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Abstract

Numerical dependencies (NDs) are database constraints that limit the number
of distinct Y -values that can appear together with any X-value, where both
X and Y are sets of attributes in a relation schema. While it is known that
NDs are not finitely axiomatizable, there is no study on how to efficiently derive
NDs using a set of sound (yet necessarily incomplete) rules. In this paper, after
proving that solving the entailment problem for NDs using the chase procedure
has exponential space complexity, we show that, given a set of inference rules
similar to those used for functional dependencies, the membership problem for
NDs is NP-hard. We then provide a graph-based characterization of NDs, which
is exploited to design an efficient branch & bound algorithm for ND derivation.
Our algorithm adopts several optimization strategies that provide considerable
speed-up over a näıve approach, as confirmed by the results of extensive tests
we made for efficiency and effectiveness using six different datasets.

Keywords: numerical dependency, membership problem, branch and bound
algorithm, projection cardinality estimation

1. Introduction

Reasoning with database constraints has several practical applications, in-
cluding database design, query processing and optimization, schema matching,
and data lineage and repair. Consequently, understanding the properties of a
given type of constraints has always been a major topic in database theory.
Central questions that arise with the study of any constraint type are whether
a given constraint is logically implied by a set of constraints (the entailment
problem), whether the constraint type is axiomatizable (which enables a syn-
tactic derivation of constraints through rules), and what is the complexity of
entailment and derivation.

In this paper we tackle the problem of efficiently reasoning with the so-called
numerical dependencies (NDs), introduced by Grant and Minker [1]. Intuitively,
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given two sets of attributes X and Y from a same relation schema, there is an

ND from X to Y (denoted X
k−→ Y ) if each value of X can never be associated

to more than k distinct values of Y (where k ≥ 1 is called the weight of the
ND). NDs are a natural generalization of functional dependencies, which are
obtained when k = 1.

Reasoning with NDs has a number of applications in the database field,
among which:

• Estimating the projection size of a relation, i.e., the number of distinct
values over a subset of its attributes, is a frequent problem in database
applications [2]. When data are not available (e.g., at design time), statis-
tical techniques like those based on histograms [3] or sampling [4] cannot
be used to this end, so probabilistic approaches must be followed. Such
approaches rely on the assumption that the attributes are mutually inde-
pendent; when this is not the case, NDs enable inter-attribute cardinality
constraints to be captured, thus noticeably improving the accuracy in
projection size estimation [5].

• Accurately estimating the cardinality of aggregate views has a crucial
importance in the field of data warehousing, with reference to logical and
physical design as well as query processing and optimization [6]. In partic-
ular, view materialization may significantly benefit from using NDs since
the algorithms that select the best aggregate views to be materialized are
based on view cardinality estimates [7, 5].

• In the Entity-Relationship model, cardinality ratio constraints are used to
impose restrictions on the mappings between entities and relationships. In
this context, reasoning with NDs allows designers to verify the soundness
of schemata, e.g., to identify inconsistencies among cardinality constraints
specified for a given relationship [8] or to ensure that no entity or rela-
tionship is compelled to be empty in all legal instances of a schema [9].

• The study of integrity constraints has also been recognized as one of the
most important yet challenging areas of XML research. XML constraints
have a wide range of applications ranging from schema design, query op-
timization, efficient storing and updating, data exchange and integration,
to data cleaning [10]. Among XML constraints, NDs are a highly useful
and natural class.

• NDs can also be used as a facility for incomplete specifications in design
and planning, to represent indefinite or approximate information in rela-
tions [11, 12], as well as for efficient query processing in nondeterministic
databases [13].

Unfortunately NDs are not finitely axiomatizable, thus no finite set of sound
and complete inference rules exists for them [1]. Indeed, this negative result has
prevented further research aiming to deepen the understanding and practical
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use of NDs, which has left several issues related to this kind of dependencies
unexplored.

Given a set of NDs ∆ and two sets of attributes X and Y , the problem we
face in this paper is to determine the minimum value of k, if there exists one,

such that the X
k−→ Y holds. The main contributions we give to this end can be

summarized as follows:

1. We first address the entailment problem for NDs; we adapt the classical
chase procedure and show that in the worst case exponential space is
required to solve the problem (Section 3.1).

2. This leads us to face the derivation problem in Sections 3.2 and 4. We
first prove that, given a set of sound inference rules similar to those used
for functional dependencies, the derivation problem for NDs is NP-hard.
We also prove that such rules are complete except for the value of the
minimal weight k, so they can always be used to find an upper bound of
k, if it exists, which is necessary to successfully apply the chase. Finally,
we provide a partial characterization of the cases in which our rules are
guaranteed to find the minimum weight.

