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Abstract

A hash functioris a mapping from a key univerdé to a range of integers, i.éh; U — {0,1,...,m- 1}, wheremis the range’s
size. Aperfect hash functiofor some se§ C U is a hash function that is one-to-one 8nwherem > |S|. A minimal perfect hash
functionfor some se§ C U is a perfect hash function with a range of minimum size, ire=, |S|. This paper presents a construction
for (minimal) perfect hash functions that combines theoattanalysis, practical performance, expected lineastantion time
and nearly optimal space consumption for the data struckmen keys andn = nthe space consumption ranges froi62a to 3.3n
bits, and form = 1.23n it ranges from 195n to 2.7n bits. This is within a small constant factor from the themadtlower bounds of
1.44n bits form = n and 089n bits form = 1.23n. We combine several theoretical results into a practicaitiem that has turned
perfect hashing into a very compact data structure to sblgartembership problem when the key Seis static and known in
advance. By taking into account the memory hierarchy we ocastcuct (minimal) perfect hash functions for over a biilieeys in
46 minutes using a commodity PC. An open source implementafi the algorithms is available Bttp://cmph.sf .net under
the GNU Lesser General Public License (LGPL).
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1. Introduction

Perfect hashing is an elementary problem in computer sei€fte goal is to find a collision free hash function for a gigtatic
key set. Perfect hash functions are used for mem#igient storage and fast retrieval of items from static setshss words in
natural languages, reserved words in programming languaigi@teractive systems, item sets in data mining techsiflL@, 14],
routing tables [43], sparse spatial data [35], and large maps [18]. Perfect hashing methods can be used to constdataa
structure to compactly store a static key set that suppoeses to locate keys in one probe. For applications witly sntcessful
searche's a key is simply represented by the value of a perfect hasttibmand the key set is not needed to locate information
related with the key. For applications with unsuccessfatalees, the key set has to be represented somehow to halidierns.

There are many applications where the search space ictedtto keys with successful searches. One good exampleecan b
found in the deduplication of objects in a file system, whickimtains an index that maps each unique object to a diskitocat
a block that holds it. At a given point in time, the file systenows all object identifiers in the system. Therefore, a meti@sh
function can be used to locate the objects on disk withouh#®zl to keep object identifiers in main memory.

In a garbage collector system, it first marks all objects tiaat be possibly reached; second, it frees all unreferensjedts
that have not been marked. A deduplicated file system, likeDthta Domaif File System [49] (DDFS), stores tens of billions
of objects, each one identified by a hash value of at least Bsbyor, say, 100 billion objects, we need approximatedp@
gigabytes of internal memory to keep track of the objectsweéler, by leveraging the index DDFS maintains, which haskéye
space a perfect hash function needs to be built for, we cdd &umore compact data structure. Such a data structure ipased
of two parts: (i) the perfect hash function; and (ii) a bitmeged to indicate whether a given object is being referentedtore
such a data structure we need to store both the function anuitthap. The bitmap size depends on the function range. feéger
hash function, like the one we describe in this paper, pldys@amental role in terms of bringing down the memory respuients.
Fornkeys, we are able to build functions that have a range ofreizel.23n. The space consumption for the functions ranges from
1.95 to 27 bits per key. The bitmap would require?B bits per key. Hence it is possible to bring the space rements for the
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garbage collector from,Q00 gigabytes to anywhere between 37 and 46 gigabytes. Tperiamt observation here is the fact that
the index has the entire key space and therefore by havingextosone mapping one does not need to keep the keys in memory

1.1. Notation and lower bounds

In this paper, &eyis a bit string of maximum length bits. Akey set Ss a subset of &ey universe U= {0, 1}* of sizeu = 2.
A hash functioris a mapping from a key univerdé¢ to a range of integers, i.éh; U — {0,1,...,m- 1}, wheremis the range’s
size. Aperfect hash functioPHF), for some se® C U, is a hash function that is one-to-one nwherem > |S|. A minimal
perfect hash functiofMPHF), for some se§ C U, is a perfect hash function with a range of minimum size, ire= |S|. We
present in Appendix A some of the symbols and acronyms useddhout the paper.

The theoretical lower bound for a perfect hash function deon was first studied in [27, 37] and a simpler proof wasia
given in [44]. Consider Mehlhorn’s Theorem 111.2.3.6 (agpented in [37] as a starting point to derive theoreticabldwounds for
the space consumption of the PHFs and MPHFs’ description.

Theorem 1.1. [37][Theorem 111.2.3.6 (a)] Let um, n be non-negative integers. Given a key universe U of sizeclassH of
functions h: U - {0,...,m- 1} is called(u, m, n)-perfect if for every SC U, |S| = n, there is he H such that h is perfect for S.
Then
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Our focus in this paper is the case whene< 3n. For this constraint, applying Stirling’s approximatigh~ x*e™* v2rx to

log|H[® yields an information theoretical lower bound for a PHifF< 1.23n) of (m—n+ 3)log(1- &) - (u-n+ 3)log(1- 1)
and for an MPHF 1 = n) of (n—u - $)log(1- 2) - $log(2m). Consideringu > n, this gives a value of approximatelyg®n

u

bits for PHFs and approximately44n bits for MPHFs.
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1.2. Contributions

In our algorithms we use the well-known idea of partitionthg input key set into small buckets. When the key set fitsaptir
in the internal memory there is no need for partitioning ardreat it as a single bucket. This leads to an algorithm thetaies on
internal random access memory, which is referred tBAM algorithmfrom now on. When the key set does not fit in the internal
memory we have to do the partitioning and optimize our atparifor 10 operations. This leads to an external memory dlgor,
which is referred to aEM algorithmfrom now on.

The RAM and EM algorithms combine practical performancegeeted linear construction time and nearly optimal space
consumption for the resulting data structure. The engingdo combine several theoretical results into a pracscdlition has
turned perfect hashing into a very compact data structuslice the membership problem when the key universe is static
known in advance. Perfect hashing is the data structuretbaides the best tradefdetween space usage and lookup time when
compared with other open addressing and chaining hash sshenndex static key sets [7].

The space consumption of our algorithms to store the reguftinctions depends on the relation betweeandn. Form =
1.23n, the space consumption is approximateB5h bits for the RAM algorithm and.Zn bits for the EM algorithm. Fom = n, the
space consumption is approximatelg2h bits for the RAM algorithm and.3n bits for the EM algorithm. We remark that although
the EM algorithm generates functions whose space consomigtd(n) bits, the hidden constant in the asymptotic notation negui
thatn be in the order of hundred of millions to achieve the spacewmption described above. In practice this is not a lindtati
because for smaller sets the RAM algorithm should be uséeralhan the EM algorithm which is designed for large sets tha
cannot be processed in internal memory.

The RAM algorithm works on acyclic random graphs given byction values of uniform hash functions on the keys of an input
setS (see Section 2 for the definition of uniform hashing). Theidébasing perfect hashing on acyclic random graphs was used
by Majewski, Wormald, Havas and Czech [36] to solve f@edent problem, i.e., to construct order-preserving (mat)mperfect
hash functions — given any two arbitrary keyy € S such thaix < y, a perfect hash functiomis order-preserving ifi(x) < h(y).

Due to the order-preserving property the resulting fumsicequireQ(logn) bits per key of space. Most of the cases where a
hash function is used the order-preserving property isemtired. The algorithms presented in this paper constanctions that
achieve a space usage@fl) bits per key rather tha@(log n) bits per key.

The EM algorithm uses a number of techniques from the likeeato allow the construction of PHFs or MPHFs for sets on
the order of billions of keys. There are manyfdient hash functions from the literature that may be usetiérconstructions.
The important insight here is that we split the problensimall buckets using the split-and-share technique [21, 22]. fi&ssboth
practical and theoretical implications. From the theaadpoint of view we show that by using a technique to simuiaitg random

3Throughout this paper we denote jogas logx.



hash functions on the small buckets we are able to proveltibd M algorithm works for every key set with high probabiligrom
the practical point of view, we create buckets that are seralugh to fit in the CPU cache, resulting in a significant spp€h
processing time per element) compared to other methods.

We demonstrate the scalability of the EM algorithm by reijpgrhow it is set to work in an implementation that can constru
an MPHF for over a billion keys in 46 minutes on a commaodity Pi@a 186 gigahertz Intel Core 2 processor with 1 gigabytes of
main memory and a L2 cache of 4 megabytes, running Linux ¢ipgraystem version.8. The popularity of the C Minimal Perfect
Hashing Library kttp://cmph.sf.net), which is an open source implementation of the algorithescdbed herein, indicates
how useful the results are in practice. The library has beemtbaded more than®00 times by May 2012, and is part of Ubuntu
and Debian — two popular Linux distributions.

Preliminary partial results of this paper appeared in [8, I0[8] we describe the RAM algorithm, but both the desddptand
the analysis of the algorithm are sketchy and incompletflOhwe describe the EM algorithm. We present in this papgamificant
improvements and extensions on those results. For the Rgbtitim, we now provide a full description with enough distéd
easily derive an ficient implementation and present a more detailed analydisne and space complexities of the important
phases of the algorithm. For the EM algorithm, we have (iestghed the algorithm to make it 40% faster and to construct
functions that are 15% more compact. Both are a direct careseg of using a random acyclic hypergraph with edges coingec
three vertices instead of a random acyclic graph with edgeeexting two vertices; (ii) showed how to engineer a farafihash
functions that &iciently simulates uniform hash functions in terms of spag&ge on small buckets of keys; and (iii) done a new
set of experiments to show théieiency of this new version of the EM algorithm.

1.3. Road map

In Section 2 we discuss the related work. In Section 3 we ptebe RAM algorithm. In Section 4 we describe the hash
functions used in the EM algorithm. In Section 5 we preseatBEM algorithm. In Section 6 we present a heuristic version of
the EM algorithm (HEM algorithm). In Section 7 we show the esmental results for the RAM and EM algorithms. Finally, in
Section 8 we present the final remarks and conclusions.

2. Related Work

In this section we review some of the most important thecaétipractical and heuristic results on perfect hashingecz
Havas and Majewski [17] provide a more comprehensive sunvely 1997. There is a gap between theory and practice among
theoretical and practical minimal perfect hashing methdth& aim of this section is to discuss the existent gap antoatypes of
algorithms available in the literature. For this we needdbwecepts of uniform and universal hash functions.

2.1. Uniform versus Universal Hash Functions

The construction of minimal perfect hash functions usuabgs functions chosen uniformly from a fixed famity of hash
functions. To analyze our results we use two popular fasiifiat have also been used to analyze many other hashing eslrem
the past: (i) uniform hash functions and (ii) universal sksof hash functions.

A uniform hash functioiis a function that is uniformly chosen at random from the $etlan” possible hash functions mapping
from U to {0,...,m— 1} and distributes all keys from the univerSeindependently and uniformly ovg®,...,m— 1}. Various
adaptive hashing schemes presume that a hash functionevtdircprescribed properties can be found in constant ¢éxgeime.
This holds if the function is chosen uniformly at random fralipossible functions until a suitable one is found, butmetessarily
if the search is limited to a smaller set of functions. The ani®f space to represent a uniform hash family is at ledsgm
bits, which usually exceeds the available storage in praciihis situation led Carter and Wegman [12] to the concephiversal
classes of hash functions.

Definition 2.1. A universal class of hash functioissa set of hash functions with the property that if b +— {0,...,m—- 1} is
chosen at random from then for all xy € U with x # y we have Ph(x) = h(y)) < 1/m.

Definition 2.2. A strongly universal class of hash functions or pairwise jrahelent class of hash functioissa set of hash
functions with the following property. For allxx, € U such that x # x; and a,a, € {0,...,m— 1}, if one randomly chooses a
functionht U ~ {0,...,m- 1} from H, then the following holdsPr[h(x;) = a; and H(x,) = a,] = 1/n?.

Fortunately, for many applications weaker randomnesseptigs (such as pairwise independencd)icel [2]. The split-and-
share approach presented in [21, 22] allows the construdfidciash functions that behave as uniform hash functionsewef
thann keys (e.g., those in one bin). In this paper we make use ofgliteasid-share approach to simulate a class of uniform hash
functions so we can show that the EM algorithm can be set t& wih high probability on any key set.



2.2. Theoretical Results

In this section we review some of the most important thecaétiesults on minimal perfect hashing, which do not assumae t
uniform hash functions are available without any extra eéstpace. Our algorithms, as well all other algorithms nwemed in
this paper, adopt th&/ord RAMmodel of computation [28], in which an element of the uniedysfits into one machine word and
arithmetic operations and memory accesses have unit costs.

Fredman and Kondls [27] prove that at leastlog e + log logu — O(log n) bits are required to represent an MPHF, provided that
u > n” for somea > 2. Mehlhorn [37] shows that the Fredman and Késhbound is almost tight by providing an algorithm that
constructs an MPHF that can be represented with at mloste + log logu + O(log n) bits. However, Mehlhorn’s algorithm is far
from practical because its construction and evaluatioe tne exponential in.

Schmidt and Siegel [46] propose the first algorithm to carcstan MPHF with constant evaluation time and descriptiae si
O(n + log logu) bits. From a practical point of view, Schmidt and Siegelgoaithm is not attractive. The scheme is complicated
to implement and the constant of the space bound is largea $et ofn keys, it needs at least A®its to store the hash function,
which means a space usage similar in practice to the bestnsshesingO(nlogn) bits. Albeit it seems that Schmidt and Siegel
aim to describe their algorithmic ideas in the clearestiptessvay, not trying to optimize the constant, it seems haridiprove the
space usage significantly.

