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Abstract

A hash functionis a mapping from a key universeU to a range of integers, i.e.,h: U 7→ {0,1, . . . ,m− 1}, wherem is the range’s
size. Aperfect hash functionfor some setS ⊆ U is a hash function that is one-to-one onS, wherem≥ |S|. A minimal perfect hash
functionfor some setS ⊆ U is a perfect hash function with a range of minimum size, i.e.,m= |S|. This paper presents a construction
for (minimal) perfect hash functions that combines theoretical analysis, practical performance, expected linear construction time
and nearly optimal space consumption for the data structure. Forn keys andm= n the space consumption ranges from 2.62n to 3.3n
bits, and form= 1.23n it ranges from 1.95n to 2.7n bits. This is within a small constant factor from the theoretical lower bounds of
1.44n bits for m = n and 0.89n bits for m = 1.23n. We combine several theoretical results into a practical solution that has turned
perfect hashing into a very compact data structure to solve the membership problem when the key setS is static and known in
advance. By taking into account the memory hierarchy we can construct (minimal) perfect hash functions for over a billion keys in
46 minutes using a commodity PC. An open source implementation of the algorithms is available athttp://cmph.sf.net under
the GNU Lesser General Public License (LGPL).
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1. Introduction

Perfect hashing is an elementary problem in computer science. The goal is to find a collision free hash function for a givenstatic
key set. Perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets, such as words in
natural languages, reserved words in programming languages or interactive systems, item sets in data mining techniques [13, 14],
routing tables [43], sparse spatial data [35], and large webmaps [18]. Perfect hashing methods can be used to construct adata
structure to compactly store a static key set that supports queries to locate keys in one probe. For applications with only successful
searches1, a key is simply represented by the value of a perfect hash function and the key set is not needed to locate information
related with the key. For applications with unsuccessful searches, the key set has to be represented somehow to handle collisions.

There are many applications where the search space is restricted to keys with successful searches. One good example can be
found in the deduplication of objects in a file system, which maintains an index that maps each unique object to a disk location of
a block that holds it. At a given point in time, the file system knows all object identifiers in the system. Therefore, a perfect hash
function can be used to locate the objects on disk without theneed to keep object identifiers in main memory.

In a garbage collector system, it first marks all objects thatcan be possibly reached; second, it frees all unreferenced objects
that have not been marked. A deduplicated file system, like the Data Domain2 File System [49] (DDFS), stores tens of billions
of objects, each one identified by a hash value of at least 20 bytes. For, say, 100 billion objects, we need approximately 2,000
gigabytes of internal memory to keep track of the objects. However, by leveraging the index DDFS maintains, which has thekey
space a perfect hash function needs to be built for, we can build a more compact data structure. Such a data structure is composed
of two parts: (i) the perfect hash function; and (ii) a bitmapused to indicate whether a given object is being referenced.To store
such a data structure we need to store both the function and the bitmap. The bitmap size depends on the function range. A perfect
hash function, like the one we describe in this paper, plays afundamental role in terms of bringing down the memory requirements.
Forn keys, we are able to build functions that have a range of sizem= 1.23n. The space consumption for the functions ranges from
1.95 to 2.7 bits per key. The bitmap would require 1.23 bits per key. Hence it is possible to bring the space requirements for the
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garbage collector from 2,000 gigabytes to anywhere between 37 and 46 gigabytes. The important observation here is the fact that
the index has the entire key space and therefore by having an one-to-one mapping one does not need to keep the keys in memory.

1.1. Notation and lower bounds

In this paper, akeyis a bit string of maximum lengthL bits. A key set Sis a subset of akey universe U= {0,1}L of sizeu = 2L.
A hash functionis a mapping from a key universeU to a range of integers, i.e.,h: U 7→ {0,1, . . . ,m− 1}, wherem is the range’s
size. Aperfect hash function(PHF), for some setS ⊆ U, is a hash function that is one-to-one onS, wherem ≥ |S|. A minimal
perfect hash function(MPHF), for some setS ⊆ U, is a perfect hash function with a range of minimum size, i.e., m = |S|. We
present in Appendix A some of the symbols and acronyms used throughout the paper.

The theoretical lower bound for a perfect hash function description was first studied in [27, 37] and a simpler proof was later
given in [44]. Consider Mehlhorn’s Theorem III.2.3.6 (a) presented in [37] as a starting point to derive theoretical lower bounds for
the space consumption of the PHFs and MPHFs’ description.

Theorem 1.1. [37][Theorem III.2.3.6 (a)] Let u,m,n be non-negative integers. Given a key universe U of size u, aclassH of
functions h: U 7→ {0, . . . ,m− 1} is called(u,m,n)-perfect if for every S⊆ U, |S| = n, there is h∈ H such that h is perfect for S .
Then

|H| ≥
(

u
n

)

(

u
m

)n (

m
n

) ·
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bits for PHFs and approximately 1.44n bits for MPHFs.

1.2. Contributions

In our algorithms we use the well-known idea of partitioningthe input key set into small buckets. When the key set fits entirely
in the internal memory there is no need for partitioning and we treat it as a single bucket. This leads to an algorithm that operates on
internal random access memory, which is referred to asRAM algorithmfrom now on. When the key set does not fit in the internal
memory we have to do the partitioning and optimize our algorithm for IO operations. This leads to an external memory algorithm,
which is referred to asEM algorithmfrom now on.

The RAM and EM algorithms combine practical performance, expected linear construction time and nearly optimal space
consumption for the resulting data structure. The engineering to combine several theoretical results into a practicalsolution has
turned perfect hashing into a very compact data structure tosolve the membership problem when the key universe is staticand
known in advance. Perfect hashing is the data structure thatprovides the best trade-off between space usage and lookup time when
compared with other open addressing and chaining hash schemes to index static key sets [7].

The space consumption of our algorithms to store the resulting functions depends on the relation betweenm andn. For m =
1.23n, the space consumption is approximately 1.95n bits for the RAM algorithm and 2.7n bits for the EM algorithm. Form= n, the
space consumption is approximately 2.62n bits for the RAM algorithm and 3.3n bits for the EM algorithm. We remark that although
the EM algorithm generates functions whose space consumption isO(n) bits, the hidden constant in the asymptotic notation requires
thatn be in the order of hundred of millions to achieve the space consumption described above. In practice this is not a limitation
because for smaller sets the RAM algorithm should be used rather than the EM algorithm which is designed for large sets that
cannot be processed in internal memory.

The RAM algorithm works on acyclic random graphs given by function values of uniform hash functions on the keys of an input
setS (see Section 2 for the definition of uniform hashing). The idea of basing perfect hashing on acyclic random graphs was used
by Majewski, Wormald, Havas and Czech [36] to solve a different problem, i.e., to construct order-preserving (minimal) perfect
hash functions — given any two arbitrary keysx, y ∈ S such thatx < y, a perfect hash functionh is order-preserving ifh(x) < h(y).
Due to the order-preserving property the resulting functions requireΩ(logn) bits per key of space. Most of the cases where a
hash function is used the order-preserving property is not required. The algorithms presented in this paper construct functions that
achieve a space usage ofO(1) bits per key rather thanO(logn) bits per key.

The EM algorithm uses a number of techniques from the literature to allow the construction of PHFs or MPHFs for sets on
the order of billions of keys. There are many different hash functions from the literature that may be used in the constructions.
The important insight here is that we split the problem insmallbuckets using the split-and-share technique [21, 22]. Thishas both
practical and theoretical implications. From the theoretical point of view we show that by using a technique to simulatefully random

3Throughout this paper we denote log2 x as logx.
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hash functions on the small buckets we are able to prove that the EM algorithm works for every key set with high probability. From
the practical point of view, we create buckets that are smallenough to fit in the CPU cache, resulting in a significant speedup (in
processing time per element) compared to other methods.

We demonstrate the scalability of the EM algorithm by reporting how it is set to work in an implementation that can construct
an MPHF for over a billion keys in 46 minutes on a commodity PC with a 1.86 gigahertz Intel Core 2 processor with 1 gigabytes of
main memory and a L2 cache of 4 megabytes, running Linux operating system version 2.6. The popularity of the C Minimal Perfect
Hashing Library (http://cmph.sf.net), which is an open source implementation of the algorithms described herein, indicates
how useful the results are in practice. The library has been downloaded more than 8,600 times by May 2012, and is part of Ubuntu
and Debian — two popular Linux distributions.

Preliminary partial results of this paper appeared in [8, 10]. In [8] we describe the RAM algorithm, but both the description and
the analysis of the algorithm are sketchy and incomplete. In[10] we describe the EM algorithm. We present in this paper significant
improvements and extensions on those results. For the RAM algorithm, we now provide a full description with enough details to
easily derive an efficient implementation and present a more detailed analysis of time and space complexities of the important
phases of the algorithm. For the EM algorithm, we have (i) redesigned the algorithm to make it 40% faster and to construct
functions that are 15% more compact. Both are a direct consequence of using a random acyclic hypergraph with edges connecting
three vertices instead of a random acyclic graph with edges connecting two vertices; (ii) showed how to engineer a familyof hash
functions that efficiently simulates uniform hash functions in terms of space usage on small buckets of keys; and (iii) done a new
set of experiments to show the efficiency of this new version of the EM algorithm.

1.3. Road map

In Section 2 we discuss the related work. In Section 3 we present the RAM algorithm. In Section 4 we describe the hash
functions used in the EM algorithm. In Section 5 we present the EM algorithm. In Section 6 we present a heuristic version of
the EM algorithm (HEM algorithm). In Section 7 we show the experimental results for the RAM and EM algorithms. Finally, in
Section 8 we present the final remarks and conclusions.

2. Related Work

In this section we review some of the most important theoretical, practical and heuristic results on perfect hashing. Czech,
Havas and Majewski [17] provide a more comprehensive surveyuntil 1997. There is a gap between theory and practice among
theoretical and practical minimal perfect hashing methods. The aim of this section is to discuss the existent gap among the types of
algorithms available in the literature. For this we need theconcepts of uniform and universal hash functions.

2.1. Uniform versus Universal Hash Functions

The construction of minimal perfect hash functions usuallyuses functions chosen uniformly from a fixed familyH of hash
functions. To analyze our results we use two popular families that have also been used to analyze many other hashing schemes in
the past: (i) uniform hash functions and (ii) universal classes of hash functions.

A uniform hash functionis a function that is uniformly chosen at random from the set of all mu possible hash functions mapping
from U to {0, . . . ,m− 1} and distributes all keys from the universeU independently and uniformly over{0, . . . ,m− 1}. Various
adaptive hashing schemes presume that a hash function with certain prescribed properties can be found in constant expected time.
This holds if the function is chosen uniformly at random fromall possible functions until a suitable one is found, but notnecessarily
if the search is limited to a smaller set of functions. The amount of space to represent a uniform hash family is at leastu logm
bits, which usually exceeds the available storage in practice. This situation led Carter and Wegman [12] to the concept of universal
classes of hash functions.

Definition 2.1. A universal class of hash functionsis a setH of hash functions with the property that if h: U 7→ {0, . . . ,m− 1} is
chosen at random fromH then for all x, y ∈ U with x, y we have Pr(h(x) = h(y)) ≤ 1/m.

Definition 2.2. A strongly universal class of hash functions or pairwise independent class of hash functionsis a setH of hash
functions with the following property. For all x1, x2 ∈ U such that x1 , x2 and a1,a2 ∈ {0, . . . ,m− 1}, if one randomly chooses a
function h: U 7→ {0, . . . ,m− 1} fromH , then the following holds:Pr[h(x1) = a1 and h(x2) = a2] = 1/m2.

Fortunately, for many applications weaker randomness properties (such as pairwise independence) suffice [2]. The split-and-
share approach presented in [21, 22] allows the construction of hash functions that behave as uniform hash functions on fewer
thann keys (e.g., those in one bin). In this paper we make use of the split-and-share approach to simulate a class of uniform hash
functions so we can show that the EM algorithm can be set to work with high probability on any key set.
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2.2. Theoretical Results

In this section we review some of the most important theoretical results on minimal perfect hashing, which do not assume that
uniform hash functions are available without any extra costof space. Our algorithms, as well all other algorithms mentioned in
this paper, adopt theWord RAMmodel of computation [28], in which an element of the universe U fits into one machine word and
arithmetic operations and memory accesses have unit costs.

Fredman and Komlós [27] prove that at leastn loge+ log logu−O(logn) bits are required to represent an MPHF, provided that
u ≥ nα for someα > 2. Mehlhorn [37] shows that the Fredman and Komlós bound is almost tight by providing an algorithm that
constructs an MPHF that can be represented with at mostn loge+ log logu+O(logn) bits. However, Mehlhorn’s algorithm is far
from practical because its construction and evaluation time are exponential inn.

Schmidt and Siegel [46] propose the first algorithm to construct an MPHF with constant evaluation time and description size
O(n+ log logu) bits. From a practical point of view, Schmidt and Siegel’s algorithm is not attractive. The scheme is complicated
to implement and the constant of the space bound is large: fora set ofn keys, it needs at least 29n bits to store the hash function,
which means a space usage similar in practice to the best schemes usingO(n logn) bits. Albeit it seems that Schmidt and Siegel
aim to describe their algorithmic ideas in the clearest possible way, not trying to optimize the constant, it seems hard to improve the
space usage significantly.

More recently, Hagerup and Tholey [29] came up with the best theoretical result we know of. Their MPHF can be evaluated
in O(1) time and stored inn loge+ log logu+O(n(log logn)2/ logn+ log log logu) bits. The construction time isO(n+ log logu)
usingO(n) words of space. In spite of its theoretical importance, Hagerup and Tholey’s algorithm is not practical either, as it
only works whenn is large. Forn < 2150 the scheme is not well-defined, as it relies on splitting the key set into buckets of size
n̂ ≤ logn/(21 log logn). If we fix this by letting the bucket size be at least 1, then buckets of size one will be used forn < 2300,
which means that the space usage will be at least (3 log logn+ log 7)n bits. For a set of a billion keys, this is more than 17 bits per
element. Thus, the Hagerup-Tholey MPHF is not space efficient in practical situations. While we believe that their algorithm has
been optimized for simplicity of exposition, rather than constant factors, it seems difficult to significantly reduce the space usage
based on their approach.

2.3. Practical Results

We now describe some of the main practical results upon whichour work is based. They are characterized by simplicity and
provably low constant factors.

