenario M and a tgd m : φ(x2) → ∃y2(ψl(x2, y2)) in Σst, the set of
expansions of m wrt M, denoted by expansionsM(m), is the set of logical formulas of the form:

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

where χl(x1, y1) is a multiset of labeled atoms in Rpowk (k is the size of ψl(x2, y2)) and there exists a surjection hf ε :
ψ(x2, y2)→ χ(x1, y1).

Without loss of generality, in the following we shall assume that expansions are such that x1 ∩ x2 = ∅, y1 ∩ y2 = ∅,
i.e., x1, x2 (y1, y2, respectively) are disjoint.

We report here the tgds of Example 5.2, and the set of their expansions:

m1. A(x1, x2, x3)→ ∃Y1, Y2 : S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)
m2. B(x4, x5)→ ∃Y3, Y4 : S3(x4, x5, Y3) ∧ S4(Y4, x5, Y3)

The set expansionsM(m1) contains the following three expansions (in simplified form):

ε11 = S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)
ε12 = S2(x2, x3, Y2) ∧ ∃Y1 : (S1(x2, Y1, Y2))
ε13 = S3(x4, x5, Y3) ∧ ∃Y1, Y2 : (S1(x4, Y1, Y2) ∧ S2(x4, x5, Y2))

Similarly for expansionsM(m2):

ε21 = S3(x4, x5, Y3) ∧ S4(Y4, x5, Y3)
ε22 = S3(x4, x5, Y3)
ε23 = S2(x2, x3, Y2) ∧ ∃Y3, Y4 : (S3(x2, x3, Y3) ∧ S4(Y4, x3, Y3))

Notice that an expansion ε can be also considered as a query ε(x1, y1) with free variables x1, y1. In fact, we will shortly
prove that the result of evaluating such queries on a solution J ∈ USolM(I ) returns exactly a set of witness blocks in
W<I,J>.

More formally, given an instance J , and an assignment a1 for x1, y1, we say that J |= a1(ε(x1, y1)) if the following
holds:

• J |= a1(χl(x1, y1));

• there exists an assignment a2 such that J |= a2(ψl(x2, y2));

• a1, a2 are such that equalhf ε(a1(x1), a2(x2)) evaluates to true.

Algorithm 1 describes how to generate the set expansionsM(m).
It can be seen that the number of expansions of a tgd conclusion increases with the number of self-joins, and it is in

general exponential in the size of the input tgds. We call expansions(M) the set of all expansions of the tgds in Σst.
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Algorithm 1 Finding Expansions

Input: a scenario M = (S,T,Σst),
a tgd m. ∀x : φ(x)→ ∃y(ψ(x, y)) ∈ Σst

Output: the set of expansions expansionsM(m)

Let expansionsM(m) = ∅
Let R =

⋃
{ψl

i(xi, yi) | ∀xi : φi(xi) → ∃yi(ψi(xi, yi)) ∈ Σst}
Let k = |ψ(x, y)|
Rename variables in ψl(x, y) as ψl(x2, y2)

Let Rpow
k be the set of all (renamed) multisets of atoms in R of size k or less

For each χl(x1, y1) ∈ Rpow
k

If there exists a surjection hf : ψl(x2, y2) → χ(x1, y1)

Let intersecthf (x1, x2) = ∅
For each Rl.Ai : x2j ∈ u-occ(ψl(x2, y2))

intersecthf (x1, x2) = intersecthf (x1, x2) ∪ {x2j = hf
Rl.Ai

(x2j)}
Let joinshf (x1) = ∅
For each pair Rl

i.Aj : y2k, R
l
n.Am : y2k in e-occ(ψl(x2, y2))

such that hf (Rl
i.Aj : y2k) and hf (Rl

n.Am : y2k) are in u-occ(χl(x1, y1))

joinshf (x1) = joinshf (x1) ∪ {hf
Rl
i
.Aj

(y2k) = hf
Rln.Am

(y2k)}
Let equalhf (x1, x2) = intersecthf (x1, x2) ∪ joinshf (x1)

expansionsM(m) = expansionsM(m) ∪
{χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)

∧
equalhf (x1, x2))}

7 Expansions and the Core

Our goal in this Section is to introduce an alternative characterization of the core that mimics the one given in Section 5
but relies on expansions. In order to do this, we build on the intuition that expansions of a tgd allow us to identify all
witness blocks for that tgd. However, there are two main problems to be solved, as shown in Theorem 1:

• in order to generate core solutions, we need to select only maximal witness blocks, first the most compact ones, and
then the most informative among these;

• then, we need to handle the possible isomorphisms among maximally informative witness blocks.

In the next subsections we discuss these two aspects.

7.1 More Compact and More Informative Expansions

Formula homomorphisms may help us to identify when an expansion generates witness blocks that are more compact
or more informative than another. In fact, we introduce a parallel definition of a more compact and more informative
expansion.

Definition 15 [More Compact and More Informative Expansions] Given expansions:

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

ε′ = χ
′l(x′1, y

′
1) ∧ ∃x′2, y′2 : (ψ

′l(x′2, y
′
2)
∧

equalhf ε′ (x
′
1, x
′
2))
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• ε′ is more compact than ε if there exists a compacting homomorphism hf c : χl(x1, y1) → χ
′l(x′1, y

′
1); in symbols:

ε ≺ ε′;

• ε′ is more informative than ε if there exists a proper homomorphism hf p : χl(x1, y1) → χ
′l(x′1, y

′
1); in symbols:

ε < ε′.

Consider our running example. As we have discussed above, among the expansions of tgd m1 we find:

ε11 = S1(x1, Y1, Y2)∧ S2(x2, x3, Y2)
ε13 = S3(x4, x5, Y3)∧ ∃x1, x2, x3, Y1, Y2 : (S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)∧

x4 = x1 ∧ x4 = x2 ∧ x5 = x3)

It can be seen that there is a compacting formula homomorphism hf c of χl11 = S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2) into
χl13 = S3(x4, x5, Y3). This is a signal that ε13 may generate witness blocks that are more compact than those generated
by ε11. And in fact, this is the case in our example: witness block w11 = {S(1, N2, N3), S(1, 2, N3)} is made redundant
by the more compact witness block w13 = {S(1, 2, N4)}.

In order to remove witness block w11 from the extent of ε11, we may think of rewriting ε11 by adding the negation of
ε13, with the appropriate equalities suggested by their compacting homomorphism, hf c, as follows:

ε11(x11, y11) ∧ ¬∃x13, y13(ε13(x13, y13) ∧ equalhf c(x11, x13))

The actual formula is the following:

S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)∧
¬∃x′4, x′5, Y ′3 : (S3(x′4, x

′
5, Y

′
3)∧

∃x′′1 , x′′2 , x′′3 , Y ′′1 , Y ′′2 : (S1(x′′1 , Y
′′
1 , Y

′′
2 ) ∧ S2(x′′2 , x

′′
3 , Y

′′
2 )∧

x′4 = x′′1 ∧ x′4 = x′′2 ∧ x′5 = x′′3)∧
x1 = x′4 ∧ x2 = x′4 ∧ x3 = x′5)

The important observation is that this formula is a new query over the canonical universal solution J ; differently from
the original expansion, ε11, only witness blocks that belong to the core satisfy this new query.

Notice that in some cases, given expansions ε and ε′, there can be different formula homomorphisms of χl(x1, y1)
into χ

′l(x′1, y
′
1). Consider as an example χl = R1(x1, Y1), χ

′l = R2(x2, Y2) ∧ R3(x3, Y2). It can be seen that a first
proper formula homomorphism maps R1(x1, Y1) to R2(x2, Y2), while a second one maps R1(x1, Y1) to R3(x3, Y2). We
write ε ≺hf ε′ (ε <hf ε

′) when we need to make explicit that ε′ is more compact (more informative, respectively) than ε
according to formula homomorphism hf .

Following this approach, given an expansion ε, we generate a new query based on ε, called mostComp (ε), by adding
to ε the negation of each expansion ε′ that is more compact than ε, with the appropriate equalities, as follows.

Definition 16 [Selecting Most-Compact Witness Blocks: mostComp(M) ] Given a scenario M, its set of expan-
sions expansions(M), and an expansion

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

in expansions(M) the formula mostComp (ε) is obtained as follows:

• initialize mostComp (ε) = ε;

• for any ε′ = χ
′l(x′1, y

′
1) ∧ ∃x′2, y′2 : (ψ

′l(x′2, y
′
2)
∧

equalhf ε′ (x
′
1, x
′
2)) in expansions(M) and any compacting formula

homomorphism hf c such that ε ≺hf c ε′, i.e., ε′ is more compact than ε according to hf c, add to mostComp (ε) a
formula

∧¬∃x′1, y′1 : (ε′
∧

equalhf c(x1, x
′
1))
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We shall denote by mostComp(M) the set of all rewritings of the form mostComp (ε), ε ∈ expansions(M).

After this first rewriting, coherently with the strategy outlined in Theorem 1, we look among other expansions to
favor those that generate more informative witness blocks in the target, and we further rewrite mostComp (ε) accordingly.
In doing this, we generate a further formula, called mostInf (ε), as follows:

Definition 17 [Selecting Most-Informative Witness Blocks: mostInf(M)] Given a scenario M, its set of expan-
sions expansions(M), and an expansion

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

in expansions(M) the formula mostInf (ε) is obtained as follows:

• initialize mostInf (ε) = mostComp (ε);

• for any ε′ = χ
′l(x′1, y

′
1)∧∃x′2, y′2 : (ψ

′l(x′2, y
′
2)
∧

equalhf ε′ (x
′
1, x
′
2)) in expansions(M) and any proper formula homo-

morphism hf i such that ε <hf i ε
′, i.e., ε′ is more informative than ε according to hf i, add to mostInf (ε) a formula

∧¬∃x′1, y′1 : (mostComp (ε′)
∧

equalhf i(x1, x
′
1))

We shall denote by mostInf(M) the set of all rewritings of the form mostInf (ε), for every ε ∈ expansions(M).

To summarize, in order to select maximal witness blocks, we consider each expansion ε of a tgd m; then:

• we first rewrite ε into a new formula mostComp (ε) by adding the negation of all expansions εi such that εi is more
compact than ε; we expect these new formulas to select the most-compact witness blocks among those associated
with ε;

• then, we further rewrite mostComp (ε) into a new formula mostInf (ε) by adding the negation of mostComp (εj), for
all expansions εj such that εj is more informative than ε.

Similarly to expansions, also their rewritings can be considered as queries. More specifically, given an expansion ε, and the
associated query ε(x1, y1), both formulas mostComp (ε) and mostInf (ε) can be seen as queries with free variables x1, y1. We
write these queries as follows: mostComp (ε)(x1, y1), and mostInf (ε)(x1, y1). However, to simplify the notation, whenever
it is possible we will omit to explicitly reference variables.

7.2 Isomorphisms

Once the mostInf () formula associated with each expansion has been derived, we are able to select all maximal witness
blocks in the canonical universal solution. We know however that this is not sufficient. In fact, it is still possible that
some of these witness blocks are isomorphic to each other.

Handling isomorphic witness blocks by means of expansions is a tricky issue. In fact, there are two possible sources of
isomorphisms among witness blocks. The first one corresponds to isomorphic copies of a witness block that are generated
by different expansions. This is the easiest one to capture. However, there is also the possibility that isomorphic witness
blocks are generated by the same expansion. As it was noted in [31], this may happen if an expansion has non-trivial
automorphisms.

Consider for example a tgd that has an expansion as the following:

ε = R1(x1, Y1) ∧ R2(x2, Y1)

it can be seen that χ(x, y) has a non-trivial automorphism that maps x1 into x2 and vice-versa. Therefore, the expansion
might select pairs of isomorphic witness blocks in J of the form {R(1, N0), R(2, N0)} and {R(2, N1), R(1, N1)}. These are
difficult to detect and remove.

This problem does not arise if we make the assumption that J is isomorphism–free, i.e., it does not contain witness
blocks that are isomorphic to each other.
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Definition 18 [Isomorphism-Free Solution] Given a scenario M, a source instance I , and a solution J ∈ SolM(I ),
we say that J is isomorphism–free if there exist no witness blocks w,w′ ∈ W<I,J> such that w ∼= w′.

Let us assume for now that, given a scenario M and a source instance I , we have generated an isomorphism-free
solution. In the following sections, we shall discuss how it is possible to achieve this goal. In the meanwhile, we notice
that one simple way to do this is to generate J by running the standard chase procedure instead of the naive one. The
semantics of the standard chase, in fact, prevents the generation in the canonical solution of any form of isomorphisms.

Based on this assumption, we are ready to introduce our alternative characterization of the core based on expansions.

Theorem 2 Given a scenario M = (S,T,Σst), a source instance I , call J a canonical universal solution of Σst over I .
If J is isomorphism–free, consider the set of expansions expansions(M) and, for each expansion

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

its rewriting, mostInf (ε). The following set:

EJmostInf =
⋃

ε∈expansions(M)

{a(χl(x1, y1)) | a s.t. J |= a(mostInf (ε)(x1, y1))}

is such that:
EJmostInf = reduce(mostInformative(mostCompact(W<I,J>)))

The full proof is reported in the Appendix. From Theorem 1 it follows that EJmostInf is exactly the core of J .
Theorem 2 suggests a natural core-computation strategy for a scenario M, based on the following steps:

• given I, generate an isomorphism-free canonical solution J (for example by running the standard chase of the tgds
in Σst);

• for each expansion ε ∈ expansions(M), generate the formula mostInf (ε), and run the corresponding queries on J to
select the maximal witness blocks;

• copy these witness blocks to a new instance, J0, to generate the core universal solution for M and I.

Notice that the last two steps can be performed by chasing the following set of full tgds, one for each expansion ε ∈
expansions(M), over J :

∀x1, y1 : mostInf (ε)(x1, y1)→ χ(x1, y1) (2)

No new null value needs to be invented in this process, since we are only copying to J0 witness blocks that are already in
J . This is, in fact, the strategy proposed in [24].

A disadvantage of this strategy is that it requires a two-step process, i.e., it assumes that two different exchanges are
executed: the first is needed to generate J , and the second to select inside J the witness blocks that belong to the core.
In [31] it was shown that this two-step approach is not necessary, i.e., it is possible to produce a rewriting that achieves
the same goal by running a single exchange. Our goal is therefore to refine the expansion-based strategy in order to
compute the core within a single exchange.

This will be the subject of the next sections.

8 Rewriting Expansions over the Source

An expansion is a formula over the target schema. However, in this section we show that it is possible to rewrite it in
terms of source relations. We call this the source rewriting of the expansion. While an expansion is a query to select
atoms in the target instance, its source rewriting states a “precondition” over the source for the existence of these atoms.
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8.1 Source Rewritings

The strategy to rewrite expansions over the source is quite straightforward, thanks to our labeling technique. In fact, an
expansion is a conjunction of labeled atoms taken from the tgd conclusions. To each of these atoms we may associate
a premise, i.e., the left-hand side of the respective tgd. By joining the premises of all of its atoms we obtain the source
rewriting of an expansion. Notice how our provenance system plays a central role during this step: in fact, by looking at
the label of each atom of an expansion, we immediately know the tgd it comes from, and therefore its premise.

Definition 19 [Premise of an Atom and of a Formula] Given a tgd m. ∀x : φ(x) → ∃y(ψl(x, y)), and an atom
Rl(xi, yi) ∈ ψl(x, y), its premise, premise (Rl(xi, yi)), is the formula φ(x).

Given a conjunctive formula, χl(x1, y1), its premise is the formula:

premise (χl(x1, y1)) =
∧
{premise (Rli(xi, yi)) | Rli(xi, yi) ∈ χl(x1, y1)}

Definition 20 [Source Rewriting] Given a tgd m.φ(x2)→ ∃y2(ψl(x2, y2)) and an expansion ε = χl(x1, y1)∧ ∃x2, y2 :
(ψl(x2, y2)

∧
equalhf ε(x1, x2)) in expansionsM(m), its source rewriting, sourceRew (ε), is the following formula:

sourceRew (ε) = premise (χl(x1, y1)) ∧ ∃x2 : (φ(x2)
∧

equalhf ε(x1, x2))

Notice that, while an expansion ε of a tgd m can be seen as a query ε(x1, y1) whose free variables include both universally
and existentially quantified variables of m, its source rewriting, sourceRew (ε), is on the contrary a query sourceRew (ε)(x1)
in which all the free variables are universally quantified variables of m.