More recently, Hagerup and Tholey [29] came up with the Hesbitetical result we know of. Their MPHF can be evaluated
in O(1) time and stored inloge + log logu + O(n(log logn)?/ log n + log log logu) bits. The construction time ©(n + log logu)
using O(n) words of space. In spite of its theoretical importance, ¢tag and Tholey’s algorithm is not practical either, as it
only works whem is large. Fom < 250 the scheme is not well-defined, as it relies on splitting téy $et into buckets of size
i < logn/(21loglogn). If we fix this by letting the bucket size be at least 1, theoKatis of size one will be used for < 23,
which means that the space usage will be at least (3 logolpg 7)n bits. For a set of a billion keys, this is more than 17 bits per
element. Thus, the Hagerup-Tholey MPHF is not spdfieient in practical situations. While we believe that thegalthm has
been optimized for simplicity of exposition, rather thamstant factors, it seemsfiicult to significantly reduce the space usage
based on their approach.

2.3. Practical Results

We now describe some of the main practical results upon wiichwork is based. They are characterized by simplicity and
provably low constant factors.

The first two results assume uniform random hash functiorizetavailable without any extra cost of space (i.e., the tgsul
assume uniform hashing; in practice, universal classeasi functions are used instead, as a heuristic). Majewstimaid,
Havas and Czech [36] propose a family of algorithms to coestMPHFs based ornruniform hypergraphs (i.e., with edges of
sizer). The resulting functions can be evaluateddfl) time and stored i®(nlogn) bits. Botelho, Kohayakawa and Ziviani [6]
improve the constant involved in the space consumption@ftgorithm presented by Czech, Havas and Majewski [16]tHmut
space consumption is sti(nlogn) bits. In both cases, the MPHF can be constructed in exp&fextime. The authors of [6]
gave experimental evidence that their construction praediorks well in practice.

The principle of our RAM algorithm was described by Chazédléian, Rubinfeld, and Tal [15] in a work on “Bloomier Filts”,
somewhat hidden, without reference to perfect hashing atidne connection to acyclic hypergraphs. The maiiiedence to the
RAM algorithm is that we do recognize the connection to dcy@ndom hypergraphs, which allows us to provide a neatisolu
and a tight analysis to optimize the constant of the spaageusansidering implementation aspects, as well as a waynstieating
MPHFs from those PHFs.

Pagh [41] proposes an algorithm to construct MPHFs of thefa(x) = (f(X) + d[g(x)]) mod n, wheref andg are randomly
chosen from a family of universal hash functions, @hi$ a vector of “displacement values” used to resolve coltisicaused
by the functionf. The evaluation of the function is optimal in terms of random@mory accesses once it does only one, but the
space usage is (2 e)nlogn bits for a real value > 0. Dietzfelbinger and Hagerup [20] improve Pagh'’s resultégucing the
space usage to ({ e)nlogn bits. Woelfel [48] shows how to decrease the space usa@¥rttog logn) bits asymptotically, still
with a quite simple algorithm. However, there is no empir@adence on the practicality of this scheme. BelazzouBotglho
and Dietzfelbinger [4] show how to decrease the space usateef, toO(n) bits. For certain parameter settings the algorithm
constructs PHFs and MPHFs slightly more compact than the presented in this paper. However, the algorithm tradesesioa
evaluation time. The fastest function constructed by tgerithm in [4] carries out at least four random memory acessghereas
the RAM algorithm constructs functions that require up tee¢h Therefore, due to the increasing gap between CPU speked a
memory speed, the functions constructed with the RAM algoriare at least 25% faster. This can be clearly seen in [4idBec
4.1] where a thorough comparison between the algorithmiséng

2.4. Heuristics

In this section we consider algorithms designed for speaffiglications where, in general, just experimental evidsraf the
behavior of the algorithms are provided.
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Fox, Chen and Heath [25] and Fox, Heath, Chen and Daoud [28fpt several algorithms for constructing MPHFs that in
experiments require between 2 and 8 bits per key to be stddedever, it is theoretically shown in [17, Section 6.7] thia¢
construction algorithms have exponential running timesxpectation. Also, lookup times are constant but there iguarantee
that the number of bits per key to store the function is carisian increases.

The work by Lefebvre and Hoppe [35] has the same issue of wetging any guarantee that the storage space of the regultin
functions will be a constant number of bits per key. The argliesigned a method to specifically represent sparse Isgati
and the resulting PHFs require more than 3 bits per key todredst In the same trend, Chang and Lin [13] and Chang, Lin and
Chou [14] design MPHFs tailored for mining association sided traversal patterns in data mining techniques.

3. RAM Algorithm

The RAM algorithm is a randomized algorithmlodis Vegastype. The RAM algorithm works on a random acyclic hypergraph
given by uniform hash function values on an input key Set U, |S| = n. A hypergraphis the generalization of a standard
undirected graph where each edge connects 2 vertices. A hypergraph iacyclic if and only if some sequence of repeated
deletions of edges containing at least 1 vertex of degreelti/a hypergraph without edges [17, page 103].

We now give the intuition behind the RAM algorithm. The aligfom has three steps:

1. We start withV = {0,...,m - 1}, regarded as vertices of arpartite hypergraph whema = [c(r)n] for certain numbers
c(2),¢(3),c(4),..., defined later on, and hash functiong, ..., h;,_; defined as follows. Given an integer= [m/r] and
functionsh’ : U - {0,...,n -1}, 0 <i <, that are fully random or uniform o8 c U and can be evaluated @(1) time,
we denoteeach; : U — {ixn,...,(i+1)xn—-1}as:

h(x) = W(X) +ix7. (1)

Ther hash functions maf$ into r disjoint partitions of the vertex set. This way each key S gives rise to an edge
e(X) = {ho(x),...,h_1(X)}. Vertex and edge sets form the random hypergr@ph This part of the algorithm is called
Mapping Step

2. If G, is acyclic, one can proceed as follows:

e Use a linear equation to calculate an indgg < {0, ...,r — 1} from x defined as follows:

i =( 2 9(hi(x)) modr,

O<j<r
where a functiorg: V — {0,...,r — 1} has to be found to satisfy the conditions in the next stepsactian g is
implemented as an array containing the valg@s, v € V and hence we denotgv) = g[v] from now on.

e To each key € S, assign an elemeti, (x) of e(x) such that the assignmext— h;(x) is one-to-one o1®. For this
reason we call this stefissigning Step

e Associate each key € S with a positionh(x) in the hash table by an one-to-one mapging ~ {0,...,m- 1} (soh
is a perfect hash function), with the additional properitti{x) € e(x). This is possible as a direct consequence of the
definition of acyclicity. To calculatb(x) from x one has to find the indexx) € {0, ...,r — 1} with:

h(X) = hi(X).

3. We compress the range of functiofrom {0, ..., m-1} to {0, ..., n— 1} to obtain a minimal perfect hash function. The com-
pression technique, referred torasking, uses a well-studied primitive in succinct data structtines can be implemented
in O(1) time [40, 42, 45]. At the beginning of the assigning stepaensideg[i] = r, for 0 < i < m-1. A valueg|i] is
assignedf g[i] #r,forO<i<m-1.

Definition 3.1. The functiorrank :V - {0,...,n— 1} computes the number of values assigned before a given veiriax
which is uniquely associated with a ke85 . Thatisrank{) = [{i e V : i < v, d[i] # r}|.

We use theank functionto obtain a minimal perfect hash functipras follows:

u(X) = rank((x)).
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Figure 1: (a) The mapping step builds frdh= {jan feb,man a random acyclic 3-partite hypergraph with = 6 vertices andh = 3 edges, and a lis{ of
edges obtained when we test whether the hypergraph is @cyi)i The assigning step builds a perfect hash function f&otm {0, 1, 2, 3, 4, 5}, being represented
by an arrayg : {0,1,2,3,4,5} — {0,1,2,3} to uniquely assign an edge to a vertex. (c) The ranking stddsbthe data structure used to compute function
rank: {0,1,2,3,4,5} — {0,1, 2} in O(1) time.

The data structure to store the PHFEonsists oty, ..., h._; and an array that contains the valggs), v € V. We show in
Section 3.5 that it is possible to get by wit{r)[log(r)] bits per key to store the array The value that minimizes the cost per key
isr = 3. The MPHFu needs m additional bits of space, @ € < 1, for the function rank.

We now illustrate the three steps of the RAM algorithm. Falirgives an overview to construct a PHF for a keySet U
containing three English words, i.&,= {jan, feb, mar, based on an-partite hypergraph with = 3.

TheMapping Stepn Figure 1(a) carries out two important tasks:

1. ltassumes thatitis possible to find three fully randonefiams,hy, h; andh,, with rangeg0, 1}, {2, 3} and{4, 5}, respectively,

which corresponds to the three disjoint partitions of theereset{0,1,2,3,4,5}. These functions build an one-to-one
mapping of the key s to the edge sdf of a random acyclic 3-partite hypergra@h = (V, E), wherelV| = m= 6 and|E| =
n = 3. To illustrate the mapping, key “jan“ is mapped to edlgg“jan”), hy(“jan”), ho(“jan™) } = {1, 3, 5}, key “feb” is mapped
to edge{ho(“feb”), hy(“feb”), ho(“feb™)} = {1, 2,4}, and key “mar” is mapped to eddho(“mar”), hy(“mar”), ho(“mar”)} =
{0,2,5}.
We show later in this section that it is possible to obtairhsaitypergraph with probability tending to 1mgends to infinity
wheneverm = [cn] andc > ¢(3). The value ofc that minimizes the hypergraph size (and thereby the amdubitoto
represent the resulting functions)as= ¢(3) ~ 1.23. If an acyclic hypergraph is not obtained, then a new sétrek fully
random hash functions is chosen to construct another hggggrgintil an acyclic one is obtained.

2. Ittests whether the resulting random 3-partite hyp@igi@ontains cycles by iteratively deleting edges conngatertices of
degree 1. The deleted edges are stored in the order of deiet@list £ to be used in the assigning step. The first deleted
edge in Figure 1(a) wad, 2, 4}, the second one w44, 3,5} and the third one wal, 2, 5}. If it ends with an empty graph,
then the test succeeds, otherwise it fails.

The Assigning Stepn Figure 1(b) outputs a PHR represented by, h;, hy and the arrayg storing values from the range
{0,1,2,3}. Given a keyx, the indexi(x) € {0, 1, 2} is obtained by (x) = (g[ho(X)] + g[h1(X)] + g[h2(X)]) mod 3. Next,h; x(X) gives
the positiorh of key xin the table. For instance, consider key “jan” in Figure 1leTidexi (“jan”) = (g[1] +9[3]+9g[5]) mod 3= 0.
Then,h(*jan”) = hyo(“jan”) = 1. Similarly, key “feb” is in position 4 of the table becaug&feb”) = (g[1] + g[2] + g[4]) mod 3= 2
andh(“feb”) = hy(“feb”) = 4, and so on.

The Ranking Stejin Figure 1(c) outputs an MPHF. It uses the function rank. iRstancerank(4) = 2 because the positions 0
and 1 are assigned since the valueg[6f # r andg[1] # r forr = 3.

Before showing the mapping, assigning and ranking stepstiild we need the following definitions.

Definition 3.2. The clasC = Cysm consists of all functions:hU — {0, ..., m— 1} that can be written as

h(x) = (), where (x) = (Z g(hmx))) modr,

O<i<r

where each his as in Eq.(1), and gV — {0, ...,r — 1} is some function that makes a function h a PHF for S.

The clas<C can be referred to as a “class of perfect hash functions™Yfd® andm) in the sense thdbr everysetS of sizen
(not too large}here isa functionh in C that is one-to-one 08.

4A Las Vegas algorithm is a randomized algorithm that alwagslpces correct answers.
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Definition 3.3. The classC, consists of all functiong: U — {0,...,n— 1} that can be written as

(x) = rank(h(x)),
where he Cysmis a PHF and rank is as in Definition 3.1.

The classC, can be referred to as a “class of minimal perfect hash funsti¢for U, S andm) in the sense thdbr everysetS
of sizen (not too large}here isa functionu in C, that is one-to-one 08.

3.1. Construction of a PHF from Clag3

We detail now the mapping and assigning steps of the RAM #hgorto construct a PHF. Figure 2 presents a pseudo code
for the mapping step. It takes a key $and a setH of hash functions that map into disjoint partitions of the vertex set of
a hypergrapl,, and returns an acyclic hypergra@h and the list of edge£. We use an edge-oriented data structure proposed
in [24] to represent hypergraphs, where each edge is ettpliepresented as an arrayovertices and, for each vertexthere is
a list of edges that are incident Yo In line 2 the set of edges of the hypergraphis initialized as empty. The list of edgesis
obtained in line 7 when we test whetl@r is acyclic by iteratively deleting edges connecting vexdiof degree 1. The lisf stores
the deleted edges in the order of deletions (i.e., the firge @ulL was the first deleted edge, the second edgé was the second
deleted edge, and so on.) The following algorithm can dotéss

1. Traverses, and store in a queu® every edge that has at least one of its vertices with degree on
2. Until Q is not empty, dequeue one edge fr@nremove it fromG;, store it in£, and check if any of its vertices is now of
degree one. If it is the case, enqueue the only edge thatiosmitet vertex.

procedure Mapping S, H, G, L)

1. repeat

2 E(Gr) = 0;

3 selecthg, hy,..., h,_1 uniformly at random from#;
4. for each xe S do

5 e = (ho(X).h1(X)....hr-1(x);

6 addEdge G, e);

7. L = isAcyclic(Gy);

8. until E(G;) is empty

Figure 2: Mapping step.