The first two results assume uniform random hash functions tobe available without any extra cost of space (i.e., the results
assume uniform hashing; in practice, universal classes of hash functions are used instead, as a heuristic). Majewski, Wormald,
Havas and Czech [36] propose a family of algorithms to construct MPHFs based onr-uniform hypergraphs (i.e., with edges of
sizer). The resulting functions can be evaluated inO(1) time and stored inO(n logn) bits. Botelho, Kohayakawa and Ziviani [6]
improve the constant involved in the space consumption of the algorithm presented by Czech, Havas and Majewski [16], butthe
space consumption is stillO(n logn) bits. In both cases, the MPHF can be constructed in expectedO(n) time. The authors of [6]
gave experimental evidence that their construction procedure works well in practice.

The principle of our RAM algorithm was described by Chazelle, Kilian, Rubinfeld, and Tal [15] in a work on “Bloomier Filters”,
somewhat hidden, without reference to perfect hashing and with no connection to acyclic hypergraphs. The main difference to the
RAM algorithm is that we do recognize the connection to acyclic random hypergraphs, which allows us to provide a neat solution
and a tight analysis to optimize the constant of the space usage considering implementation aspects, as well as a way of constructing
MPHFs from those PHFs.

Pagh [41] proposes an algorithm to construct MPHFs of the form h(x) = ( f (x) + d[g(x)]) mod n, where f andg are randomly
chosen from a family of universal hash functions, andd is a vector of “displacement values” used to resolve collisions caused
by the functionf . The evaluation of the function is optimal in terms of randommemory accesses once it does only one, but the
space usage is (2+ ǫ)n logn bits for a real valueǫ > 0. Dietzfelbinger and Hagerup [20] improve Pagh’s result byreducing the
space usage to (1+ ǫ)n logn bits. Woelfel [48] shows how to decrease the space usage toO(n log logn) bits asymptotically, still
with a quite simple algorithm. However, there is no empirical evidence on the practicality of this scheme. Belazzougui,Botelho
and Dietzfelbinger [4] show how to decrease the space usage further, toO(n) bits. For certain parameter settings the algorithm
constructs PHFs and MPHFs slightly more compact than the ones presented in this paper. However, the algorithm trades space for
evaluation time. The fastest function constructed by the algorithm in [4] carries out at least four random memory accesses whereas
the RAM algorithm constructs functions that require up to three. Therefore, due to the increasing gap between CPU speed and
memory speed, the functions constructed with the RAM algorithm are at least 25% faster. This can be clearly seen in [4, Section
4.1] where a thorough comparison between the algorithms is given.

2.4. Heuristics

In this section we consider algorithms designed for specificapplications where, in general, just experimental evidences of the
behavior of the algorithms are provided.
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Fox, Chen and Heath [25] and Fox, Heath, Chen and Daoud [26] present several algorithms for constructing MPHFs that in
experiments require between 2 and 8 bits per key to be stored.However, it is theoretically shown in [17, Section 6.7] thatthe
construction algorithms have exponential running times inexpectation. Also, lookup times are constant but there is noguarantee
that the number of bits per key to store the function is constant asn increases.

The work by Lefebvre and Hoppe [35] has the same issue of not providing any guarantee that the storage space of the resulting
functions will be a constant number of bits per key. The authors designed a method to specifically represent sparse spatial data,
and the resulting PHFs require more than 3 bits per key to be stored. In the same trend, Chang and Lin [13] and Chang, Lin and
Chou [14] design MPHFs tailored for mining association rules and traversal patterns in data mining techniques.

3. RAM Algorithm

The RAM algorithm is a randomized algorithm ofLas Vegas4 type. The RAM algorithm works on a random acyclic hypergraph
given by uniform hash function values on an input key setS ⊂ U, |S| = n. A hypergraphis the generalization of a standard
undirected graph where each edge connectsr ≥ 2 vertices. A hypergraph isacyclic if and only if some sequence of repeated
deletions of edges containing at least 1 vertex of degree 1 yields a hypergraph without edges [17, page 103].

We now give the intuition behind the RAM algorithm. The algorithm has three steps:

1. We start withV = {0, . . . ,m− 1}, regarded as vertices of anr-partite hypergraph wherem = ⌈c(r)n⌉ for certain numbers
c(2), c(3), c(4), . . . , defined later on, andr hash functionsh0, . . . ,hr−1 defined as follows. Given an integerη = ⌈m/r⌉ and
functionsh′i : U 7→ {0, . . . , η − 1}, 0 ≤ i < r, that are fully random or uniform onS ⊂ U and can be evaluated inO(1) time,
we denote eachhi : U 7→ {i × η, . . . , (i + 1)× η − 1} as:

hi(x) = h′i (x) + i × η. (1)

The r hash functions mapS into r disjoint partitions of the vertex set. This way each keyx ∈ S gives rise to an edge
e(x) = {h0(x), . . . ,hr−1(x)}. Vertex and edge sets form the random hypergraphGr . This part of the algorithm is called
Mapping Step.

2. If Gr is acyclic, one can proceed as follows:

• Use a linear equation to calculate an indexi(x) ∈ {0, . . . , r − 1} from x defined as follows:

i(x) =
(
∑

0≤ j<r

g(h j(x))
)

mod r,

where a functiong: V 7→ {0, . . . , r − 1} has to be found to satisfy the conditions in the next steps. Function g is
implemented as an array containing the valuesg(v), v ∈ V and hence we denoteg(v) = g[v] from now on.

• To each keyx ∈ S, assign an elementhi(x)(x) of e(x) such that the assignmentx 7→ hi(x)(x) is one-to-one onS. For this
reason we call this stepAssigning Step.

• Associate each keyx ∈ S with a positionh(x) in the hash table by an one-to-one mappingh: S 7→ {0, . . . ,m− 1} (soh
is a perfect hash function), with the additional property that h(x) ∈ e(x). This is possible as a direct consequence of the
definition of acyclicity. To calculateh(x) from x one has to find the indexi(x) ∈ {0, . . . , r − 1} with:

h(x) = hi(x)(x).

3. We compress the range of functionh from {0, . . . ,m−1} to {0, . . . ,n−1} to obtain a minimal perfect hash function. The com-
pression technique, referred to asranking, uses a well-studied primitive in succinct data structuresthat can be implemented
in O(1) time [40, 42, 45]. At the beginning of the assigning step we considerg[i] = r, for 0 ≤ i ≤ m− 1. A valueg[i] is
assignedif g[i] , r, for 0 ≤ i ≤ m− 1.

Definition 3.1. The functionrank :V 7→ {0, . . . ,n− 1} computes the number of values assigned before a given vertexv in g,
which is uniquely associated with a key x∈ S . That is,rank(v) = |{i ∈ V : i < v,g[i] , r}|.

We use therank functionto obtain a minimal perfect hash functionµ as follows:

µ(x) = rank(h(x)).
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Figure 1: (a) The mapping step builds fromS = {jan, feb,mar} a random acyclic 3-partite hypergraph withm = 6 vertices andn = 3 edges, and a listL of
edges obtained when we test whether the hypergraph is acyclic. (b) The assigning step builds a perfect hash function fromS to {0,1,2,3,4,5}, being represented
by an arrayg : {0,1,2,3,4,5} 7→ {0, 1,2,3} to uniquely assign an edge to a vertex. (c) The ranking step builds the data structure used to compute function
rank : {0, 1,2,3,4,5} 7→ {0,1,2} in O(1) time.

The data structure to store the PHFh consists ofh0, . . . ,hr−1 and an array that contains the valuesg(v), v ∈ V. We show in
Section 3.5 that it is possible to get by withc(r)⌈log(r)⌉ bits per key to store the arrayg. The value that minimizes the cost per key
is r = 3. The MPHFµ needsǫm additional bits of space, 0< ǫ < 1, for the function rank.

We now illustrate the three steps of the RAM algorithm. Figure 1 gives an overview to construct a PHF for a key setS ⊆ U
containing three English words, i.e.,S = {jan, feb,mar}, based on anr-partite hypergraph withr = 3.

TheMapping Stepin Figure 1(a) carries out two important tasks:

1. It assumes that it is possible to find three fully random functions,h0, h1 andh2, with ranges{0,1}, {2,3} and{4,5}, respectively,
which corresponds to the three disjoint partitions of the vertex set{0,1,2,3,4,5}. These functions build an one-to-one
mapping of the key setS to the edge setE of a random acyclic 3-partite hypergraphGr = (V,E), where|V| = m= 6 and|E| =
n = 3. To illustrate the mapping, key “jan” is mapped to edge{h0(“jan”) ,h1(“jan”) ,h2(“jan”) } = {1,3,5}, key “feb” is mapped
to edge{h0(“feb”) ,h1(“feb”) ,h2(“feb”) } = {1,2,4}, and key “mar” is mapped to edge{h0(“mar”),h1(“mar”),h2(“mar”)} =
{0,2,5}.
We show later in this section that it is possible to obtain such a hypergraph with probability tending to 1 asn tends to infinity
wheneverm = ⌈cn⌉ andc ≥ c(3). The value ofc that minimizes the hypergraph size (and thereby the amount of bits to
represent the resulting functions) isc = c(3) ≈ 1.23. If an acyclic hypergraph is not obtained, then a new set ofthree fully
random hash functions is chosen to construct another hypergraph until an acyclic one is obtained.

2. It tests whether the resulting random 3-partite hypergraph contains cycles by iteratively deleting edges connecting vertices of
degree 1. The deleted edges are stored in the order of deletion in a listL to be used in the assigning step. The first deleted
edge in Figure 1(a) was{1,2,4}, the second one was{1,3,5} and the third one was{0,2,5}. If it ends with an empty graph,
then the test succeeds, otherwise it fails.

The Assigning Stepin Figure 1(b) outputs a PHFh represented byh0, h1, h2 and the arrayg storing values from the range
{0,1,2,3}. Given a keyx, the indexi(x) ∈ {0,1,2} is obtained byi (x) = (g[h0(x)] + g[h1(x)] + g[h2(x)]) mod 3. Next,hi (x)(x) gives
the positionh of key x in the table. For instance, consider key “jan” in Figure 1. The indexi (“jan”) = (g[1]+g[3]+g[5]) mod 3= 0.
Then,h(“jan”) = h0(“jan”) = 1. Similarly, key “feb” is in position 4 of the table becausei (“feb”) = (g[1] + g[2] + g[4]) mod 3= 2
andh(“feb”) = h2(“feb”) = 4, and so on.

TheRanking Stepin Figure 1(c) outputs an MPHF. It uses the function rank. Forinstance,rank(4) = 2 because the positions 0
and 1 are assigned since the values ofg[0] , r andg[1] , r for r = 3.

Before showing the mapping, assigning and ranking steps in details we need the following definitions.

Definition 3.2. The classC = CU,S,m consists of all functions h: U 7→ {0, . . . ,m− 1} that can be written as

h(x) = hi(x)(x), where i(x) =

















∑

0≤i<r

g(hi(x))

















mod r,

where each hi is as in Eq.(1), and g: V → {0, . . . , r − 1} is some function that makes a function h a PHF for S .

The classC can be referred to as a “class of perfect hash functions” (forU, S andm) in the sense thatfor everysetS of sizen
(not too large)there isa functionh in C that is one-to-one onS.

4A Las Vegas algorithm is a randomized algorithm that always produces correct answers.
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Definition 3.3. The classCµ consists of all functionsµ : U 7→ {0, . . . ,n− 1} that can be written as

µ(x) = rank(h(x)),

where h∈ CU,S,m is a PHF and rank is as in Definition 3.1.

The classCµ can be referred to as a “class of minimal perfect hash functions” (for U, S andm) in the sense thatfor everysetS
of sizen (not too large)there isa functionµ in Cµ that is one-to-one onS.

3.1. Construction of a PHF from ClassC
We detail now the mapping and assigning steps of the RAM algorithm to construct a PHF. Figure 2 presents a pseudo code

for the mapping step. It takes a key setS and a setH of hash functions that mapU into disjoint partitions of the vertex set of
a hypergraphGr , and returns an acyclic hypergraphGr and the list of edgesL. We use an edge-oriented data structure proposed
in [24] to represent hypergraphs, where each edge is explicitly represented as an array ofr vertices and, for each vertexv, there is
a list of edges that are incident tov. In line 2 the set of edges of the hypergraphGr is initialized as empty. The list of edgesL is
obtained in line 7 when we test whetherGr is acyclic by iteratively deleting edges connecting vertices of degree 1. The listL stores
the deleted edges in the order of deletions (i.e., the first edge inL was the first deleted edge, the second edge inL was the second
deleted edge, and so on.) The following algorithm can do thistest:

1. TraverseGr and store in a queueQ every edge that has at least one of its vertices with degree one.
2. Until Q is not empty, dequeue one edge fromQ, remove it fromGr , store it inL, and check if any of its vertices is now of

degree one. If it is the case, enqueue the only edge that contains that vertex.

procedure Mapping (S , H , Gr , L)
1. repeat
2. E(Gr ) = ∅ ;
3. se lec t h0,h1, . . . ,hr−1 uniformly at random fromH ;
4. for each x ∈ S do
5. e = (h0(x),h1(x) . . . ,hr−1(x)) ;
6. addEdge (Gr , e) ;
7. L = isAcyclic (Gr ) ;
8. unt i l E(Gr ) i s empty

Figure 2: Mapping step.

Figure 3 presents a pseudo code for the assigning step. It takes the hypergraphGr and the list of edgesL as input, and returns
the values ing. We first initializeg[i] = r (i.e., each vertex is unassigned) andVisited[i] = false, for 0 ≤ i ≤ m− 1. Next, for each
edgee ∈ L from tail to head, we look for the first vertexu belonging toenot yet visited and keep this information in the indexj of
u in e. Next, we setg[u] = ( j −∑

v∈e∧Visited[v]=true g[v]) mod r. Whenever we visit a vertexu from ewe setVisited[u] = true if it has
not been visited yet.

procedure Assigning (Gr , L , g)
1. for u = 0 to m− 1 do
2. Visited [u] = fa lse;
3. g[u] = r ;
4. for i = |L| − 1 to 0 do
5. e = L [ i ] ;
6. sum= 0;
7. for k = r − 1 to 0 do
8. i f (not Visited [e[k] ] )
9. u = e[k] ;
10. Visited [u] = true ;
11. j = k;
12. else sum+= g[e[k]] ;
13. g[u] = ( j − sum) modr ;

Figure 3: Assigning step.