Consider the scenario in Example 5.1:

m1. ∀x1, x2 : A(x1, x2)→ ∃Y1 : S1(x1, Y1) ∧ T 2(Y1, x2)
m2. ∀x3, x4 : B(x3, x4)→ S3(x3, x4)
m3. ∀x5, x6 : C(x5, x6)→ T 4(x5, x6)
m4. ∀x7 : D(x7)→ ∃Y0 : S5(x7, Y0)

Tgd m1 has the following expansions:

ε11 = S1(x1, Y1) ∧ T 2(Y1, x2) (the base expansion)
ε12 = S3(x3, x4) ∧ T 4(x5, x6) ∧ x4 = x5 ∧ ∃Y1 : (S1(x3, Y1) ∧ T 2(Y1, x6))

Their source rewritings are as follows:

sourceRew (ε11) = A(x1, x2)
sourceRew (ε12) = B(x3, x4) ∧ C(x5, x6) ∧ x4 = x5 ∧ ∃x1, x2 :

(A(x1, x2) ∧ x3 = x1 ∧ x6 = x2)
= B(x3, x4) ∧ C(x5, x6) ∧ x4 = x5 ∧ (A(x3, x6))

Similarly for tgd m4:

ε41 = S5(x7, Y0) (the base expansion) sourceRew (ε41) = D(x7)
ε42 = S1(x1, Y1) ∧ ∃Y0 : (S5(x1, Y0)) sourceRew (ε42) = A(x1, x2) ∧ (D(x1))
ε43 = S3(x3, x4) ∧ ∃Y0 : (S5(x3, Y0)) sourceRew (ε43) = B(x3, x4) ∧ (D(x3))

Consider the scenario in Example 5.2:

m1. A(x1, x2, x3)→ ∃Y1, Y2 : S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)
m2. B(x4, x5)→ ∃Y3, Y4 : S3(x4, x5, Y3) ∧ S4(Y4, x5, Y3)

Here are some expansions and their source rewritings:

ε11 = S1(x1, Y1, Y2) ∧ S2(x2, x3, Y2)
ε12 = S2(x2, x3, Y2) ∧ ∃Y1 : (S1(x2, Y1, Y2))
ε13 = S3(x4, x5, Y3) ∧ ∃Y1, Y2 : (S1(x4, Y1, Y2) ∧ S2(x4, x5, Y2))

sourceRew (ε11) = A(x1, x2, x3)
sourceRew (ε12) = A(x1, x2, x3) ∧ x1 = x2
sourceRew (ε13) = B(x4, x5) ∧ (A(x4, x4, x5))
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8.2 Adding Negations to Source Rewritings

Given an expansion ε, its source rewriting, sourceRew (ε) tells us a precondition for the generation of all of its witness
blocks. However, it should be clear at this point that we are not interested in all of the witness blocks associated with
an expansion. We rather want to select only the maximal ones with respect to the partial orders ≺ and <. We therefore
need to generate new expressions that give us preconditions for the set of most compact and most informative witness
blocks associated with an expansion, respectively.

In order to do this, given ε, we now introduce the formulas sourceRew (mostComp (ε)) and sourceRew (mostInf (ε)), that
are analogous to mostComp (ε) and mostInf (ε), but are rewritten on the source. To generate sourceRew (mostComp (ε)),
the intuition is again that whenever expansion ε′ is more compact than ε, we add to the source rewriting of ε the negation
of sourceRew (ε′).

Definition 21 [Rewriting Source Expansions: sourceRew (mostComp ())] Given a scenario M, its set of expansions
expansions(M), their rewritings mostComp(M), for each expansion ε in expansions(M), the formula sourceRew (mostComp (ε))
is obtained as follows:

• initialize sourceRew (mostComp (ε)) = sourceRew (ε);

• for any expansion ε′ in expansions(M) such that ε′ is more compact than ε, call hf c the compacting homom. of
χl(x1, y1) into χ

′l(x′1, y
′
1); add to sourceRew (mostComp (ε)) a formula

∧¬∃x′1 : (sourceRew (ε′)
∧

equalhf c(x1, x
′
1))

Definition 22 [Rewriting Source Expansions: sourceRew (mostInf ())] Given a scenario M, its set of expansions
expansions(M), their rewritings mostInf(M), for each expansion ε in expansions(M), the formula sourceRew (mostInf (ε))
is obtained as follows:

• initialize sourceRew (mostInf (ε)) = sourceRew (mostComp (ε));

• for any expansion ε′ in expansions(M) such that ε′ is more informative than ε, call hf i the proper homomorphism
of χl(x1, y1) into χ

′l(x′1, y
′
1); add to sourceRew (mostInf (ε)) a formula:

∧¬∃x′1 : (sourceRew (mostComp (ε)′)
∧

equalhf i(x1, x
′
1))

Consider, again, Example 5.1 above. Since we know that ε12 is more compact than ε11, the formula sourceRew (mostComp (ε11))
will be as follows:

sourceRew (mostComp (ε11)) = A(x1, x2) ∧ ¬∃x′3, x′4, x′5, x′6 : (B(x′3, x
′
4) ∧ C(x′5, x

′
6)∧

x′4 = x′5 ∧ (A(x′3, x
′
6) ∧ x1 = x′3 ∧ x2 = x′6))

= A(x1, x2) ∧ ¬∃x′4, x′5 : (B(x1, x
′
4) ∧ C(x′5, x2) ∧ x′4 = x′5)

In this specific case, sourceRew (mostInf (ε11)) = sourceRew (mostComp (ε11)), since there is no expansion that is more
informative than ε11.

9 The Rewriting Algorithm

We are now ready to introduce the actual rewriting algorithm. The algorithm takes as input a set of s-t tgds, Σst, and
generates a set of FO-rules that is a core schema-mapping for Σst.

The algorithm works through several steps, that we list here and discuss in the following subsections. A comprehensive
example will be discussed in Section 11.
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Step 1 Generating Expansions: given a mapping scenarioM = {S,T,Σst}, as a first preliminary step for each tgd m ∈ Σst,
we generate the set of expansions expansionsM(m) using Algorithm 1 in Section 6; the union of these sets of
expansions gives us the set of all expansions of M, expansions(M);

Step 2 Partial Orders Among Expansions: as a second preliminary step, we analyze expansions in expansions(M) and find
their formula homomorphisms, and generate the more-compact partial order, ≺, and the more-informative partial
order, <, among expansions, as discussed in Section 7;

Step 3 Source Rewritings of Expansions: then, we rewrite each expansion ε in expansions(M) as a formula over the source
database by computing its source rewriting, sourceRew (ε), as discussed in Section 8.1;

Step 4 Adding Negations to Source Rewritings: since we are interested in finding preconditions for the maximal wit-
ness blocks associated with an expansion, we use the partial orders among expansions to generate the formulas
sourceRew (mostComp (ε)) and sourceRew (mostInf (ε)), as discussed in Section 8.2.

The set of sourceRew (mostInf (ε)) will represent premises for the final set of FO-rules. In order to complete the generation
of the rules, we need to perform a number of additional steps, namely:

Step 5 Choosing a Skolemization Strategy : during this phase, we pick up an appropriate Skolemization strategy in order
to replace existentially quantified variables in rule conclusions by Skolem terms;

Step 6 Generating Expansion Rules: based on the results of the previous steps, this step generates a preliminary set of
FO-rules, called expansion rules, one for each expansion;

Step 7 Normalizing Expansion Rules: as a final step, the set of expansion rules generated at Step 6 is further rewritten in
order to guarantee that the final rules are normalized.

These steps are discussed in the next subsections.

9.1 [Step 5] Skolemization Strategy

The main intuition behind the generation of the final set of FO-rules is to generate a rule for each expansion, ε, in which
sourceRew (mostInf (ε)) represents the left-hand side, and χ(x1, y1) the right-hand side. In fact, sourceRew (mostInf (ε))
tells us under which conditions the set of maximal witness blocks associated with ε belong to the core, while χ(x1, y1)
actually generates the witness blocks into the target.

Before formalizing this idea in the next Subsection, we need to discuss our skolemization strategy. This is in fact
crucial in order to properly handle the presence of multiple isomorphic witness blocks.

Notice, in fact, that there is a significant difference between the two–step strategy based on the full tgds in Formula 2,
and the single exchange we are trying to develop here. While the two-step approach selects witness blocks that are already
in the canonical solution, and therefore only need to be “copied” to generate the core, here we are performing a single
exchange, through which we need to generate the witness blocks that belong to the core, by properly inventing labeled
nulls.

In order to do that, we rely on a skolemization strategy, skol, i.e., a transformation that takes a formula with existential
variables and replaces them by Skolem terms.

Definition 23 [Skolemization Strategy] Given a formula ϕ(x, y) with universal variables x, and existential variables
y, a skolemization strategy is a mapping skol that associates with each existential variable yi ∈ y a Skolem term fϕ,yi(x).

There are several possible skolemization strategies to pick from. The standard strategy, skolstd, would be that of
associating a different, uninterpreted Skolem function fm,Yi with each existential variable Yi of a tgd m, and taking as
arguments all universal variables occurring in the conclusion. However, there are alternatives to this scheme.
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Consider the issue of isomorphisms among witness blocks. Recall that there may be two different sources of isomorphic
witness blocks inside a solution. The first one is due to different rules that have isomorphic conclusions. The second
one to a single rule that has non-trivial automorphisms. The standard skolemization strategy can be used to handle
isomorphisms of the first kind, but it is hopeless in front of automorphisms of a rule conclusion.

Our solution to the problem is to use interpreted Skolem functions rather than uninterpreted ones, and design them
in such a way that all isomorphic copies of a witness block collapse into one.

More specifically, we introduce a notion of isomorphism–invariant skolemization strategy. In order to do this, we
compare the result of a given skolemization with that of the standard strategy. More specifically, given a formula ϕ(x, y),
and an assignment a to x, we call a(skol(ϕ(x, y))) the instance of ϕ(x, y) generated as follows: (a) first replace each
existential variable yi ∈ y by the corresponding Skolem term; this gives a new formula ϕ′(x) that depends on x only; (b)
then, generate the set of facts a(ϕ′(x)). We call a(skolstd(ϕ(x, y))) the standard instance of the formula.

Definition 24 [Isomorphism–Invariant Skolemization Strategy] A skolemization strategy, skol, is isomorphism–
invariant if:

• given a formula, ϕ(x, y), and an assignment a, then a(skol(ϕ(x, y))) is isomorphic to a(skolstd(ϕ(x, y)));

• given two formulas, ϕ(x, y), ϕ′(x′, y′), and two assignments a, a′, if the standard instances a(skolstd(ϕ(x, y))),
a′(skolstd(ϕ

′(x′, y′))) are isomorphic, then a(skol(ϕ(x, y))) = a′(skol(ϕ′(x′, y′))).

The definition above essentially states two requirements: (i) skol should be such that it generates formula instances,
i.e., sets of facts, that are compatible with those that would be generated by the standard skolemization; (ii) at the same
time, whenever the standard skolemization would generate distinct, isomorphic formula instances, skol on the contrary
generates identical sets of facts.

In the following subsections, we shall assume that a suitable skolemization strategy, skol, has been chosen for expansion
rules. Then, in Section 10, we discuss how this can be done in practice.

9.2 [Step 6] Generating Expansion Rules

We are now ready to introduce our final rewriting. In the following, we assume that a Skolemization strategy has been
fixed. Based on that, we introduce the notion of expansion rules for a scenario M. In essence, for each expansion ε we
build a rule that uses the formula sourceRew (mostInf (ε)) – in which only universally quantified variables appear – as a
premise, and skol(χ(x1, y1)) as a conclusion:

Definition 25 [Expansion Rules] Fixed a skolemization strategy, skol, and an expansion ε = χl(x1, y1) ∧ ∃x2, y2 :
(ψl(x2, y2)

∧
equalhf ε(x1, x2)) in expansions(M) its expansion rule, expansionRule (ε), is the following formula:

expansionRule (ε) = ∀x1 : sourceRew (mostInf (ε))(x1)→ skol(χ(x1, y1))

The set of expansion rules of a scenario M is the set:

ΣexpM,skol = {expansionRule (ε) | ε ∈ expansions(M)}
As discussed in the previous sections, a straightforward optimization consists of generating expansion rules only for

expansions whose set of atoms is a core.
Consider Example 5.1. Given expansion:

ε11 = S1(x1, Y1) ∧ T 2(Y1, x2)

i.e., the base expansion of tgd m1, we have shown in Section 8 that:

sourceRew (mostInf (ε11)) = A(x1, x2) ∧ ¬∃x′4, x′5 : (B(x1, x
′
4) ∧ C(x′5, x2) ∧ x′4 = x′5)

Then, we generate the rule:
r1. ∀x1, x2 : A(x1, x2) ∧ ¬(∃x′4, x′5 : B(x1, x

′
4) ∧ C(x′5, x2) ∧ x′4 = x′5)→

S(x1, fsk(x1, x2)) ∧ T (fsk(x1, x2), x2).

Notice how we have skolemized the rule using simple, uninterpreted Skolem terms. In fact, the rewritten rules never
generate isomorphic witness blocks.
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9.3 [Step 7] Normalizing and Rewriting Expansion Rules

Expansion rules are very close to the final core schema-mapping we need to generate. However, there is a final issue we
need to introduce. As we discussed in Section 5, witness blocks do not need to coincide with fact blocks. More specifically,
a witness block may be in some cases a fact block of the core solution (i.e., a connected component of the dual Gaifman
graph of the core), but it may also be the union of portions of fact blocks, whose facts are joined over constants instead
of nulls.

This feature of witness blocks has a direct counterpart in their expansions. In fact, it is easy to see that expansions
do not need to be normalized. Recall that we say that a formula is normalized if its dual Gaifman graph is connected.
When used as rule conclusions, non-normalized expansions may generate unnecessary facts in the target, i.e., facts that
have already been generated by other expansions. To prevent this, once the expansion rules have been generated, we need
to normalize them.

More specifically, given ΣexpM,skol, we generate a new set of rules:

normalize(ΣexpM,skol)

We call any new rule obtained as a result of this normalization step, i.e., any rule in normalize(ΣexpM,skol) that was not in

ΣexpM,skol, a decomposed rule.
Consider the scenario in Example 5.3. Here are two expansions in expansions(M) (we report them partially to simplify

the example):
εa = S 1(x3, x0, x0, Y0, x1) ∧ S 2(Y1, x0, x0, Y0, x0) ∧ ∃...
εb = S 1(x3, x0, x0, Y0, x1) ∧ S 1(x3, x

′
0, x
′
0, Y

′
0 , x
′
1) ∧ ∃...

Of these expansions, εb is not normalized (the two atoms do not join on an existential variable, but rather on x3).
Therefore, when we generate the final expansion rules, we end up with a set of non-normalized rules:

ra. sourceRew (mostInf (εa))→ skol(S(x3, x0, x0, Y0, x1) ∧ S(Y1, x0, x0, Y0, x0))
rb. sourceRew (mostInf (εb))→ skol(S(x3, x0, x0, Y0, x1) ∧ S(x3, x

′
0, x
′
0, Y

′
0 , x
′
1))

We therefore apply the normalize procedure introduced in Section 4 in order to normalize rule rb. This generates the
following set of rules, with two new decomposed rules:

ra. sourceRew (mostInf (εa))→ skol(S(x3, x0, x0, Y0, x1) ∧ S(Y1, x0, x0, Y0, x0))
rb1. sourceRew (mostInf (εb))→ skol(S(x3, x0, x0, Y0, x1))
rb2. sourceRew (mostInf (εb))→ skol(S(x3, x

′
0, x
′
0, Y

′
0 , x
′
1))

By doing this, however, we may end up with different, unnecessary rules, that generate portions of witness blocks. As
a consequence, once the normalization has been performed, some further processing is needed. In our example, rule ra
generates a witness block that is also a fact-block. On the contrary, rb1 and rb2 generate fragments of the same witness
block. As a consequence, we need to fire rb1, rb2 only as long as a more-informative atom is not generated by ra.

In order to handle non-normalized blocks, we look for proper homomorphisms among rule conclusions. In order to do
that, we extend the notion of formula homomorphism to skolemized formulas, by considering Skolem terms as existentially
quantified variable. Then, we introduce a further rewriting, as follows:

Definition 26 [Final Rewriting: finalRew ()] For each rule r ∈ normalize(ΣexpM,skol), the rule finalRew (r) is obtained as
follows:

• if r ∈ ΣexpM,skol, i.e., r is not a decomposed rule, then finalRew (r) = r;

• otherwise, if r is a decomposed rule of the form r. φ(x)→ ψ(x):

– initialize finalRew (r) = r;

28



– for any rule r′. φ′(x′)→ ψ′(x′) in normalize(ΣexpM,skol) such that ψ′(x′) is more informative than ψ(x) according

to homomorphism hf i, add to the premise of finalRew (r) a formula

∧¬∃x′ : (φ′(x′)
∧

equalhf i(x, x
′))

This gives us a new set of FO-rules, obtained as follows:

ΣcoreM,skol = {finalRew (r) | r ∈ normalize(ΣexpM,skol)}

9.4 Computing the Core

We are now ready to introduce our main result.