Figure 3 presents a pseudo code for the assigning step.ek thk hypergrap@, and the list of edgeg as input, and returns
the values irg. We first initializeg[i] = r (i.e., each vertex is unassigned) a¥iditedi] = falsg for 0 < i < m- 1. Next, for each
edgee € £ from tail to head, we look for the first vertexbelonging toe not yet visited and keep this information in the indesf
uine. Next, we seg[u] = (j — Xyeenvisitedqvj=true 9[V]) mod r. Whenever we visit a vertaxfrom e we setVvisitedu] = trueif it has
not been visited yet.

rocedure Assigning Gr, £, 9)
. for u=0to m-1 do
Visited [u] = false;
gy =r;
. for i =|£-1to 0do
e= L[i];
sum= 0;
for k=r-1to 0 do
if (nothisited[e[k]])
U= .

10. Visited’[u] = true;
C e

CRNOOTRWNRT

] =K
12. else sum += g[eK]];
13. g[u] = (j —sum) modr;

Figure 3: Assigning step.

Amount of CPU Time for the Mapping Step

In the mapping step presented in Figure 2, line 2 has©@(ktand line 3 has co$d(r) by assuming that each functibne H
can be selected i@(1) time. Itis easy to see that line 5 has dOt). In line 6 a given edgeis inserted irnG, with costO(r) (edge
eis inserted irr lists of incident edges, one for each vertexgjnConsidering thaS| = n thus line 4 has cosd(n) for r = O(1). It
is well known that the test to check whetlt&ris acyclic in line 7 can be implemented®(n) time (see, e.g., [17, 36]). Therefore,
each iteration of the mapping step take@®) time. In the following section we show that the expected banof iterations of the
repeat-until loop that starts in line 1@&(1).
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Expected Number of Iterations for the Mapping Step

In this section we show that the expected number of iteratadrthe repeat-until loop that starts in line 1 of the mappstep
in Figure 2 is bounded by a constant. Since the construcfi@ach hypergrapks, takes linear time and it is possible to choose
ho, ..., hr_1 repeatedly (see Section 4.2), then the pseudo code prdserfiigure 2 has expected linear time to construct an acyclic
hypergraplG,.

We now present the analysis of the algorithm to obtain a ramdoyclicr-partite hypergrapls, = G, (ho, hy, ..., h_1) with n
edges andn vertices with high probability for > 2. We will first analyze the cage= 2 and next the case> 3.

Theorem 3.4. Consider G = (V, E) a bipartite random graph with n edges and m vertices. Them,3#f [cn] holds for ¢> 2, in

the limit when m— oo, the probability that G is a forest (acyclic) tends tBr, = /1 — (%)2

Proor. In this proof, every time we use the word “graph” we mean &bijte random graph”. Consid&>(V,E) = G,,(V,E) a
graph with|V| = 27 = m, and|E| = di = n, whered = n/r is the average degree Gf,,. A random graph is obtained by a stochastic
process where each graph starts with a sat ef2; vertices and at each step one edge is added between twesddite from each
partition) at random. DBierent random graph models producéetient probability distributions on graphs. L&f,,, 0 < p <1,
be the model of all bipartite random graphs with= 27 vertices and th@? possible edges occur independently of each other, each
with probability p. Another closely related model is tig, , » model which assigns equal probability to all bipartite drsvith
exactlym = 2n vertices andh edges. It is well known in the random graph theory that redoltg, , , are equivalent to results for
Gy.nn Whenevem = d/n andn — oo (this is equivalent tan — co and they can be interchangeable), because the expecte&numb
of edges for the graphs @, , would ben?p = n. Then edges are almost surely distinct because there will be ntpteuédges
with probability (72)n/n?", where §)n = n(n — 1)... (7 — n+ 1). In the limit, when; — oo, this probability tends te"4"/2. To get
this we used standard calculus to approximfdt = 1 — x by g(x) = e * for a small reak € (0, 1).

GraphG,,, has no cycles when neither multiple edges nor cycles of esmgth larger than or equal to 4 occur. Ietlenote
the event that the bipartite random graph has no cycles¥mnote the event that it has no multiple edges. Thus, to Zm#fie
proof we need to show that: P& Pr(C N M) = Pr(CIM) Pr(M).

As mentioned above, no multiple edges occur with probgtk1+hl1'f'z/2 asn — oo. We now need to determine the probability of
constructingG,,, with no cycles of even length larger than or equal to 4 givext there is no multiple edges as— co. To build
G, each edge is independently taken at random with probgalpilitom all > possible edges. As there are= 2y vertices, and
each vertex is connected to an averagd etiges, we can conclude that d/n = 2d/m.

Let 7, be the set of cycles of Iengtﬁ ih the complete bipartite gragk,; andJ” = U2, J5 be the set of all cycles. A cycle

in J, can be represented as a sequencd distinct vertices ink,,,. As each cycle can be represented imays by changing

the start point, the cardinality ¢f; is: |52r = %((n)f)z. As each edge i, , is selected independently of the others and with

probability p = % then each cycle if7,; occurs with probability Py(d) = p?.

Let C,i(G,,,) be a random variable that measures the number of cyclesgiiel in a graphG,,,. Let Ce(G,,,) be a random
variable that measures the number of cycles of any evenHdagger than or equal to 4 i6,,,. The probability distributions of
C,i(G,,,) andCe(G,,,;) follow Poisson distributions with parametetg and e, respectively — a detailed proof of this statement is
provided in Appendix B, which has been derived from a sinplarof in [31, Page 16]. These two parameters are defined below

asn — oo.

2d\2 1 1

Agp = Pry(d) X [Tyl = (E) EIA((U)?)Z = 2—rd2r, and @)
_)m A:mlzf:_} _2_}2
Ao %“‘ % < 5In(1—d?) - . ®)

We have used above the Maclaurin’s expan@@l erxr = —% In(1 - X), wherex = d?. Therefore, in the limit whem — oo, the
probability thatG,,, has no cycles of lengthi A > 2, tends to: PCe(G,,,)) = 0) = e = ez n-d)+3c”,

Putting everything together, in the limit whem — oo, the probability thaG,,, is a forest tends to: Rr= ez "-d)+ 3 -3¢ _
V1-d2. Note thatd is restricted to be in the half-open interval 1. AsG,, hasm = [cn] vertices anch = dm/2 edges, then

d = 2/cand we obtain: Rr= /1 - (%)2 forc>2. O

For example, wherr = 2.09 we have Ry = 0.29. This is very close t0.294 — the value we obtained experimentally by
constructing 1000 random bipartite 2-graphs with= 10’ keys (edges).
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A rigorous bound on Rrfor r > 2 is technically dificult to obtain. The heuristic argument presented in [17,0fé® 6.5],
which was rigorously proved in [11] and in [38], also holds fbe randonr-partite hypergraphs considered in this paper. The
proof of Theorem 3.5 is more than five pages long and has arcarteount of mathematical details. For this reason the pnasf
not included in this paper. Instead it has been publishednio@e appropriated forum [9]. For the sake of completenesgresent
a simplified version of Theorem 3.4 in [9].

Theorem 3.5. Consider G = (V, E) an r-partite random hypergraph with » 2, n edges, and m vertices. If sm[cn] holds for

¢ > c(r) where: .
0= {e)) “

Then, in the limit when m» oo, the probability that G is a forest (acyclic) tends tb. In the case & c(r) the probability tends to
zero.

From Theorems 3.4 and 3.5 we can conclude that, under thedfiglice ofc, it is possible to construct a random acyclic
r-partite hypergraph with probability bounded away fromazefhe value oft(r) in Eq. (4) is minimized for = 3 and is in the
open interval (222, 1.23). This is illustrated in Figure 4, which was previouslpoeed in [36]. This means that the random acyclic
r-partite hypergraphs with the smallest number of verticesiowhenr = 3. Forc = 1.23 we obtained experimentally that the
number of iterations to obtain an acyclic hypergr&h= (V, E) is close to 1 (Pris close to 1). In our experiments, we constructed
1,000 random 3-partit&z = (V, E) hypergraphs witm = 10” keys, and of the D00 hypergraphs 998 were acyclic.

o)

Figure 4: Values of(r) forr € {2,3,..., 105

The problems of obtaining random acyctigartite hypergraphs far = 2 and forr > 2 are quite dierent. For = 2, the
probability Pg varies continuously with constant But forr > 2, there is a phase transition whertends toco: there is a value
c(r) such that (i) ifc < c(r), then Pg tends to 0 and (ii) it > c(r), then Py tends to 1. This phenomenon has also been reported
in [36] for randomr-uniform hypergraphs.

We now show that the expected number of iterations of the mgmgiep is bounded by a constant under the right choiag of
according to Theorems 3.4 and 3.5. When a randgartite hypergraph with cycles occurs we abort and rang@mlect a new
tuple of hash functiondhg, hy, ..., hy_1). We can model the number of iterations to obtain a randoroligay-partite hypergrapks,
as a random variablé that follows a geometric distribution. The probability,f obtaining a random acyclicpartite hypergraph
is Q(1) in the limit. Thus, PiZ = i) = Pry(1 - Pr,)' ! and the mean o is 1/ Pr,, which corresponds to the expected number of
iterations to obtais,;. Therefore, as Rris (1), the expected number of iterationgdgl).

Finally, it is important to remark that the two values of st arer = 2 andr = 3. The use of a 3-graph constructs more
compact PHFs and MPHFs at the expense of one more hash fuhgaod one more random memory access. Thus, our best result
in terms of space consumption to store PHFs and MPHFs is$08.

Amount of CPU Time for the Assigning Step

In Figure 3, the for loop that starts in line 1 has cOtn) and the for loop that starts in line 4 has cGgtn). As the number of
vertices inG; is a linear function of the number of edges (ira.= [cn] for some constart), then, forr = O(1), the assigning step
runs inO(n) time.

3.2. PHF Evaluation
Figure 5 presents the pseudo code to evaluate a PHF.



function phf (x, g, r)

l.e= (ho(X) h1(><) ,,,,, hr-1(X));

2. sum= 0;

3. for i=0 to r-1 do sum+= g[€i]];
4. return e[sum modr];

Figure 5: PHF evaluation.

Amount of CPU Time to Evaluate a PHF

The cost to evaluate the PHF presented in Figure®i$. The practical instances are foe 2 andr = 3 and then the cost to
evaluate the PHF i©(1).

3.3. Construction of an MPHF from Clasg3,

We now detail the ranking step of the algorithm to construckPHF. The function rank is used to compress the range of the

PHFs in clas® from {0,...,m- 1} to {0,...,n — 1} to obtain a clas€, of MPHFs. For the implementation of the functicank

we use a simple andiecient algorithm from [42]. The function rank can be compute®(1) time (see, e.g., [40]). The algorithm
uses two tables: rankTable amd The table rankTable explicitly stores thenk of everykth index, wherek = [log(m)/e], using

€ m additional bits of space, for & € < 1. The largek is the more compact is the MPHF, and the users can trédspace for
evaluation time by setting appropriately in the implementation. We use valueskftirat are powers of two (i.ek, = 2 for some
constanby) in order to replace the expensive division and modulo dersby bit-shift and bitwise “and” operations, respeelyw
Figure 6 presents a pseudo code to construct the rankTéinbg t@s inputg andk.

procedure GenerateRankTableg( k, rankTable)
1. sum= O;

2. for i=0to m-1 do

3. if (imodk==0) rankTable[/k] = sum;

4.  if(gi] #r) sumr+;

Figure 6: Generating the rankTable.

We usek = 256 in our implementation. The amount of CPU time for cordtng the rankTable i©(n) because line 2 in
Figure 6 just loops over the = [cn] entries of the arrag, performs operations i®(1) time, andc is a constant.

The tableT, is a lookup table that allows to count in constant time the Ineinof assigned verticeg[{] #r, forO<i <m-1)
in p = elogm bits, where O< € < 1. Thus, the actual evaluation time@1/¢). We use the value qf as a multiple of the number
of bits 8 used to encode each entry@fAs the values irg come from the rangf, 1, 2, 3}, thenp = 2 bits and we usp = 8. Each
entry of T, counts the number of assigned vertices in a single byte.r&igpresents the pseudo code to construct tahlevhere
LS(i’, B) stands for the value of thgleast significant bits af and>> is the right shift of bits. The tabl&, fits entirely in the CPU
cache of a commodity PC because it takébytes of space. We remark that each 2 requires a dferent lookup tabld,.

procedure GenLookupTable £, p, T;)
1. for i=0to -1 do

2 sum= 0;

3. =i

4. for j=0to p/B-1do

5 |f(LS(| ,B) #1) sumi+;

6 " =1 > B;
7 T([i] = sum;

Figure 7: Generation of the lookup tabile.

Figure 8 presents the pseudo code to evaluate an MPHF. Tire ofal in g is given by the perfect hash functiphf presented
in Figure 5. The rank ofi in g is obtained in two steps: (i) perform a look up in rankTableobtain the rank of the largest
precomputed index < uin g, and (ii) count the number of assigned vertices from pasitito u — 1 using tableT,. We use the
notationg[i..j] to represent the values stored in the entries fgpihto g[ j] for i < j.