Amount of CPU Time for the Mapping Step
In the mapping step presented in Figure 2, line 2 has costO(1) and line 3 has costO(r) by assuming that each functionhi ∈ H

can be selected inO(1) time. It is easy to see that line 5 has costO(r). In line 6 a given edgee is inserted inGr with costO(r) (edge
e is inserted inr lists of incident edges, one for each vertex ine). Considering that|S| = n thus line 4 has costO(n) for r = O(1). It
is well known that the test to check whetherGr is acyclic in line 7 can be implemented inO(n) time (see, e.g., [17, 36]). Therefore,
each iteration of the mapping step takesO(n) time. In the following section we show that the expected number of iterations of the
repeat-until loop that starts in line 1 isO(1).

7



Expected Number of Iterations for the Mapping Step
In this section we show that the expected number of iterations of the repeat-until loop that starts in line 1 of the mappingstep

in Figure 2 is bounded by a constant. Since the construction of each hypergraphGr takes linear time and it is possible to choose
h0, . . . ,hr−1 repeatedly (see Section 4.2), then the pseudo code presented in Figure 2 has expected linear time to construct an acyclic
hypergraphGr .

We now present the analysis of the algorithm to obtain a random acyclicr-partite hypergraphGr = Gr (h0,h1, . . . ,hr−1) with n
edges andm vertices with high probability forr ≥ 2. We will first analyze the caser = 2 and next the caser ≥ 3.

Theorem 3.4. Consider G2 = (V,E) a bipartite random graph with n edges and m vertices. Then, ifm = ⌈cn⌉ holds for c> 2, in

the limit when m→ ∞, the probability that G2 is a forest (acyclic) tends toPra =
√

1−
(

2
c

)2·

Proof. In this proof, every time we use the word “graph” we mean “bipartite random graph”. ConsiderG2(V,E) = Gη,η(V,E) a
graph with|V| = 2η = m, and|E| = dη = n, whered = n/η is the average degree ofGη,η. A random graph is obtained by a stochastic
process where each graph starts with a set ofm= 2η vertices and at each step one edge is added between two vertices (one from each
partition) at random. Different random graph models produce different probability distributions on graphs. LetGη,η,p, 0 ≤ p ≤ 1,
be the model of all bipartite random graphs withm= 2η vertices and theη2 possible edges occur independently of each other, each
with probability p. Another closely related model is theGη,η,n model which assigns equal probability to all bipartite graphs with
exactlym= 2η vertices andn edges. It is well known in the random graph theory that results forGη,η,p are equivalent to results for
Gη,η,n wheneverp = d/η andη → ∞ (this is equivalent tom→ ∞ and they can be interchangeable), because the expected number
of edges for the graphs inGη,η,p would beη2p = n. Then edges are almost surely distinct because there will be no multiple edges
with probability (η2)n/η

2n, where (η)n = η(η − 1) . . . (η − n+ 1). In the limit, whenη → ∞, this probability tends toe−d2/2. To get
this we used standard calculus to approximatef (x) = 1− x by g(x) = e−x for a small realx ∈ (0,1).

GraphGη,η has no cycles when neither multiple edges nor cycles of even length larger than or equal to 4 occur. LetC denote
the event that the bipartite random graph has no cycles andM denote the event that it has no multiple edges. Thus, to finalize the
proof we need to show that: Pra = Pr(C ∩M) = Pr(C|M) Pr(M).

As mentioned above, no multiple edges occur with probability e−d2/2 asη → ∞. We now need to determine the probability of
constructingGη,η with no cycles of even length larger than or equal to 4 given that there is no multiple edges asn→ ∞. To build
Gη,η, each edge is independently taken at random with probability p from all η2 possible edges. As there arem = 2η vertices, and
each vertex is connected to an average ofd edges, we can conclude thatp = d/η = 2d/m.

LetJ2l̂ be the set of cycles of length 2l̂ in the complete bipartite graphKη,η andJ = ⋃∞
l̂=2
J2l̂ be the set of all cycles. A cycle

in J2l̂ can be represented as a sequence of 2l̂ distinct vertices inKη,η. As each cycle can be represented in 2l̂ ways by changing
the start point, the cardinality ofJ2l̂ is:

∣

∣

∣J2l̂

∣

∣

∣ = 1
2l̂

(

(η)l̂
)2
. As each edge inGη,η is selected independently of the others and with

probability p = 2d
m , then each cycle inJ2l̂ occurs with probability Pr2l̂(d) = p2l̂ .

Let C2l̂(Gη,η) be a random variable that measures the number of cycles of length 2̂l in a graphGη,η. Let Ce(Gη,η) be a random
variable that measures the number of cycles of any even length larger than or equal to 4 inGη,η. The probability distributions of
C2l̂(Gη,η) andCe(Gη,η) follow Poisson distributions with parametersλ2l̂ andλe, respectively — a detailed proof of this statement is
provided in Appendix B, which has been derived from a similarproof in [31, Page 16]. These two parameters are defined below,
asη→ ∞.

λ2l̂ → Pr2l̂(d) × |J2l̂ | =
(

2d
m

)2l̂ 1

2l̂
((η)l̂)

2 =
1

2l̂
d2l̂ , and (2)

λe→
∞
∑

l̂=2

λ2l̂ =

∞
∑

l̂=2

1

2l̂
d2l̂ = −1

2
ln(1− d2) − 1

2
d2. (3)

We have used above the Maclaurin’s expansion
∑∞

l̂=1
1
2l̂

xl̂ = − 1
2 ln(1− x), wherex = d2. Therefore, in the limit whenm→ ∞, the

probability thatGη,η has no cycles of length 2l̂, l̂ ≥ 2, tends to: Pr(Ce(Gη,η) = 0) = e−λe = e
1
2 ln(1−d2)+ 1

2 d2
.

Putting everything together, in the limit whenm→ ∞, the probability thatGη,η is a forest tends to: Pra = e
1
2 ln(1−d2)+ 1

2 d2− 1
2 d2
=√

1− d2. Note thatd is restricted to be in the half-open interval [0,1). AsGη,η hasm = ⌈cn⌉ vertices andn = dm/2 edges, then

d = 2/c and we obtain: Pra =

√

1−
(

2
c

)2
for c > 2.

For example, whenc = 2.09 we have Pra = 0.29. This is very close to 0.294 — the value we obtained experimentally by
constructing 1,000 random bipartite 2-graphs withn = 107 keys (edges).
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A rigorous bound on Pra for r > 2 is technically difficult to obtain. The heuristic argument presented in [17, Theorem 6.5],
which was rigorously proved in [11] and in [38], also holds for the randomr-partite hypergraphs considered in this paper. The
proof of Theorem 3.5 is more than five pages long and has a certain amount of mathematical details. For this reason the proofwas
not included in this paper. Instead it has been published in amore appropriated forum [9]. For the sake of completeness wepresent
a simplified version of Theorem 3.4 in [9].

Theorem 3.5. Consider Gr = (V,E) an r-partite random hypergraph with r> 2, n edges, and m vertices. If m= ⌈cn⌉ holds for
c > c(r) where:

c(r) = r

(

min
x>0

{

x
(1− e−x)r−1

})−1

· (4)

Then, in the limit when m→ ∞, the probability that Gr is a forest (acyclic) tends to1. In the case c≤ c(r) the probability tends to
zero.

From Theorems 3.4 and 3.5 we can conclude that, under the right choice ofc, it is possible to construct a random acyclic
r-partite hypergraph with probability bounded away from zero. The value ofc(r) in Eq. (4) is minimized forr = 3 and is in the
open interval (1.22,1.23). This is illustrated in Figure 4, which was previously reported in [36]. This means that the random acyclic
r-partite hypergraphs with the smallest number of vertices occur whenr = 3. Forc = 1.23 we obtained experimentally that the
number of iterations to obtain an acyclic hypergraphG3 = (V,E) is close to 1 (Pra is close to 1). In our experiments, we constructed
1,000 random 3-partiteG3 = (V,E) hypergraphs withn = 107 keys, and of the 1,000 hypergraphs 998 were acyclic.

1.8

1.4

r

1.2
1098765432

c(r)

2.0

1.6

Figure 4: Values ofc(r) for r ∈ {2,3, . . . ,10}.

The problems of obtaining random acyclicr-partite hypergraphs forr = 2 and forr > 2 are quite different. Forr = 2, the
probability Pra varies continuously with constantc. But for r > 2, there is a phase transition whenm tends to∞: there is a value
c(r) such that (i) ifc ≤ c(r), then Pra tends to 0 and (ii) ifc > c(r), then Pra tends to 1. This phenomenon has also been reported
in [36] for randomr-uniform hypergraphs.

We now show that the expected number of iterations of the mapping step is bounded by a constant under the right choice ofc,
according to Theorems 3.4 and 3.5. When a randomr-partite hypergraph with cycles occurs we abort and randomly select a new
tuple of hash functions (h0,h1, . . . ,hr−1). We can model the number of iterations to obtain a random acyclic r-partite hypergraphGr

as a random variableZ that follows a geometric distribution. The probability Pra of obtaining a random acyclicr-partite hypergraph
is Ω(1) in the limit. Thus, Pr(Z = i) = Pra(1 − Pra)i−1 and the mean ofZ is 1/Pra, which corresponds to the expected number of
iterations to obtainGr . Therefore, as Pra isΩ(1), the expected number of iterations isO(1).

Finally, it is important to remark that the two values of interest arer = 2 andr = 3. The use of a 3-graph constructs more
compact PHFs and MPHFs at the expense of one more hash function h2 and one more random memory access. Thus, our best result
in terms of space consumption to store PHFs and MPHFs is forr = 3.

Amount of CPU Time for the Assigning Step
In Figure 3, the for loop that starts in line 1 has costO(m) and the for loop that starts in line 4 has costO(rn). As the number of

vertices inGr is a linear function of the number of edges (i.e.,m= ⌈cn⌉ for some constantc), then, forr = O(1), the assigning step
runs inO(n) time.

3.2. PHF Evaluation

Figure 5 presents the pseudo code to evaluate a PHF.
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function phf (x , g , r )
1. e = (h0(x),h1(x), . . . ,hr−1(x)) ;
2. sum= 0;
3. for i = 0 to r − 1 do sum+= g[e[i]] ;
4. return e[sum modr] ;

Figure 5: PHF evaluation.

Amount of CPU Time to Evaluate a PHF
The cost to evaluate the PHF presented in Figure 5 isO(r). The practical instances are forr = 2 andr = 3 and then the cost to

evaluate the PHF isO(1).

3.3. Construction of an MPHF from ClassCµ
We now detail the ranking step of the algorithm to construct an MPHF. The function rank is used to compress the range of the

PHFs in classC from {0, . . . ,m− 1} to {0, . . . ,n− 1} to obtain a classCµ of MPHFs. For the implementation of the functionrank
we use a simple and efficient algorithm from [42]. The function rank can be computedin O(1) time (see, e.g., [40]). The algorithm
uses two tables: rankTable andTr . The table rankTable explicitly stores therank of everykth index, wherek = ⌊log(m)/ǫ⌋, using
ǫm additional bits of space, for 0< ǫ < 1. The largerk is the more compact is the MPHF, and the users can trade off space for
evaluation time by settingk appropriately in the implementation. We use values fork that are powers of two (i.e.,k = 2bk for some
constantbk) in order to replace the expensive division and modulo operations by bit-shift and bitwise “and” operations, respectively.
Figure 6 presents a pseudo code to construct the rankTable taking as inputg andk.

procedure GenerateRankTable (g , k , rankTable)
1. sum= 0;
2. for i = 0 to m− 1 do
3. i f ( i modk == 0) rankTable [i/k] = sum;
4. i f (g[i] , r ) sum++;

Figure 6: Generating the rankTable.

We usek = 256 in our implementation. The amount of CPU time for constructing the rankTable isO(n) because line 2 in
Figure 6 just loops over them= ⌈cn⌉ entries of the arrayg, performs operations inO(1) time, andc is a constant.

The tableTr is a lookup table that allows to count in constant time the number of assigned vertices (g[i] , r, for 0 ≤ i ≤ m− 1)
in ρ = ǫ logm bits, where 0< ǫ < 1. Thus, the actual evaluation time isO(1/ǫ). We use the value ofρ as a multiple of the number
of bitsβ used to encode each entry ofg. As the values ing come from the range{0,1,2,3}, thenβ = 2 bits and we useρ = 8. Each
entry ofTr counts the number of assigned vertices in a single byte. Figure 7 presents the pseudo code to construct tableTr , where
LS(i′, β) stands for the value of theβ least significant bits ofi′ and>> is the right shift of bits. The tableTr fits entirely in the CPU
cache of a commodity PC because it takes 28 bytes of space. We remark that eachr ≥ 2 requires a different lookup tableTr .

procedure GenLookupTable (β , ρ , Tr )
1. for i = 0 to 2ρ − 1 do
2. sum= 0;
3. i′ = i ;
4. for j = 0 to ρ/β − 1 do
5. i f (LS(i′, β) , r ) sum++;
6. i′ = i′ >> β ;
7. Tr [i] = sum;

Figure 7: Generation of the lookup tableTr .

Figure 8 presents the pseudo code to evaluate an MPHF. The value ofu in g is given by the perfect hash functionphf presented
in Figure 5. The rank ofu in g is obtained in two steps: (i) perform a look up in rankTable toobtain the rank of the largest
precomputed indexv ≤ u in g, and (ii) count the number of assigned vertices from position v to u − 1 using tableTr . We use the
notationg[i.. j] to represent the values stored in the entries fromg[i] to g[ j] for i ≤ j.

Amount of CPU Time to Evaluate an MPHF
In Figure 8, the value ofu is given by the perfect hash functionphf in O(1) time. The functionrank can be computed inO(1)

time. Thus, the evaluation of themphf costsO(1) time.
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function mphf (x , g , r , rankTable , k)
1. u = phf (x , g , r ) ;
2. j = ⌊u/k⌋ ;
3. rank = rankTable [j ] ;
4. i = j ∗ k;
5. for ( j = i + ρ/β ; j < u ; i = j , j += ρ/β) do rank += Tr [g[i.. j]] ;
6. for ( j = j − ρ/β ; j < u ; j ++) do i f (g[ j ] , r ) rank ++ ;
7. return rank ;

Figure 8: MPHF Evaluation.

3.4. Space Consumption to Construct PHFs and MPHFs

We now show that the RAM algorithm needsO(n) computer words to construct functions of classesC orCµ. We assume that the
key setS is kept in external memory and just the data structures involved in the construction process are kept in internal memory.
We maintain the following data structures in internal memory: (i) r uniform hash functionsh0,h1, . . . ,hr−1. Each function can be
described ino(n) bits by using thesplit-and-sharetechnique [21, 22]; (ii) a random acyclicr-partite hypergraphGr . As m= ⌈cn⌉, it
is possible to storeGr in O(rn) computer words by using the data structure proposed in [24]; (iii) a list L of deleted edges obtained
when we test whetherGr is a forest, stored inO(rn) computer words; and (iv) a resulting functionh. This corresponds toβmbits if
h ∈ C and (β + ǫ)m+ o(m) bits if h ∈ Cµ (the values ofβ andǫ are presented in Sections 3.5 and 3.6, respectively). Therefore, for
r = O(1), we needO(n) computer words to construct the functions.