Theorem 3 Given a scenario M = (S,T,Σst) and an isomorphism-invariant skolemization strategy, skol, ΣcoreM,skol is a
core schema mapping for M.

The full proof is in the Appendix.
Based on Theorem 3, our approach to the problem of generating core universal solutions in a scalable way is the

following. Given a scenarioM = (S,T,Σst), we apply the 7-step rewriting algorithm introduced in the previous sections
to generate the associated core schema-mapping, ΣcoreM,skol. Then, from this set of FO-rules, we generates a runtime SQL
script that can be executed on source instances to efficiently generate core solutions.

Section 11 develops a complete example that covers all the steps in the algorithm.

10 Skolemization

There are several ways in which it is possible to build an isomorphism–invariant strategy for a tgd or an FO-rule. One
solution is to consider the dual Gaifman graph of the tgd conclusion. Recall that the dual Gaifman graph of a formula is an
undirected graph in which nodes are atoms, and there is an edge between atoms Ri(xi, yi) and Rj(xj , yj) if there is some
existential variable yk occurring in both atoms. We may design an isomorphism–invariant Skolem function by returning
strings that encode the structure of the graph. More specifically, we embed in the Skolem string a full description of the
Gaifman graph, in terms of constants, in such a way that whenever two formulas generate isomorphic blocks the strings
coincide.

Consider for example the following formula:

S(x0, Y0), T (x1, Y0, Y1),W (Y1, Y2)

The Skolem functions for Y0 and Y1 will have three arguments:

• a description of the graph nodes – i.e., of the tuples generated by the formula – in terms of constants;

• an encoding of the graph edges, i.e., of the joins associated with common existential variables;

• a reference to the specific existential variable for which the function is used. Notice that each existential variable
that appears more than once in the formula – like Y0 or Y1 – corresponds to one of the joins; on the contrary,
existential variables that occur only once are not related to joins.

In the following we report the actual Skolem strings that are needed in order to properly replace the existential variables.
We assume that these strings are generated by an interpreted Skolem function that appends constant strings and variable
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values. Notice how we use symbols ti, ji, v to refer to tuples, i.e., nodes in the graph, joins, i.e., arcs in the graph, and
variables respectively:

skol(Y0) = fsk(t1 : S[A : x0], t2 : T [A : x1], t3 : W [ ],
j1 : [t1.B = t2.B], j2 : [t2.C = t3.A], v : j1)

skol(Y1) = fsk(t1 : S[A : x0], t2 : T [A : x1], t3 : W [ ],
j1 : [t1.B = t2.B], j2 : [t2.C = t3.A], v : j2)

skol(Y2) = fsk(t1 : S[A : x0], t2 : T [A : x1], t3 : W [ ],
j1 : [t1.B = t2.B], j2 : [t2.C = t3.A], v : noj-t3.B)

Notice that, differently from standard Skolem terms, we are using a global function symbol, fsk, rather than different
symbols for each tgd. The main intuition behind this strategy is that tgd conclusions that may generate isomorphic
blocks are essentially identical up to the renaming of nulls. Therefore, they have isomorphic dual Gaifman graphs, and
the strings generated by such encodings are identical.

At the same time, the skolemization strategy is compatible with the standard one. In fact, for each tgd m and
existential variable Y , it generates a Skolem term that is associated with m, since it encodes the structure of the relative
graph, and Y , and that depends on the universal variables that appear in the conclusion of m.

An important point here is that set elements in the Skolem string must be encoded in lexicographic order, so that
the functions generate appropriate values regardless of the order in which atoms appear in the rule conclusion. This
last requirement introduces further subtleties in the way exchanges with self-joins are handled. In fact, note that in
formulas like the one above – in which all relation symbols in the conclusion are distinct – the order of set elements can
be established at script generation time (they depend on relation names). If, on the contrary, the same atom may appear
more than once in the conclusion, then things change.

Consider for example the following formula, that has a non-trivial automorphism:

S(x0, Y0), S(x1, Y0)

In this case, for Y0 a function of this form would be generated:

fsk(t1 : S[A : x0], t2 : S[A : x1], j1 : [t1.B = t2.B], v : j1)

It can be seen that, by assignments x0 = 0, x1 = 1 and x0 = 1, x1 = 0 the function would generate two different strings,
and therefore the two blocks would not be collapsed. To avoid this, we sort the tuples at execution time based on the
actual assignment of values to the variables:

skol(Y0) = fsk(sort(S[A : x0], S[A : x1]), j1 : [S.B = S.B], v : j1)

in this way, on both assignments the same Skolem string is generated:

fsk(t1 : [S(A : 0)], t2 : [S(A : 1)], j1 : [S.B = S.B], v : j1)

and the two blocks are collapsed. To generate these strings, we therefore need a composition of append and sort functions.
To do this, we assume that there is a linear order on the constants. This is consistent with the linear–order requirement

that was introduced in [31].

11 A Rewriting Example

This section is devoted to presenting an example of the rewriting algorithm. We will make reference to the following
scenario:

m1. R(x0, x1, x2)→ ∃Y0, Y1, Y2, Y3 : S1(Y0, x0, Y1, Y2) ∧ S2(Y0, x1, x2, Y3)

While this scenario contains a single tgd, still it requires the application of the main steps of the rewriting algorithm. For
an alternative, more complex example that covers all steps of the algorithm, see A.
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[Step 1] Generating Expansions

As a first step, we generate all expansions of tgd m1. In this case, our algorithm generates two expansions, as follows:

ε1 = S 1(Y0, x0, Y1, Y2) ∧ S 2(Y0, x1, x2, Y3)
ε2 = S 2(Y0, x1, x2, Y3)

∃Y ′0 . . . (S 1(Y ′0 , x1, Y
′
1 , Y

′
2) ∧ S 2(Y ′0 , x1, x2, Y

′
3))

Notice the difference between ε1 and ε2. While ε2 generates witness blocks made of a single S2 tuple that self-joins in
order to cover the tuples that would be generated by S1, ε1 on the contrary uses two different tuples S1 and S2, that join
on the first attribute.

[Step 2] Partial Orders Among Expansions

Once expansions have been derived, we analyze their formula homomorphisms, in order to build the more-compact and
more-informative partial orders.

In this case, we discover that there are two formula homomorphisms among expansions. In brief:

more compact: ε1 ≺ ε2
more informative: ε2 < ε1

[Step 3] Source Rewritings of Expansions

We now need to rewrite expansions as formulas over the source database. The source rewritings are as follows:

sourceRew (ε1) = R(x0, x1, x2)
sourceRew (ε2) = R(x0, x1, x2) ∧R(x1, x1, x2)

[Step 4] Adding Negations to Source Rewritings

For each expansion εi, based on sourceRew (εi), we need to generate the two expressions, sourceRew (mostComp (εi)), and
sourceRew (mostInf (εi)). Let us first concentrate on mostComp (). We consider the compacting homomorphisms found at
Step 2, and introduce negations accordingly. We first notice that:

sourceRew (mostComp (ε2)) = sourceRew (ε2)(x)

since there are no expansions that are more compact than ε2. Consider now ε1; there exists one formula homomorphism
hf 12 such that ε2 is more compact than ε1; as a consequence, sourceRew (mostComp (ε1)) has the following form:

sourceRew (mostComp (ε1)) = R(x0, x1, x2) ∧ ¬∃x′0 : R(x′0, x1, x2) ∧R(x1, x1, x2)

Let us now consider mostInf (). There is only one proper formula homomorphism to be taken into account. We
therefore have:

sourceRew (mostInf (ε1)) = sourceRew (mostComp (ε1))
sourceRew (mostInf (ε2)) = sourceRew (mostComp (ε2))∧

¬∃x′ : (sourceRew (mostComp (ε1)) ∧ equalhf 21
(x, x′))

= R(x0, x1, x2) ∧R(x1, x1, x2)∧
¬(∃x′0 : R(x′0, x1, x2) ∧ ¬∃x′′0 : R(x′′0 , x1, x2) ∧R(x1, x1, x2))

[Step 5] Choosing a Skolemization Strategy

We now need to choose a proper skolemization strategy for this example, in order to guarantee that isomorphic witness
blocks are properly collapsed by our rewritten rules. Since there are no expansions generating isomorphic witness blocks,
our algorithm picks up the standard skolemization strategy that relies on uninterpreted Skolem functions.
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[Step 6] Generating Expansion Rules

We are ready to generate our expansion rules. We generate one expansion rule for each expansion εi. The premise is
represented by the formula sourceRew (mostInf (εi)); the conclusion by χi, with the appropriate Skolem terms to replace
existential variables, as follows:

r1 : sourceRew (mostInf (ε1))→ skol(S(Y0, x0, Y1, Y2) ∧ S(Y0, x1, x2, Y3))
r2 : sourceRew (mostInf (ε2))→ skol(S(Y0, x1, x2, Y3))

Here we report some of the actual Skolem terms generated by skol.

skol(r1, Y0) = f(t1 : S[B : x0], t2 : S[B : x1, C : x2], j1 : [t1.A = t2.A], v : j1)
skol(r1, Y1) = f(t1 : S[B : x0], t2 : S[B : x1, C : x2], j1 : [t1.A = t2.A], v : noj-t1.C)
skol(r2, Y0) = f(t1 : S[B : x1, C : x2], , v : noj-t1.A)

Since in this example all rules are normalized, Step 7 “Normalizing and Rewriting Expansion Rules” is not needed.
This set of rules is the core schema mapping for the given scenario.

12 Complexity

A few comments are worth making here on the complexity of the rewriting algorithm. Recall that our goal is to execute
the rewritten rules under the form of SQL scripts; in the scripts, source rewritings of expansions give rise to joins, and
negated atoms give rise to difference operators. Generally speaking, joins and differences are executed very efficiently by
the DBMS. However, the number of joins and differences needed to filter out redundant tuples largely depends on the
nature of the scenario.

12.1 Scenarios with No Self-Joins

It is important to make a distinction between scenarios with self-joins in tgd conclusions and scenarios that do not have
self-joins. Recall that we say that a scenarioM = (S,T,Σst) has self-joins in tgd conclusions (or simply self-joins) if the
same relation symbol appears more than once in the conclusion of a tgd in Σst. The scenarios in Examples 5.2, 5.3, 5.4
have self-joins in tgd conclusions. The scenario in Example 5.1 does not have self-joins.

In [24], an alternative rewriting algorithm to generate core schema mappings for scenarios without self-joins was given.
The algorithm can be seen as a special case of the one described in this paper, with two significant exceptions: (a) it
considers a much smaller search space for expansions; (b) it generates a lower number of tgds in the final rewriting.

In this section, we want to justify that algorithm in the framework of the one introduced in this paper. In fact, the
complexity of the final script generated by the algorithm described in Section 9.4 is strongly influenced by the number
of expansions of a tgd conclusion that must be generated. Generally speaking, an expansion for a tgd whose conclusion
has k atoms may be any multiset of atoms in

⋃
{ψi(xi, yi)}, of size k or less. This gives an upper bound on the number

of expansions in expansions(M) that is clearly exponential with respect to the size of
⋃
{ψi(xi, yi)}. Also, among these

expansions it is necessary to look for compacting homomorphisms first, and then for proper homomorphisms. Finally,
each expansion generates a new dependency.

However, if we restrict our attention to scenarios that do not have self-joins, things improve significantly. In fact, we
have the following result.

Theorem 4 Given a scenario M = (S,T,Σst), suppose Σst does not contain self-joins in tgd conclusions. Given a
source instance I , call J a canonical universal solution for M over I , and J0 the core universal solution for M over I .
Then:

• for any fact block bf in J , either all tuples in bf belong also to J0, or none of them does;

• for each tgd m ∈ Σst whose conclusion has size k, all witness blocks in W<I,J>
m have size exactly k.
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The proof is in the Appendix. Based on Theorem 4, we can infer several conclusions. First, if a tgd whose conclusion
has size k does not have self-joins, then it may only have fixed-size expansions, i.e., sets of atoms of size exactly k. In
fact, it is easy to see that it is not necessary to consider multisets of atoms in

⋃
{ψi(xi, yi)} (no atom may appear more

than once, since there are no self-joins), and that exactly one atom in the expansion is needed to “cover” each of the k
distinct atoms in the tgd conclusion. This significantly reduces the number of expansions for a given tgd.

Second, since, according to Theorem 4, the core is the union of a subset of fact blocks in J , it is possible to see that we
only need to discover which fact blocks to keep and which to discard. Since the tgds in Σst are normalized by hypothesis,
fact blocks correspond to instances of the base expansions. Therefore, we adopt the following strategy:

• for each tgd, we generate only fixed-size expansions;

• then, we concentrate on the base expansion alone;

• we find compacting and proper homomorphisms of the base expansion into all other expansions, in order to remove
unnecessary witness blocks from the result;

• finally, we generate one FO-rule for each base expansion in order to produce the result, and disregard rules for other
expansions.

This significantly reduces the final number of rules.
Based on these ideas, we find it useful to classify the relevant homomorphisms among expansions in a scenario without

self-join in two categories. We call a subsumption any compacting or proper homomorphism of a base expansion into
a base expansion. We call a coverage any compacting or proper homomorphism of a base expansion into a fixed-size
expansion that uses atoms of different tgd conclusions. Consider the tgds in Example 5.1. There is a subsumption of the
base expansion of m4, S(x7, Y0) by the base expansion of m2, S(x3, x4). There is a coverage of the base expansion of m1,
S(x1, Y1), T (Y1, x2), by the union of atoms S(x3, x4), T (x5, x6). It should be apparent from the discussion above that, if
a scenario does not have self-joins, then subsumptions and coverages are the only relevant forms of homomorphisms that
must be taken into account in order to generate the core.

12.2 Complexity Bounds

As a first remark, let us note that subsumptions are handled more efficiently than coverages. Consider the graph of the
subsumption relation among tgd conclusions, obtained by removing transitive edges. In the worst case – the graph is a
path – there are O(n2) subsumptions. However, this is rather unlikely in real scenarios. Typically, the graph is broken
into several smaller connected components, and the number of subsumptions is linear in the number of tgds. This means
that only a linear number of differences will be introduced in the final SQL script.

The worst-case complexity of the rewriting is higher for coverages, for two reasons. First, coverages always require to
perform additional joins before computing the actual difference, since they reuse atoms from different tgd conclusions.
Second, and more important, if we call k the number of atoms in a tgd, and assume that each atom can be mapped into
n other atoms via homomorphisms, then we need to generate nk different coverages, and therefore nk differences.

This exponential bound on the number of coverages is not surprising. In fact, Gottlob and Nash have shown that the
problem of computing core solutions is fixed-parameter intractable [18] wrt the size of the tgds (in fact, wrt the size of
blocks), and therefore it is very unlikely that the exponential bound can be removed. We want to emphasize however
that we are talking about expression complexity and not data complexity (the data complexity remains polynomial).

Despite this important difference in complexity between subsumptions and coverages, coverages can usually be handled
quite efficiently. In brief, the exponential bound is reached only under rather unlikely conditions; to see why, recall that
coverages tend to follow the pattern shown above. Note that m2 and m3 write into the key–foreign key pair, while m1

invents a labeled null. Complexity may become an issue, here, only if the set of tgds contains a significant number of
other tgds like m2 and m3 which write into S and T separately. This may happen only in those scenarios in which a
very large number of different data sources with a poor design of foreign key relationships must be merged into the same
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target, which can hardly be considered as a frequent case. In fact, in our experiments with both real-life scenarios and
large randomly generated schemas, coverages have never been an issue.

Computing times are usually higher for scenarios with self-joins in tgd conclusions. In fact, the exponential bound is
more severe in these cases. Given a scenario M = {S,T,Σst}, we call:

• n the total number of atoms in all tgd conclusions, i.e., the cardinality of the set R =
⋃
i ψi(xi, yi);

• k the maximum number of atoms in a tgd conclusion, i.e., k = max({|ψi(xi, yi)|}).

Recall that, in order to generate expansions forM, we need to generate the set Rpowk . Recall that the number of multisets
of size k or less of n elements is as follows:((

n

k

))
=

(
n+ k − 1

k

)
=

(
n+ k − 1

n− 1

)
Since, to generate all possible candidate expansions, we need to consider multisets of size k or less, we have that:

|Rpowk | = Σki=1

(
n+ k − 1

n− 1

)
In order to estimate the complexity of finding expansions for M, we need to generate Rpowk , the set of all multisets of
atoms in R of size k or less. This set may contain an exponentially large number of candidate expansions, and therefore
force the algorithm to check an equally large number of formula homomorphisms among them. This, however, is done
off-line, i.e., at script-generation time. Also, we are speaking about expression complexity, not data complexity, i.e., the
data complexity of the final script remains polynomial.