Amount of CPU Time to Evaluate an MPHF

In Figure 8, the value afi is given by the perfect hash functigf in O(1) time. The functiorrank can be computed i®(1)
time. Thus, the evaluation of tmphf costsO(1) time.
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function mphf (x, g, r, rankTable,Kk)

1. u = phf(x, g, r)

2. j = Lu/kl;

3. rank = rankTabIe|]]

4.0 = j=*

5. for (=1 +p/B;J<u;i=j,|j+=p/B) do rank+= T/[d[i..j]];
6. for (J = —-p/B; ] <u; j++ ) do if(g[i] # r) rank ++ ;

7. return rank;

Figure 8: MPHF Evaluation.

3.4. Space Consumption to Construct PHFs and MPHFs

We now show that the RAM algorithm nee@n) computer words to construct functions of clasSes C,. We assume that the
key setS is kept in external memory and just the data structures ueebin the construction process are kept in internal memory.
We maintain the following data structures in internal meyndr) r uniform hash functionsg, hy, ..., h,_;. Each function can be
described iro(n) bits by using thesplit-and-shargechnique [21, 22]; (ii) a random acycliepartite hypergrapks,. Asm = [cn], it
is possible to stor&; in O(rn) computer words by using the data structure proposed in (R4 ]a list £ of deleted edges obtained
when we test whethéB;, is a forest, stored i@(rn) computer words; and (iv) a resulting functibnThis corresponds tem bits if
h e C and 8 + e)m+ o(m) bits if h € C, (the values off ande are presented in Sections 3.5 and 3.6, respectively). Tidrerdor
r = O(1), we needd(n) computer words to construct the functions.

3.5. Space Consumption to Store a PHF

The data structure used to construct a PHF from @assnsists ohy, ..., h_; and the values dj. Sincer is a small constant,
the number of bits needed to store a PHB{gn). Actually, 8 = [log(r + 1)] bits are stficient for each value of. Thereforeg
requiresBm bits of storage space. The representation of thieiform hash functions in(n) bits uses theplit-and-shargechnique
(see Section 4 for details). In the following sections wedss the 2-graph and 3-graph instances used to construst PHF

3.5.1. 2-graph Instance

The use of an acyclic bipartite 2-graph yields PHFs in thgedh, ..., m— 1}, wherem = [cn] for ¢ > 2 (see Section 3.1).
Forr = 2, the values assigned to the vertices are drawn f@rh} andg = 1 bit is needed to represent the value assigned to each
vertex. Therefore, the resulting PHF requines o(n) bits to be stored. Far = 2.09, the resulting PHFs are stored in approximately
[2.09n] + o(n) bits and map to the randé, ..., [2.09n] — 1}.

3.5.2. 3-graph Instance

An acyclic 3-partite random 3-graph yields PHFs in the raffge.., m — 1}, wherem = [cn] for ¢ = 1.23. Forr = 3, the
values assigned to the vertices are drawn ffoyi, 2} andg = 2 bits are needed to represent the value assigned to eaek.Vieor
¢ = 1.23, the resulting PHFs are stored in approximafel46n] + o(n) bits and map to the rands, ..., [1.23n] — 1}.

If we replace the special value= 3 by 0 in the arrayg (sincer = 0 (modr), arithmeticallyr is the same as 0), then the value
of [2.46n7] + o(n) bits can be compressed tb.95n] + o(n) bits using arithmetic coding. The values assigned to egesyp of 5
vertices can be packed into one byte because each assigonedceaes from a range of size 3 ami3 243 < 256 = 28, At
construction time we use a small lookup table containipgw3tabld5] = {1, 3,9,27,81}. A valuex € {0,1,2} is assigned to a
vertexu € V as follows:

byte = g[lu/5]];
byte += xx pow3tablgu mod 5];
gllu/5]] = byte;

A lookup tableTookup OF size 5*256=1280 bytes is used to speed up the recovery of the vaassigned to a given vertex as
follows:

byte = gfLu/5]];
X = Tiookuplt Mod 5]fbytd;

Each entry of tabldookup is computed by Tiookuli][ j] = (Lj/powd_tablgi]]) mod 3, where (< i < 5 and 0< j < 256. Now
each value irg is compressed to be storeddr= log(3) bits. Therefore, the space usage comes from thepticdtiion of3 by the
number of entries iig, which ism = [1.23n].
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3.6. Space Consumption to Store an MPHF

The data structure used to construct an MPHF from dalgssonsists ofhy, ..., h,_1, the values of, the rankTable, and the
lookup tableT,. The rankTable is stored irem] bits because it hasn/k] entries, each of size lag bits andk = [log(m)/e] for
0 < € < 1. The lookup tabld, is stored ino(m) bits because it hast entries, each of size log log’? bits. Putting all together the
number of bits required to store the MPHF 5« €)m + o(m) bits. In the following sections we discuss the 2-graph amedbh
instances that are used in the construction of MPHFs.

3.6.1. 2-graph Instance

The MPHF requires (2 e)m + o(m) bits to be stored, which corresponds to+2)[cn] + o(n) bits for anye > 0 andc > 2.
For e = 0.125 andc = 2.09 the MPHF requires approximately44n bits. We note that in this case the valuesgadlso come
from the rangg0, 1, 2}. Therefore we can use the same packing scheme presentedtionS25.2 to yield MPHFs that require
(log(3) + €)[cn] + o(n) bits to be stored. Far = 0.125 andc = 2.09, an MPHF is stored in approximately68 bits.

3.6.2. 3-graph Instance

In this case the values gfare from the rangé€0, 1, 2, 3}. Thus, we must usé = 2 bits for each entry of. The MPHF requires
then (2+ €)[cn] + o(n) bits to be stored for any > 0 andc > 1.23. Fore = 0.125 andc = 1.23, an MPHF is stored in approximately
2.62n bits.

4. Using Split-and-Share to Simulate Uniform Hash Functios

In this section we use theplit-and-shareapproach presented in [21, 22] to simulate uniform hashtfoing usingo(n) bits
of extra space. To “simulate uniform hashing” means to coostfor a given parameter a random hash functioh : U —
{0,1,...,m— 1} that has the following properties for any setc U of sizen: all keysx in S are uniformly distributed over
{0,1,...,m— 1} with high probability. In the EM algorithm presented in Sent5, the input key set is partitioned into small
buckets and the RAM algorithm is used to compute an MPHF foh @&aicket where we use the uniform hash functions designed
in this section.

Comparing with the implementation described in [21, 22] comstruction has two fierences. First, it constructscéassof
hash functions that are used by the RAM algorithm in each &tuc&econd, the split function generates buckets that araply
small — a fact that we exploit in the implementation to tak® iaccount the memory hierarchy in affi@ent way.

4.1. Splitting

The first ingredient we need is a hash function that maps tige &&S to N, = 2P buckets, such that all buckets are of
approximately the same size. If a uniform hash function edusndN, < n/logn, it is well known that the largest bucket will
containO(n/Np) keys with high probability [2]. Most explicitly defined daes of hash functions (e.g. universal [12] or polynomial
classes of hash functions [19]) have much weaker guararfteemstance, if a functioh taken uniformly from a class of universal
hash functions is used to hash aSeif sizen into n buckets, the expected size of the largest bucket is less+manl/2, whereas
if a uniform hash functiom is used the expected size of the largest bucket is expotigidiaer: O(logn/ log logn) [2]. However,
Alon, Dietzfelbinger, Miltersen, Petrank and Tardos [2bwied that if we fix a concrete class of universal hash funstianis
possible to considerably diminish the loss by using unadengsh functions. LeB = {B; | Bj = {x € S| q(X) = i}} be a set of
buckets induced by a functian: S — {0, 1}, whereq is as defined in Theorem 4.1 (a result presented in [2]).

Theorem 4.1. [2] Let H, be the class of all linear transformations over @, the field of two elements, mappif@ 1}* to
{0,1}°. Let N, = 2° and restrict that ) < n/logn. Let Sc {0, 1}" be a set of size n, and choose ¢, , uniformly at random.
Then the expected size of the largest bucket when hashing&ais Qnloglog(n)/Np).

The theorem says that the expected size of the largest bisokéhin a factorO(log logn) of the average bucket size. Hence a
function fromH__, can split the set int®(nlog log(n)/¢) buckets of maximum sizé& Thus, for a given constart> 0 we have:

b < logn+logloglogn—log¢ +logk. (5)

For the EM algorithm to construct functions with space caripy O(n) bits we have the restrictioN, < ﬁ] according to
Theorem 4.1, and then:

¢ > «lognloglogn. (6)

Our construction is engineered to work with maximum buckast 6 = 256. However, to keep the spaceX{n) bits the values
of band¢ are constrained by Eq. (5) and Eg. (6), respectively. Tloeeefor extremely large sets, a larger maximum bucket size i
needed. The point where the maximum bucket size has to clummgads on both and the constant
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Letq : {0,1}* — {0,1}® be a function from the clasa(, ,, of Theorem 4.1 with the following formg(x) = Ax, whereA is a
b x L matrix with entries inGF(2). To represent) we need to store thieL bits of the matrixA. A matrix-vector producAx can
be implemented by adding the columns corresponding to sdlua x. Note that addition of vectors ov&F(2) corresponds to
bit-wise exclusive-or. For example, let us consitet 3 bits,b = 3 bits,x = 110 and

1 0 1)
0 0 1|
11 0]

1 1
1 0|
0 0

The evaluation time for this i©(L), assuming that a column vector can be stored in one machiné. wio obtain faster
evaluation we use a tabulation idea from [3] that gives et#n timeO(L/ log o) by using spac®((oL/logo) logn) for o > 0,
where theO(logn) factor is due to the fact that the tables store numbei®(tufg n) bits. Note that ifx is short, e.g. 8 bits, we
can simply tabulate all the function values and compm(¢ by looking up the value in an array. To make the same thingkwor
for longer keys, split the matriR into parts of 8 columns eaclA = Aj|Ay|...|Ar g, and create a lookup tablg for each sub
matrix. Similarly splitx into parts of 8 bitsx = x; Xz . .. X;jg7. Now (X) is the bit-wise exclusive-or aj[x], fori =1,...,TL/8].
Therefore, we have setto 256 so that keys of sizecan be processed in chunks of leg= 8 bits. Observe that all zero characters
in a string can simply be skipped because the correspondingha vectors will all be zeroed after multiplying them witkatrix
A and therefore their contribution to the matrix-vector proidwill be zero. This means that the evaluation time is propeal to
the number of characters in the input string.

Then

1
0 |+
1 B

1 01
q(x):{o 0 1]

0
0
1 10 1

4.2. Simulating Uniform Hash Functions

The second ingredient of split-and-share is a single hasttifan f that, when applied to the keys of a single bucket, behaves
like a fully random hash function with high probability. Tiethis function can be shared among all buckets. As statdidreave
construct a class of hash functions such that for any buekeh) function behaves like a fully random function with hagbbability.
Technically, this is done by makinfya function of two parameters (see Eq. (7)), where the secaraheters describes which
function in the class is used. Note that one can use functj@ml f in conjunction with an @iset table to simulate uniform hash
functions for the original se® with high probability. The space costagn) bits.

4.2.1. Shared Function

Lety, ..., Yk be independently chosen functions from a pairwise indepetzlass of functions (see Definition 2.2) fre@n1}-
to {0,1}°, where 2 > ¢ is a parameter to be chosen later. If we randomly choose didungfrom this class and two fierent
elements from its domain, sayz € {0, 1}*, then the probability of collision is: Py{x) = y(2)] = 1/2°. This assumption is satisfied
by the class of functions of Theorem 4.1. Also, febe a prime number, anda positive integer. Consider tablgs...,t, and
t},....t, contain 2 random values fronf0, . .., p — 1}. We will use a variation of a class of functiofis {0, 1} x {1,...,p- 1} —
{O,..., p— 1} due to [23] that achieves full independence with high prdiiglmn small sets:

[
f(x 9 Z (tily; (9] + sx t;[y;(x)]) mod p. @)
=1
The independence property we need is captured by the folipigimma.

Lemma 4.2. Consider Bas a set of keys in bucketd,< i < N,. Forany $,5 € {1,...,p-1}, 5 # §, B ¢ S of sizgBy|, the
following holds: With probability at least— |B;| (|Bi|/2°)* over the choice ofy. .., i the function values(k, s), x € B;, s€ {s, s}
are independent and uniformly distributed{ly. .., p — 1}.

Proor. Consider arbitrary valuegs € {0,...,p - 1}, for x € B;, s € {s,5}. Independence means that the probability that
f(x,5) = wsforallxe B, se{s,s}is p~2Bl. To arrive at a sficient condition for independence, consider how the entifes

t,...,tcandt],. ...t are accessed when computifix, s) for x € B; ands € {s;, 5}. Assume that a kex € B; has aunique entry
y,x(x) int, andt] WhICh is not accessed when evaluatingn keys inB; — {x}. Then for any choice of values in other entries, the
valuesf(x, s) and f(x, §) are independent and uniformly distributed{@). . 1}. This is because there is exactly one choice

of t;, [y, (X)] andt’x[ij(x)] for each value of the pairks, vxg (two mdependent linear equations with two variables inf@F(In
conclusion, a sﬁicient condition for independence is that we can assign auereqtryy;, (x) to eachx € B;.

13



Sinceys, ..., Yk are chosen from a pairwise independent class of hash funsotie know that for any € B; the probability that
x doesnot have a unique entry is at mo$B{(/2°)%. By the union bound, the probability thedmekey in B; does not have a unique
entry is at mostB;| (|B;|/2°)¢ and the lemma holds.J

4.2.2. Using the Shared Function

We want to use the shared function to implement the RAM allgorion the buckets. In fact, we will use three independent
shared functiondy, f;, f,, one for each hash function needed by the RAM algorithm. Hewefor reasons explained in the
following all three functions will use the same functions. . ., yi. Naturally each functiorf; has a diterent set of tablet; andti’j,
whereO<i<2and 1< j <k

Definition 4.3. ConsiderB;| the number of keys mapped by q to bucketri®l m = [C'TBW for ¢ > 1.23, then i (x) = fj(x, ) mod
m + j x m, where0 < j < 2.