3.5. Space Consumption to Store a PHF

The data structure used to construct a PHF from classC consists ofh0, . . . ,hr−1 and the values ofg. Sincer is a small constant,
the number of bits needed to store a PHF isO(m). Actually, β = ⌈log(r + 1)⌉ bits are sufficient for each value ofg. Therefore,g
requiresβmbits of storage space. The representation of ther uniform hash functions ino(n) bits uses thesplit-and-sharetechnique
(see Section 4 for details). In the following sections we discuss the 2-graph and 3-graph instances used to construct PHFs.

3.5.1. 2-graph Instance
The use of an acyclic bipartite 2-graph yields PHFs in the range {0, . . . ,m− 1}, wherem = ⌈cn⌉ for c > 2 (see Section 3.1).

For r = 2, the values assigned to the vertices are drawn from{0,1} andβ = 1 bit is needed to represent the value assigned to each
vertex. Therefore, the resulting PHF requiresm+o(n) bits to be stored. Forc = 2.09, the resulting PHFs are stored in approximately
⌈2.09n⌉ + o(n) bits and map to the range{0, . . . , ⌈2.09n⌉ − 1}.

3.5.2. 3-graph Instance
An acyclic 3-partite random 3-graph yields PHFs in the range{0, . . . ,m− 1}, wherem = ⌈cn⌉ for c = 1.23. Forr = 3, the

values assigned to the vertices are drawn from{0,1,2} andβ = 2 bits are needed to represent the value assigned to each vertex. For
c = 1.23, the resulting PHFs are stored in approximately⌈2.46n⌉ + o(n) bits and map to the range{0, . . . , ⌈1.23n⌉ − 1}.

If we replace the special valuer = 3 by 0 in the arrayg (sincer ≡ 0 (mod r), arithmeticallyr is the same as 0), then the value
of ⌈2.46n⌉ + o(n) bits can be compressed to⌈1.95n⌉ + o(n) bits using arithmetic coding. The values assigned to everygroup of 5
vertices can be packed into one byte because each assigned value comes from a range of size 3 and 35 = 243 < 256 = 28. At
construction time we use a small lookup table containing:pow3 table[5] = {1,3,9,27,81}. A value x ∈ {0,1,2} is assigned to a
vertexu ∈ V as follows:

byte = g[⌊u/5⌋] ;
byte += x ∗ pow3 table[u mod 5] ;
g[⌊u/5⌋] = byte;

A lookup tableTlookup of size 5*256=1280 bytes is used to speed up the recovery of the valuex assigned to a given vertexu, as
follows:

byte = g[⌊u/5⌋] ;
x = Tlookup[u mod 5][byte] ;

Each entry of tableTlookup is computed by:Tlookup[i][ j] = (⌊ j/pow3 table[i]⌋) mod 3, where 0≤ i < 5 and 0≤ j < 256. Now
each value ing is compressed to be stored inβ = log(3) bits. Therefore, the space usage comes from the multiplication ofβ by the
number of entries ing, which ism= ⌈1.23n⌉.
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3.6. Space Consumption to Store an MPHF

The data structure used to construct an MPHF from classCµ consists ofh0, . . . ,hr−1, the values ofg, the rankTable, and the
lookup tableTr . The rankTable is stored in⌈ǫm⌉ bits because it has⌈m/k⌉ entries, each of size logm bits andk = ⌊log(m)/ǫ⌋ for
0 < ǫ < 1. The lookup tableTr is stored ino(m) bits because it hasmǫ entries, each of size log logmǫ/β bits. Putting all together the
number of bits required to store the MPHF is (β + ǫ)m+ o(m) bits. In the following sections we discuss the 2-graph and 3-graph
instances that are used in the construction of MPHFs.

3.6.1. 2-graph Instance
The MPHF requires (2+ ǫ)m+ o(m) bits to be stored, which corresponds to (2+ ǫ)⌈cn⌉ + o(n) bits for anyǫ > 0 andc > 2.

For ǫ = 0.125 andc = 2.09 the MPHF requires approximately 4.44n bits. We note that in this case the values ofg also come
from the range{0,1,2}. Therefore we can use the same packing scheme presented in Section 3.5.2 to yield MPHFs that require
(log(3)+ ǫ)⌈cn⌉ + o(n) bits to be stored. Forǫ = 0.125 andc = 2.09, an MPHF is stored in approximately 3.6n bits.

3.6.2. 3-graph Instance
In this case the values ofg are from the range{0,1,2,3}. Thus, we must useβ = 2 bits for each entry ofg. The MPHF requires

then (2+ ǫ)⌈cn⌉+o(n) bits to be stored for anyǫ > 0 andc ≥ 1.23. Forǫ = 0.125 andc = 1.23, an MPHF is stored in approximately
2.62n bits.

4. Using Split-and-Share to Simulate Uniform Hash Functions

In this section we use thesplit-and-shareapproach presented in [21, 22] to simulate uniform hash functions usingo(n) bits
of extra space. To “simulate uniform hashing” means to construct for a given parametern a random hash functionh : U →
{0,1, . . . ,m − 1} that has the following properties for any setS ⊂ U of sizen: all keys x in S are uniformly distributed over
{0,1, . . . ,m − 1} with high probability. In the EM algorithm presented in Section 5, the input key set is partitioned into small
buckets and the RAM algorithm is used to compute an MPHF for each bucket where we use the uniform hash functions designed
in this section.

Comparing with the implementation described in [21, 22] ourconstruction has two differences. First, it constructs aclassof
hash functions that are used by the RAM algorithm in each bucket. Second, the split function generates buckets that are provably
small — a fact that we exploit in the implementation to take into account the memory hierarchy in an efficient way.

4.1. Splitting

The first ingredient we need is a hash function that maps the keys of S to Nb = 2b buckets, such that all buckets are of
approximately the same size. If a uniform hash function is used andNb < n/ logn, it is well known that the largest bucket will
containO(n/Nb) keys with high probability [2]. Most explicitly defined classes of hash functions (e.g. universal [12] or polynomial
classes of hash functions [19]) have much weaker guarantees. For instance, if a functionh taken uniformly from a class of universal
hash functions is used to hash a setS of sizen into n buckets, the expected size of the largest bucket is less than

√
n+ 1/2, whereas

if a uniform hash functionh is used the expected size of the largest bucket is exponentially lower: O(logn/ log logn) [2]. However,
Alon, Dietzfelbinger, Miltersen, Petrank and Tardos [2] showed that if we fix a concrete class of universal hash functions, it is
possible to considerably diminish the loss by using universal hash functions. Let̂B = {Bi | Bi = {x ∈ S | q(x) = i}} be a set of
buckets induced by a functionq : S 7→ {0,1}b, whereq is as defined in Theorem 4.1 (a result presented in [2]).

Theorem 4.1. [2] Let HL,b be the class of all linear transformations over GF(2), the field of two elements, mapping{0,1}L to
{0,1}b. Let Nb = 2b and restrict that Nb ≤ n/ logn. Let S⊆ {0,1}L be a set of size n, and choose q∈ HL,b uniformly at random.
Then the expected size of the largest bucket when hashing S using q is O(n log log(n)/Nb).

The theorem says that the expected size of the largest bucketis within a factorO(log logn) of the average bucket size. Hence a
function fromHL,b can split the set intoO(n log log(n)/ℓ) buckets of maximum sizeℓ. Thus, for a given constantκ > 0 we have:

b ≤ logn+ log log logn− logℓ + logκ. (5)

For the EM algorithm to construct functions with space complexity O(n) bits we have the restrictionNb ≤ n
logn according to

Theorem 4.1, and then:

ℓ ≥ κ logn log logn. (6)

Our construction is engineered to work with maximum bucket size ℓ = 256. However, to keep the space atO(n) bits the values
of b andℓ are constrained by Eq. (5) and Eq. (6), respectively. Therefore, for extremely large sets, a larger maximum bucket size is
needed. The point where the maximum bucket size has to changedepends on bothn and the constantκ.
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Let q : {0,1}L 7→ {0,1}b be a function from the classHL,b of Theorem 4.1 with the following form:q(x) = Ax, whereA is a
b × L matrix with entries inGF(2). To representq we need to store thebL bits of the matrixA. A matrix-vector productAx can
be implemented by adding the columns corresponding to values 1 in x. Note that addition of vectors overGF(2) corresponds to
bit-wise exclusive-or. For example, let us considerL = 3 bits,b = 3 bits,x = 110 and

A =
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The evaluation time for this isO(L), assuming that a column vector can be stored in one machine word. To obtain faster
evaluation we use a tabulation idea from [3] that gives evaluation timeO(L/ logσ) by using spaceO((σL/ logσ) logn) for σ > 0,
where theO(logn) factor is due to the fact that the tables store numbers ofO(logn) bits. Note that ifx is short, e.g. 8 bits, we
can simply tabulate all the function values and computeq(x) by looking up the value in an array. To make the same thing work
for longer keys, split the matrixA into parts of 8 columns each:A = A1|A2| . . . |A⌈L/8⌉, and create a lookup tableqi for each sub
matrix. Similarly splitx into parts of 8 bits,x = x1x2 . . . x⌈L/8⌉. Now q(x) is the bit-wise exclusive-or ofqi [xi ], for i = 1, . . . , ⌈L/8⌉.
Therefore, we have setσ to 256 so that keys of sizeL can be processed in chunks of logσ = 8 bits. Observe that all zero characters
in a string can simply be skipped because the corresponding column vectors will all be zeroed after multiplying them withmatrix
A and therefore their contribution to the matrix-vector product will be zero. This means that the evaluation time is proportional to
the number of characters in the input string.

4.2. Simulating Uniform Hash Functions

The second ingredient of split-and-share is a single hash function f that, when applied to the keys of a single bucket, behaves
like a fully random hash function with high probability. Then, this function can be shared among all buckets. As stated earlier, we
construct a class of hash functions such that for any bucket,each function behaves like a fully random function with highprobability.
Technically, this is done by makingf a function of two parameters (see Eq. (7)), where the second parameters describes which
function in the class is used. Note that one can use functionsq and f in conjunction with an offset table to simulate uniform hash
functions for the original setS with high probability. The space cost iso(n) bits.

4.2.1. Shared Function
Let y1, . . . , yk be independently chosen functions from a pairwise independent class of functions (see Definition 2.2) from{0,1}L

to {0,1}δ, where 2δ ≫ ℓ is a parameter to be chosen later. If we randomly choose a function y from this class and two different
elements from its domain, sayx, z ∈ {0,1}L, then the probability of collision is: Pr[y(x) = y(z)] = 1/2δ. This assumption is satisfied
by the class of functions of Theorem 4.1. Also, letp be a prime number, andk a positive integer. Consider tablest1, . . . , tk and
t′1, . . . , t

′
k contain 2δ random values from{0, . . . , p− 1}. We will use a variation of a class of functionsf : {0,1}L × {1, . . . , p− 1} →

{0, . . . , p− 1} due to [23] that achieves full independence with high probability on small sets:

f (x, s) =
k

∑

j=1

(

t j [y j(x)] + s× t′j [y j(x)]
)

mod p. (7)

The independence property we need is captured by the following lemma.

Lemma 4.2. Consider Bi as a set of keys in bucket i,0 ≤ i < Nb. For any si , s′i ∈ {1, . . . , p − 1}, si , s′i , Bi ⊆ S of size|Bi |, the
following holds: With probability at least1−|Bi | (|Bi |/2δ)k over the choice of y1, . . . , yk the function values f(x, s), x ∈ Bi , s∈ {si , s′i }
are independent and uniformly distributed in{0, . . . , p− 1}.

Proof. Consider arbitrary valuesvx,s ∈ {0, . . . , p − 1}, for x ∈ Bi , s ∈ {si , s′i }. Independence means that the probability that
f (x, s) = vx,s for all x ∈ Bi , s ∈ {si , s′i } is p−2|Bi |. To arrive at a sufficient condition for independence, consider how the entriesof
t1, . . . , tk andt′1, . . . , t

′
k are accessed when computingf (x, s) for x ∈ Bi ands ∈ {si , s′i }. Assume that a keyx ∈ Bi has aunique entry

y jx(x) in t jx andt′jx, which is not accessed when evaluatingf on keys inBi − {x}. Then for any choice of values in other entries, the
values f (x, si) and f (x, s′i ) are independent and uniformly distributed in{0, . . . , p− 1}. This is because there is exactly one choice
of t jx[y jx(x)] and t′jx[y jx(x)] for each value of the pairvx,si , vx,s′i

(two independent linear equations with two variables in GF(p)). In
conclusion, a sufficient condition for independence is that we can assign a unique entryy jx(x) to eachx ∈ Bi .
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Sincey1, . . . , yk are chosen from a pairwise independent class of hash functions we know that for anyx ∈ Bi the probability that
x doesnot have a unique entry is at most (|Bi |/2δ)k. By the union bound, the probability thatsomekey in Bi does not have a unique
entry is at most|Bi | (|Bi |/2δ)k and the lemma holds.

4.2.2. Using the Shared Function
We want to use the shared function to implement the RAM algorithm on the buckets. In fact, we will use three independent

shared functionsf0, f1, f2, one for each hash function needed by the RAM algorithm. However, for reasons explained in the
following all three functions will use the same functionsy1, . . . , yk. Naturally each functionfi has a different set of tablesti j andt′i j ,
where 0≤ i ≤ 2 and 1≤ j ≤ k.

Definition 4.3. Consider|Bi | the number of keys mapped by q to bucket Bi and mi =
⌈

c|Bi |
3

⌉

, for c ≥ 1.23, then hi j (x) = f j(x, si) mod
mi + j ×mi , where0 ≤ j ≤ 2.

The variablesi is specific for bucketi. This means it is chosen uniformly at random and stored. Thiscosts storage space of
log p = O(logn) bits and therefore we make sure that there are not too many buckets (Nb < n/ logn). The algorithm randomly
selectssi from {1, . . . , p− 1} until the functionshi0, hi1, andhi2 work with the RAM algorithm, which is used to construct a PHF or
an MPHF for each bucketi. We will prove in Section 4.2.3 that a constant fraction of the set of all choices ofsi works with high
probability.