Despite this, the exponential blowup in the number of expansions may also have direct impact at script-execution
time. To see this, let’s call mk a tgd with k atoms in its conclusion. Consider the worst case in which each element in
Rpowk is a valid expansion for mk, and therefore generates a negated subformula in the rewriting. It can be easily seen
that the number of joins, intersections and differences in the final SQL script would be exponentially high with respect
to k. In fact, it is not difficult to design synthetic scenarios that actually trigger such exponential explosion. How it is
shown in our experiments, as the size of the source database increases, this may bring to very high computing times.

However, it is important to emphasize that, in more realistic scenarios containing self-joins, the overhead is usually
much lower. To understand why, let us note that expansions tend to increase when tgds are designed in such a way
that it is possible for a tuple to perform a join with itself. In practice, this happens very seldom. Consider for example
a Person(name, father) relation, in which children reference their father. It can be seen that no tuple in the Person
table actually joins with itself. Similarly, in a Gene(name, type, protein) table, in which “synonym” genes refer to their
“primary” gene via the protein attribute, since no gene is at the same time a synonym and a primary gene.

In light of these ideas, we may say that, while it is true that the rewriting algorithm may generate expensive queries,
this happens only in rather specific cases that hardly reflect practical scenarios. In practice, scalability is very good. In
fact, we may say that the 90% of the complexity of the algorithm is needed to address a small minority of the cases. Our
experiments confirm this intuition.

13 Experimental Results

The algorithms introduced in the paper have been implemented in the working prototype of the +Spicy [25] system,
written in Java. In this section, we first study the performance of the SQL scripts generated by our rewriting algorithm
on mapping scenarios of various kinds and sizes. We show that the rewriting algorithm efficiently computes the core,
even for large databases and complex scenarios. Then, we study the scalability of the rewriting algorithm with respect
to synthetic scenarios of increasing complexity. We show that the algorithm scales with respect to a large number of
relations and joins. All experiments have been executed on a Intel Core 2 Duo machine with 2.4Ghz processor and 4 GB
of RAM under Linux. The DBMS was PostgreSQL 8.3.
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13.1 Execution Times for Core Computation

We selected a set of nine experiments to evaluate the execution times of the SQL scripts generated using our algorithms.
The nine scenarios are divided in two groups. The first group includes two scenarios with subsumptions only (s1, s2)
and two with subsumptions and coverages (c1, c2). The second group is composed of five scenarios with self-joins (sj1–
sj5). The scenarios were taken from the literature (s2 and sj3 from [13], sj2 from [33]), and from variants of the basic
scenarios in STBenchmark [1]. Among the scenarios with self-joins, sj4 and sj5 are the ones with automorphisms in rule
conclusions: sj4 is a variant of Example 5.2, while sj5 has been designed to artificially trigger the exponential complexity
of the algorithm. In sj5, ten tgds with the same target symbol repeated 25 times and eight three-way self-joins have been
used. On average we had 7 tables, with a minimum of 2 and a maximum of 10.

Computing Times for Large Source Instances To study how the algorithm performs on databases of large sizes, we
ran every scenario with five different source instances of 10k, 100k, 250k, 500k, and 1M tuples, respectively. We start by
comparing our algorithm with an implementation [30] of the core computation algorithm developed in [18], made available
to us by the authors. In the following we will refer to this implementation as the “post-processing approach”.

A first evidence is that the post processing approach does not scale. We have been able to run experiments with 1k and
5k tuples, but starting at around 10k tuples the experiments took on average several hours. This result is not surprising,
since these algorithms exhaustively look for endomorphisms in the canonical solution in order to remove variables (i.e,
invented nulls). For instance, our first subsumption scenario with 5k tuples in the source generated 13500 variables in
the target; the post-processing algorithm took on our machine running PostgreSQL around 7 hours to compute the final
solution. It is interesting to note that in some cases the post processing algorithm finds the core after only one iteration
(in the previous case, it took 3 hours), but the algorithm is not able to recognize this fact and stop the search. For all
experiments, we fixed a timeout of 1 hour. If the experiment was not completed by that time, it was stopped. Since none
of the scenarios we selected was executed in less than 1 hour we do not report computing times for the post-processing
algorithm in our graphs.

To put these results in perspective we need to mention that the algorithms implemented by the core-computation
engine we are considering are significantly more general than the ones in this paper. In fact, they allow to handle scenarios
with arbitrary target dependencies, i.e., target tgds and egds. The poor performance registered in our tests is strictly
related to the generality of the approach, which requires complex recursive computations.

Still, we believe there is some interesting evidence in this comparison. In fact, coherently with the approach followed
in this paper, in our tests we have only considered mapping scenarios without target constraints. Our experimental
results show that in this specific case our SQL-based approach performs much better. Since we were interested in

Figure 2: SQL Scripts: Execution Times for the First Group

comparing execution times of the scripts for core solutions to those of scripts for canonical solutions, we ran the two sets
of scripts over the same scenarios and reported the results in Figure 2 and Figure 3. Figure 2 shows execution times
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Figure 3: SQL Scripts: Execution Times for the Second Group

for the four scenarios that do not contain self-joins in the target. As it can be seen, execution times for all scenarios
were extremely fast for both configurations. The overhead introduced by the rewriting of the FO-rules using negations is
always acceptable, with a maximum of around 10 seconds for scenarios of one million tuples.

Figure 3 reports the results for the five scenarios with self-joins. It can be seen that the first three self-joins scenarios,
sj1 – sj3, show times increasing linearly and did scale up to 1M tuples both in the core and in the canonical scripts
executions. The difference is instead notable with sj4 and sj5, but is not surprising for two reasons. First, considering
that many self-joins can trigger the exponential behavior discussed in the previous Section. Second, the running time
to interpret the Skolem functions fills some of the overhead time. For these reasons, the core computation script for sj4
took up to four times the canonical script execution time (21 minutes for the 1 million tuples source instance), while we
stopped the execution for sj5 on the biggest input (the core script took 41 minutes for the 500k tuples source instance).

Quality of Solutions We now want to study to which extent core universal solutions are more compact than canonical
solutions. To do this, we consider source databases with different degrees of “redundancy”. We dropped sj5 from this
comparison. For each of the remaining eight scenarios, we generated five synthetic source instances of fixed size (10K
tuples) based on a pool of values of decreasing size. This process generated different levels of redundancy (from 0% to
40%) in the source databases and enabled a comparison of the quality of the two solutions. Figure 4 shows the percent

Figure 4: Core vs Canonical: Size Reduction in Solutions

reduction in the output size for core solutions compared to canonical solutions. As output size, we measured the number
of tuples in the solutions. Figure 4.a shows results for the four scenarios that do not contain self-joins in the target.
As expected, core solutions are more compact than canonical ones in all the scenarios and this behavior becomes more
apparent with the increasing redundancy. The two subsumptions scenarios – s1 and s2 – follow the trend, but less
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significantly than the two coverage scenarios c1 and c2. This is not surprising, since the design of the tgds in s1 and s2
tend to generate many duplicate tuples in the solutions, and those are removed both by the core script and the canonical
one. Figure 4.b reports the percent reductions for the four self-join scenarios. Again, core solutions are more compact
than canonical ones in all the scenarios except sj1. This is also expected, since sj1 is a full mapping and no Skolem nor
null values are generated in the solution, i.e. canonical and core solution coincide.

13.2 Algorithm Scalability on Large Scenarios

To test the scalability of our algorithm on schemas of large size we generated a set of synthetic scenarios using the scenario
generator developed for the STBenchmark. We generated four relational scenarios containing 20/50/75/100 tables, with
an average join path length of 3, variance 1. Note that, to simulate real-application scenarios, we did not include self-
joins. To generate complex schemas we used a composition of basic cases with an increasing number between 1 and 15, in
particular we used: Vertical Partitioning (3/6/11/15 repetitions), Denormalization (3/6/12/15), and Copy (1 repetition).
With such settings we got schemas varying between 11 relations with 3 joins and 52 relations with 29 joins. Figure 5

Figure 5: Algorithm scalability with large synthetic scenarios

summarizes the results. In the graph, we report several values. One is the number of tgds processed by the algorithm,
with the number of subsumptions and coverages. Then, since we wanted to study how the tgd rewriting phase scales on
large schemas, we measured the time needed to generate the SQL script. In all cases the algorithm was able to generate
the SQL script in a few seconds. Finally, we report execution times in seconds for source databases of 100K tuples.

14 Related Work

In this section we review some related works in the fields of schema mappings and data exchange.
The original schema mapping generation algorithm was introduced in [26, 27] in the framework of the Clio project.

The algorithm relies on a nested relational model to handle relational and XML data. The primary inputs are value
correspondences and foreign key constraints on the two sources that are chased to build tableaux called logical relations;
a tgd is produced for each source and target logical relations that cover at least one correspondence. The tgd generation
algorithm we use in our system is a generalization of the basic mapping algorithm that captures a larger class of mappings,
like self-joins [1] or those in [2]. Note that the need for explicit joins was first advocated in [29].

The amount of redundancy generated by basic mappings has motivated a revision of the algorithm known as nested
mappings [17]. Intuitively, whenever a tgd m1 writes into an external target set R and a tgd m2 writes into a set nested
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into R, it is possible to “merge” the two mappings by nesting m2 into m1. This reduces the amount of redundant
tuples in the target. Another attempt to reduce the redundancy generated by basic mappings has been proposed by [7].
Unfortunately, these approaches are applicable only in some specific cases and do not represent a general solution to the
problem of generating core universal solutions.

The notion of a core solution was first introduced in [13]; it represents a nice formalization of the notion of a “minimal”
solution, since cores of finite structures arise in many areas of computer science (see, for example, [20]). Note that
computing the core of an arbitrary instance is an intractable problem [13, 18]. However, we are not interested in
computing cores for arbitrary instances, but rather for solutions of a data exchange problem; these show a number of
regularities, so that polynomial-time algorithms exist.

In [13] the authors first introduce a polynomial greedy algorithm for computing the core of universal solutions, and
then a blocks algorithm. A block is a connected component in the Gaifman graph of nulls. The block algorithm looks at
the nulls in J and computes the core of J by successively finding and applying a sequence of small useful endomorphisms;
here, useful means that at least one null disappears. Only egds are allowed as target constraints.

The bounds are improved in [18]. The authors introduce various polynomial algorithms to compute the core of universal
solutions in the presence of weakly-acyclic target tgds and arbitrary egds, that is, a more general framework than the one
discussed in this paper. The authors prove two complexity bounds. Using an exhaustive enumeration algorithm they get
an upper bound of O(vm|dom(J)|b), where v is the number of variables in J , m is the size of J , and b is the block size
of J . There exist cases where a better bound can be achieved by relying on hypertree decomposition techniques. In such
cases, the upper bound is O(vm[b/2]+2), with special benefits if the target constraints of the data exchange scenario are
LAV tgds. One of the algorithms introduced [18] has been revised and implemented in a working prototype [30]. The
prototype uses a relational DBMS to chase tgds and egds, and a specialized engine to find endomorphisms and minimize
the universal solution. Unfortunately, as discussed in Section 13, the technique does not scale to large size databases.

The problem of computing the core for a set of s-t tgds using SQL queries has been recently studied in [9, 24, 31]. [9]
represents an early approach at computing core solutions for schema mappings specified by the limited class of s-t tgds
with single atomic formulas (without repetition of existential quantified variables) in the conclusions.

The first proposal of an algorithm for rewriting a set of s-t tgds in order to generate core solutions was introduced
in [24]. Differences between that paper and this one have been discussed in the previous sections. Here we want to note
that the algorithm presented in [24] is the two-step algorithm outlined at the beginning of Section 9, and then further
discussed in Section 12. In this paper, we show that it is possible to reduce the two-step process to a single exchange.
Notice how this produces a speed-up in computing times: in fact, our rewriting algorithm produces SQL scripts that are
significantly faster than those reported in the experiments of [24].

After the appearance of the initial algorithm in [24], another algorithm was independently proposed in [31]. The
authors develop an algorithm to rewrite a set of s-t tgds as a laconic mapping, that is, a new set of dependencies from
which to generate an SQL script that computes core solutions for the original scenario. There are several differences with
the approach we propose in this paper.

As a first difference, both approaches rely on a linear order over the underlying domain in order to perform the
rewriting. The linear order is necessary in order to break automorphisms in tgd conclusions. However, there is difference
in the way these cases are handled by the two algorithms. The algorithm in [31] uses side-conditions, i.e., inequalities
among universally quantified variable, while in our approach we sort values inside Skolem terms.

Notice that the algorithm proposed in [31] is more general than the one proposed in this paper, since it can be applied
to dependencies that make use of arbitrary first-order formulas in the premises, and not only conjunctive formulas. This
is done by relying on a procedure called certain(), to rewrite the certain answers of a query on the target as a query on
the source. In the paper, the authors introduce a practical version of the algorithm in which certain() is computed by
adopting a variant of the MiniCon [28] algorithm, which works for conjunctive formulas. They also announce [32] a more
general algorithm that, given a scenarioM and an FO target query q, computes a source query q′ defining certainM,q().

3

Second, in terms of dependencies generated by the rewriting, a laconic mapping tends to contain a lower number of

3Provided that the active domain of the source database contains at least two elements.
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dependencies with more complex premises with respect to a core schema mapping, which typically contains more rules.
In fact, as discussed in Section 5, laconic mappings reason on fact-blocks and fact-block types at a “global” level, while
core schema mappings reason on witness blocks at a “local” level, i.e., at the tgd level.

Finally, with respect to the complexity of the rewriting algorithm, we notice that laconic mappings require to compute
certain() many times – actually, a combinatorial number of times with respect to the size of the existential variables –
for each fact-block type. This may be expensive, since computing certain() requires to run a high-complexity algorithm
(e.g. MiniCon). Our algorithm, albeit exponential, looks for formula homomorphisms, whose number is typically lower
than those that must be computed to generate laconic mappings. Also, in the case in which a scenario does not contain
self-joins, based on Theorem 4, our algorithm does a minimal rewriting that is typically faster to compute.

At the moment it is unclear how these differences affect performances. In fact, no implementation of the laconic
mappings algorithm is currently available, so that it was not possible to compare the performances of the two algorithms.

Both algorithms can be used as building blocks for more complex rewritings, such as the one introduced in [23].
We note that the notion of provenance in a schema mappings framework has been studied in [10] under the notion of

routes. In this paper we make a more restricted use of the notion of provenance, in order to identify atoms in a canonical
solution.

Finally, tools that somewhat resemble our expansions have been independently developed in papers about inverting
schema-mappings. In [15], a notion of a minimal generator is introduced as a conjunct that identifies a possible contri-
bution to a target symbol. The purpose is to identify how different sets of fact-blocks should be treated when inverting
the mapping. In [3], a notion of an existential replacement is introduced as a tool to rewrite queries posed over the target
of a mapping scenario as tools over the source. A novel exponential-time algorithm is developed to this end. We notice
that, in our approach, the corresponding step of rewriting expansions as queries over the source is greatly simplified by
our provenance-based labeling system.

15 Conclusions

We have introduced new algorithms to compute solutions for data exchange scenarios that show how, despite their intrinsic
complexity, core solutions can be computed very efficiently in practical, real-life scenarios by using relational database
engines.

We believe that this represents a concrete advancement towards the goal of adopting data exchange techniques in
real-life mapping scenarios.

In this respect, there are several interesting research problems that are worth studying in order to further bridge the
gap between the practice of schema mappings and the theory of data exchange. A relevant one is the development of
similar algorithms to handle target constraints. Another one is the extension of the notion of data exchange setting to
nested data. A final one is the revision of existing schema mapping benchmarks in order to explicitly incorporate the
notion of a core solution as the “optimal” solution.
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A A Complex Rewriting Example

This section is devoted to presenting a complete example of application of the rewriting algorithm. We will make reference
to the scenario in Example 5.3:

m1. A(x0, x1, x2, x3) ∧B(x3, x4)→ ∃Y0, Y1, Y2, Y3 : S1(x3, x0, Y0, x1)∧
S2(Y1, x0, Y0, x0) ∧ S3(Y1, x2, Y2, Y3)

While this scenario contains a single tgd, still it requires the application of all steps of the rewriting algorithm.