The variables is specific for bucket. This means it is chosen uniformly at random and stored. Ttéts storage space of
log p = O(logn) bits and therefore we make sure that there are not too magketsi(N, < n/logn). The algorithm randomly
selectss from {1,..., p— 1} until the functionshjo, hj;, andh;j, work with the RAM algorithm, which is used to construct a PHF o
an MPHF for each bucket We will prove in Section 4.2.3 that a constant fraction & et of all choices o§ works with high
probability.

In the implementation we have focused on ways to make the meatzess pattern more local when computig hi1, hio.
This is to make better use of the CPU cache. The idea is th&althes used for storing the function descriptions are ntergiech
that all 6 values looked up using(x) (two in each functiorf;, where 0< j < 2) are stored in consecutive memory locations, and
so on fory,(X), . . ., Yk(X).

4.2.3. Analysis of the Shared Function

By Lemma 4.2 the probability that we fail to get a class offfuindom hash functions for all buckets is at mgstB;| (|B;|/2°)« <
n(¢/2°)%. If we choose, for example, = [log(¥n¢)] andk > 4, this probability iso(1/n). Then, the shared function will succeed
with high probability, i.e., with probability + o(1/n).

Finally, we need to show that it is possible to obtain, withthprobability, a value o§ such that the functionis, hi;, andh;,
(see Definition 4.3) make the RAM algorithm work 8. There are two issues. First, the functidns hj;, andhj, do not produce
values that are exactly uniformly distributed{ly. .., m — 1}, becausen does not dividep. However, it is not hard to see that the
probability of a particular set of hash function values {iothe analysis of RAM, of a particular 3-graph) is close te ginobability
in the uniformly distributed case. More specifically, thelpability is at most a factog®/*/p higher, because the probability of
getting a given set of hash values is upper boundefpm 138/ /p¥B! < (1 + m/p)3BIm 3Bl < &MIBIP 3Bl Since 3ni ~ |Bj|
andp > 2 > |Bj|?, the failure probability will be very close to the uniformsea

The second issue is to show that even though any single chbienakes the RAM algorithm fail with a constant probability
verr < 1, with high probability there are many valuesspthat will make the RAM algorithm work. We may assume that theice
of yi1,..., Yk was successful, i.e., that all functions in Definition 4.8 aully random on all buckets. Let be a random variable
that counts the number of choicesthat makes the RAM algorithm to fail (i.e., the three haslicfions lead to a 3-graph that
contains cycles). Thus, the expectatleiiX] = ¢erp, Since there arp possible values fog. Lemma 4.2 tells us that the events that
the hash functions fail, for any twoftierent values 0§, are independent. This means that Ygris bounded by the expectation,
and consequently Vax{) < gerrp. Chebyshev’s inequality (see e.g. [39]) then says that tblegbility that more tham(1 + @err)/2
hash functions fail is bounded byé4./(p(1 - ¢er)?).

4.2.4. Implementation Details

The class of linear hash functions o¥&F(2) enables us to compute the functi@nys, v, v, - . ., Yk in parallel. The idea is to
take a linear functiotr : {0, 1}* — {0, 1}” from the classH\ ,, wherey = b + ks bits. The functiort’ produces &-bit fingerprint
for each keyx € S C {0, 1}* that is chopped into (disjoint) parts. The first part basits and corresponds to the valueqgk). The
remaining parts havébits and correspond to the valuesypfl < i < k. Clearly, these functions will be independent.

We use an one-to-one functidn to map the keys fron$ to ay-bit fingerprint set~. As the functionh’ comes from a class
of universal hash functions [2], the probability that thesest two keys that have the same values under all funct®mas most
(2)/2“”‘5, which is a negligible value when we chodsands as in the beginning of Section 4.2.3.

The value ofy must be encoded by at ledst ké bits so that a single fingerprint will be able to representilees computed
by the functionsy, y1, ¥, V3, ..., Y. In the implementation we used= 96 bits. For a fingerprint’(x), x € S, h’(x)[a, b] denotes,
from now on, the bits i’ (x) from bit a to bitb. The 32 most significant bits are used to comm(#9, i.e.,q(x) = h'(x)[65, 96] >>
(32 - b), where the symbab> denotes the right shift of bits. The other 64 bits corresptontthe values o¥/1(X), y2(X), . . . Yk(X),
for k = 4, leading tas = 16. However, to save space for storing the tables used fopating hg, hj1, andh;,, we make the most
significant bit of each chunk of 16 bits equal to zero durirgg¢bmputation of the linear hash functibh Thereforeg = 15. The
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prime numbep should be chosen as large as possible, and in all gase#?. In the implementation we set it to the largest 32-bit
integer that is prime, i.g) = 4294967291.

In the experiments we noticed that the constaptesented in Eq. (5) and in Eq. (6) is in the range @ < 1. For instance,
takingn = 1,024 million keys we gob = 23 and therefore ~ 0.42. This holds for smaller values of see Section 7. Therefore,
based on these experimental results, it is possible to atdithe largest problem we can solve in 32-bit and 64-bititectures.
The largest problem we can solve in a 32-bit architecturekisyaset with 500 billion keys. For larger sets more than 32 wibuld
be required to address a single bucket, bez, 32. But in 64-bit architecture we can deal with sets of sizesoul 8 x 10° keys
with high probability. For larger setswould require more than 64 bits. We remark that these estsreate based on the constant
k ~ 0.42 obtained experimentally and this can change for largelegaofn.

5. EM Algorithm

The EM algorithm is a two-step external memory perfect haghigorithm. Figure 9 illustrates the two steps of the atpor:
the partitioning stepand theconstruction stepThe partitioning step takes a key &of sizen and uses a hash functione H, p
to partitionS into N small buckets. The construction step generates an MPHFg(avadently, a PHF) for each buckgtO < i <
Ny — 1, and computes an array to store tlfiiset of each function range, where arg#fgefi] stores the total number of keys before
bucketi (i.e., the sum of the number of keys in buckgt < j < i). The evaluation of the MPHF constructed by the algorithm fo
a keyxis:

MPHF(x) = MPHF;(x) + offsefi],

wherei = ((X) indicates the bucket where keyis andMPHF;(X) is the position ofx in bucketi.

The main novelties of the EM algorithm are: (i) it uses exémemory to construct PHFs or MPHFs for sets in the order of
a billion keys; (ii) it constructs the resulting functionstlout assuming that uniform hash functions are availabtdree; (iii) it
partitions the input into buckets small enough to fit in théJaRache. Therefore, it accesses memory in a less randonofashien
compared to the RAM algorithm.

0 1 n-1
LT T T T T T 1T T T ] keyses
Partitioning q *
Buckets
0 1 2 Ny
Constructiorl/ / \
— "
MPHF, MPHF;  MPHF, MPHFy, 1
[ [ - RS veshTee
0 1 m-1

Figure 9: The two steps of the algorithm.

We refine and combine a number of existing techniques in teiggdend implementation of the algorithm, as follows:

1. The RAM algorithm presented in Section 3 is used to compn&PHF or MPHF for each bucket.

2. The split-and-sharetechnique [21, 22] is used to split the problem into smallkets, and simulate fully random hash
functions on each bucket. In Section 4 we presented a plattiengineering of this idea, with a refinement that givesaa<l|
of fully random hash functions on each bucket without expace usage.

3. External memory mergesort (see, e.g., [47, 34]) is usgddop the keys into the buckets, as illustrated in Figure &ok
the merging starts the fingerprints in each file are sortedidering the value ofj(x) as the sorting key. The important insight
here is that we split the problem smallbuckets and this has both practical and theoretical imjpdina. From the theoretical
point of view we show that by refining the split-and-sharehntégue to simulate fully random hash functions on the small
buckets we are able to prove that the EM algorithm works fergkey set with high probability. From the practical poifit o
view, we create buckets that are small enough to fit in the C&ibie, resulting in a significant speedup (in processing time
per element) compared to other methods. This is describ8ddtion 5.1.

4. We use fiset tables to put everything together to a single PHF or MPHIS has been done in several theoretical works
(see, e.g. [46, 29]). In Section 5.2 we show how to implemstwith low space overhead in practice.

We consider the situation in which the key set may not fit inititernal memory and so the first step of the algorithm is
necessary to deal with the keys stored on disk to form thediackhe EM algorithm first scans the list of keys and compiltes
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hash function values (fingerprints) that will be needed latein the algorithm. These values will (with high probatyiidistinguish
all keys, so we can discard the original keys. From Dietafgjer and Weidling [21, 22] we know that hash values of attl2dsgn
bits are required to have no collisions while mapping keyfigerprints. Thus, for sets of a billion keys or more we camxpect
the list of hash values to fit in the internal memory of a staddrC.

We first use the radix sort algorithm to sort the fingerprintgach file usingy(x) as sorting key. Next, we use an external
memory mergesort algorithm [34] to group fingerprints wiime values ofj(x) in one bucket. The detailed description of the
partitioning and the construction steps are presenteddtid®s 5.1 and 5.2, respectively.

5.1. Partitioning Step

Figure 10 presents the partitioning step. It performs twparnant tasks. First, the variable-length keys are mappedhit
fingerprints by using a linear hash function: S — {0, 1} taken uniformly at random from the famif(,_,, of linear hash functions
presented in Section 4.1, wheye= b + ké bits. That is, the variable-length key sgetis mapped to a fixed-length key detof
fingerprints. Second, the key s®tis partitioned intoNy buckets, wherd is a suitable parameter chosen to guarantee that each
bucket hag = Q(lognlog logn) keys with high probability (see Eq. (6)). It outputs a seFibés containing the buckets, which are
merged in the construction step when the buckets are readdisk.

function Partitioning €, H.,, Files)

» Let be the size in bytes of the fixed-length key Bet

» Let M be the size in bytes of a priori reserved internal memory area

» Let N; = [£/M] be the number of key blocks that will be read from disk into aarimal memory area
Select” uniformly at random fron¥ ,,

. for j=1to Ny do

Read a subs@&; of the keys from disk (one at a time) and stof¢x), for eachx € Sy, into 8, where|Bj| = M
Clusters; into Ny buckets using a radix sort algorithm that takgg) for x € S; as sorting key

(i.e, theb most significant bits ofY (x)) and if any buckeB; has more thaii keys restart partitioning step
Dump$; to disk intoFileg| j]

SRS

Figure 10: Partitioning step.

In Figure 10, the critical point is the internal sorting aligfam to make the partitioning step work ®(n) time. We use radix
sort for two reasons. First, it sorts each fingerprint suBgén linear time because the sorting keys are short integess than 15
decimal digits). Second, it just nee@/8;[) words of extra memory to control the memory usage indepathdef the number of
keys inS.

5.2. Construction Step

Figure 11 presents the construction step. The for-loopdfzats in line 1 builds a hedp of sizeN¢, which is well-known to
be linear time orN¢ [33]. The order relation oH is given by the bucket addreg§.e., theb most significant bits ok € F). The
for-loop that starts in line 4 has the following steps. Traesnent in line 5 reads a bucket from disk, as described ur&ig2. The
statement in line 6 constructs a functigne {C U C,} (see Definitions 3.2 and 3.3) for each bucBgusing the RAM algorithm
presented in Section 3, which uses three hash functigns;;, andh;; to compute the functiorf; € {C U C,} for each bucket.
These hash functions and the hash functiamsed in the partitioning step are described in Section 4t Statement in line 7
computes the next entry of tlgsetarray. Finally, the statement in line 8 writes the desaniptf f; andoffsefi] to disk. Note that
to computegffsefi + 1] we needV; (i.e., the maximum value df on bucketB;) andoffsefi]. So, just two entries of theffsetarray
are kept in memory all the time.

function Construction Files, {fo, f1,... fyy -1}, offSel)
» Let H be a minimum heap of size¢
» Let the order relation it be given byi = X[y —b+ 1,y]for xe F
. for j=1 to N; do {Heap constructioh
Read the firsg-bit fingerprintx from Files j] on disk
Insert {, j,x) in H
. for i=0to Np-1 do
Read buckeB; from disk
Generatd; for bucketB;. If it fails, restart the partitioning step
offsefi + 1] = offsefi] + M;
Write the description of; andoffsefi] to disk

BNOORWBNE

Figure 11: Construction step.

Figure 12 presents the algorithm to read budkdtom disk. BucketB; is distributed among many files and the héhjs used
to drive a multi-way merge operation. The line 2 extracts serdoves triplei( j, x) from H, wherei is a minimum value irH.
The line 3 insertx in bucketB;. The line 4 performs a seek operationFiteq] j] on disk for the first read operation and reads
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sequentially ally-bit fingerprintsx € F that have the same indéxand inserts them all in buck&. Finally, the line 5 inserts it
the triple {’, j, X), wherex’ € F is the firsty-bit fingerprint read fronfileq j] (in line 4) that does not have the same bucket address
as the previous keys.

function readingBucket Files, H, B;)

1. while bucketB; is not full do

Removei( j, x) from H

3 Insertx into bucketB;

4.  Read sequentially ajt-bit fingerprints fromFileg| j] that have the samieand insert them int@;

5. Insertthe triplei(, j, X) in H, wherex’ is the firsty-bit fingerprint read frontileq j] that does not have the same bucket index

N

Figure 12: Reading a bucket.