In the implementation we have focused on ways to make the memory access pattern more local when computinghi0, hi1, hi2.
This is to make better use of the CPU cache. The idea is that thetables used for storing the function descriptions are merged, such
that all 6 values looked up usingy1(x) (two in each functionf j , where 0≤ j ≤ 2) are stored in consecutive memory locations, and
so on fory2(x), . . . , yk(x).

4.2.3. Analysis of the Shared Function
By Lemma 4.2 the probability that we fail to get a class of fully random hash functions for all buckets is at most

∑

i |Bi | (|Bi |/2δ)k ≤
n(ℓ/2δ)k. If we choose, for example,δ = ⌈log( 3

√
nℓ)⌉ andk ≥ 4, this probability iso(1/n). Then, the shared function will succeed

with high probability, i.e., with probability 1− o(1/n).
Finally, we need to show that it is possible to obtain, with high probability, a value ofsi such that the functionshi0, hi1, andhi2

(see Definition 4.3) make the RAM algorithm work forBi . There are two issues. First, the functionshi0, hi1, andhi2 do not produce
values that are exactly uniformly distributed in{0, . . . ,mi − 1}, becausemi does not dividep. However, it is not hard to see that the
probability of a particular set of hash function values (or,in the analysis of RAM, of a particular 3-graph) is close to the probability
in the uniformly distributed case. More specifically, the probability is at most a factore|Bi |2/p higher, because the probability of
getting a given set of hash values is upper bounded by⌈p/mi⌉3|Bi |/p3|Bi | ≤ (1 +mi/p)3|Bi |m−3|Bi |

i ≤ e3mi |Bi |/pm−3|Bi |
i . Since 3mi ≈ |Bi |

andp≫ ℓ2 ≥ |Bi |2, the failure probability will be very close to the uniform case.
The second issue is to show that even though any single choiceof si makes the RAM algorithm fail with a constant probability

ϕerr < 1, with high probability there are many values ofsi that will make the RAM algorithm work. We may assume that the choice
of y1, . . . , yk was successful, i.e., that all functions in Definition 4.3 are fully random on all buckets. LetX be a random variable
that counts the number of choices ofsi that makes the RAM algorithm to fail (i.e., the three hash functions lead to a 3-graph that
contains cycles). Thus, the expectationE[X] = ϕerrp, since there arep possible values forsi . Lemma 4.2 tells us that the events that
the hash functions fail, for any two different values ofsi , are independent. This means that Var(X) is bounded by the expectation,
and consequently Var(X) ≤ ϕerrp. Chebyshev’s inequality (see e.g. [39]) then says that the probability that more thanp(1+ ϕerr)/2
hash functions fail is bounded by 4ϕerr/(p(1− ϕerr)2).

4.2.4. Implementation Details
The class of linear hash functions overGF(2) enables us to compute the functionsq, y1, y2, y3, . . . , yk in parallel. The idea is to

take a linear functionh′ : {0,1}L 7→ {0,1}γ from the classHL,γ, whereγ = b+ kδ bits. The functionh′ produces aγ-bit fingerprint
for each keyx ∈ S ⊆ {0,1}L that is chopped into (disjoint) parts. The first part hasb bits and corresponds to the value ofq(x). The
remaining parts haveδ bits and correspond to the values ofyi , 1 ≤ i ≤ k. Clearly, these functions will be independent.

We use an one-to-one functionh′ to map the keys fromS to aγ-bit fingerprint setF. As the functionh′ comes from a class
of universal hash functions [2], the probability that thereexist two keys that have the same values under all functions is at most
(

n
2

)

/2b+kδ, which is a negligible value when we choosek andδ as in the beginning of Section 4.2.3.
The value ofγ must be encoded by at leastb+ kδ bits so that a single fingerprint will be able to represent thevalues computed

by the functionsq, y1, y2, y3, . . . , yk. In the implementation we usedγ = 96 bits. For a fingerprinth′(x), x ∈ S, h′(x)[a,b] denotes,
from now on, the bits inh′(x) from bit a to bit b. The 32 most significant bits are used to computeq(x), i.e.,q(x) = h′(x)[65,96] >>
(32− b), where the symbol>> denotes the right shift of bits. The other 64 bits correspondto the values ofy1(x), y2(x), . . . yk(x),
for k = 4, leading toδ = 16. However, to save space for storing the tables used for computinghi0, hi1, andhi2, we make the most
significant bit of each chunk of 16 bits equal to zero during the computation of the linear hash functionh′. Therefore,δ = 15. The
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prime numberp should be chosen as large as possible, and in all casesp≫ ℓ2. In the implementation we set it to the largest 32-bit
integer that is prime, i.e,p = 4294967291.

In the experiments we noticed that the constantκ presented in Eq. (5) and in Eq. (6) is in the range 0< κ < 1. For instance,
takingn = 1,024 million keys we gotb = 23 and thereforeκ ≈ 0.42. This holds for smaller values ofn, see Section 7. Therefore,
based on these experimental results, it is possible to estimate the largest problem we can solve in 32-bit and 64-bit architectures.
The largest problem we can solve in a 32-bit architecture is akey set with 500 billion keys. For larger sets more than 32 bits would
be required to address a single bucket, i.e.,b > 32. But in 64-bit architecture we can deal with sets of sizes up to 1.8× 1021 keys
with high probability. For larger setsb would require more than 64 bits. We remark that these estimates are based on the constant
κ ≈ 0.42 obtained experimentally and this can change for larger values ofn.

5. EM Algorithm

The EM algorithm is a two-step external memory perfect hashing algorithm. Figure 9 illustrates the two steps of the algorithm:
thepartitioning stepand theconstruction step. The partitioning step takes a key setS of sizen and uses a hash functionq ∈ HL,b

to partitionS into Nb small buckets. The construction step generates an MPHF (or equivalently, a PHF) for each bucketi, 0 ≤ i ≤
Nb − 1, and computes an array to store the offset of each function range, where arrayoffset[i] stores the total number of keys before
bucketi (i.e., the sum of the number of keys in bucketsj, 0 ≤ j < i). The evaluation of the MPHF constructed by the algorithm for
a keyx is:

MPHF(x) = MPHFi(x) + offset[i],

wherei = q(x) indicates the bucket where keyx is andMPHFi(x) is the position ofx in bucketi.
The main novelties of the EM algorithm are: (i) it uses external memory to construct PHFs or MPHFs for sets in the order of

a billion keys; (ii) it constructs the resulting functions without assuming that uniform hash functions are available for free; (iii) it
partitions the input into buckets small enough to fit in the CPU cache. Therefore, it accesses memory in a less random fashion when
compared to the RAM algorithm.
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Figure 9: The two steps of the algorithm.

We refine and combine a number of existing techniques in the design and implementation of the algorithm, as follows:

1. The RAM algorithm presented in Section 3 is used to computeone PHF or MPHF for each bucket.
2. The split-and-sharetechnique [21, 22] is used to split the problem into small buckets, and simulate fully random hash

functions on each bucket. In Section 4 we presented a particular engineering of this idea, with a refinement that gives a class
of fully random hash functions on each bucket without extra space usage.

3. External memory mergesort (see, e.g., [47, 34]) is used togroup the keys into the buckets, as illustrated in Figure 9. Before
the merging starts the fingerprints in each file are sorted considering the value ofq(x) as the sorting key. The important insight
here is that we split the problem insmallbuckets and this has both practical and theoretical implications. From the theoretical
point of view we show that by refining the split-and-share technique to simulate fully random hash functions on the small
buckets we are able to prove that the EM algorithm works for every key set with high probability. From the practical point of
view, we create buckets that are small enough to fit in the CPU cache, resulting in a significant speedup (in processing time
per element) compared to other methods. This is described inSection 5.1.

4. We use offset tables to put everything together to a single PHF or MPHF.This has been done in several theoretical works
(see, e.g. [46, 29]). In Section 5.2 we show how to implement this with low space overhead in practice.

We consider the situation in which the key set may not fit in theinternal memory and so the first step of the algorithm is
necessary to deal with the keys stored on disk to form the buckets. The EM algorithm first scans the list of keys and computesthe
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hash function values (fingerprints) that will be needed later on in the algorithm. These values will (with high probability) distinguish
all keys, so we can discard the original keys. From Dietzfelbinger and Weidling [21, 22] we know that hash values of at least 2 logn
bits are required to have no collisions while mapping keys tofingerprints. Thus, for sets of a billion keys or more we cannot expect
the list of hash values to fit in the internal memory of a standard PC.

We first use the radix sort algorithm to sort the fingerprints in each file usingq(x) as sorting key. Next, we use an external
memory mergesort algorithm [34] to group fingerprints with same values ofq(x) in one bucket. The detailed description of the
partitioning and the construction steps are presented in Sections 5.1 and 5.2, respectively.

5.1. Partitioning Step

Figure 10 presents the partitioning step. It performs two important tasks. First, the variable-length keys are mapped to γ-bit
fingerprints by using a linear hash functionh′ : S 7→ {0,1}γ taken uniformly at random from the familyHL,γ of linear hash functions
presented in Section 4.1, whereγ = b + kδ bits. That is, the variable-length key setS is mapped to a fixed-length key setF of
fingerprints. Second, the key setS is partitioned intoNb buckets, whereb is a suitable parameter chosen to guarantee that each
bucket hasℓ = Ω(logn log logn) keys with high probability (see Eq. (6)). It outputs a set ofFilescontaining the buckets, which are
merged in the construction step when the buckets are read from disk.

function Part i t ion ing (S , HL,γ , Files)
◮ Let ζ be the size in bytes of the fixed-length key setF
◮ LetM be the size in bytes of a priori reserved internal memory area
◮ Let Nf = ⌈ζ/M⌉ be the number of key blocks that will be read from disk into an internal memory area

1. Selecth′ uniformly at random fromHL,γ
2. for j = 1 to Nf do
3. Read a subsetS j of the keys from disk (one at a time) and storeh′(x), for eachx ∈ S j , intoB j , where|B j | =M
4. ClusterB j into Nb buckets using a radix sort algorithm that takesq(x) for x ∈ S j as sorting key

(i.e, theb most significant bits ofh′(x)) and if any bucketBi has more thanℓ keys restart partitioning step
5. DumpB j to disk intoFiles[ j]

Figure 10: Partitioning step.

In Figure 10, the critical point is the internal sorting algorithm to make the partitioning step work inO(n) time. We use radix
sort for two reasons. First, it sorts each fingerprint subsetB j in linear time because the sorting keys are short integers (less than 15
decimal digits). Second, it just needsO(|B j |) words of extra memory to control the memory usage independently of the number of
keys inS.

5.2. Construction Step

Figure 11 presents the construction step. The for-loop thatstarts in line 1 builds a heapH of sizeNf , which is well-known to
be linear time onNf [33]. The order relation ofH is given by the bucket addressi (i.e., theb most significant bits ofx ∈ F). The
for-loop that starts in line 4 has the following steps. The statement in line 5 reads a bucket from disk, as described in Figure 12. The
statement in line 6 constructs a functionfi ∈ {C ∪ Cµ} (see Definitions 3.2 and 3.3) for each bucketBi using the RAM algorithm
presented in Section 3, which uses three hash functionshi0, hi1, andhi2 to compute the functionfi ∈ {C ∪ Cµ} for each bucketi.
These hash functions and the hash functionq used in the partitioning step are described in Section 4.2. The statement in line 7
computes the next entry of theoffsetarray. Finally, the statement in line 8 writes the description of fi andoffset[i] to disk. Note that
to computeoffset[i +1] we needMi (i.e., the maximum value offi on bucketBi) andoffset[i]. So, just two entries of theoffsetarray
are kept in memory all the time.

function Construction (Files, { f0, f1, . . . fNb−1} , offset)
◮ Let H be a minimum heap of sizeNf
◮ Let the order relation inH be given byi = x[γ − b+ 1, γ] for x ∈ F

1. for j = 1 to Nf do { Heap construction}
2. Read the firstγ-bit fingerprintx from Files[ j] on disk
3. Insert (i, j, x) in H
4. for i = 0 to Nb − 1 do
5. Read bucketBi from disk
6. Generatefi for bucketBi . If it fails, restart the partitioning step
7. offset[i + 1] = offset[i] + Mi
8. Write the description offi andoffset[i] to disk

Figure 11: Construction step.

Figure 12 presents the algorithm to read bucketBi from disk. BucketBi is distributed among many files and the heapH is used
to drive a multi-way merge operation. The line 2 extracts andremoves triple (i, j, x) from H, wherei is a minimum value inH.
The line 3 insertsx in bucketBi . The line 4 performs a seek operation inFiles[ j] on disk for the first read operation and reads
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sequentially allγ-bit fingerprintsx ∈ F that have the same indexi and inserts them all in bucketBi . Finally, the line 5 inserts inH
the triple (i′, j, x′), wherex′ ∈ F is the firstγ-bit fingerprint read fromFiles[ j] (in line 4) that does not have the same bucket address
as the previous keys.

function readingBucket (Files, H , Bi )
1. while bucketBi is not full do
2. Remove (i, j, x) from H
3. Insertx into bucketBi
4. Read sequentially allγ-bit fingerprints fromFiles[ j] that have the samei and insert them intoBi
5. Insert the triple (i′, j, x′) in H, wherex′ is the firstγ-bit fingerprint read fromFiles[ j] that does not have the same bucket indexi

Figure 12: Reading a bucket.

5.3. Amount of CPU Time to Construct the Functions

In this section we present the amount of time to construct thefunctions, considering the partitioning and the construction steps.

5.3.1. Partitioning Step
The partitioning step presented in Figure 10 reads the wholekey setS in blocks such that the computedγ-bit fingerprints fit

in a memory areaB j , 1 ≤ j ≤ Nf , of sizeM bytes. Then, radix sort is used to cluster the|B j | γ-bit fingerprints in buckets before

dumping them to disk. The partitioning step runs in expectedO(n) time because
∑Nf

j=1 |B j | = n. It is expectedO(n) time because
the algorithm might fail in line 4 whenever a bucket with morethanℓ keys is generated. However, it succeeds with high probability
and the expected number of iterations isO(1), as showed in Section 4.2.3.

5.3.2. Construction Step
The construction step presented in Figure 11 uses the RAM algorithm for each bucket. As mentioned before, the RAM algorithm

is a randomized algorithm that might fail with small probability for a given bucket when it cannot find appropriate hash functions.
When it fails, we restart in the partitioning step. By using the hash functions designed in Section 4.2, it is possible to make the
construction step work with high probability and the numberof iterations will be bounded by a constant.