[Step 1] Generating Expansions

As a first step, we generate all expansions of tgd m1. In this case, our algorithm generates four expansions, as follows:

ε1 = S 1(x3, x0, Y0, x1) ∧ S 2(Y1, x0, Y0, x0) ∧ S 3(Y1, x2, Y2, Y3)
ε2 = S 1(x3, x0, Y0, x1) ∧ S 2(Y1, x0, Y0, x0)∧

∃Y ′′0 . . . (S 1(x3, x0, Y
′′
0 , x1) ∧ S 2(Y ′′1 , x0, Y

′′
0 , x0) ∧ S 3(Y ′′1 , x0, Y

′′
2 , Y

′′
3 ))

ε3 = S 1(x3, x0, Y0, x0) ∧ S 1(x3, x
′
0, Y

′
0 , x
′
1)∧

∃Y ′′0 . . . (S 1(x3, x0, Y
′′
0 , x0) ∧ S 2(Y ′′1 , x0, Y

′′
0 , x0) ∧ S 3(Y ′′1 , x

′
0, Y

′′
2 , Y

′′
3 ))

ε4 = S 1(x3, x0, Y0, x0)∧
∃Y ′′0 . . . (S 1(x3, x0, Y

′′
0 , x0) ∧ S 2(Y ′′1 , x0, Y

′′
0 , x0) ∧ S 3(Y ′′1 , x0, Y

′′
2 , Y

′′
3 ))

Notice the difference between ε3 and ε4. While ε4 generates witness blocks made of a single S1 tuple that self-joins twice
in order to cover the tuples that would be generated by S2 and S3, ε3 on the contrary uses two different S1 tuples, that
join on the first attribute. It is also possible to see, however, that ε4 can be considered as a special case of ε3, when
x0 = x′0 and x0 = x′1, i.e., when the two tuples coincide. Therefore, all witness blocks generated by ε4 are also generated
by ε3. We therefore discard ε4 and in the following steps only consider ε1, ε2, ε3.

[Step 2] Partial Orders Among Expansions

Once expansions have been derived, we analyze their formula homomorphisms, in order to build the more-compact and
more-informative partial orders.

In this case, we discover that there are several compacting formula homomorphisms among expansions. In brief:

more compact: ε1 ≺ ε2 ε1 ≺ ε3 ε2 ≺ ε3
more informative: ε2 < ε1

To be more specific, there are 2 different compacting homomorphisms of ε2 into ε3. To see this, notice that we can map
the atoms of χl2 into those of χl3 as follows (for the sake of brevity we omit the mappings of variable occurrences): S1 into
the first occurrence of S1 in χl2, and S2 into the second occurrence of S1. But we also have an alternative compacting
formula homomorphism by the opposite mapping: S1 into the second occurrence of S1, S2 into the first occurrence. We
need to consider both homomorphisms in our rewritings.

[Step 3] Source Rewritings of Expansions

We now need to rewrite expansions as formulas over the source database. The source rewritings are as follows:

sourceRew (ε1) = A(x0, x1, x2, x3) ∧B(x3, x4)
sourceRew (ε2) = A(x0, x1, x0, x3) ∧B(x3, x4) ∧ ∃x′4 : (A(x0, x1, x0, x3) ∧B(x3, x

′
4))

= A(x0, x1, x0, x3) ∧B(x3, x4)
sourceRew (ε3) = A(x0, x0, x2, x3) ∧B(x3, x4) ∧A(x′0, x

′
1, x
′
0, x3) ∧B(x3, x

′
4)∧

∃x′′4 : (A(x0, x0, x
′
0, x3) ∧B(x3, x

′′
4))
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[Step 4] Adding Negations to Source Rewritings

For each expansion εi, based on sourceRew (εi), we need to generate the two expressions, sourceRew (mostComp (εi)), and
sourceRew (mostInf (εi)).

Let us first concentrate on sourceRew (mostComp (εi)). We consider the compacting homomorphisms found at Step 2,
and introduce negations accordingly. We first notice that:

sourceRew (mostComp (ε3)) = sourceRew (ε3)

since there are no expansions that are more compact than ε3. Consider now ε1; there exists one formula homomorphism
hf 12 such that ε2 is more compact than ε1; as a consequence, sourceRew (mostComp (ε1)) has the following form:

sourceRew (mostComp (ε1)) = A(x0, x1, x2, x3) ∧B(x3, x4)∧
¬∃x′4 : A(x0, x1, x0, x3) ∧B(x3, x

′
4)∧

¬∃ . . . negations of sourceRew (ε3)

Similarly for ε2. The complete formulas are too complex to be reported in full. In fact, from now on we shall discuss only
fragments of the rewritten formulas.

Let us now consider sourceRew (mostInf (εi)). There is only one proper formula homomorphism to be taken into
account. We therefore have:

sourceRew (mostInf (ε1)) = sourceRew (mostComp (ε1))
sourceRew (mostInf (ε2)) = sourceRew (mostComp (ε2))∧

¬∃x′ : (sourceRew (mostComp (ε1)) ∧ equalhf 21
(x, x′))

sourceRew (mostInf (ε3)) = sourceRew (mostComp (ε3))

[Step 5] Choosing a Skolemization Strategy

We now need to choose a proper skolemization strategy for this example, in order to guarantee that isomorphic witness
blocks are properly collapsed by our rewritten rules. Since we notice that expansion ε3 does generate isomorphic witness
blocks, our algorithm picks up the most general, isomorphism–invariant skolemization strategy, that relies on interpreted
Skolem functions.

[Step 6] Generating Expansion Rules

We are ready to generate our expansion rules. We generate one expansion rule for each expansion εi. The premise is
represented by the formula sourceRew (mostInf (εi)); the conclusion by χi, with the appropriate Skolem terms to replace
existential variables, as follows:

r1 :sourceRew (mostInf (ε1))→ skol(S(x3, x0, Y0, x1) ∧ S(Y1, x0, Y0, x0) ∧ S(Y1, x2, Y2, Y3))
r2 :sourceRew (mostInf (ε2))→ skol(S(x3, x0, Y0, x1) ∧ S(Y1, x0, Y0, x0))
r3 :sourceRew (mostInf (ε3))→ skol(S(x3, x0, Y0, x0) ∧ S(x3, x

′
0, Y

′
0 , x
′
1))

Here we report some of the actual Skolem terms generated by skol.
Let us consider the Skolem terms for r2:

skol(r2, Y0) = f(t1 : S[A : x3, B : x0, D : x1]t2 : S[B : x0, D : x0],
j1 : [t1.C = t2.C], v = j1)

skol(r2, Y1) = f(t1 : S[A : x3, B : x0, D : x1]t2 : S[B : x0, D : x0],
j1 : [t1.C = t2.C], v = noj-t2.A)
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The Skolem terms for r1 are as follows:

skol(r1, Y0) = f(t1 : [S.A : x3, S.B : x0, S.D : x1]t2 : [S.B : x0, S.D : x0]
t3 : [S.B : x2], j1 : [t1.C = t2.C], j2 : [t2.A = t3.A], v = j1)

skol(r1, Y1) = f(t1 : [S.A : x3, S.B : x0, S.D : x1]t2 : [S.B : x0, S.D : x0]
t3 : [S.B : x2], j1 : [t1.C = t2.C], j2 : [t2.A = t3.A], v = j2)

skol(r1, Y2) = f(t1 : [S.A : x3, S.B : x0, S.D : x1]t2 : [S.B : x0, S.D : x0]
t3 : [S.B : x2], j1 : [t1.C = t2.C], j2 : [t2.A = t3.A], v = noj-t3.C)

skol(r1, Y3) = f(t1 : [S.A : x3, S.B : x0, S.D : x1]t2 : [S.B : x0, S.D : x0]
t3 : [S.B : x2], j1 : [t1.C = t2.C], j2 : [t2.A = t3.A], v = noj-t3.D)

Notice how, in this case, it is not necessary to resort to the sort() function, since the rule conclusions do not contain
nontrivial automorphisms, and therefore it is possible to distinguish the tuple terms at script compilation time.

[Step 7] Normalizing and Rewriting Expansion Rules

However, we notice that ε3 is not normalized. As a consequence, we normalize it into two expansion rules ε3a and ε3b:

r3a : sourceRew (mostInf (ε3))→ S(x3, x0, skol(r3, Y0), x0)
r3b : sourceRew (mostInf (ε3))→ S(x3, x

′
0, skol(r3, Y

′
0), x′1)

We now look for proper homomorphisms among the four rule conclusions. We notice that r1 and r2 subsume r3a with
homomorphisms h1 and h2, we therefore rewrite r3a as finalRew (r3a). A similar rewriting applies for r2b.

finalRew (r1) : sourceRew (mostInf (ε1))→ S(x3, x0, skol(r1, Y0), x1)∧
S(skol(r1, Y1), x0, skol(r1, Y0), x0)∧

S(skol(r1, Y1), x2, skol(r1, Y2), skol(r1, Y3))
finalRew (r2) : sourceRew (mostInf (ε2))→ S(x3, x0, skol(r2, Y0), x1)∧

S(skol(r2, Y1), x0, skol(r2, Y0), x0)
finalRew (r3a) : sourceRew (mostInf (ε3a))∧

¬(∃x′ : sourceRew (mostInf (ε1)) ∧ equalh1
(x, x′))∧

¬(∃x′′ : sourceRew (mostInf (ε2)) ∧ equalh2
(x, x′′))

→ S(x3, x0, skol(r3, Y0), x0)
finalRew (r3b) : sourceRew (mostInf (ε3b))∧

¬(∃x′ : sourceRew (mostInf (ε1)) ∧ equalh1
(x, x′))∧

¬(∃x′′ : sourceRew (mostInf (ε2)) ∧ equalh2
(x, x′′))

→ S(x3, x
′
0, skol(r3, Y

′
0), x′1)

This set of rules is the core schema mapping for the given scenario.

B Proofs of the Theorems

B.1 Proof of Theorem 1

Theorem 1 Given a scenario M = (S,T,Σst), and a source instance I , suppose J is a universal solution for M over
I . Consider the subset J0 of J defined as follows:

J0 =
⋃

reduce(mostInformative(mostCompact(W<I,J>))) (3)

Then, J0 is the core of J .

Proof: Before getting to the actual proof, let us introduce two preliminary results about witness blocks.
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Proposition 5 Given a solution J ∈ USolM(I ), for any tgd m and vector of constants a, the set of witness blocks

W<I,J>
m,a is closed under isomorphisms.

Proof: Consider a witness block w ∈ W<I,J>
m,a , and suppose there exists w′ ∈ W<I,J> such that w ∼= w′, i.e., there exists

an isomorphism h : w′ → w. We need to show that w′ ∈ W<I,J>
m,a . Since w ∈ W<I,J>

m,a , we know that w = ψ(a, b), for

some vector b of values in dom(J ). To prove the claim it is sufficient to show that also w′ = ψ(a, b
′
), for some b

′
. But we

know that w′ = h−1(w) = h−1(ψ(a, b)) = ψ(a, h−1(b)). This proves the claim. �

Consider instance J0 defined according to Equation 3. It can be seen that the witness blocks of J0 fall in two categories:
beside “principal” witness blocks, there may be induced witness blocks. A witness block w inW<I,J0> is said to be induced
if it is a proper subset of another witness block w′ in W<I,J0>. We shall call principal any witness block that is not
induced.

Proposition 6 Consider the set of witness blocks W<I,J0>. There cannot be two witness blocks w,w′ ∈ W<I,J0> such
that w is a principal witness block, w′ is an induced witness block and there exists an injective homomorphism h : w → w′.

Proof: We shall prove the claim by contradiction. Suppose there exists h : w → w′. Since w′ is induced, there exists w′′

in W<I,J0> such that w′ ⊂ w′′ and w′′ is a principal witness block. But this means that h is also a homomorphism of
w into w′′; moreover, h is proper, since it is injective by hypothesis and there are atoms in w′′ − w′ that do not belong
to h(w). However, this is not possible by construction of J0, since w is a maximal witness block with respect to <, and
therefore cannot have proper homomorphisms into other witness blocks of J0. �

We are now ready to prove the main claim. We need to prove the following:

Part 1. J0 is a universal solution for M over I , i.e., J0 ∈ USolM(I );

Part 2. J0 does not contain any smaller endomorphic image that is also a solution.

Part 1. – J0 is a universal solution for M over I – To prove that J0 ∈ USolM(I ), we shall first prove that J0 is a
solution, and then that it is universal.

To prove that J0 is a solution, i.e., J0 ∈ SolM(I ), it is sufficient to show that, for any tgd m.∀x : φ(x)→ ∃y(ψ(x, y))
in Σst, and any vector of constants a such that I |= φ(a), the set of witness blocks corresponding to m and a in J0,

W<I,J0>
m,a , is not empty.

Consider now a tgd m. ∀x : φ(x) → ∃y(ψ(x, y)) in Σst, and a vector of constants a such that I |= φ(a). We know

that the set of witness blocks W<I,J>
m,a is not empty, since J is a solution; also, it is a finite set, since J is finite. Consider

a maximal element w in W<I,J0>
m,a with respect to the ≺ relation. We need to distinguish two cases.

(a) There is no other w′ ∈ W<I,J> such that w < w′, i.e., w is also maximal with respect to <. In this case, since
witness blocks are closed under isomorphisms by Proposition 5, the equivalence class of witness blocks isomorphic to w,
Ew, is included in W<I,J>

m,a . Call wEw the representative selected for Ew by reduce; by construction of J0, wEw belongs to

W<I,J0>
m,a , which cannot be empty.

(b) There exists some w′ ∈ W<I,J> such that w < w′; in this case, consider the set of witness blocks W = {wi|wi ∈
W<I,J> and w < wi}, and a maximal element w∗ in W. Consider the equivalence class of witness blocks isomorphic to
w∗, Ew∗ , and call wEw∗ the representative selected for Ew∗ by reduce; by construction of J0, wEw∗ ⊆ J0. We know that
the following homomorphisms exist:

h : w → w∗ h′ : w∗ → wEw∗

It can be seen that the set of tuples h′(h(w)) is a subset of wEw∗ and therefore is contained in J0. We now show that

h′(h(w)) ∈ W<I,J0>
m,a . In fact, we know that w = ψ(a, b); therefore, h(w) = ψ(a, h(b)), and h′(h(w)) = ψ(a, h′(h(b))). As

a consequence, h′(h(w)) ∈ W<I,J0>
m,a , and W<I,J0>

m,a is not empty.
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This proves that J0 is a solution. We now need to prove that J0 is a universal solution for M over I , i.e., that for
any other solution J ′ ∈ SolM(I ) there exists a homomorphism h′ : J0 → J ′. Since we know that J is universal, we also
know that there exists a homomorphism h : J → J ′. As a consequence, in order to show that h′ of J0 into J ′ exists, it
is sufficient to show that there exists a homomorphism of h0 : J0 → J . But we know that h0 exists and it is the identity
mapping, since J0 is a subset of J . Therefore, we have:

h0 : J0 → J h : J → J ′

By composing the two homomorphisms, we obtain a homomorphism h′ of J0 into J ′. As a consequence, J0 ∈ USolM(I ).

Part 2.: J0 does not contain any smaller endomorphic image that is also a universal solution – We shall
prove the claim by contradiction. Suppose there exists a smaller universal solution than J0, i.e., a solution J# ⊂ J0. Since
J# is properly contained in J0, there is at least one tuple t in J0 − J#; by removing t from J0, we are also removing any
witness block w ∈ W<I,J0> that contains t.

Since J# is a universal solution, it must be homomorphically equivalent to J0. Therefore, we know there exists a
homomorphism h# : J0 → J#. This is obviously true also for any subset of J0. Let us consider one of the principal
witness blocks w that belong to J0 but not to J#, i.e., w ∈ W<I,J0> −W<I,J#>. Let us call hw the restriction of h# to
w, i.e., hw : w → J#. We shall now prove that such a homomorphism cannot exist.

Let us consider the image of w in J#, hw(w). Note that w 6= hw(w), since w is not contained in J#. On the contrary,

since hw(w) is contained in J#, it is also contained in J0. Call W<I,J0>
m,a one of the witness-block sets to which w belongs.

It is easy to see that, since w is of the form ψ(a, b), hw(w) is of the form ψ(a, hw(b)). Therefore, also hw(w) is a witness

block in W<I,J0>
m,a . As a consequence, we know that W<I,J0>

m,a contains two distinct witness blocks, w and hw(w).

We notice that hw : w → hw(w) is a surjective mapping. Let us consider the number of nulls in w and hw(w). There
are three possible cases.

(a) |vars(hw(w))| = |vars(w)| – in this case hw(w) is simply a renaming of the labeled nulls of w and hw must be one to
one; this means that w and hw(w) are isomorphic; therefore, hw(w) cannot be a principal witness block, by construction
of J0; however, it cannot be an induced witness block, either, because of Proposition 6;

(b) |vars(hw(w))| > |vars(w)| – in this case, since hw is surjective, any labeled null in hw(w) is the image of some
value in w; but since there are more nulls hw(w) than in w, it must be the case that some of the nulls in hw(w) are image
of a constant in w, and this contradicts the definition of homomorphism; therefore, this cannot be the case;

(c) |vars(hw(w))| < |vars(w)| – in this case, since hw is surjective, hw would be a compacting homomorhpism; this is
clearly not possible, since by hypothesis w is maximal with respect to ≺.

Therefore, we have shown that hw cannot exist. This proves Part 2. of the claim and concludes the proof. �

B.2 Proof of Theorem 2 - Preliminary Notions

Before getting to the actual proof of Theorem 2, we shall introduce several preliminary definitions and lemmas.