5.3. Amount of CPU Time to Construct the Functions
In this section we present the amount of time to construcfithetions, considering the partitioning and the constamncsteps.

5.3.1. Partitioning Step

The partitioning step presented in Figure 10 reads the wkefesetS in blocks such that the computeebit fingerprints fit
in a memory ared;, 1 < j < Ny, of size M bytes. Then, radix sort is used to cluster I8¢ y-bit fingerprints in buckets before
dumping them to disk. The partitioning step runs in expe€éu time becausQ];\zl IBj| = n. Itis expectedO(n) time because
the algorithm might fail in line 4 whenever a bucket with méran¢ keys is generated. However, it succeeds with high prolabili
and the expected number of iteration©id ), as showed in Section 4.2.3.

5.3.2. Construction Step

The construction step presented in Figure 11 uses the RAMitiign for each bucket. As mentioned before, the RAM aldonit
is a randomized algorithm that might fail with small prolepifor a given bucket when it cannot find appropriate hagfrctions.
When it fails, we restart in the partitioning step. By using tiash functions designed in Section 4.2, it is possible tkentize
construction step work with high probability and the numbfiterations will be bounded by a constant.

The multi-way merge operation driven by a hadpvith N; entries usingNs = Q(n") computer words can be done in linear
time for 0< r < 1 (see, e.g., [1, Theorem 3.1]). Foe 0.5 the merge operation can be performed in one pass. We cernitiad
the construction step runs in expecte¢h) time, once it is essentially a multi-way merge operatiod e RAM algorithm used
to compute the function§ of each bucket is also linear on the buckets’ size.

Finally, in the worst case, thebit fingerprints of bucket are spread over at moséfiles on disk (recall thaf is the maximum
number of keys found in any bucket). Therefore, the critgtab in reading a bucket is in line 4 of Figure 12, where a seek
operation inFileg] j] may be performed by the first read operation. The seek apanatoblem can be addressed by usinféxring
techniques [33] to amortize the number of seeks performed.

5.4. Space Consumption to Store the Functions

The description of the resulting functions consists of thectiong, theoffsetarray and the function§ € {CUC,}, 0 <i < Np.
The functiong comes from the set{| ;, of linear hash functions ovéF(2) and therefore requir€3(L log n) bits to be stored. The
offsetarray had\, entries of logn bits and, then, require3(n) bits sinceN, < n/logn.

If fi is a PHF, then it requireldi| = log(3)[c|Bi|1 bits of spacec > 1.23, to store each functiofy. Therefore,Zi’iho‘llfil =
log(3)cn] bits are necessary to store a PHH; lis an MPHF, then it requirdsi| = (2 + €)c|B;i|1+ o(|Bj|) bits of space, foc > 1.23
ande > 0. ThereforeZiN:*’o‘1 [fil = (2 + €)[cn] + o(n) bits are necessary to store an MPHF.

Additionally, we need to store the hash functidng hj;, andh;, (see Definition 4.3). For this we need to stotetébles
with 2° entries of logp bits, wherep is a large prime number add(logn) bits, and the seed numbessof log p bits, where
0 < i < Np. Considering thas = [log(v¥/nf)] andk = 4 are values chosen to make the EM algorithm work with higtbabdlity
andNp, < n/logn, thenhyg, hi1, andh;, are stored irD(n) bits.

Thus, the number of bits required to store a function congtiby the EM algorithm is log(8yn] + O(n) bits for a PHF and
(2 + e)[cn] + O(n) bits, e > 0, for an MPHF. That mear3(n) bits for both cases.

5.5. Space Consumption to Construct the Functions

The EM algorithm needs to maintain in internal memory: (i@di a priori working area of siz&1 bytes that depends on the
amount of internal memory available to run the algorithi); @(/8;[) words required to run the indirect radix sort algorithni) (i
O(Nf) words used to drive Blf-way merge operation using the hedpwhich allows the merge operation to be performed in one
pass through each file.
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Therefore, the EM algorithm requir€N¢) computer words to construct either a PHF or an MPHF. As shavh, Theorem
3.1], to get a linear time complexity we ne& = Q(n") computer words for &< < 1. To allow the merge operation to be
performed in one pass we neeé 0.5.

6. HEM Algorithm

We designed another version of the EM algorithm that usdsrfasid more compact pseudo random hash functions proposed
in [32], referred to as heuristic EM algorithm, or simp#§eM algorithmfrom now on.

As opposed to the EM algorithm that uses the hash functiossrithed in Section 4.2, which guarantee that the EM algarith
can be made to work for every key set, the HEM algorithm is n@trgnteed that it will work for every key set. However, lieut
randomness often flices in practice [2], and the HEM algorithm has worked for alf kets we have applied it to.

The HEM algorithm avoids the space needed for the lookugsabi the EM algorithm. It uses a heuristic hash function that
does not impose any upper bound for the key sizes and thairipigsn requires just the storage of one 32-bit random $eed
pseudo random number generator. Therefore, just thred 82adom seeds are required to describe the functignk;; andh;, of
each bucket. The function just loops over the key doing Isiéwdperations on blocks of 12 bytes and outputs a 12-byterfirige

7. Experimental Results

In this section we present the experimental results for tA#Rigorithm withr = 2 andr = 3, the EM algorithm and the
HEM algorithm. We compare them with some of the main pratpeafect hashing algorithms we found in the literature. \Wevs
that the mathematical basis for minimal perfect hashinggarted in Sections 3 and 5 is set to work in an implementatiandan
construct an MPHF for key sets of size in the billions that omeh less space than previously known algorithms, inclytte
one by Hagerup and Tholey [29]. As mentioned in Section 268a®ougui, Botelho and Dietzfelbinger [4] have shown how t
generate slightly more compact functions that are 25% sléavbe computed than the ones described herein. We refeeduer
to their paper to check the thorough comparison that was detveeen their algorithm and the RAM algorithm.

The experiments were carried out on a computer with a 1.8&hgidz Intel Core 2 processor with 1 gigabytes of main memory
and a L2 cache of 4 megabytes, running Linux operating systsion 2.6. The algorithms were implemented in the C laggua
and are available atttp://cmph.sf.net under the GNU Lesser General Public License (LGPL).

We use the following metrics to compare the algorithms: (ig Bmount of time to construct PHFs or MPHFs, referred to as
Construction Time. (ii) The space requirement for the dpson of the resulting PHFs or MPHFs, referred to as Stoiagace.

(iii) The amount of time required by a PHF or an MPHF for eadhieeal, referred to as Evaluation Time.

For the experiments we used the two collections presenté&dhle 1: (i) a set of 150 million randomly generated 4 byteglon
integers, referred to as INT4 (the choice of 4 bytes was rat&®/ by IPv4 addresses), and (ii) a set @24 million 64-byte long
(on average) URLs collected from the Web.

Collection | Size (millions) | Key (bytes)
INT4 150 4 (long)
URLs 1,024 64 (average)

Table 1: Collections used in the experiments.

7.1. Performance of the RAM Algorithm

In this section we evaluate the performance of the RAM athori Table 2 presents the construction time and storagespac
construct MPHFs for = 2 andr = 3, with a confidence level of 95%. The table shows that thereilgo forr = 3 is the fastest and
also constructs the most compact functions. The algoritm £ 3 is the fastest because the probability of obtaining a lgraeh
with no cycles tends to 1 far= 1.23 (see Theorem 3.5). As expected, the construction timmdlissnced by the key length (INT4
are 4 bytes long and URLSs are 64 bytes long on average) antbifagje space is not.

7.2. Performance of the EM and HEM Algorithms

In this section we evaluate the performance of the EM and t#l ldlgorithms. Figure 13 presents the runtime of the EM and
HEM algorithms for the INT4 and URL collections, for valuelsroequals to 2 million keys, where 0< j < 10. The sizeM of
the a priori reserved internal memory area was set to 250 oyégm— later in this section we show how this paramefiieices the
algorithms’ runtime. The parametesee Eq. (5) in Section 4) was set to the minimum value tha&tsgis a maximum bucket size
lower than¢ = 256. For each value chosen farthe respective values forarei bits for 13< i < 23. The solid line corresponds
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. Construction Time (sec) Storage Space
n RAM algorithm INTZ URLs Bits/Key | Size (MB)

1 10P r=2 3.09+0.28 4.00+0.34 3.60 0.43
r=3 132+ 001 161+0.01 2.62 0.31

12 10P r=2 4830+ 4.42 59.04 + 547 3.60 5.15
r=3 232+0.02 26.31+ 0.06 2.62 3.75

24x 10P r=2 10159+ 9.13 | 12565+ 1135 3.60 10.30
r=3 5119+ 0.03 57.39+ 0.04 2.62 750

Table 2: Comparison of the RAM algorithm to construct MPHFRsrfe: 2 andr = 3 considering construction time and storage space, and osingy 12, and 24
million keys for the two collections.
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Figure 13: Number of keys i8 versus construction time for the EM algorithm and the HEM &thm. The solid line corresponds to a linear regression mfmdel
the construction time.

to a linear regression model. As we were expecting, the HEjdrdahm is slightly faster than the EM algorithm becausesigsia
faster pseudo random hash function.

The runtime of both EM and HEM algorithms does not vary muctvaexplain in the following. The runtime of the algorithm
that constructs the buckets is a random variable that fellawyeometric distribution with mean Br, ~ 1, because Rr— 1 as
n — oo for the RAM algorithm withr = 3. Thus we define;, 0 < i < Ny, random variables and l&t = 4.\, Xi denote the
runtime of the construction step. Under the hypothesistti@k; are independent and bounded, taa of large numbergsee,
e.g., [30]) implies that the random variabigN, converges to the expected value of exglasn — co. This and the fact that the
partitioning step was never restarted (because the pagalmistchosen so that the maximum bucket siZe lower than or equal
to 256 with high probability) explain why the runtime doeg wary much.

Table 3 presents the space required to store the functioffb EM and HEM algorithms. It shows that the space requived
store the PHFs and MPHFs for the EM algorithm is on avera@ar2d 321 bits per key, respectively, and for the HEM algorithm is
on average B1 and 31 bits per key, respectively. Since the EM algorithm is siggjoioto be used for key sets that cannot be handle
in internal memory whera is in the order of billions, we did not consider in the aforeiened averages the cost to represent the
lookup tables used by the hash functions of the EM algoritestdbed in Section 4. Those lookup tables require a starasteof
3,345409 bytes to implement truly random hash functions on théétsc It is a nonsense to use the EM algorithm for small sets
since the cost for the lookup tables would dominate the spapgred to store the functions’ description.

EM NOT considering lookup| EM considering looku .
n b table cost (bitﬁ(gy) P table cost (bi?ﬁ(ey) | HEM (bitskey)
PHF MPHF PHF MPHF PHF | MPHF
10° 9 241 3.00 27004 27063 2.32 3.04
10° | 13 | 2.67 3.29 2943 30.05 254 312
10" | 16 | 253 313 521 5.81 242 | 297
108 | 20 | 2.74 3.34 3.00 361 2.70 321
10° | 23 | 267 3.29 2.70 3.32 2.55 312

Table 3: Space usage to respectively store the resulting RH& MPHFs of the EM algorithm and the HEM algorithm.

As mentioned in Section 6, the HEM algorithm avoids the speeed for the lookup tables of the EM algorithm. It uses a
heuristic hash function that requires just the storage ef3#rbit random seed for a pseudo random number generaterefohe,
just three 32-bit random seeds are required to describeuttwidnshjo, hj; andh;, of each bucket. Thus, in the partitioning step,

19



the key seSS is mapped to a sdét containing 12-byte long fingerprints (recall that 96 bits). As there are no lookup tables to
causecache missethe construction time for a set ofG24 million URLs has dropped from 4®for the EM algorithm down to
46.2 minutes for the HEM algorithm in the same setup. In factitimigsrovement is not much and has the disadvantage of using the
Jenkins function, for which there is no formal proof that tnks for every key set.

Controlling Disk Accesses

In this section we evaluate how much the paramateaffects the runtime of both versions of the EM algorithm. Fot tha
fixednin 1,024 million URLs and usedM equal to 100, 200, 300, 400, 500, and 600 megabytes.

In the worst case the-bit fingerprints of a bucket 0 < i < Ny, are spread in at mosfiiles on disk. Therefore, we need to take
into account that the critical step in reading a bucket isnia # of Figure 12, where a seek operatiorriteq j] may be performed
by the first read operation.

In order to lower the number of seek operations on disk we fitefnem the fact that both versions of the EM algorithm leave
almost all main memory available to be used as di€kBufer during the construction step. We then use fidsing technique
from [33] to amortize the number of seeks.

We create a hitier j of sizeS = M/Ns bytes for each filg, where 1< j < N¢. Every time a read operation is requested to
file j and the data is not found in thjeth bufer, S bytes are read from fil¢ to buffer j. Hence, the number of seeks in the worst
case is given by/S, wherel = [yn/8] = 12n bytes for both the EM and HEM algorithms. For that we have nbdeessimistic
assumption that one seek happens every tinfiebjis filled in. Therefore, the number of seeks is lineanand amortized bys.

Table 4 presents the number of fildg, the bufer sizeS used for all files, the number of seeksS in the worst case, and the
time to construct a PHF or an MPHF for@24 million URLs as a function of the amount of internal meynavailable. Observing
Table 4 we noticed that the time spent in the constructiome@ses as the value afl increases. However, fo¥1 > 400, the time
variation is not as significant as farl < 400. This can be explained by the fact that the kernel/@&theduler of Linux has smart
policies to avoid seeks and to diminish the average seek(g@http: //www.linuxjournal.com/article/6931).