The multi-way merge operation driven by a heapH with Nf entries usingNf = Ω(nτ) computer words can be done in linear
time for 0< τ < 1 (see, e.g., [1, Theorem 3.1]). Forτ = 0.5 the merge operation can be performed in one pass. We conclude that
the construction step runs in expectedO(n) time, once it is essentially a multi-way merge operation and the RAM algorithm used
to compute the functionsfi of each bucket is also linear on the buckets’ size.

Finally, in the worst case, theγ-bit fingerprints of bucketi are spread over at mostℓ files on disk (recall thatℓ is the maximum
number of keys found in any bucket). Therefore, the criticalstep in reading a bucket is in line 4 of Figure 12, where a seek
operation inFiles[ j] may be performed by the first read operation. The seek operation problem can be addressed by using buffering
techniques [33] to amortize the number of seeks performed.

5.4. Space Consumption to Store the Functions

The description of the resulting functions consists of the functionq, theoffsetarray and the functionsfi ∈ {C ∪ Cµ}, 0 ≤ i < Nb.
The functionq comes from the setHL,b of linear hash functions overGF(2) and therefore requiresO(L logn) bits to be stored. The
offsetarray hasNb entries of logn bits and, then, requiresO(n) bits sinceNb ≤ n/ logn.

If fi is a PHF, then it requires| fi | = log(3)⌈c|Bi |⌉ bits of space,c ≥ 1.23, to store each functionfi . Therefore,
∑Nb−1

i=0 | fi | =
log(3)⌈cn⌉ bits are necessary to store a PHF. Iffi is an MPHF, then it requires| fi | = (2+ ǫ)⌈c|Bi |⌉+ o(|Bi |) bits of space, forc ≥ 1.23
andǫ > 0. Therefore,

∑Nb−1
i=0 | fi | = (2+ ǫ)⌈cn⌉ + o(n) bits are necessary to store an MPHF.

Additionally, we need to store the hash functionshi0, hi1, andhi2 (see Definition 4.3). For this we need to store 6k tables
with 2δ entries of logp bits, wherep is a large prime number ofO(logn) bits, and the seed numberssi of log p bits, where
0 ≤ i < Nb. Considering thatδ = ⌈log( 3

√
nℓ)⌉ andk = 4 are values chosen to make the EM algorithm work with high probability

andNb ≤ n/ logn, thenhi0, hi1, andhi2 are stored inO(n) bits.
Thus, the number of bits required to store a function constructed by the EM algorithm is log(3)⌈cn⌉ + O(n) bits for a PHF and

(2+ ǫ)⌈cn⌉ +O(n) bits,ǫ > 0, for an MPHF. That meansO(n) bits for both cases.

5.5. Space Consumption to Construct the Functions

The EM algorithm needs to maintain in internal memory: (i) a fixed a priori working area of sizeM bytes that depends on the
amount of internal memory available to run the algorithm; (ii) O(|B j |) words required to run the indirect radix sort algorithm; (iii)
O(Nf ) words used to drive aNf -way merge operation using the heapH, which allows the merge operation to be performed in one
pass through each file.
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Therefore, the EM algorithm requiresO(Nf ) computer words to construct either a PHF or an MPHF. As shownin [1, Theorem
3.1], to get a linear time complexity we needNf = Ω(nτ) computer words for 0< τ < 1. To allow the merge operation to be
performed in one pass we needτ = 0.5.

6. HEM Algorithm

We designed another version of the EM algorithm that uses faster and more compact pseudo random hash functions proposed
in [32], referred to as heuristic EM algorithm, or simplyHEM algorithmfrom now on.

As opposed to the EM algorithm that uses the hash functions described in Section 4.2, which guarantee that the EM algorithm
can be made to work for every key set, the HEM algorithm is not guaranteed that it will work for every key set. However, limited
randomness often suffices in practice [2], and the HEM algorithm has worked for all key sets we have applied it to.

The HEM algorithm avoids the space needed for the lookup tables of the EM algorithm. It uses a heuristic hash function that
does not impose any upper bound for the key sizes and their description requires just the storage of one 32-bit random seedfor a
pseudo random number generator. Therefore, just three 32-bit random seeds are required to describe the functionshi0, hi1 andhi2 of
each bucket. The function just loops over the key doing bitwise operations on blocks of 12 bytes and outputs a 12-byte fingerprint.

7. Experimental Results

In this section we present the experimental results for the RAM algorithm with r = 2 andr = 3, the EM algorithm and the
HEM algorithm. We compare them with some of the main practical perfect hashing algorithms we found in the literature. We show
that the mathematical basis for minimal perfect hashing presented in Sections 3 and 5 is set to work in an implementation that can
construct an MPHF for key sets of size in the billions that usemuch less space than previously known algorithms, including the
one by Hagerup and Tholey [29]. As mentioned in Section 2.3, Belazzougui, Botelho and Dietzfelbinger [4] have shown how to
generate slightly more compact functions that are 25% slower to be computed than the ones described herein. We refer the reader
to their paper to check the thorough comparison that was donebetween their algorithm and the RAM algorithm.

The experiments were carried out on a computer with a 1.86 gigahertz Intel Core 2 processor with 1 gigabytes of main memory
and a L2 cache of 4 megabytes, running Linux operating systemversion 2.6. The algorithms were implemented in the C language
and are available athttp://cmph.sf.net under the GNU Lesser General Public License (LGPL).

We use the following metrics to compare the algorithms: (i) The amount of time to construct PHFs or MPHFs, referred to as
Construction Time. (ii) The space requirement for the description of the resulting PHFs or MPHFs, referred to as StorageSpace.
(iii) The amount of time required by a PHF or an MPHF for each retrieval, referred to as Evaluation Time.

For the experiments we used the two collections presented inTable 1: (i) a set of 150 million randomly generated 4 byte long
integers, referred to as INT4 (the choice of 4 bytes was motivated by IPv4 addresses), and (ii) a set of 1,024 million 64-byte long
(on average) URLs collected from the Web.

Collection Size (millions) Key (bytes)
INT4 150 4 (long)
URLs 1,024 64 (average)

Table 1: Collections used in the experiments.

7.1. Performance of the RAM Algorithm

In this section we evaluate the performance of the RAM algorithm. Table 2 presents the construction time and storage space to
construct MPHFs forr = 2 andr = 3, with a confidence level of 95%. The table shows that the algorithm for r = 3 is the fastest and
also constructs the most compact functions. The algorithm for r = 3 is the fastest because the probability of obtaining a hypergraph
with no cycles tends to 1 forc = 1.23 (see Theorem 3.5). As expected, the construction time is influenced by the key length (INT4
are 4 bytes long and URLs are 64 bytes long on average) and the storage space is not.

7.2. Performance of the EM and HEM Algorithms

In this section we evaluate the performance of the EM and the HEM algorithms. Figure 13 presents the runtime of the EM and
HEM algorithms for the INT4 and URL collections, for values of n equals to 2j million keys, where 0≤ j ≤ 10. The sizeM of
the a priori reserved internal memory area was set to 250 megabytes — later in this section we show how this parameter affects the
algorithms’ runtime. The parameterb (see Eq. (5) in Section 4) was set to the minimum value that gives us a maximum bucket size
lower thanℓ = 256. For each value chosen forn, the respective values forb arei bits for 13≤ i ≤ 23. The solid line corresponds
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n RAM algorithm
Construction Time (sec) Storage Space
INT4 URLs Bits/Key Size (MB)

1× 106 r = 2 3.09± 0.28 4.00± 0.34 3.60 0.43
r = 3 1.32± 0.01 1.61± 0.01 2.62 0.31

12× 106 r = 2 48.30± 4.42 59.04± 5.47 3.60 5.15
r = 3 23.2± 0.02 26.31± 0.06 2.62 3.75

24× 106 r = 2 101.59± 9.13 125.65± 11.35 3.60 10.30
r = 3 51.19± 0.03 57.39± 0.04 2.62 7.50

Table 2: Comparison of the RAM algorithm to construct MPHFs for r = 2 andr = 3 considering construction time and storage space, and usingn = 1,12, and 24
million keys for the two collections.
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Figure 13: Number of keys inS versus construction time for the EM algorithm and the HEM algorithm. The solid line corresponds to a linear regression modelfor
the construction time.

to a linear regression model. As we were expecting, the HEM algorithm is slightly faster than the EM algorithm because it uses a
faster pseudo random hash function.

The runtime of both EM and HEM algorithms does not vary much aswe explain in the following. The runtime of the algorithm
that constructs the buckets is a random variable that follows a geometric distribution with mean 1/Pra ≈ 1, because Pra → 1 as
n → ∞ for the RAM algorithm withr = 3. Thus we defineXi , 0 ≤ i < Nb, random variables and letY =

∑

0≤i<Nb
Xi denote the

runtime of the construction step. Under the hypothesis thatthe Xi are independent and bounded, thelaw of large numbers(see,
e.g., [30]) implies that the random variableY/Nb converges to the expected value of eachXi asn→ ∞. This and the fact that the
partitioning step was never restarted (because the parameter b is chosen so that the maximum bucket sizeℓ is lower than or equal
to 256 with high probability) explain why the runtime does not vary much.

Table 3 presents the space required to store the functions for both EM and HEM algorithms. It shows that the space requiredto
store the PHFs and MPHFs for the EM algorithm is on average 2.6 and 3.21 bits per key, respectively, and for the HEM algorithm is
on average 2.51 and 3.1 bits per key, respectively. Since the EM algorithm is supposed to be used for key sets that cannot be handle
in internal memory wheren is in the order of billions, we did not consider in the aforementioned averages the cost to represent the
lookup tables used by the hash functions of the EM algorithm described in Section 4. Those lookup tables require a storagecost of
3,345,409 bytes to implement truly random hash functions on the buckets. It is a nonsense to use the EM algorithm for small sets
since the cost for the lookup tables would dominate the spacerequired to store the functions’ description.

n b
EM NOT considering lookup EM considering lookup

HEM (bits/key)
table cost (bits/key) table cost (bits/key)

PHF MPHF PHF MPHF PHF MPHF
105 9 2.41 3.00 270.04 270.63 2.32 3.04
106 13 2.67 3.29 29.43 30.05 2.54 3.12
107 16 2.53 3.13 5.21 5.81 2.42 2.97
108 20 2.74 3.34 3.00 3.61 2.70 3.21
109 23 2.67 3.29 2.70 3.32 2.55 3.12

Table 3: Space usage to respectively store the resulting PHFs and MPHFs of the EM algorithm and the HEM algorithm.

As mentioned in Section 6, the HEM algorithm avoids the spaceneeded for the lookup tables of the EM algorithm. It uses a
heuristic hash function that requires just the storage of one 32-bit random seed for a pseudo random number generator. Therefore,
just three 32-bit random seeds are required to describe the functionshi0, hi1 andhi2 of each bucket. Thus, in the partitioning step,
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the key setS is mapped to a setF containing 12-byte long fingerprints (recall thatγ = 96 bits). As there are no lookup tables to
causecache missesthe construction time for a set of 1,024 million URLs has dropped from 49.3 for the EM algorithm down to
46.2 minutes for the HEM algorithm in the same setup. In fact thisimprovement is not much and has the disadvantage of using the
Jenkins function, for which there is no formal proof that it works for every key set.

Controlling Disk Accesses
In this section we evaluate how much the parameterM affects the runtime of both versions of the EM algorithm. For that we

fixed n in 1,024 million URLs and usedM equal to 100, 200, 300, 400, 500, and 600 megabytes.
In the worst case theγ-bit fingerprints of a bucketi, 0 ≤ i < Nb, are spread in at mostℓ files on disk. Therefore, we need to take

into account that the critical step in reading a bucket is in line 4 of Figure 12, where a seek operation inFiles[ j] may be performed
by the first read operation.

In order to lower the number of seek operations on disk we benefit from the fact that both versions of the EM algorithm leave
almost all main memory available to be used as disk I/O buffer during the construction step. We then use a buffering technique
from [33] to amortize the number of seeks.

We create a buffer j of sizeS = M/Nf bytes for each filej, where 1≤ j < Nf . Every time a read operation is requested to
file j and the data is not found in thej-th buffer,S bytes are read from filej to buffer j. Hence, the number of seeks in the worst
case is given byζ/S, whereζ = ⌈γn/8⌉ = 12n bytes for both the EM and HEM algorithms. For that we have madethe pessimistic
assumption that one seek happens every time buffer j is filled in. Therefore, the number of seeks is linear onn and amortized byS.

Table 4 presents the number of filesNf , the buffer sizeS used for all files, the number of seeksζ/S in the worst case, and the
time to construct a PHF or an MPHF for 1,024 million URLs as a function of the amount of internal memory available. Observing
Table 4 we noticed that the time spent in the construction decreases as the value ofM increases. However, forM > 400, the time
variation is not as significant as forM ≤ 400. This can be explained by the fact that the kernel 2.6 I/O scheduler of Linux has smart
policies to avoid seeks and to diminish the average seek time(seehttp://www.linuxjournal.com/article/6931).

M (MB)
EM HEM

Nf S (KB) ζ/S time (min) Nf S (KB) ζ/S time (min)
100 301 340 35,274 59.8 226 453 26,485 56.0
200 119 1,721 6,973 50.0 89 2,301 5,215 46.4
300 74 4,151 2,891 48.5 56 5,485 2,188 45.3
400 54 7,585 1,583 47.2 41 9,990 1,202 44.4
500 43 11,906 1,008 47.0 32 16,000 750 44.0
600 35 17,554 684 47.0 26 23,630 508 44.0

Table 4: Influence of the internal memory area size (M) in the runtime of both versions of the EM algorithm to construct PHFs or MPHFs for 1,024 million URLs
(time in minutes).

7.3. Comparison with Practical Results from the Literature

In this section we compare the RAM, EM and HEM algorithms withthe following practical algorithms from the literature:
Botelho, Kohayakawa and Ziviani [6] (referred to as BKZ), Fox, Chen and Heath [25] (referred to as FCH), Majewski, Wormald,
Havas and Czech [36] (referred to as MWHC), and Pagh [41] (referred to as PAGH). For the MWHC algorithm we used the
version based on random hypergraphs withr = 3. We did not consider the one that uses random graphs withr = 2 because it is
shown in [6] that the BKZ algorithm outperforms it. It is alsoshown therein that the BKZ algorithm outperforms the algorithm by
Dietzfelbinger and Hagerup [20], which generates functions that require approximately half of the space of the ones generated by
Pagh’s algorithm — the space usage is (1+ ǫ)n logn bits for ǫ ∈ [1.13,1.15]. The algorithm by Woelfel [48] was not considered
because its implementation would look like the implementation of the EM and HEM algorithms, and therefore it is fair to say that
the algorithm would be as efficient as the EM and HEM algorithms as to construction time. However, it requires at least 2n log logn
bits to store its resulting function description. For instance, even for a smalln = 1,024 keys, the function description would take at
least 6.6 bits/key. Therefore the algorithm is not as practical as the EM andHEM algorithm as to storage space.