Images of a Variable Since formula homomorphisms map variable occurrences to variable occurrences, they are not
mappings among variables. In fact, they typically relate occurrences of a variable with occurrences of several different
variables. To formalize this notion, we need to introduce the notion of an image of a variable according to a formula
homomorphism.

Definition 27 [Image of a Variable] Given a formula homomorphism hf : ϕ(x, y)→ ϕ′(x′, y′); for every variable vi
in ϕ(x, y), the image of vi according to hf is the set of variables Vhf (vi) whose occurrences are images of occurrences of
vi via hf , defined as follows:

Vhf (vi) = {v′k | R.A : vi ∈ occ(ϕ(x, y)) and hf (R.A : vi) = R.A : v′k}
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Let us first establish an important property of variable images.

Proposition 7 Given an instance J and two formulas ϕ(x, y), ϕ′(x′, y′) such that there exists a formula homomorphism
hf : ϕ(x, y) → ϕ′(x′, y′), suppose there are assignments a, a′ such that: J |= a(ϕ(x, y)), J |= a′(ϕ′(x′, y′)) and a, a′ are
such that equalhf (a(x), a′(x′)) evaluates to true. Then, for every variable v ∈ x ∪ y, it is the case that:

• a′ has the same value on all variables v′ ∈ Vhf (v);

• if v is universal, then it is the case that a(v) = a′(v′), for every variable v′ ∈ Vhf (v).

Proof: We shall first prove the claim in the case in which the variable is universal, and then existential.
Consider a universal variable x ∈ x. Consider intersecthf (x, x′). We know that it contains an equality of the form

x = x′ for every variable occurrence in ϕ′(x′, y′) such that R.A : x′ = hf (R.A : x). This means that, for any two variables
x′i, x

′
j in Vhf (x), intersecthf (x, x′) contains equalities of the form x = x′i, x = x′j . Since we know that a, a′ are such that

equalhf (a(x), a′(x′)) evaluates to true, it must be the case that a(x) = a′(x′i) = a′(x′j), which proves the claim.
Consider now an existentially quantified variable y ∈ y. We need to prove that all variables in v′ ∈ Vhf (v) receive by a′

the same value. In this case, for every pair of occurrences Ri.Aj : y,Rn.Am : y, by definition of a formula homomorphism,
we have two possible cases: (i) either both occurrences are mapped to occurrences of the same existential variable y′; in
this case, Vhf (y) is a singleton set containing y′, and the claim is obviously true; (ii) or they are mapped to universal
occurrences of variables x′h, x

′
k; but in this case, joinshf (x, x′) contains an equality of the form x′h = x′k, and it must be

the case that a′(x′h) = a′(x′k); therefore all variables in Vhf (y) receive the same value by a′. This proves the claim. �

Homomorphisms and Formula Homomorphisms We now want to establish two important lemmas, that show the
dual nature of homomorphisms among facts and homomorphisms among formulas. More specifically, under appropriate
conditions, whenever one exists there exists also the other. In order to do this, we need to introduce a notion of
compatibility among these two kinds of homomorphisms, as follows.

Definition 28 [Compatible Formula Homomorphisms] Given a formula homomorphism between conjunctive for-
mulas, hf : ϕ(x, y)→ ϕ′(x′, y′), and assignments a, a′ such that there is a homomorphism h : a(ϕ(x, y))→ a′(ϕ′(x′, y′)),
we say that hf is compatible with h, a, a′ if, for every variable v ∈ x∪ y, and for every variable v′ ∈ Vhf (v), it is the case
that h(a(v)) = a′(v′).

In essence, we are requiring that h maps the value a(v) of a variable v to the value a′(v′) of every variable that is
in the image of v according to hf . We also need to introduce the notion of an invertible assignment. Recall that an
assignment a for ϕ(x, y) is canonical if it injectively associates a labeled null with each existential variable yi ∈ y. The
set of facts a(ϕ(x, y)) is called a canonical block if a is canonical.

Definition 29 [Invertible Assignment] A canonical assignment is called invertible if |a(ϕ(x, y))| = |ϕ(x, y)|, i.e.,
each atom in ϕ(x, y) generates a different fact.

We are now ready to state our result about the dual nature of fact and formula homomorphisms.

Lemma 8 Given an instance J , and two conjunctive formulas ϕ(x, y) and ϕ′(x′, y′) such that there exists a formula
homomorphism hf : ϕ(x, y) → ϕ′(x′, y′), suppose there exist canonical assignments a, a′ such that J |= a(ϕ(x, y)),
J |= a′(ϕ′(x′, y′)), and a, a′ are such that equalhf (a(x), a′(x′)) evaluates to true. Then, there exists a homomorphism
h : a(ϕ(x, y))→ a′(ϕ′(x′, y′)), and hf is compatible with h, a, a′. Moreover:

• if hf is a surjection, then h is a surjection;

• if hf is proper, and a′ is invertible, then h is proper.

47



Proof: We shall construct h, and then show that it is a valid homomorphism. For any variable v ∈ x∪y, consider the value
a(v), and let us define h(a(v)) in such a way that h(a(v)) = a′(v′), where v′ is any variable in Vhf (v). By Proposition 7,
we know that this is a well defined mapping. Note also that, by construction, if h is indeed a homomorphism, hf is
compatible with h, a, a′.

We shall now prove that h is a homomorphism of a(ϕ(x, y)) into a′(ϕ′(x′, y′)). To see this, consider any atom Ri(. . . Aj :
vk . . .) in ϕ(x, y). Recall that, since hf is a valid formula homomorphism, we know that Ri(. . . Aj : hfRi.Aj (vk) . . .) ∈
ϕ′(x′, y′). By construction of h, we also know that, for any occurrence Ri.Aj : vk, we have that h(a(vk)) = a′(hfRi.Aj (vk)).
It follows that:

h(a(Ri(. . . Aj : vk . . .))) = Ri(. . . Aj : h(a(vk)) . . .) =
Ri(. . . Aj : a′(hfRi.Aj (vk)) . . .) = a′(Ri(. . . Aj : hfRi.Aj (vk) . . .)) ∈ a′(ϕ′(x′, y′))

This proves that h is a valid homomorphism, and also that hf is indeed compatible with h, a, a′. To complete the proof,
we need to show that:

• if hf is a surjection, then h is a surjection;

• if hf is proper, and a′ is invertible, then h is proper.

Suppose hf is a surjection. Then, every atom Ri(x
′
i, y
′
i) ∈ ϕ′(x′, y′) is the image of some atom Ri(xi, yi) ∈ ϕ(x, y).

By construction of h, it is the case that a′(Ri(x
′
i, y
′
i)) is the image of a(Ri(xi, yi)) according to h, and therefore h is a

surjection.
Similarly, assume hf is proper. We want to prove that h is proper. We shall first prove that (a) h is injective, and

then that (b) hf is not surjective.

(a) We shall prove that h is injective by contradiction. Assume h is not injective. This means that there are two distinct
facts R(t0), R(t1) in a(ϕ(x, y)) such that h(R(t0)) = h(R(t1)). Call Rl(x, y), R

′l(x, y) the atoms in ϕ(x, y) such that
R(t0) = a(Rl(x, y)), R(t1) = a(R

′l(x, y)). We know that Rl(x, y), R
′l(x, y) are distinct atoms, since R(t0) 6= R(t1). We

have that:
h(R(t0)) = h(a(Rl(. . . Aj : vk . . .))) = R(. . . Aj : h(a(vk)) . . .) =
R(. . . Aj : a′(hfRl.Aj (vk)) . . .) = a′(hf (Rl(. . . Aj : vk . . .)))

h(R(t1)) = h(a(R
′l(. . . Aj : vk . . .))) = R(. . . Aj : h(a(vk)) . . .) =

R(. . . Aj : a′(hfR′l.Aj (vk)) . . .) = a′(hf (R
′l(. . . Aj : vk) . . .)))

We therefore have that:
a′(hf (Rl(. . . Aj : vk . . .))) = a′(hf (R

′l(. . . Aj : vk) . . .)))

Notice, however, that hf is injective by hypothesis, and therefore:

hf (Rl(. . . Aj : vk . . .)) 6= hf (R
′l(. . . Aj : vk) . . .))

But this contradicts the hypothesis that a′ is invertible, since we are concluding that a′ maps two different atoms in
ϕ′(x′, y′) to the same fact. Therefore, hf must be injective.

(b) We now want to prove that h is not surjective. Since hf is proper, there exists an atom Ri(x
′
i, y
′
i) ∈ ϕ′(x′, y′) that is

not the image of an atom in ϕ(x, y). Since a′ is invertible, the fact a′(Ri(x
′
i, y
′
i)) is such that it can only be generated by

Ri(x
′
i, y
′
i). Since there is no atom in ϕ(x, y) that maps into Ri(x

′
i, y
′
i), by construction of h, a′(Ri(x

′
i, y
′
i)) cannot belong

to the image of h. This proves that h is proper. �

The relationship among fact homomorphisms and formula homomorphisms stated in Lemma 8 has a dual aspect, as
stated in Lemma 9. Before stating the lemma, we need to introduce a tool that plays an important role in the proof.
More specifically, given a formula and one of its instances, we introduce a way to map each tuple in the formula instance
to an atom in the formula, as follows:
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Definition 30 [Mapping Facts to Atoms] Given a formula ϕ(x, y) and a canonical assignment a for it, we introduce
a mapping, called atoma , of each fact in a(ϕ(x, y)) to an atom in ϕ(x, y). More specifically, given a fact t ∈ a(ϕ(x, y)), we
define atoma(t) as one atom Ri(xi, yi) of ϕ(x, y) such that t = a(Ri(xi, yi)). Notice that, if a is invertible, there is exactly
one atom of this kind for each fact. This is not true in general if a is not invertible; in this case, we nondeterministically
pick one of the atoms associated with each fact.

Lemma 9 Given two conjunctive formulas ϕ(x, y), ϕ′(x′, y′), suppose there are assignments a, a′ such that there exists a
homomorphism h : a(ϕ(x, y))→ a′(ϕ′(x′, y′)) and a′ is a canonical assignment for ϕ′(x′, y′). Then, there exists a formula
homomorphism: hf : ϕ(x, y)→ ϕ′(x′, y′) and hf is compatible with h, a, a′. Moreover:

• if h is a surjection, and a′ is invertible, then hf is a surjection;

• if h is proper, and a, a′ are invertible, then hf is proper.

Proof: Let us call w = a(ϕ(x, y)), w′ = a′(ϕ′(x′, y′)). We want to build a formula homomorphism hf of ϕ(x, y) into
ϕ′(x′, y′). As a first step, we introduce a mapping of each atom Ri(xi, yi) ∈ ϕ(x, y) to an atom in ϕ′(x′, y′), called
matchh,a,a′(Ri(xi, yi)), according to the following strategy:

• we first map Ri(xi, yi) to a(Ri(xi, yi)) ∈ w;

• then, we map a(Ri(xi, yi)) to h(a(Ri(xi, yi))) ∈ w′;

• finally, we map h(a(Ri(xi, yi))) to atoma′ (h(a(Ri(xi, yi)))) ∈ ϕ′(x′, y′);
i.e., we have that: matchh,a,a′(Ri(xi, yi)) = atoma′ (h(a(Ri(xi, yi)))).

To build hf , we consider each variable occurrence Ri.Aj : vk in ϕ(x, y), and choose hf (Ri.Aj : vk) to be the corre-
sponding variable occurrence in matchh,a,a′(Ri(xi, yi)), called occAj (matchh,a,a′(Ri(xi, yi))), i.e.:

hf (Ri.Aj : vk) = occAj (matchh,a,a′(Ri(xi, yi))) (4)

To prove that hf is a formula homomorphism of ϕ(x, y) into ϕ′(x′, y′), according to the definition, we need to show that:

• hf maps each atom in ϕ(x, y) to an atom in ϕ′(x′, y′);

• hf maps universal occurrences in ϕ(x, y) to universal occurrences in ϕ′(x′, y′);

• hf is such that two different occurrences of the same existential variable in ϕ(x, y) are either mapped to universal
occurrences, or to occurrences of the same existential variable in ϕ′(x′, y′).

It can be seen immediately that, by construction, hf maps each atomRi(xi, yi) in ϕ(x, y) to an atommatchh,a,a′(Ri(xi, yi))
in ϕ′(x′, y′). In fact, by construction hf maps each occurrence Ri.A : vi in Ri(xi, yi) to the corresponding occurrence in
matchh,a,a′(Ri(xi, yi)).

We note that hf maps universal occurrences into universal occurrences. In fact, each universal occurrence Ri.Aj : vk in
ϕ(x, y) is first mapped to a constant in a(Ri(. . . Aj : vk . . .)) ∈ w, and then to a constant in h(a(Ri(. . . Aj : vk . . .))) ∈ w′;
then, since we know that w′ is a canonical block for ϕ′(x′, y′), only universal variables are mapped by a′ to constants;
therefore, occAj (matchh,a,a′(Ri(xi, yi))) must be a universal occurrence.

Finally, consider two occurrences Ri.Aj : yk, Rn.Am : yk of the same existential variable yk in ϕ(x, y). There are two
possible cases:

(i) a(yk) is a constant; in this case, since w′ is a canonical block, we know that both Ri.Aj : yk, Rn.Am : yk will be
mapped to universal variable occurrences in ϕ′(x′, y′);

(ii) a(yk) is a labeled null; in this case, both occurrences in ϕ(x, y) will be mapped to the same labeled null a(yk) in
w; this, in turn, can be either mapped to a constant or a labeled null by h; if h(a(yk)) is a constant, then, by the same
reasoning as (i) above, we know that both occurrences of yk will be mapped to universal occurrences; if, on the contrary,
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h(a(yk)) is a labeled null, since we know that w′ is a canonical block, i.e., a′ maps existential variables injectively to
labeled nulls, both occurrences will be mapped to occurrences of the same existential variable in ϕ′(x′, y′).

This proves that hf is a valid formula homomorphism.
To show that hf is compatible with h, a, a′, we need to prove that, for every variable v ∈ x∪ y, and for every variable

v′ ∈ Vhf (v), it is the case that h(a(v)) = a′(v′). Call Ri.Aj : v the occurrence of v such that hf (Ri.Aj : v) = Ri.Aj : v′.
By construction of hf , we know that:

Ri(. . . Aj : v′ . . .) = hf (Ri(. . . Aj : v . . .)) =
matchh,a,a′(Ri(. . . Aj : v . . .))) = atoma′ (h(a(Ri(. . . Aj : v . . .)))) =

= atoma′ (Ri(. . . Aj : h(a(v)) . . .))

Recall now that, by the definition of atoma′ , a
′(atoma′ (t)) = t. If we apply a′ to both the first and the last atom in the

equation above, we therefore have:

a′(Ri(. . . Aj : v′ . . .)) = Ri(. . . Aj : a′(v′) . . .)) =
a′(atoma′ (Ri(. . . Aj : h(a(v)) . . .))) = Ri(. . . Aj : h(a(v)) . . .)

Based on this, we can conclude that a′(v′) = h(a(v)). This proves that hf is compatible with h, a, a′. To complete the
proof, we need to prove that:

• if h is a surjection, and a′ is invertible, then hf is a surjection;

• if h is proper, and a, a′ are invertible, then hf is proper.

These follows immediately from the definition of atoma′ . In fact, assume h is a surjection and a′ is invertible. In this
case, by definition of invertible assignment, atoma′ is both injective and surjective. Therefore matchh,a,a′ is obtained by
the composition of three surjective mappings – a, h, and atoma′ , and therefore it is itself surjective. As a consequence,
hf is surjective.

Similarly, assume h is proper, and a, a′ are invertible. We need to prove that (a) hf is injective, and (b) there is an
atom in ϕ′(x′, y′) that is not the image of an atom in ϕ(x, y) according to hf .

To prove part (a), i.e, that hf is injective, we notice that matchh,a,a′ is obtained by the composition of three injective
mappings – a, h, and atoma′ , and therefore hf is injective. To prove part (b), we notice that, since h is proper, h(a(ϕ(x, y))
does not coincide with a′(ϕ′(x′, y′)). Call a′(Ri(x

′
i, y
′
i)) the atom in a′(ϕ′(x′, y′)) that is not image of an atom in a(ϕ(x, y)).

Since each atom in a formula generates a single fact, it must be the case that Ri(x
′
i, y
′
i) does not belong to the image of

ϕ(x, y) according to matchh,a,a′ . Therefore, hf is a proper formula homomorphism.
This proves the claim. �

Lemma 9 has a direct impact on the way in which our rewritings are evaluated, as stated by the following Lemma.