EN HEW

MWMB) T S®e) T /S [ tmemin) [ Nr [ SKB) | £/S | time (min)
100 | 301 340 | 35274 | 598 | 226 | 453 | 26485 | 560
200 | 119 | L721 | 6,973 | 500 | 89 | 2,301 | 5215 | 464
300 | 74 | 4151 | 2891 | 485 | 56 | 5485 | 2,188 | 453
400 | 54 | 7,585 | 1583 | 472 | 41 | 9.990 | 1202 | 444
500 | 43 | 1L906 | 1008 | 470 | 32 | 16000 | 750 440
600 | 35 | 17,554 | 684 470 | 26 | 23630 | 508 40

Table 4: Influence of the internal memory area si&¢) (n the runtime of both versions of the EM algorithm to constf@HFs or MPHFs for 1,024 million URLs
(time in minutes).

7.3. Comparison with Practical Results from the Literature

In this section we compare the RAM, EM and HEM algorithms wifie following practical algorithms from the literature:
Botelho, Kohayakawa and Ziviani [6] (referred to as BKZ)xF€hen and Heath [25] (referred to as FCH), Majewski, Wothnal
Havas and Czech [36] (referred to as MWHC), and Pagh [41] rfedleto as PAGH). For the MWHC algorithm we used the
version based on random hypergraphs with 3. We did not consider the one that uses random graphsrwitl2 because it is
shown in [6] that the BKZ algorithm outperforms it. It is alsbown therein that the BKZ algorithm outperforms the alidponi by
Dietzfelbinger and Hagerup [20], which generates fundithvat require approximately half of the space of the onesmgéed by
Pagh’s algorithm — the space usage ist(&)nlogn bits fore € [1.13,1.15]. The algorithm by Woelfel [48] was not considered
because its implementation would look like the implemeaieadf the EM and HEM algorithms, and therefore it is fair ty slaat
the algorithm would be adiécient as the EM and HEM algorithms as to construction timeweéier, it requires at leash2og logn
bits to store its resulting function description. For imste, even for a smafi = 1, 024 keys, the function description would take at
least 6.6 bit&key. Therefore the algorithm is not as practical as the EMHIEBM algorithm as to storage space.

For all the experiments we used= 3,541,615 keys for the two collections presented in Table 1. Theae&o choose a small
value forn is because the FCH algorithm has exponential tima éor the construction phase, and the times explode even when
the number of keys is a little larger. The following concluss do not change if one wants to vary

Table 5 shows that the RAM (far = 3), EM, HEM and MWHC algorithms are faster than the others tostmict MPHFs.
The reason why both EM and HEM algorithms perform well is duéaxto main factors. First, as the key set is stored in external
memory, all the other algorithms scan the whole key set el a failure occurs, whereas both EM and HEM algorithmspgm
scan the whole key set once and map it to a set of fixed lengterfinigts. This is intrinsically part of their design and dat n
introduce overhead at evaluation time. We could use the $daokefor the other algorithms but this would introduce dvead
to evaluate the resulting functions due to the extra levéhdirection. We cannot assume that the resulting fingerjgen fits in
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memory. Therefore the extra level of indirection would noprove the other algorithms performance anyway. Secontheas
whole key set is broken into buckets with at most 256 keys hadrtemory is accessed in a less random fashion the EM and HEM
algorithms result in fewer cache misses.

Algorithms Construction Time (sec) Storage Space
INT4 URLs Bits/Key | Size (MB)

RAM r=2 1139+ 1.33 1673+ 1.89 3.60 1.52

r=3 546+ 001 6.74+ 0.01 2.62 111

EM 586+ 017 7.68+0.22 331 1.40

HEM 556+ 0.16 6.27+0.11 3.17 1.34

BKZ 9.22+ 0.63 11.33+0.70 2176 9.19

FCH 2,0527 + 53096 | 2,4001+ 71160 4.22 1.78

MWHC 598+ 0.01 7.18+0.01 26.76 1130

PAGH 3918+ 2.36 42.84+242 4416 1865

Table 5: Comparison of the algorithms to construct MPHFs ctamgig construction time and storage space, and usia@, 541 615 for the two collections.

Table 5 also shows that the RAM (for= 3), EM and HEM algorithms present the most compact functidihe storage space
requirements in bits per key for the two versions of the RANgoaithm are 3 whenr = 2, and 262 whenr = 3. For the EM
and HEM algorithms the storage space requirements.afea®d 317 bits per key, respectively. For the BKZ, MWHC and PAGH
algorithms they are log, 1.23 logn and 203 logn bits per key, respectively. It is possible to build a more pant function with
Pagh’s algorithm. For instance, we know of implementatitias require G4 logn bits per key in practice. However, in the worst
case we must force the space up t63ogn bits to get the algorithm to work. The algorithm also runsmjoto create more
compact functions.

Table 6 shows the evaluation time of the algorithms for a camgermutation of tha keys. Although the number of memory
probes at retrieval time of the MPHF constructed by the PA@drithm is optimal [41] (it performs only 1 memory probei)js
important to note in this experiment that the evaluatioretissmaller for the FCH and the RAM algorithms because thestoacted
functions fit entirely in the machine’s L2 cache (see thesggerspace size for the RAM algorithm and the FCH algorithnainl§ 5).
For example, for sets of size up to 13 million keys the resglfunctions constructed by the RAM algorithm with= 3 will fit
entirely in a 4-megabyte L2 cache. In a converse situatidrerevthe functions do not fit in the cache, the MPHFs congdloy
the PAGH algorithm are the mosffieient.

RAM

Algorithms =3 T r=3 EM | HEM | BKZ | FCH | MWHC | PAGH
Evaluation | INT4 | 119 | 116 | 272 | 175 | 133 | 0.75 1.53 1.30
Time (sec)| URLs | 212 | 211 | 436 | 273 | 224 | 161 2.46 2.20

Table 6: Comparison of the algorithms considering evaludtioa and using the collections INT4 and URLs with- 3,541 615.

7.4. Comparison of PHFs and MPHFs
In this section we compare the two types of functions coegddiby the RAM (withr = 2 andr = 3), the EM and the HEM
algorithms: PHFsr > n) and MPHFs ih = n). Table 7 presents the following results:

e Construction time: there is no significantférences between PHFs and MPHFs constructed by any of thalfnthms.
Among them, the RAM algorithm with = 2 is slower than the other three because the probability tiwing an acyclic
2-graph forc = 2.09 tends to 29, whereas the probability of obtaining a 3-graphder 1.23 tends to one.

e Evaluation time: the PHFs fan = [2.09n] andm = [1.23n] are faster than MPHFs because MPHFs need to compute
function rank

e Storage space: the space for PHFs with 3 andm = [1.23n] is in the range D5 to 27 bits per key, whereas for MPHFs
with m = nitis in the range 52 to 33 bits per key.

Finally, we compare PHFs and MPHFs when they are used to iadakle storing small values, say?213,4,... bits (see in
Section 1 an example of a garbage collector system that uBek-¢o index a bitmap storing values of one bit). Consixlére
space per key to store the function antihe space per key to store the values. The equation to corfmitetal space per key (in
bits) isx + y x m/n. Table 8 presents total space values for PHFs and MPHFs. Séhefia PHF I = 1.23n) is always better
while storing values that have less than three bits wheteaage of an MPHF{ = n) is preferable for values that have 3 bits or
more. Another aspect to consider is that evaluation timé&fdFs is faster than evaluation time for MPHFs because MPIdEd n
to computefunction rank
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Algorithms Type m Construction Time (sec) | Evaluation Time (sec) Storage Space
INT4 URLs INT4 URLs | INT4 or URLs

RAM (r = 2) PHF | 2091 | 1050+ 124 | 1479+ 158 0.68 1.63 2.09
MPHF n 1139+ 133 | 16.73+1.89 119 212 3.60
RAM (r = 3) PHF | 1230 | 554+0.01 6.78+ 0.02 0.79 171 1.95
MPHF n 546+ 0.01 6.74+0.01 116 211 2.62
EM PHF | 123n | 582+0.17 7.34+0.05 2.27 3.97 2.76
MPHF n 586+ 0.17 7.68+0.22 2.72 4.36 331
HEM PHF | 1230 | 547+0.16 5.97+ 0.09 144 243 2.62
MPHF n 5.56+ 0.16 6.27+0.11 175 2.73 3.17

Table 7: Comparison of the PHFs and MPHFs constructed by garigims, considering construction time, evaluation time silage space metrics using
n = 3,541,615 for the two collections.

RAM Algorithm EM Algorithm

X y | m/n | Space| X y | m/n | Space
195|1|123| 318 | 27| 1| 1.23| 3.93
262 | 1] 100| 362 | 33| 1| 1.00 4.3
195| 2| 123 | 441 | 27| 2| 1.23| 5.16
262 | 2| 100| 462 | 33| 2| 1.00 5.3
195| 3| 123| 564 | 27| 3| 123 | 6.39
262 | 3| 100| 562 | 33| 3| 1.00 6.3
195| 4 | 123 | 687 | 27| 4| 123 | 7.62
262 | 4] 100| 6.62 | 33| 4| 1.00 7.3

Table 8: Comparison of total space values (in bits) for PHEsNMRHFs considering the space per key to store the funckipar(d the space per key to store small
values y) in a table indexed by the function.

8. Conclusions

This paper has presented a tinfeadent, highly scalable and nearly optimal space perfedtingsalgorithm. The basic idea to
obtain scalability is the well-known idea of partitioninfgetinput key set into small buckets. The main contributiothésway we
engineer many theoretical results into an implementatia $cales for billions of keys in practice. The dominatihgge in the
construction of the functions consists of external sortifiipgerprints ofO(logn) bits in O(n) time. The construction algorithm is
highly scalable because it uses only a little amount of mdememory to work, basically the space necessary to accalai@@
heap that drives a multi-way merge operation, whic®({s™) computer words to have linear time complexity, where © < 1. In
our case, as we want to perform the merge operation in ong wasseedr = 0.5 (see, e.g., [1, Theorem 3.1]). As discussed in
Section 4.2.4, in a 64-bit architecture our algorithm iseabldeal with key sets of size= 1.8 x 10?.

The resulting functions are evaluatedd(il) time and take a constant number of bits per key of storpgees The space usage
depends on the relation between the sivef the hash table and the sinef the input. Form = n, the space usage is in the range
2.62n to 3.3n bits, depending on the constants involved in the consta@ind evaluation phases. For= [1.23n] the space usage
is in the range B5n to 2.7n bits. In all cases, this is within a small constant factonfrthe information theoretical minimum of
approximately #4n bits for MPHFs and @9n bits for PHFs.

The algorithm is theoretically well understood. We havesiltated the scalability of our algorithm by constructimg\daPHF
for a set of 1024 million URLs from the World Wide Web of average length @vaacters in approximately 46 minutes, using a
commodity PC.

Finally, the algorithm is suitable for a distributed andgkl implementation. For instance, in [5] was presentedstiuted
and parallel version of the EM algorithm. In the distribudorithm, the keys to be processed are distributed amoveyale
machines. Further, both the buckets and the constructidheohash functions for each bucket are also distributed grtios
participating machines. Two versions of the distributegbathm were presented: one where both the descriptionteneMaluation
of the resulting MPHF are centralized in one machine, andremoersion where both the description and the evaluatigheo
resulting MPHF are distributed among the participating Iniaes. In the centralized evaluation algorithm, the taskigting the
final MPHF to disk corresponds to the sequential part andesgmts approximately 0.5% of the execution time. In theidiged
evaluation algorithm, the MPHFs are written in parallel acle participating machine. Therefore, in this case, thetitra of
parallelism that can be potentially exploited correspainds00% of the execution time. That is why both versions ofgheallel
algorithm are considered embarrassingly parallel. Cemsig the construction phase of both algorithms, an MPHFafeet of
14.336 billion 16-byte integer keys can be constructed in 50uteisi using 14 commodity PCs, achieving an almost lineardsgee
Considering the MPHFs fed by a key stream of one billion 1&lytegers taken at random, the time spent by both sequeanda
centralized algorithms was 24.54 minutes whereas the ety the distributed evaluation was 11.47 minutes, amoagment
of approximately 214%.
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A. Symbol Table

Symbol Meaning

B Number of bits used to encode each entrgof

b Parameter chosen to guarantee that each bucket has at moXtognloglogn) keys

Bi Set of fingerprints in buckét

B Set of buckets induced by a functibp : S + {0, 1b

c Ratio between number of edges and number of vertices in aniabygergraptG, such that > c(r)

c(r) Minimum ratio between number of edges and number of verticehypargraptG; so it is acyclic with high probability
C Class of perfect hash functions

Cyu Class of minimal perfect hash functions
CMPH C Minimal Perfect Hashing Libraryhttp://cmph.sf.net)
€ Real constant. Its value is restricted to be eitherO or 0< € < 1 depending on the context
e Edge or hyperedge of a hypergraph
Set of edges of a hypergraph
EM External memory algorithm
F Set of fixed-lengthy-bit fingerprints
g Array containing the valueg(v), ve V
v Fingerprint length in bits, which is obtained from a lineash functiorh’ : S + {0, 1}”

G (V. E) Hypergraph with a vertex s&t and an edge sé&, each edge connectimgrertices
Hash function

Set of hash functions

Set of linear hash functions mapping frgf 1}“ to {0, 1}°

Maximum number of keys in any bucket

List of edges of a hypergraph

Maximum key length in bits

Size of a hash function range

Minimal perfect hash function

S ‘tgl—hmiij

MPHF Minimal perfect hash function
Number of keys irS
Np Number of buckets
offset[i] Total number of keys before bucket[i]
PHF Perfect hash function
Pra Probability that a hypergraph is a forest
r Number of vertices of a hyperedge
rankTable | Table storing the rank of evekyth index ing, wherek = |log(m)/e], usinge m additional bits of space, for@ e <1
RAM Random access memory algorithm
rank Function returning the number gfvalues assigned before a given verrexV in g
S Subset of a key universe of si® = n
Ty Lookup table where each entry gives the number of assignéide®(i.e. g[i] # r, for 0<i < m- 1) in a byte fromg
u Size of a key universe
U Key universe
\% Set of vertices of a hypergraph

Table 9: Symbols and acronyms used throughout the paper. &picddols are not included because their meaning are deemed lesbdy their local context.
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B. Probability Distribution of Cycles in Bipartite Random G raphs

In this section we show that the probability distributioncg€les in bipartite random graphs can be approximated byiss@&o
distribution. For that we are going to follow the same re@sgpnsed by Janson in [31], which has applied the techniquoigson
convergence and Poisson processes to random graphs witigohipartite restriction. We are going to transcribe thecepts
adjusting the notation to the one used in this paper.