For all the experiments we usedn = 3,541,615 keys for the two collections presented in Table 1. The reason to choose a small
value forn is because the FCH algorithm has exponential time onn for the construction phase, and the times explode even when
the number of keys is a little larger. The following conclusions do not change if one wants to varyn.

Table 5 shows that the RAM (forr = 3), EM, HEM and MWHC algorithms are faster than the others to construct MPHFs.
The reason why both EM and HEM algorithms perform well is due to two main factors. First, as the key set is stored in external
memory, all the other algorithms scan the whole key set everytime a failure occurs, whereas both EM and HEM algorithms simply
scan the whole key set once and map it to a set of fixed length fingerprints. This is intrinsically part of their design and do not
introduce overhead at evaluation time. We could use the sametrick for the other algorithms but this would introduce overhead
to evaluate the resulting functions due to the extra level ofindirection. We cannot assume that the resulting fingerprint set fits in
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memory. Therefore the extra level of indirection would not improve the other algorithms performance anyway. Second, asthe
whole key set is broken into buckets with at most 256 keys and the memory is accessed in a less random fashion the EM and HEM
algorithms result in fewer cache misses.

Algorithms Construction Time (sec) Storage Space

INT4 URLs Bits/Key Size (MB)

RAM
r = 2 11.39± 1.33 16.73± 1.89 3.60 1.52

r = 3 5.46± 0.01 6.74± 0.01 2.62 1.11
EM 5.86± 0.17 7.68± 0.22 3.31 1.40

HEM 5.56± 0.16 6.27± 0.11 3.17 1.34
BKZ 9.22± 0.63 11.33± 0.70 21.76 9.19
FCH 2,052.7± 530.96 2,400.1± 711.60 4.22 1.78

MWHC 5.98± 0.01 7.18± 0.01 26.76 11.30
PAGH 39.18± 2.36 42.84± 2.42 44.16 18.65

Table 5: Comparison of the algorithms to construct MPHFs considering construction time and storage space, and usingn = 3,541,615 for the two collections.

Table 5 also shows that the RAM (forr = 3), EM and HEM algorithms present the most compact functions. The storage space
requirements in bits per key for the two versions of the RAM algorithm are 3.6 whenr = 2, and 2.62 whenr = 3. For the EM
and HEM algorithms the storage space requirements are 3.21 and 3.17 bits per key, respectively. For the BKZ, MWHC and PAGH
algorithms they are logn, 1.23 logn and 2.03 logn bits per key, respectively. It is possible to build a more compact function with
Pagh’s algorithm. For instance, we know of implementationsthat require 0.4 logn bits per key in practice. However, in the worst
case we must force the space up to 2.03 logn bits to get the algorithm to work. The algorithm also runs slowly to create more
compact functions.

Table 6 shows the evaluation time of the algorithms for a random permutation of then keys. Although the number of memory
probes at retrieval time of the MPHF constructed by the PAGH algorithm is optimal [41] (it performs only 1 memory probe), it is
important to note in this experiment that the evaluation time is smaller for the FCH and the RAM algorithms because the constructed
functions fit entirely in the machine’s L2 cache (see the storage space size for the RAM algorithm and the FCH algorithm in Table 5).
For example, for sets of size up to 13 million keys the resulting functions constructed by the RAM algorithm withr = 3 will fit
entirely in a 4-megabyte L2 cache. In a converse situation, where the functions do not fit in the cache, the MPHFs constructed by
the PAGH algorithm are the most efficient.

Algorithms
RAM

EM HEM BKZ FCH MWHC PAGH
r = 2 r = 3

Evaluation INT4 1.19 1.16 2.72 1.75 1.33 0.75 1.53 1.30
Time (sec) URLs 2.12 2.11 4.36 2.73 2.24 1.61 2.46 2.20

Table 6: Comparison of the algorithms considering evaluationtime and using the collections INT4 and URLs withn = 3,541,615.

7.4. Comparison of PHFs and MPHFs
In this section we compare the two types of functions constructed by the RAM (withr = 2 andr = 3), the EM and the HEM

algorithms: PHFs (m> n) and MPHFs (m= n). Table 7 presents the following results:

• Construction time: there is no significant differences between PHFs and MPHFs constructed by any of the fouralgorithms.
Among them, the RAM algorithm withr = 2 is slower than the other three because the probability of obtaining an acyclic
2-graph forc = 2.09 tends to 0.29, whereas the probability of obtaining a 3-graph forc = 1.23 tends to one.

• Evaluation time: the PHFs form = ⌈2.09n⌉ and m = ⌈1.23n⌉ are faster than MPHFs because MPHFs need to compute
function rank.

• Storage space: the space for PHFs withr = 3 andm = ⌈1.23n⌉ is in the range 1.95 to 2.7 bits per key, whereas for MPHFs
with m= n it is in the range 2.62 to 3.3 bits per key.

Finally, we compare PHFs and MPHFs when they are used to indexa table storing small values, say 1,2,3,4, . . . bits (see in
Section 1 an example of a garbage collector system that uses aPHF to index a bitmap storing values of one bit). Considerx the
space per key to store the function andy the space per key to store the values. The equation to computethe total space per key (in
bits) is x + y × m/n. Table 8 presents total space values for PHFs and MPHFs. The use of a PHF (m = 1.23n) is always better
while storing values that have less than three bits whereas the use of an MPHF (m = n) is preferable for values that have 3 bits or
more. Another aspect to consider is that evaluation time forPHFs is faster than evaluation time for MPHFs because MPHFs need
to computefunction rank.
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Algorithms Type m
Construction Time (sec) Evaluation Time (sec) Storage Space
INT4 URLs INT4 URLs INT4 or URLs

RAM (r = 2)
PHF 2.09n 10.50± 1.24 14.79± 1.58 0.68 1.63 2.09

MPHF n 11.39± 1.33 16.73± 1.89 1.19 2.12 3.60

RAM (r = 3)
PHF 1.23n 5.54± 0.01 6.78± 0.02 0.79 1.71 1.95

MPHF n 5.46± 0.01 6.74± 0.01 1.16 2.11 2.62

EM
PHF 1.23n 5.82± 0.17 7.34± 0.05 2.27 3.97 2.76

MPHF n 5.86± 0.17 7.68± 0.22 2.72 4.36 3.31

HEM
PHF 1.23n 5.47± 0.16 5.97± 0.09 1.44 2.43 2.62

MPHF n 5.56± 0.16 6.27± 0.11 1.75 2.73 3.17

Table 7: Comparison of the PHFs and MPHFs constructed by our algorithms, considering construction time, evaluation time andstorage space metrics using
n = 3,541,615 for the two collections.

RAM Algorithm EM Algorithm
x y m/n Space x y m/n Space

1.95 1 1.23 3.18 2.7 1 1.23 3.93
2.62 1 1.00 3.62 3.3 1 1.00 4.3
1.95 2 1.23 4.41 2.7 2 1.23 5.16
2.62 2 1.00 4.62 3.3 2 1.00 5.3
1.95 3 1.23 5.64 2.7 3 1.23 6.39
2.62 3 1.00 5.62 3.3 3 1.00 6.3
1.95 4 1.23 6.87 2.7 4 1.23 7.62
2.62 4 1.00 6.62 3.3 4 1.00 7.3

Table 8: Comparison of total space values (in bits) for PHFs and MPHFs considering the space per key to store the function (x) and the space per key to store small
values (y) in a table indexed by the function.

8. Conclusions

This paper has presented a time efficient, highly scalable and nearly optimal space perfect hashing algorithm. The basic idea to
obtain scalability is the well-known idea of partitioning the input key set into small buckets. The main contribution isthe way we
engineer many theoretical results into an implementation that scales for billions of keys in practice. The dominating phase in the
construction of the functions consists of external sortingn fingerprints ofO(logn) bits in O(n) time. The construction algorithm is
highly scalable because it uses only a little amount of internal memory to work, basically the space necessary to accommodate a
heap that drives a multi-way merge operation, which isO(nτ) computer words to have linear time complexity, where 0< τ < 1. In
our case, as we want to perform the merge operation in one pass, we needτ = 0.5 (see, e.g., [1, Theorem 3.1]). As discussed in
Section 4.2.4, in a 64-bit architecture our algorithm is able to deal with key sets of sizen = 1.8× 1021.

The resulting functions are evaluated inO(1) time and take a constant number of bits per key of storage space. The space usage
depends on the relation between the sizem of the hash table and the sizen of the input. Form = n, the space usage is in the range
2.62n to 3.3n bits, depending on the constants involved in the construction and evaluation phases. Form= ⌈1.23n⌉ the space usage
is in the range 1.95n to 2.7n bits. In all cases, this is within a small constant factor from the information theoretical minimum of
approximately 1.44n bits for MPHFs and 0.89n bits for PHFs.

The algorithm is theoretically well understood. We have illustrated the scalability of our algorithm by constructing an MPHF
for a set of 1,024 million URLs from the World Wide Web of average length 64 characters in approximately 46 minutes, using a
commodity PC.

Finally, the algorithm is suitable for a distributed and parallel implementation. For instance, in [5] was presented a distributed
and parallel version of the EM algorithm. In the distributedalgorithm, the keys to be processed are distributed among several
machines. Further, both the buckets and the construction ofthe hash functions for each bucket are also distributed among the
participating machines. Two versions of the distributed algorithm were presented: one where both the description and the evaluation
of the resulting MPHF are centralized in one machine, and another version where both the description and the evaluation of the
resulting MPHF are distributed among the participating machines. In the centralized evaluation algorithm, the task ofwriting the
final MPHF to disk corresponds to the sequential part and represents approximately 0.5% of the execution time. In the distributed
evaluation algorithm, the MPHFs are written in parallel in each participating machine. Therefore, in this case, the fraction of
parallelism that can be potentially exploited correspondsto 100% of the execution time. That is why both versions of theparallel
algorithm are considered embarrassingly parallel. Considering the construction phase of both algorithms, an MPHF fora set of
14.336 billion 16-byte integer keys can be constructed in 50 minutes using 14 commodity PCs, achieving an almost linear speedup.
Considering the MPHFs fed by a key stream of one billion 16-byte integers taken at random, the time spent by both sequential and
centralized algorithms was 24.54 minutes whereas the time spent by the distributed evaluation was 11.47 minutes, an improvement
of approximately 214%.

22



9. Acknowledgments

We thank Djamal Belazzougui for suggesting a method to construct PHFs that map to the range{0, . . . ,m− 1} based on random
3-graphs. The resulting functions are stored in 2.46 bits per key and this space usage was further improved to 1.95 bits per key
by using arithmetic coding. We also thank the anonymous referees of prior submissions and the partial support given by the
Brazilian National Institute of Science and Technology forthe Web (grant MCT/CNPq 573871/2008-6), Project InfoWeb (grant
MCT/CNPq/CT-INFO 550874/2007-0) and CNPq Grant (Nivio Ziviani).

23



A. Symbol Table

Symbol Meaning
β Number of bits used to encode each entry ofg
b Parameter chosen to guarantee that each bucket has at mostℓ = Ω(logn log logn) keys
Bi Set of fingerprints in bucketi
B̂ Set of buckets induced by a functionh0 : S 7→ {0,1}b
c Ratio between number of edges and number of vertices in an acyclic hypergraphGr such thatc > c(r)
c(r) Minimum ratio between number of edges and number of vertices in ahypergraphGr so it is acyclic with high probability
C Class of perfect hash functions
Cµ Class of minimal perfect hash functions
CMPH C Minimal Perfect Hashing Library (http://cmph.sf.net)
ǫ Real constant. Its value is restricted to be eitherǫ > 0 or 0< ǫ < 1 depending on the context
e Edge or hyperedge of a hypergraph
E Set of edges of a hypergraph
EM External memory algorithm
F Set of fixed-lengthγ-bit fingerprints
g Array containing the valuesg(v), v ∈ V
γ Fingerprint length in bits, which is obtained from a linear hash functionh′ : S 7→ {0,1}γ
Gr (V,E) Hypergraph with a vertex setV and an edge setE, each edge connectingr vertices
h Hash function
H Set of hash functions
HL,b Set of linear hash functions mapping from{0,1}L to {0,1}b
ℓ Maximum number of keys in any bucket
L List of edges of a hypergraph
L Maximum key length in bits
m Size of a hash function range
µ Minimal perfect hash function
MPHF Minimal perfect hash function
n Number of keys inS
Nb Number of buckets
offset[i] Total number of keys before bucket[i]
PHF Perfect hash function
Pra Probability that a hypergraph is a forest
r Number of vertices of a hyperedge
rankTable Table storing the rank of everyk-th index ing, wherek = ⌊log(m)/ǫ⌋, usingǫm additional bits of space, for 0< ǫ < 1
RAM Random access memory algorithm
rank Function returning the number ofg-values assigned before a given vertexv ∈ V in g
S Subset of a key universe of size|S| = n
Tr Lookup table where each entry gives the number of assigned vertices (i.e.,g[i] , r, for 0 ≤ i ≤ m− 1) in a byte fromg
u Size of a key universe
U Key universe
V Set of vertices of a hypergraph

Table 9: Symbols and acronyms used throughout the paper. Localsymbols are not included because their meaning are deemed to be clear by their local context.
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B. Probability Distribution of Cycles in Bipartite Random G raphs

In this section we show that the probability distribution ofcycles in bipartite random graphs can be approximated by a Poisson
distribution. For that we are going to follow the same reasoning used by Janson in [31], which has applied the technique onPoisson
convergence and Poisson processes to random graphs withoutthe bipartite restriction. We are going to transcribe the concepts
adjusting the notation to the one used in this paper.

B.1. Background on Point Processes and Convergence to Poisson Processes
A point process takes place in some setY that is assumed to be a locally compact second countable Hausdorff topological space

(e.g.,Ymay be a closed or open subset ofℜd). A Radon measure onY is a Borel measureµ such thatµ(K) < ∞ for every compact
setK ⊂ Y. Point processes are defined as random integer valued Randonmeasures that can be written as:

ξ =

N
∑

1

δX j , (8)

whereX j are random variables with values inY, N is a finite or infinite random variable andδx is the Dirac measure:

δx(A) = I (x ∈ A),A ⊂ Y.