Lemma 10 Given two conjunctive formulas ϕ(x, y), ϕ′(x′, y′), suppose there are canonical assignments a, a′ such that
J |= a(ϕ(x, y)) and J |= a′(ϕ′(x′, y′)) and there exists a homomorphism: h : a(ϕ(x, y)) → a′(ϕ′(x′, y′)). Call hf the
formula homomorphism of ϕ(x, y) into ϕ′(x′, y′) compatible with h, a, a′. Then, equalhf (a(x), a′(x′)) evaluates to true.

Proof: Consider equalhf (x, x′); it contains equalities of two forms:

intersecthf (x, x′) = {xk = x′k | xk ∈ x, Ri.Aj : x′k = hfRi.Aj (xk)}
joinshf (x′) = {x′h = x′l | yk ∈ y, x′h = hfRi.Aj (yk), x′l = hfRn.Am(yk)}
equalhf (x, x′) = intersecthf (x, x′) ∪ joinshf (x′)

Let us first consider intersecthf (x, x′). To prove the claim we need to show that a(xk) = a′(x′k), whenever Ri.Aj : x′k =
hfRi.Aj (xk). But it is easily seen that, since x′k ∈ Vhf (xk), and hf is compatible with h, a, a′, by definition of compatible
homomorphism, it is the case that h(a(xk)) = a′(x′k). Since both xk and x′k are universal, a(xk) is a constant, and
therefore h(a(xk)) = a(xk) = a′(x′k). This proves that intersecthf (a(x), a′(x′)) evaluates to true.
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Let us now consider joinshf (x′). To prove the claim, we need to show that, a′(x′h) = a′(x′l), for every pair of
universal variables in the image of some yk ∈ y. But since both x′h and x′l belong to Vhf (yk), by definition of compatible
homomorphism it must be the case that h(a(yk)) = a′(x′h) = a′(x′l). Therefore also joinshf (a′(x′)) evaluates to true. This
proves the claim. �

B.3 Proof of Theorem 2

Theorem 2 Given a scenario M = (S,T,Σst), a source instance I , call J a canonical universal solution of Σst over I .
If J is isomorphism–free, consider the set of expansions expansions(M) and, for each expansion

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

its rewriting, mostInf (ε). The following set:

EJmostInf =
⋃

ε∈expansions(M)

{a(χl(x1, y1)) | a s.t. J |= a(mostInf (ε))}

is such that:
EJmostInf = reduce(mostInformative(mostCompact(W<I,J>)))

Proof: In order to prove the claim, we introduce the following additional sets:

EJ =
⋃
ε∈expansions(M){a(χl(x1, y1)) | a s.t. J |= a(ε)}

EJmostComp =
⋃
ε∈expansions(M){a(χl(x1, y1)) | a s.t. J |= a(mostComp (ε))}

The proof is organized in three parts. We shall prove the following claims:

Part 1. EJ =W<I,J>

Part 2. EJmostComp = mostCompact(W<I,J>)

Part 3. EJmostInf = mostInformative(mostCompact(W<I,J>))

Notice, in fact, that, once we have proven Part 3., the thesis follows immediately from the hypothesis that J is isomorphism-
free. This means that any equivalence class Ei of isomorphic witness blocks in EJmostInf is a singleton. Therefore, reduce()
is the identity mapping on mostInformative(mostCompact(W<I,J>)), and therefore the thesis is proven.

Part 1. – EJ =W<I,J>

We shall first prove that EJm ⊆ W<I,J>
m , and then that W<I,J>

m ⊆ EJm , for each m ∈ Σst.

Part 1.(first half) – EJ ⊆ W<I,J>

To show that EJ ⊆ W<I,J>, consider a set of facts wε ∈ EJ . We need to show that wε is a witness block for some
tgd m.∀x : φ(x)→ ∃y(ψ(x, y)), i.e., there exists a vector of constants aw such that wε ∈ W<I,J>

m,aw
. This amount to prove

that there exists an assignment aw that satisfies the following two conditions:

• I |= φ(aw(x)), i.e., aw = aw(x);

• wε has the form ψ(aw(x), aw(y)).
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In the following, we construct such an assignment aw. We know that wε belongs to some EJm , for some tgd φ(x2) →
∃y2(ψl(x2, y2)) and some expansion

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

Recall that we know that J |= a1(ε(x1, y1)), for some assignment a1, i.e., J |= a1(χl(x1, y1)) = wε; call a2 the assignment
such that J |= a2(ψl(x2, y2)). We also know that equalhf ε(a1(x1), a2(x2)) evaluates to true.

Since, by definition of expansion, there exists a surjective formula homomorphism hf of ψ(x2, y2) into χ(x1, y1), we
know by Lemma 8 that there exists a surjective homomorphism h : a2(ψl(x2, y2))→ a1(χl(x1, y1)). Since h is surjective,
we have that:

wε = a1(χl(x1, y1)) = h(a2(ψl(x2, y2))) = ψl(h(a2(x2)), h(a2(y2)))

If we take aw = h ◦ a2, then wε has the form aw(ψl(x2, y2)).
In order to complete the proof that wε is a witness block form, we also need to prove that aw is such that I |= φ(aw(x2)).

Recall that we know that J |= a2(ψ(x2, y2)). Since a2(ψl(x2, y2)) is a witness block for m in J , and J is a canonical
universal solution, we know that it must be the case that I |= φ(a2(x2)). We now show that aw(x2) = a2(x2), and
therefore I |= φ(aw(x2)). In fact, for any variable x2i ∈ x2, by definition we have that aw(x2i) = h(a2(x2i)). But x2i
is a universal variable, and therefore a2(x2i) is a constant. As a consequence, h is the identity on it. It follows that
aw(x2i) = a2(x2i).

This proves that wε is a witness block for tgd m, and concludes the proof of the first half of Part 1.

Part 1. (second half) – W<I,J> ⊆ EJ

Consider a witness block w ∈ W<I,J>. Call m. φ(x2) → ∃y2(ψl(x2, y2)) a tgd such that w ∈ W<I,J>
m . We need to

prove that w ∈ EJm .
Since w is a witness block in W<I,J>

m , we know that there exists an assignment aw such that w = ψ(aw(x2), aw(y2)).
We need to prove that w is an instance of some expansion ε of m. In order to show that ε exists, we now construct

χl(x1, y1) as follows: since w is a set of facts in a canonical universal solution J ∈ USolM(I ), for each fact ti in w, we
consider its provenance, provenance(ti), and we pick exactly one of the labeled atoms in it. We notice that w is a canonical
block for χl(x1, y1), i.e., there exists a canonical assignment aχ such that w = aχ(χl(x1, y1)). Also, aχ is an invertible
assignment. In fact, by construction, |χ(x1, y1)| = |w| = |aχ(χ(x1, y1))|. We shall now prove that

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))

is actually a valid expansion for m. In order to do this, it is necessary to prove that there is a surjection hf : ψ(x2, y2)→
χ(x1, y1).

By Lemma 9, we know that there exists a formula homomorphism hf of ψl(x2, y2) into χ(x1, y1). In fact, we know
that w = aw(ψ(x2, y2)) = aχ(χ(x1, y1)). Therefore, there is a trivial automorphism hi of aw(ψ(x2, y2)) into aχ(χ(x1, y1));
since aχ is a canonical assignment for χ(x1, y1), Lemma 9 holds. Moreover, since hi is surjective, and aχ is invertible, also
hf is surjective. This proves that hf is a valid formula homomorphism and a surjection, and that ε is a valid expansion.

To complete the proof, we need to show that J |= aχ(ε(x1, y1)). Since we already know that J |= aχ(χl(x1, y1)) = w,
this amounts to show that there exists an assignment ab such that J |= ab(ψ(x2, y2)), and equalhf ε(aχ(x1), ab(x2))
evaluates to true.

Let’s take ab = aw, and show that equalhf ε(aχ(x1), aw(x2)) evaluates to true. But this immediately follows from
Lemma 10. In fact, we have already noted that there is a trivial automorphism hi of aw(ψ(x2, y2)) into aχ(χl(x1, y1)).
Since hf is by construction compatible with hi, aχ, aw, then by Lemma 10 it follows that equalhf ε(aχ(x1), aw(x2))
evaluates to true.

This proves that J |= aχ(ε(x1, y1)), and concludes the proof of Part 1.

Part 2. – EJmostComp = mostCompact(W<I,J>)
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Part 2. (first half) – EJmostComp ⊆ mostCompact(W<I,J>)

Before proving the claim, let us introduce a preliminary lemma.

Lemma 11 Given a universal solution J and an expansion ε, any assignment a such that J |= a(mostComp (ε)) is an
invertible assignment.

Proof: We shall prove the claim by contradiction. Suppose, in fact, that a is not invertible. This means that there exist two
different atoms Rl(. . .), R

′l(. . .) in χl(x1, y1) that generate the same fact. Consider now the formula χ
′l(x′1, y

′
1) obtained

from χl(x1, y1) by removing any atom like R
′l(. . .). Call a′ the restriction of a to x′1, y

′
1. Notice that a(χl(x1, y1)) =

a′(χ
′l(x′1, y

′
1)) = w′, and that a′ is invertible by construction.

Based on Lemma 9, we know that, since there is a surjective homomorphism (the identity) from a(χl(x1, y1)) to

a′(χ
′l(x′1, y

′
1)), and a′ is invertible, there must be a surjective formula homomorphism hf

′
of χl(x1, y1) into χ

′l(x′1, y
′
1).

Therefore, we have that:
ε′ = χ

′l(x′1, y
′
1) ∧ ∃x2, y2 : (ψl(x2, y2)

∧
equalhf ε′ (x

′
1, x2))

is a valid expansion of m. In fact, since ε is an expansion, we know there exists a surjection hf ε : ψl(x2, y2)→ χl(x1, y1),
and therefore there exists a surjection hf ε′ : ψl(x2, y2) → χ

′l(x′1, y
′
1), obtained by the composition of the two surjective

formula homomorphisms hf ε and hf ε′ .
Consider now the two expansions ε, ε′. We know there exists a surjection hf

′
of χl(x1, y1) into χ

′l(x′1, y
′
1). But notice

that hf
′

is also compacting, since |χ′l(x′1, y′1)| < |χl(x1, y1)|. Therefore, mostComp (ε) has the following form:

mostComp (ε) = ε ∧ ¬∃x′1, y′1 : (ε′ ∧ equalhf ′(x1, x
′
1)) ∧ ...

But then, by Lemma 10, it is not possible that J |= a(mostComp (ε)), since the negated subformula evaluates to true.
This contradicts our hypothesis. Therefore, a must be invertible. �

In order to prove the claim, we need to prove that any block of facts wε ∈ EJmostComp belongs also to mostCompact(W<I,J>).
This amounts to show that wε is maximal with respect to ≺, i.e., there is no other witness block w′ such that w′ ≺ wε.
We shall prove this by contradiction.

Call ε the expansion such that, for assignment a, J |= a(mostComp (ε)) = wε. By Lemma 11, we know that a is
invertible. Suppose there exists a witness block w′ such that w′ ≺ wε. By Part 1 of the proof, we know there exists an
expansion ε′ in expansions(M) and an invertible assignment a′ such that J |= a′(ε′(x′1, y

′
1)) = w′.

Since we assume that w′ ≺ wε, i.e., there is a compacting homomorphism h′ : wε → w′, we know by Lemma 9 that
there must be a formula homomorphism hf

′
of χ(x1, y1) into χ′(x′1, y

′
1), defined as follows:

hf
′
(Ri.Aj : vk) = occAj (atoma′ (h

′(a(Ri(. . . Aj : vk . . .)))))

We also know that hf
′
is a surjection, since h′ is a surjection, and a′ is invertible. We want to prove that hf

′
is compacting,

i.e., either |χ′(x′1, y′1)| < |χ(x1, y1)| or |y′1| < |y1|.
Since hf

′
is a surjection, we know that |χ′(x′1, y′1)| ≤ |χ(x1, y1)|. If |χ′(x′1, y′1)| < |χ(x1, y1)| then hf

′
is compacting.

Suppose, on the contrary, that |χ′(x′1, y′1)| = |χ(x1, y1)|. Since we know that h′ is compacting, it is the case that it is
a surjection and |vars(w′)| < |vars(wε)|. It is possible to see that this may only happen if at least one of the following
cases occurs:

(a) h′ maps some null N ∈ vars(wε) to a constant;
(b) h′ is not an injective mapping of vars(wε) into vars(w′), i.e., it maps two different nulls Ni, Nj ∈ vars(wε) to the

same null Nk ∈ vars(w′).
Let us consider the two cases separately. In case (a), call y the existential variable such that a(y) = N . If h′(a(y))

is a constant, all occurrences of the form occAj (atoma′ (Rk(. . . Aj : h′(a(y)) . . .))) are universal occurrences, since a′ is a
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canonical assignment, and therefore a constant can be generated by a′ only from a universal variable; this means that
all occurrences of y are mapped to universal occurrences, and it is the case that Vhf ′(y) does not contain any existential
variables. Consider the mapping of variables I : y1 → y′1 that associates with each existential variable yi in χ(x1, y1) the

existential variable I(yi) in χ′(x′1, y
′
1) that is image of yi via hf

′
, i.e., such that I(yi) ∈ Vhf ′(yi), if this exists. This is

in fact a mapping since, by definition, a formula homomorphism either maps all occurrences of an existential variable to
occurrences of the same existential variable, or to universal occurrences. It can be seen that I is surjective, since hf

′
is

surjective, but it is not total, since we know that Vhf ′(y) only contains universal variables. As a consequence, it must be

the case that |y1| > |y′1|, i.e., hf
′

is compacting.
Consider now case (b) above. By a similar argument, it can be seen that also in this case I is surjective but it is not

injective; in fact, two different existential variables are mapped to the same image. Also in this case, this can happen
only if |y1| > |y′1|, i.e., if hf

′
is compacting.

We have shown that there exists an expansion ε′ such that there is a compacting homomorphism hf
′

from χ(x1, y1)
into χ′(x′1, y

′
1). This means that mostComp (ε) is of the following form:

mostComp (ε) = ε ∧ ¬∃x′1, y′1 : (ε′ ∧ equalhf ′(x1, x
′
1)) ∧ ...

but this in turn implies that it is not possible that wε ∈ EJmostComp. In fact, it must be the case that J 6|= a(mostComp (ε)).

To see this, notice that there are assignments a, a′ such that wε = a(χ(x1, y1)) ⊆ J , w′ = a′(χ′(x′1, y
′
1)) ⊆ J , and a

homomorphism h′ : wε → w′. Therefore, by Lemma 10, equalhf ′(a(x1), a′(x′1)) evaluates to true, and the existentially
quantified subformula evaluates to true. This means that we have reached a contradiction, since wε cannot belong to
EJmostComp, and the claim is proven.

This proves the first half of Part 2.

Part 2. (second half) – mostCompact(W<I,J>) ⊆ EJmostComp

In order to prove the claim, we need to show that, for any witness block w that belongs to mostCompact(W<I,J>),
it is the case that w ∈ EJmostComp. We know, by Part 1 of the proof, that there exists an expansion ε such that, for some
invertible assignment a, it is the case that J |= a(ε(x1, y1)) = w. We need to prove that J |= a(mostComp (ε)).

We shall prove the claim by way of contradiction. More specifically, suppose that J 6|= a(mostComp (ε)). Since
J |= a(ε(x1, y1)) = w, by definition of mostComp (ε), there must be some expansion ε′ such that there is a compacting

homomorphism hf
′

of χ(x1, y1) into χ′(x′1, y
′
1), and, for some assignment a′, J |= a′(ε′(x′1, y

′
1)), and a, a′ are such that

the formula equalhf ′(a(x1), a′(x′1)) evaluates to true. In this case, in fact, by construction of mostComp (ε), ε′ appears in
it in a negated subformula which evaluates to true.

Consider now w′ = a′(χ′(x′1, y
′
1)). Based on Lemma 8, we know that there exists a homomorphism h′ : w → w′.

We also know that h′ is a surjection, since hf
′

is a surjection. We now want to prove that h′ is compacting, i.e.,
|vars(w′)| < |vars(w)|. Since we know that hf

′
is compacting, we also know that either |χ′(x′1, y′1)| < |χ(x1, y1)| or

|y′1| < |y1|.
Let us first consider the case in which |χ′(x′1, y′1)| < |χ(x1, y1)|. Since we know that a is invertible, it must be the case

that
|w′| = |a′(χ′(x′1, y′1))| ≤ |χ′(x′1, y′1)| < |χ(x1, y1)| = |a(χ(x1, y1))| = |w|

i.e., |w′| < |w|. This may only happen if w contains at least two distinct atoms R(t), R(t′) such that h′(R(t)) = h′(R(t′)).
It can be seen that these atoms must contain some labeled nulls. In fact, any ground atom can be mapped by h′ only to
itself, and therefore must belong to both w and w′. Moreover, since h′(R(t)) = h′(R(t′)), it must be the case that:

(a) at least one labeled null in R(t) or in R(t′) is mapped by h′ to a constant;

(b) some null N ′ in R(t′) is mapped to the same null to which a null N in R(t) is mapped, i.e., h′(N) = h′(N ′).