B.1. Background on Point Processes and Convergence todPola®cesses

A point process takes place in some¥ahat is assumed to be a locally compact second countableddgiu®pological space
(e.g.,Y may be a closed or open subset®f). A Radon measure a¥ is a Borel measurg such thaju(K) < oo for every compact
setK c Y. Point processes are defined as random integer valued Raretsures that can be written as:

N
£=) 0% 8)
1

whereX; are random variables with values3f N is a finite or infinite random variable ag is the Dirac measure:
ox(A) = lI(xe A),AcC V.

One can think of as the random multis¢X;} such that(A) = 22‘ I(Xj € A) is the number of points of this multiset that fall A

Let 2 be a Randon measure M. The Poisson process with intensityis the unique point procegssuch that the random
variable&(A) is Poisson distributed with paramet#A) for every Borel sefA c Y, andé(Ay), ..., £(Ay) are independent for any
disjoint Borel setsAy, ..., Ac. A simple example is whet/ is a finite or infinite discrete set and a Poisson proces¥ ds a
collection of independent Poisson variables.£ i a point processA and B are two Borel sets i/, then A¢ will denote the
restriction of¢ to A defined byA4(B) = £(A N B).

A A-continuity set is a Borel sek such that1(dA) = 0. Likewise, if¢ is a point processA is aé&-continuity set if£(0A) = 0
almost surely. 1f¢ is a Poisson process with intensity the £&-continuity sets are exactly thecontinuity sets. Note that the
&-continuity sets form a ring.

A DC-semiringQ is a semiring of Borel sets such that for any- 0, any compact subset 3¢f may be covered by a finite
number of elements @ having diameter less than A DC-ring is a DC-semiring that is a ring. The family of findésjoint unions
of sets in a given DC-semiring is a DC-ring.

Consider a sequengg, ..., &nm of point processes o where each one is represented by Eq. (8). A representatidnawi
non-random (finite or infinite, and possibly depending@mumber of terms is preferable to operate with rather thantbat has
random number of terms. Fortunately it is possible to tuenrtimdom number of terms into a non-random number of termkedy t
following device. LetY* be a space that contaidéas a subspace and consider that the random variablsm Eqg. (8) have
values iny*, butéy, are measures QM. Thussy, = 0 if X; € (¥* - ), which means that any number of “ghosk§"with values
in Y* — Y may be added. Therefore the total number of terms can be fixédfinite. Note that the actual values takenXy
outside are irrelevant, because all pointsit — YV are treated as non-existent.

Convergence of point processes are discussed in two tdpslo@) the vague topologylefined on the set of all Randon

. . - . d d _
measures; and (ithe weak topologylefined on the subset of finite measures. It is usedand — to denote convergence in
distribution in these topologies, respectivelynas»> o (the phrase “as — " is usually omitted from the formulae). It is also

used— to denote convergence in distribution regardless the tgyolin the following it is presented the results we have used
prove the claim in Section B.2, which were proved by Jansd81h

Lemma B.1 (Janson [31], Lemma 2.6) LetQ be a DC-semiring o/. Leté be a point process o andu a Borel measure such
that E£(B) < u(B) for every Be Q. Then E < u.

Theorem B.2 (Janson [31], Theorem 3.2)Let A be a Radon measure . Let, for each m¢y be a point proces§’ jc 7 dx; on

Y, where{X;}jcs is a family of random variables with values¥* > Y. (J and X depend on m.) Assume that, for each m, for
every je J there exists a subset;@f J (with j € Dj) such that Xis independent oiX, : k ¢ D;}. Assume further that, for every
Q and Q in a fixed DC-semirin@ (on Y) of A-continuity sets, as m» co:

DPXeQ - AQ. (©)
ieg
D) PIXj e QPr(XeQ) — O, (10)
jeJ keDj
> ) PriXjeQand%eQ) — 0 (11)
jeJ ke(Dj—{jh)
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Thené&n, v, &, wheref is a Poisson process Q¥ with intensityA.

Corollary B.3 (Janson [31], Corollary 3.2). Assume that the conditions of Theorem B.2 are satisfied artdefmore, thaj: is a
Borel measure such that, for every€d and every m,

D IPrX; € Q) < u(Q).

ieg
Then, for every-continuity set Ac Y with u(A) < oo, Aény v A& (with € as above), in particular
En(A) -5 Poissorid(A)).

B.2. Probability Distribution of Cycles in Bipartite RanahoGraphs Converges to a Poisson Distribution

In this section we apply the general results presented itiddd8. 1 to show that the probability distribution of cyciesipartite
random graphs converges to a Poisson distribution. Fromamwvery time we use the word “graph” we mean “bipartite cand
graph”.

A bipartite random grapfs,,,(V, E), where|V| = 2p = m, |E| = dp = n, andd = n/n is the average degree Gf, , is obtained by
a stochastic process where each graph starts with a seta?; vertices and at each step one edge is added between twaesertic
(one from each partition) at random. firent random graph models produceatient probability distributions on graphs. Let
Gynp 0< p < 1, be the model of all bipartite random graphs with= 2 vertices and th@? possible edges occur independently
of each other, each with probabilify Other closely related model is tid% , » model which assigns equal probability to all bipartite
graphs with exactlyn = 2 vertices andh edges. It is well known in the random graph theory that redoltg, ,, , are equivalent
to results forg, ,» wheneverp = d/n andn — oo (this is equivalent tan — oo and they can be interchangeable), because the
expected number of edges for the graphgijn, , would ber?p = n. Then edges are almost surely distinct because there will be
no multiple edges with probabilityf), /72", where §), = n(n - 1)... (7 — n+ 1). In the limit, whery — oo, this probability tends
toe¥/2, To get this we used standard calculus to approxiniétg= 1 — x by g(x) = e * for a small reak € (0, 1).

Consider the evolution of bipartite random graphs when tiges are sequentially added at random. Let

{Te : eranges over the set of edges in the complete bipartite gkaph

ben? random variables with a common continuous distribution@nrd). As in Janson [31] we let eadh, be uniformly distributed
on[0,n]. Letg,,(t) denote this process to generate bipartite random graghsw# 27 vertices and all edgessfor which T < t.
Thus one can think of as the time the edgeappears.

Gy.(t) generates a random graphgh, , with p = Pr(Te < t). The procesg,,,(t) nests graphs i, , for different values
of p. Furthermore, asincreases, new edges are added at the random tfﬁ*ﬂé:zs_ and they are almost surely distinct as we have
seen above. Hence graphggp, » can be constructed &, ,(T,). Therefore results for bot$, , , andgG, , » can be obtained from
results for the process, ,(t). Let Tc = maxTe : ebelongs to the edge setGf be the time at which an arbitrary subgra@h
arises during the procegs, ,(t). Thus, ifG has||G|| edges the following holds:

f\le
PI’(TGSt)=(T—]) ,0<t<p (12)

Let, for eachm, J = Ui, Tai, whereJ,; is the set of cycles of even lengthid the complete bipartite grapk,,,. A cyclein

J5 can be represented as a sequencd dfdinct vertices irk,,,. As each cycle can be represented fimAys by changing the
start point, the cardinality Qff, is:

1
T = Ef((n)r)z. (13)
LetY =[0,0) x{4,6,8,...}. ThusY is the disjoint union of infinitely many half—Iineyzf,fz 2. For any cyclel € 7, define:
X; = (T3.2l) whend € o, (14)

whereT is the time when cycld arises in a process,,,(t). Letén = 3 5cq 0x,, Whereén([0,t] x {4}), ém([0, t] x {6}), ... are the
number of cycles of even lengths6s. . ., in a bipartite random graph obtained in the proaggsg(t), or equivalently, ing, ,, , with
p =t/n, (t <n). The space/ allows us to consider cycles of all even lengths simultasbolt is evident from the definitions that,
if Je gy
Pr(X; € [0,t) x {2[}) = Pr(Ty < t) = (t/n)?, wheret < p, (15)
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and thus, ag — oo:

t2I 1 5
Zpr(xje[o t)><{2|)_|j2,|><( ) = =2 (16)

= 2l
We now define a Randon measuren Y asA([0,t) x {2f}) = Foi(t), t > 0,1 > 2, where:

Fa(t) = |t2' 17)

Therefored equalsf,;(t)dt on Y,;, where:
f(t) = F2| (t =22, (18)

We now show that the conditions of Theorem B.2 are satlsflenl for each cyclel, D, be the set of all cycles with at least
one edge in common with. ThenX; and{Xk : K ¢ D;} are independent. L& = {[a, b) x { 2I ‘0<a<b<ool> 2}. Asetin
Qs in turn a half-open interval on one of the half-lines¥n It is easily seen tha@ is a DC-semiring or/. Clearly,Q consists of
A-continuity sets. Therefore, Eq. (9) holds by Eqg. (16) anditadty on > 2.

It remains to verify Eq. (10) and Eq. (11). Since their ledtrd side are monotone @ and Q' it suffices to consider the case

= [0,1) x {2/} andQ’ = [0,1) x {2I'} for t > 0 and, " > 2 (possibly equal). Since ar§ € D; N J,; has at least two vertices in
common withJ and there are at mob72¢' - such aK, Eq. (10) holds by using Eq. (15) as follows:

2
S o t
[ 2201 (;) =07 — 0, asy — .

To show that Eq. (11) holds it is a bit trickier and requiresabe a bit more careful. Let, ford i < 2i-1, Dj; be the set of
all cyclesk € J,; that have exactly edges in common witl. Since each suchl& has at least+ 1 vertices in common witld:

2-1
Z Pr(X; e QandXg € Q') = Z Z Pr(T; <tandTy <t)
Ke(Dy-{J) i=1 KeDy;
2i-1 2i-1 t 20+2 i
= Z Z Pr(Tuk <t)—Z|DJ| ( )

i=1 KeDy; =

= 2'21(' ; 1)(2|' _i- )(Iz:) (%)2”2'”“ = 007 asy = e (19)

for everyJ € J,. Therefore Eq. (11) holds by combining Eq. (13) and Eq. (5%pHows:

2,0 A((n)) — 0, asy — . (20)

Jeg

This finishes the proof for the following theorem.

Theorem B.4. &y, M, &, wheref is a Poisson process Q¥ with intensityA.

Note thatt can be thought of as a collection of independent Poissorepses on [() with the intensitiedy(t), fs(t), ... given
by Eq. (18). Furthermore, by Eq. (13) (cf. Eq. (16)):

2 2
S PrXs € [a.b) x (20) = 171 % [(5) -(8) ] < Aa.b) x (20) @)

Jeg

By Lemma B.1, withu = 4, E&y < A for everym, and Corollary B.3 yields the following extension of TheorB.4.
Theorem B.5. if A is a A-continuity set inY with A(A) < oo, then A, , A&, in particular
En(A) - Poissorid(A)).
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Let C,;(G) be a random variable that measures the number of cyclesgtied in a graphG generated through the process
Gy.(1), where 0< t < co and the average degree of graplbed = t. Theorem B.4 (or Theorem B.5) immediately yields:

Ci(G) = &[0, d] x (20}) - Poissor(zirdﬂ). (22)

More generally, we obtain the following corollary.

Corollary B.6. LetG,, , be a random graph i@, , » and G, » be a random graph i, ,». LetO < d < co andyp — d, then:
d . 1 5
C,i(G,,,p) — Poisso 2—|Ad . (23)

If n - o0 and(n/n) — d, then:

Coi(Gynr) — Poissor(zlrdz') (24)

Proor. Observe thapp — d andéy — & implies&n([0, 7p] x {21}) — £([0, d] x (21}) which yields Eq. (23). Eq. (24) follows
similarly becaus€,;(G,,n) = £m([0, Tn] x {21}), andT, - d. O

Since:

a 1 .0 1 1
Fod) =Y =d®=-2In1-d?-=d? for0<d< 1 25
% (@) ;ZI 5In(1-d) -3 (25)

0
=2

We have used Maclaurin’s expansipit’ %Xr = —% In(1 - x) above, wherex = d°. Theorem B.5 yields this section’s claim:

Corollary B.7. Let G, p be a random graph i, , , andCe(G,,,;.p) be a random variable that measures the number of cycles of
any even length larger than or equal4dn G,,,,,. If 0 < d < 1, 7p — d, andn — oo then:

Ce(Gyarp) —> Poissor(—% In(1 - d?) — %dz). (26)
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