One can think ofξ as the random multiset{X j} such thatξ(A) =
∑N

1 I (X j ∈ A) is the number of points of this multiset that fall inA.
Let λ be a Randon measure inY. The Poisson process with intensityλ is the unique point processξ such that the random

variableξ(A) is Poisson distributed with parameterλ(A) for every Borel setA ⊂ Y, andξ(A1), . . . , ξ(Ak) are independent for any
disjoint Borel setsA1, . . . ,Ak. A simple example is whenY is a finite or infinite discrete set and a Poisson process onY is a
collection of independent Poisson variables. Ifξ is a point process,A and B are two Borel sets inY, thenAξ will denote the
restriction ofξ to A defined byAξ(B) = ξ(A∩ B).

A λ-continuity set is a Borel setA such thatλ(∂A) = 0. Likewise, ifξ is a point process,A is aξ-continuity set ifξ(∂A) = 0
almost surely. Ifξ is a Poisson process with intensityλ, the ξ-continuity sets are exactly theλ-continuity sets. Note that the
ξ-continuity sets form a ring.

A DC-semiringQ is a semiring of Borel sets such that for anyǫ > 0, any compact subset ofY may be covered by a finite
number of elements ofQ having diameter less thanǫ. A DC-ring is a DC-semiring that is a ring. The family of finitedisjoint unions
of sets in a given DC-semiring is a DC-ring.

Consider a sequenceξ1, . . . , ξm of point processes onY where each one is represented by Eq. (8). A representation with a
non-random (finite or infinite, and possibly depending onm) number of terms is preferable to operate with rather than one that has
random number of terms. Fortunately it is possible to turn the random number of terms into a non-random number of terms by the
following device. LetY⋆ be a space that containsY as a subspace and consider that the random variablesX j from Eq. (8) have
values inY⋆, butδX j are measures onY. ThusδX j = 0 if X j ∈

(Y⋆ − Y)

, which means that any number of “ghosts”X j with values
in Y⋆ − Y may be added. Therefore the total number of terms can be fixed as infinite. Note that the actual values taken byX j

outsideY are irrelevant, because all points inY⋆ − Y are treated as non-existent.
Convergence of point processes are discussed in two topologies: (i) the vague topologydefined on the set of all Randon

measures; and (ii)the weak topologydefined on the subset of finite measures. It is used
vd−→ and

wd−→ to denote convergence in
distribution in these topologies, respectively, asm→ ∞ (the phrase “asm→ ∞” is usually omitted from the formulae). It is also

used
d−→ to denote convergence in distribution regardless the topology. In the following it is presented the results we have usedto

prove the claim in Section B.2, which were proved by Janson in[31].

Lemma B.1 (Janson [31], Lemma 2.6).LetQ be a DC-semiring onY. Letξ be a point process onY andµ a Borel measure such
that Eξ(B) ≤ µ(B) for every B∈ Q. Then Eξ ≤ µ.

Theorem B.2 (Janson [31], Theorem 3.2).Let λ be a Radon measure onY. Let, for each m,ξm be a point process
∑

j∈J δX j on
Y, where{X j} j∈J is a family of random variables with values inY⋆ ⊃ Y. (J and Xj depend on m.) Assume that, for each m, for
every j∈ J there exists a subset Dj ofJ (with j ∈ D j) such that Xj is independent of{Xk : k < D j}. Assume further that, for every
Q and Q′ in a fixed DC-semiringQ (onY) of λ-continuity sets, as m→ ∞:

∑

j∈J
Pr(X j ∈ Q) → λ(Q), (9)

∑

j∈J

∑

k∈D j

Pr(X j ∈ Q) Pr(Xk ∈ Q′) → 0, (10)

∑

j∈J

∑

k∈(D j−{ j})
Pr(X j ∈ Q and Xk ∈ Q′) → 0. (11)
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Thenξm
vd−→ ξ, whereξ is a Poisson process onY with intensityλ.

Corollary B.3 (Janson [31], Corollary 3.2). Assume that the conditions of Theorem B.2 are satisfied and, furthermore, thatµ is a
Borel measure such that, for every Q∈ Q and every m,

∑

j∈J
Pr(X j ∈ Q) ≤ µ(Q).

Then, for everyξ-continuity set A⊂ Y with µ(A) < ∞, Aξm
wd−→ Aξ (with ξ as above), in particular

ξm(A)
d−→ Poisson(λ(A)).

B.2. Probability Distribution of Cycles in Bipartite Random Graphs Converges to a Poisson Distribution

In this section we apply the general results presented in Section B.1 to show that the probability distribution of cyclesin bipartite
random graphs converges to a Poisson distribution. From nowon, every time we use the word “graph” we mean “bipartite random
graph”.

A bipartite random graphGη,η(V,E), where|V| = 2η = m, |E| = dη = n, andd = n/η is the average degree ofGη,η is obtained by
a stochastic process where each graph starts with a set ofm= 2η vertices and at each step one edge is added between two vertices
(one from each partition) at random. Different random graph models produce different probability distributions on graphs. Let
Gη,η,p, 0 ≤ p ≤ 1, be the model of all bipartite random graphs withm = 2η vertices and theη2 possible edges occur independently
of each other, each with probabilityp. Other closely related model is theGη,η,n model which assigns equal probability to all bipartite
graphs with exactlym = 2η vertices andn edges. It is well known in the random graph theory that results forGη,η,p are equivalent
to results forGη,η,n wheneverp = d/η andη → ∞ (this is equivalent tom → ∞ and they can be interchangeable), because the
expected number of edges for the graphs inGη,η,p would beη2p = n. Then edges are almost surely distinct because there will be
no multiple edges with probability (η2)n/η

2n, where (η)n = η(η − 1) . . . (η − n+ 1). In the limit, whenη→ ∞, this probability tends
to e−d2/2. To get this we used standard calculus to approximatef (x) = 1− x by g(x) = e−x for a small realx ∈ (0,1).

Consider the evolution of bipartite random graphs when the edges are sequentially added at random. Let

{Te : e ranges over the set of edges in the complete bipartite graphKη,η}

beη2 random variables with a common continuous distribution on [0,∞). As in Janson [31] we let eachTe be uniformly distributed
on

[

0, η
]

. LetGη,η(t) denote this process to generate bipartite random graphs with m= 2η vertices and all edgese for whichTe ≤ t.
Thus one can think ofTe as the time the edgeeappears.
Gη,η(t) generates a random graph inGη,η,p with p = Pr(Te ≤ t). The processGη,η(t) nests graphs inGη,η,p for different values

of p. Furthermore, ast increases, new edges are added at the random times{Ti}η
2

i=1 and they are almost surely distinct as we have
seen above. Hence graphs inGη,η,n can be constructed asGη,η(Tn). Therefore results for bothGη,η,p andGη,η,n can be obtained from
results for the processGη,η(t). Let TG = max{Te : ebelongs to the edge set ofG} be the time at which an arbitrary subgraphG
arises during the processGη,η(t). Thus, ifG has‖G‖ edges the following holds:

Pr(TG ≤ t) =

(

t
η

)‖G‖
,0 ≤ t ≤ η (12)

Let, for eachm, J = ⋃∞
l̂=2
J2l̂ , whereJ2l̂ is the set of cycles of even length 2l̂ in the complete bipartite graphKη,η. A cycle in

J2l̂ can be represented as a sequence of 2l̂ distinct vertices inKη,η. As each cycle can be represented in 2l̂ ways by changing the
start point, the cardinality ofJ2l̂ is:

∣

∣

∣J2l̂

∣

∣

∣ =
1

2l̂

(

(η)l̂
)2
. (13)

LetY = [0,∞)× {4,6,8, . . . }. ThusY is the disjoint union of infinitely many half-linesY2l̂ , l̂ ≥ 2. For any cycleJ ∈ J , define:

XJ = (TJ,2l̂) whenJ ∈ J2l̂ , (14)

whereTJ is the time when cycleJ arises in a processGη,η(t). Let ξm =
∑

J∈J δXJ , whereξm([0, t] × {4}), ξm([0, t] × {6}), . . . are the
number of cycles of even lengths 4,6, . . . , in a bipartite random graph obtained in the processGη,η(t), or equivalently, inGη,η,p with
p = t/η, (t ≤ η). The spaceY allows us to consider cycles of all even lengths simultaneously. It is evident from the definitions that,
if J ∈ J2l̂ :

Pr(XJ ∈ [0, t) × {2l̂}) = Pr(TJ < t) = (t/η)2l̂ , wheret ≤ η, (15)
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and thus, asη→ ∞:
∑

J∈J
Pr(XJ ∈ [0, t) × {2l̂}) = |J2l̂ | ×

(

t
η

)2l̂

=
1

2l̂
t2l̂ . (16)

We now define a Randon measureλ onY asλ([0, t) × {2l̂}) = F2l̂(t), t ≥ 0, l̂ ≥ 2, where:

F2l̂(t) =
1

2l̂
t2l̂ . (17)

Thereforeλ equalsf2l̂(t)dt onY2l̂ , where:

f2l̂(t) =
d
dt

F2l̂(t) = t2l̂−1. (18)

We now show that the conditions of Theorem B.2 are satisfied. Let, for each cycleJ, DJ be the set of all cycles with at least
one edge in common withJ. ThenXJ and{XK : K < DJ} are independent. LetQ = {[a,b) × {2l̂} : 0 ≤ a < b < ∞, l̂ ≥ 2}. A set in
Q is in turn a half-open interval on one of the half-lines inY. It is easily seen thatQ is a DC-semiring onY. Clearly,Q consists of
λ-continuity sets. Therefore, Eq. (9) holds by Eq. (16) and additivity on l̂ ≥ 2.

It remains to verify Eq. (10) and Eq. (11). Since their left-hand side are monotone inQ andQ′ it suffices to consider the case
Q = [0, t) × {2l̂} andQ′ = [0, t) × {2l̂′} for t > 0 andl̂, l̂′ ≥ 2 (possibly equal). Since anyK ∈ DJ ∩ J2l̂′ has at least two vertices in
common withJ and there are at mostl̂ 2η2(l̂′−1) such aK, Eq. (10) holds by using Eq. (15) as follows:

l̂ 2η2(l̂′−1)

(

t
η

)2l̂′

= O(η−2)→ 0, asη→ ∞.

To show that Eq. (11) holds it is a bit trickier and requires usto be a bit more careful. Let, for 1≤ i ≤ 2l̂ − 1, DJ,i be the set of
all cyclesK ∈ J2l̂′ that have exactlyi edges in common withJ. Since each such aK has at leasti + 1 vertices in common withJ:

∑

K∈(DJ−{J})
Pr(XJ ∈ Q andXK ∈ Q′) =

2l̂−1
∑

i=1

∑

K∈DJ,i

Pr(TJ ≤ t andTk ≤ t)

=

2l̂−1
∑

i=1

∑

K∈DJ,i

Pr(TJ∪K ≤ t) =
2l̂−1
∑

i=1

|DJ,i |
(

t
η

)2l̂+2l̂′−i

≤
2l̂−1
∑

i=1

(

2l̂
i + 1

)(

2η

2l̂′ − i − 1

)

(

l̂′!
)2

2l̂′

(

t
η

)2l̂+2l̂′−i

= O(η−2l̂−1) asη→ ∞, (19)

for everyJ ∈ J2l̂ . Therefore Eq. (11) holds by combining Eq. (13) and Eq. (19) as follows:

∑

J∈J
O(η−2l̂−1)

1

2l̂

(

(η)l̂
)2→ 0, asη→ ∞. (20)

This finishes the proof for the following theorem.

Theorem B.4. ξm
vd−→ ξ, whereξ is a Poisson process onY with intensityλ.

Note thatξ can be thought of as a collection of independent Poisson processes on [0,∞) with the intensitiesf4(t), f6(t), . . . given
by Eq. (18). Furthermore, by Eq. (13) (cf. Eq. (16)):

∑

J∈J
Pr(XJ ∈ [a,b) × {2l̂}) = |J2l̂ | ×

















(

b
η

)2l̂

−
(

a
η

)2l̂
















≤ λ([a,b) × {2l̂}). (21)

By Lemma B.1, withµ = λ, Eξm ≤ λ for everym, and Corollary B.3 yields the following extension of Theorem B.4.

Theorem B.5. if A is aλ-continuity set inY with λ(A) < ∞, then Aξm
wd−→ Aξ, in particular

ξm(A)
d−→ Poisson(λ(A)).
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Let C2l̂(G) be a random variable that measures the number of cycles of length 2̂l in a graphG generated through the process
Gη,η(t), where 0≤ t < ∞ and the average degree of graphG bed = t. Theorem B.4 (or Theorem B.5) immediately yields:

C2l̂(G) = ξm([0,d] × {2l̂}) d−→ Poisson

(

1

2l̂
d2l̂

)

. (22)

More generally, we obtain the following corollary.

Corollary B.6. Let Gη,η,p be a random graph inGη,η,p and Gη,η,n be a random graph inGη,η,n. Let0 ≤ d < ∞ andηp→ d, then:

C2l̂(Gη,η,p)
d−→ Poisson

(

1

2l̂
d2l̂

)

. (23)

If η→ ∞ and(n/η)→ d, then:

C2l̂(Gη,η,n)
d−→ Poisson

(

1

2l̂
d2l̂

)

. (24)

Proof. Observe thatηp→ d andξm
vd−→ ξ impliesξm([0, ηp] × {2l̂}) d−→ ξ([0,d] × {2l̂}) which yields Eq. (23). Eq. (24) follows

similarly becauseC2l̂(Gη,η,n) = ξm([0,Tn] × {2l̂}), andTn→ d.

Since:

∞
∑

l̂=2

F2l̂(d) =
∞
∑

l̂=2

1

2l̂
d2l̂ = −1

2
ln(1− d2) − 1

2
d2, for 0 ≤ d < 1. (25)

We have used Maclaurin’s expansion
∑∞

l̂=1
1
2l̂

xl̂ = − 1
2 ln(1− x) above, wherex = d2. Theorem B.5 yields this section’s claim:

Corollary B.7. Let Gη,η,p be a random graph inGη,η,p andCe(Gη,η,p) be a random variable that measures the number of cycles of
any even length larger than or equal to4 in Gη,η,p. If 0 ≤ d < 1, ηp→ d, andη→ ∞ then:

Ce(Gη,η,p)
d−→ Poisson

(

−1
2

ln(1− d2) − 1
2

d2

)

. (26)
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