In case (a), since there is at least one null that is mapped by h′ to a constant, and h′ is a surjection, it must be the case
that |vars(w′)| < |vars(w)|, i.e., h′ is compacting.
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In case (b), we know that the size of the image of vars(w) according to h′, h′(vars(w)), is smaller than the size of
vars(w), since two different nulls in w are mapped to the same null in w′; but we know that h′ is a surjection, and
therefore it must be the case that |h′(vars(w))| = |vars(w′)|. Therefore, we have that:

|vars(w′)| = |h′(vars(w))| < |vars(w)|

and also in this case h′ is compacting.
Let us now consider the second case, the one in which hf

′
is such that |y′1| < |y1|. Since hf

′
is a surjection, this may

happen in the following cases:

• there exists y ∈ y1 such that its image according to hf
′
, Vhf ′(y) contains only universal variables;

• there exist yi, yj ∈ y1 such that Vhf ′(yi) = Vhf ′(yj) = y′ ∈ y′1, i.e., two different variables are mapped to the same
existential variable.

We know that h′ is a surjection by construction. But then, it must be the case that |vars(w′)| < |vars(w)|. Suppose,
in fact, that for every other existential variable yk ∈ y, yk 6= y, yk is mapped to a different variable y′k ∈ y′1. Then,
since a, a′ are canonical, vars(w) contains a distinct element a(yk), and vars(w′) a distinct element h′(a(yk)), for any of
such variables. But in turn, in both cases, vars(w) contains a distinct element a(y) for which there is no counterpart in
vars(w′).

Therefore, h′ is compacting, and w ≺ w′. But this is obviously a contradiction, since w ∈ mostCompact(W<I,J>), and
therefore w is maximal with respect to ≺. Therefore, we have proven the claim.

This concludes the proof of Part 2.

Part 3. – EJmostInf = mostInformative(mostCompact(W<I,J>))

Part 3. (first half) – EJmostInf ⊆ mostInformative(mostCompact(W<I,J>))

In order to prove the claim, we need to prove that any block of facts wε ∈ EJmostInf belongs also to

mostInformative(mostCompact(W<I,J>))

This amounts to prove that wε is maximal with respect to <, i.e., there exists no witness block w′ such that there is a
proper homomorphism h′ : wε → w′.

The proof is very similar to that of the first half of Part 2. Also in this case we proceed by way of contradiction. We
call ε the expansion such that J |= a(mostInf (ε)) = wε, for some assignment a. Notice that, by construction of mostInf (ε),
any assignment such that J |= a(mostInf (ε)) is also such that J |= a(mostComp (ε)); as a consequence, by Lemma 11, we
know that a is invertible.

Assume that there exists a witness block w′ in mostCompact(W<I,J>) such that there exists a proper homomorphism
h′ : wε → w′. In this case, we know by Part 2 of the proof that there exists an expansion ε′ and an invertible assignment
a′ such that J |= a′(mostComp (ε′)). Also, since h′ is proper and a, a′ are invertible, by Lemma 9 we know that there is a

proper formula homomorphism hf
′

of χ(x1, y1) into χ′(x′1, y
′
1). This means that mostInf (ε) has the following form:

mostInf (ε) = mostComp (ε) ∧ ¬∃x′1, y′1 : (mostComp (ε′) ∧ equalhf ′(x1, x
′
1)) ∧ ...

It follows that J 6|= a(mostInf (ε)). In fact, equalhf ′(a(x1), a′(x′1)) evaluates to true by Lemma 10. This means that it is
not possible that wε ∈ EJmostInf , i.e., we have reached a contradiction. This proves the claim.

Part 3. (second half) – mostInformative(mostCompact(W<I,J>)) ⊆ EJmostInf
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In order to prove the claim, we need to show that, for any witness block w that belongs to

mostInformative(mostCompact(W<I,J>))

it is the case that w ∈ EJmostInf . The proof is very similar to that of the second half of Part 2. We know from Part 1 of
the proof that there exists an expansion ε and invertible assignment a such that J |= a(ε(x1, y1)) = w. We need to prove
that J |= a(mostInf (ε)).

Again, this is done by way of contradiction. Assume J 6|= a(mostInf (ε)); there must be some expansion ε′ such that

there is a proper homomorphism hf
′

of χ(x1, y1) into χ′(x′1, y
′
1), for some assignment a′, J |= a′(mostComp (ε′)), and a, a′

are such that equalhf ′(a(x1), a′(x′1)) evaluates to true.
Consider now w′ = a′(χ′(x′1, y

′
1)). Based on Lemma 8, we know there must be a homomorphism h′ : w → w′. We

want to show that h′ is proper. By Lemma 11, we know that a′ is invertible. Since a′ is invertible, by Lemma 8, we know
that h is proper, and therefore w < w′. But this is not possible, since w is maximal with respect to <.

This proves the claim and concludes the proof. �

B.4 Proof of Theorem 3

Theorem 3 Given a M = (S,T,Σst), and an isomorphism-invariant skolemization strategy, skol, ΣcoreM,skol is a core
schema mapping for M.

Proof: Recall that:
ΣcoreM,skol = finalRew (normalize(ΣexpM,skol))

In order to prove the claim, we need to show that, given a source instance I , the result of the chase of ΣcoreM,skol over I is
the core universal solution for M over I , J0, i.e.:

Jchase = ΣcoreM,skol(I) ∼= J0

We shall make use of the strong connection between the two possible strategies suggested in the paper to generate the
core: the two-step one, and the single-step one that uses source rewritings. More specifically, recall that, as an alternative
to chasing ΣcoreM,skol, we might generate the core following a two step process. Based on Theorem 2, we could first generate

an isomorphism-free solution, J , by standard chasing Σst on I , and then could chase the following set of full rules, ΣfullM ,
one for each expansion ε ∈ expansions(M):

ΣfullM = {rfullε .∀x1, y1 : mostInf (ε)→ χ(x1, y1) | ε ∈ expansions(M)}

Notice how this double-exchange approach uses a composition of s-t tgds plus full FO-rules. Our strategy in the proof is to
show that chasing the skolemized FO-rules in ΣcoreM,skol generates the same result using a single exchange. However, there is
a significant difference in structure among these two sets of rules: the rules in ΣcoreM,skol are the product of a normalization
step and of a further rewriting step, according to finalRew ().

We shall therefore apply the same transformations also to ΣfullM ; in doing this, despite the fact that these rules only
contain universally quantified variables, in each rule we shall treat the variables in y1 as existentially quantified. This
will generate the following set of full FO-rules:

ΣnormM = finalRew (normalize(ΣfullM ))

As a first intermediate result, we now want to prove that this normalization and this final rewriting do not have impact
on the generation of the core.

Lemma 12 Given an isomorphism-free solution J , the result of chasing the two sets of rules ΣfullM and ΣnormM over J is
the same.
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Proof: Let us call J0 the result of chasing ΣfullM , and J∗ the result of chasing ΣnormM over J .

Being ΣfullM a set of full dependencies, the normalization procedure generates a set of logically equivalent new de-
pendencies. Since finalRew () only adds negated atoms to the premises of these equivalent dependencies, we know that
J∗ ⊆ J0. We now want to prove that it is also the case that J0 ⊆ J∗.

Consider a witness block w in J0. Assume w is generated by a rule of the form:

rfullε . ∀x1, y1 : mostInf (ε)→ χ(x1, y1)

and assignment a.
Consider a(mostInf (ε)). If χ(x1, y1) is normalized, w also belongs to J∗. Assume χ(x1, y1) is not normalized. Then,

let us consider each of its connected components. Each component ϕi(xi, yi) generates a rule of the form

rfullε,i . mostInf (ε)→ ϕi(xi, yi)

We want to prove that all sets of facts corresponding to instances of the connected components,
⋃
i{a(ϕi(xi, yi))} belong

to J∗. There are two possible cases:
(a) J |= a(finalRew (rfullε,i )(x1, y1)), and therefore a(ϕi(xi, yi)) belongs to J∗ as well;

(b) J 6|= a(finalRew (rfullε,i )(x1, y1)); this means that there must be a different rule rfullε′,j with a conclusion ϕ′(x′, y′)

such that there is a proper formula homomorphism hf of ϕ(xi, yi) into ϕ′(x′, y′), and some assignment a′ such that: (i)
J |= a′(mostInf (ε′)), and (ii) the formula equalhf (a(xi), a

′(x′)) evaluates to true. Suppose, without loss of generality,

that rfullε′,j is maximal with respect to proper homomorphisms, i.e., its conclusion does not have homomorphisms into

other rule conclusions. Notice that, since J |= a′(mostInf (ε′, j)), it must be the case that a′(ϕ′(x′, y′)) also belongs to J0;

moreover, since we assume that rfullε′,j is maximal with respect to <, it also belongs to J∗.

In this case, by Lemma 8, we know there exists a homomorphism h of a(ϕ(xi, yi)) into a′(ϕ′(x′, y′)), and that
both belong to J0. Let us consider the image of a(ϕ(xi, yi)) according to h: h(a(ϕ(xi, yi))). It is possible to see that
a(ϕ(xi, yi)) = h(a(ϕ(xi, yi))), i.e., h must be the identity mapping.

In fact, assume a(ϕ(xi, yi)) 6= h(a(ϕ(xi, yi))). In this case, consider the original witness block w ∈ J , of which
a(ϕ(xi, yi)) is a connected component. By taking the other connected components, and adding to them h(a′(ϕ′(x′, y′)))
it would be possible to construct a new witness block w′ that also belongs to J0, such that w 6⊆ w′, i.e., w is not an
induced witness block of w′, and there exists a homomorphism of w into w′. Notice that this homomorphism is either
proper, or compacting, or an isomorphism. But this obviously contradicts the hypothesis, since by definition of J0 w is
not an induced block, it cannot have isomorphic witness blocks, and is maximal with respect to ≺ and <. Since h is the
identity mapping, then a(ϕi(xi, yi)) belongs to J∗.

This proves that J∗ contains all connected components of w, and therefore w itself. �

We are now ready to correlate the results of the two sets of rules, ΣcoreM,skol, and ΣnormM . We call premise (r) the premise
of rule r. For each expansion ε, we know that, for each rule rcε,i ∈ ΣcoreM,skol of the form:

rcε,i. premise (rcε,i)→ ϕskol(x1)

there is a corresponding rule rnε,i ∈ ΣnormM of the form:

rnε,i. premise (rnε,i)→ ϕ(x1, y1)

We concentrate on the two queries:
Qpremise (rc

ε,i
)(I) and Qpremise (rn

ε,i
)(J)

We now want to prove the following Lemma.
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Lemma 13 Consider an expansion ε ∈ expansions(M), a source instance I and a canonical universal solution J ∈
USolM(I ). There is a block of facts

premise (rnε,i)(a(x), b(y)) ∈ Qpremise (rn
ε,i

)(J)

if and only if there is a block of facts
premise (rcε,i)(a(x)) ∈ Qpremise (rc

ε,i
)(I)

Proof: Consider expansion ε. It is possible to see that, by construction, a block of facts of the form ε(a(x1), b(y1)) may
exist in J if and only if a block of facts generated by sourceRew (ε) – i.e., a block of the form sourceRew (ε)(a(x1)) – exists
in I . In fact, recall that

ε = χl(x1, y1) ∧ ∃x2, y2 : (ψl(x2, y2)
∧

equalhf ε(x1, x2))
sourceRew (ε) = premise (χl(x1, y1)) ∧ ∃x2 : (φ(x2)

∧
equalhf ε(x1, x2))

Let us consider the three parts of each formula. Recall that any assignment c such that J |= χl(c(x1), c(y1)) must be
a canonical assignment. For χl(a(x1), b(y1)) to be contained in J , each fact Rl(a(xi), b(yi)) in it must be contained in
J . But, by definition of canonical universal solution, this may happen only if each premise of the corresponding tgds is
satisfied by a, i.e., if premise (χl(x1, y1))(a(x1)) is contained in I .

Consider now the existentially quantified subformula. Obviously there exist assignments a2, b2 such that J |=
ψl(a2(x2), b2(y2)) if and only if I |= φ(a2(x2)). Note also that the two sets of equalities are exactly the same. Therefore
we may conclude that a block of facts of the form ε(a(x1), b(y1)) may exist in J if and only if a block of facts of the form
sourceRew (ε(a(x1))) exists in I .

A very similar argument holds for mostComp (ε) and sourceRew (mostComp (ε)).
Similarly for mostInf (ε) and sourceRew (mostInf (ε)). Since the two sets of rules are normalized in the same way, the

claim also holds for the final rewritings generated by finalRew (). �

Based on Lemma 13, we have established a very close connection between expansions and their source rewriting. More
specifically, given an isomorphism-free solution J , consider the two sets:

Jchase = ΣcoreM,skol(I ) J0 = ΣnormM (J )

We can show that the two instances are equal up to isomorphisms. In fact, consider a rule rcε,i ∈ ΣcoreM,skol, and the
corresponding rule rnε,i ∈ ΣnormM , as defined above.

According to Lemma 13, the premise of rcε,i is satisfied by I for an assignment a if and only if the premise of rnε,i is
also satisfied by J for assignment a on x1. Let us consider the facts generated by firing the two rules. We know that
ϕ(a(x1), b(y1)) is a fact block in J0, while ϕskol(a(x1)) is a block of facts generated by properly assigning values to Skolem
terms.

However, the two blocks are isomorphic. In fact, we know that ϕ(a(x1), b(y1)) is a canonical block, and therefore it has
been generated by the standard skolemization strategy over ϕ(a(x1), b(y1)). But, by hypothesis, the chosen skolemization
strategy, skol, is isomorphism-invariant, and therefore it produces blocks of facts isomorphic to those produced by the
standard skolemization strategy.

Moreover, we know that, since J is isomorphism-free, J0 contains exactly one isomorphic copy of each witness block.
But this is true also for Jchase, since skol is isomorphism-invariant, and therefore by definition isomorphic instances of
rule conclusions collapse into a single representative.

Since we have proven that Jchase ∼= J0, this concludes the proof. �
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B.5 Proof of Theorem 4

Theorem 4 Given a M = (S,T,Σst) such that Σst does not contain self-joins in tgd conclusions. Given a source
instance I , call J a canonical universal solution for M over I , and J0 the core universal solution for M over I . Then:
(1) for any fact block bf in J , either all tuples in bf belong also to J0, or none of them does;
(2) for each tgd m ∈ Σst whose conclusion has size k, all witness blocks in W<I,J>

m have size exactly k.

Proof: Let us first prove item 1 of the claim. Assume there is a fact block bf ⊆ J such that bf 6⊆ J0 but at least one tuple
in bf belongs to J0. Let us first note that, since bf must contain more than one tuple, it therefore contains at least one
null value. Call bf0 the proper subset of bf that belongs to J0. Call N any null value in bf − bf0, and Ri(tN ), Rj(tN0)
two tuples that contain N , such that Rj(tN0) ∈ bf0, Ri(tN ) ∈ bf − bf0. Notice that, since M does not contain self-joins
in tgd conclusions, it must be the case that Ri 6= Rj .

Since J0 is the core of J , there must be an endomorphism h : J → J0. Consider the image of bf according to h,
h(bf ). It is possible to see that Ri(tN ) 6∈ h(bf ). In fact, since Ri(tN ) ∈ bf but Ri(tN ) 6∈ bf0, it must be the case
that h(Ri(tN )) 6= Ri(tN ). This, in turn, means that h(N) 6= N . In fact, Ri(tN ) cannot be mapped to any other tuple
Rj(tN0) ∈ bf0 that contains N , since we know that Ri 6= Rj . Therefore, Ri(tN ) must be mapped to a tuple that not
contains N , and h(N) 6= N .

Consider now a tuple Rj(tN0) ∈ bf0. Since h(N) 6= N , it must be the case that h(Rj(tN0)) 6= Rj(tN0). But this
means that J0 contains two different tuples, Rj(tN0) and h(Rj(tN0)), and therefore it has an endomorphism into its
proper subset J0 − {Rj(tN0)}. As a consequence, J0 is not the core universal solution. This contradicts the assumption
and proves the claim.

Let us now prove item 2. Assume there is a tgd m with conclusion ψ(x, y) of size k such that there exists a witness
block w ∈ W<I,J>

m of size k′ 6= k. By definition of witness block, we know that it must be k′ ≤ k. Therefore, it must
be the case that k′ < k. But this is clearly impossible, since any witness block for m must be an instance of ψ(x, y)
according to some assignment c. Since ψ(x, y) does not contain self-joins, for any assignment c, c(ψ(x, y)) is a collection
of facts each belonging to a different relation and therefore has size exactly k, which contradicts the assumption. This
concludes the proof. �
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