3. The NP-hardness of the derivation problem motivates the investigation of
efficient algorithms that achieve considerable speed-up over a näıve deriva-
tion approach. To this end we introduce the concept of tight closure of a
set of NDs, that intuitively includes, among the NDs that can be derived
through the inference rules, only the “interesting” ones (Section 3.2.1).
Then, in Section 5 we provide a graph-based characterization (called ND-
graph) of the tight closure

4. Finally, we exploit the ND-graph characterization to design an efficient
branch & bound algorithm, BBND, that adopts several optimization tech-
niques (Section 6). In Section 7 we evaluate BBND for efficiency (how
scalable it is and how effective the different optimization techniques and
enumeration strategies are, even depending on the NDs topology) and
effectiveness (how NDs improve the cardinality bound of projections).

The paper outline is completed by Section 2, that introduces the notational
background, Section 8, that surveys the related literature and draws the con-
clusions, and by an Appendix, that gives the proofs of theorems and lemmas.

2. Background

In this section we review the basic concepts of relational databases and
constraints that are needed for the paper.

We denote by R(U) a relation schema, where R is the name of the relation
and U = {A1, . . . , An} is a set of attributes. Following a standard convention,
uppercase letters from the beginning (ending) of the alphabet denote single
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(respectively, sets of) attributes. We use concatenation for forming sets of at-
tributes, thus writing ABC for {A,B,C}, and for denoting union, thus XY
stands for X ∪ Y . Each attribute Ai ∈ U is associated with a countable do-
main, denoted with dom(Ai). A tuple t over a schema R(U) is a function that
associates each Ai ∈ U with a value of dom(Ai). This also applies to sets of
attributes, that is, for each X ⊆ U , dom(X) =

∏
Ai∈X dom(Ai) denotes the

Cartesian product of the domains of the attributes in X, and an X-value is any
value from dom(X). A relation r over a schema R(U), also called an instance of
R(U), is a finite set of tuples over R(U). The cardinality of r, denoted |r|, is the
number of tuples in r. Given a tuple t over R(U), the projection of t on X ⊆ U ,
denoted t[X], is the tuple obtained from t by considering only the attributes in
X. Similarly, r[X] is the projection of r on X, i.e., r[X] = {t[X]|t ∈ r}.

Given a constraint δ over R(U), Sat(δ) denotes the set of legal instances
of R(U) with respect to δ, i.e., those instances that satisfy δ. This naturally
applies to a set of constraints ∆, i.e., r ∈ Sat(∆) iff r ∈ Sat(δ) for each δ ∈ ∆.
A set of constraints ∆ entails a constraint δ, written ∆ � δ, if r ∈ Sat(∆)
implies r ∈ Sat(δ) for each r. Finally, the (semantic) closure ∆+ of ∆ is the set
of all constraints entailed by ∆. Given a constraint δ and a set of constraints
∆, the membership problem consists in determining if δ ∈ ∆+.

Given a set of inference rules I, δ is derivable from ∆ using I, denoted
∆ ⊢I δ, if there exists a finite sequence of derivation steps such that at step i
(i = 1, . . . , p) a constraint δi is generated using a rule in I and the constraints
in ∆∪{δj , j < i}, with δp = δ. The syntactic closure of ∆ using I, denoted ∆+

I ,
is the set of constraints that are derivable from ∆ using I. The inference rules
I are sound if ∆+

I ⊆ ∆+ and complete if ∆+ ⊆ ∆+
I .

3. Numerical Dependencies

Functional dependencies (FDs) are among the most common types of rela-
tional database constraints. The FD X −→ Y (X determines Y ) is satisfied by
an instance r of R(XY Z) if any two tuples with the same X-value also have
the same Y -value, that is, each X-value present in r is associated with a single
Y -value. It is remarkable that the membership problem for FDs can be easily
solved in linear time. Numerical dependencies [1] are a generalization of FDs,
in which a restriction is posed on the number of Y -values that can be associated
with any X-value.

Definition 1 (Numerical Dependencies). Given R(XY Z) and a finite in-
teger k ≥ 1, we say an instance r of R(XY Z) satisfies the numerical depen-

dency (ND) δ : X
k−→ Y if for any k + 1 tuples t1, . . . , tk+1 in r such that

t1[X] = . . . = tk+1[X] there are at least two of these tuples, ti and tj, i ̸= j, for
which it is ti[Y ] = tj [Y ]. In this case we say that δ is an ND from X to Y with
weight k, the latter also denoted as w(δ).

Clearly, an FD is just a particular case of ND with k = 1, i.e.,X
1−→ Y ≡ X −→ Y .
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The connection between NDs and projection cardinalities is established by
the following basic fact, which directly follows from Definition 1:

Lemma 1. Let X and Y be two sets of attributes. If an instance r of R(XY Z)

satisfies the ND X
k−→ Y , then it holds that |r[XY ]| ≤ k · |r[X]|.

In particular, cardinality constraints on sets of attributes can be specified using

NDs of the form ⊥ k−→ Y , where ⊥ denotes the empty set of attributes [1].
Conventionally assuming |r[⊥]| = 1, this is equivalent to asserting that the
cardinality of the projection on Y can never exceed k: |r[Y ]| ≤ k ∀r.

Example 1. Let U = ABCDE. Two possible NDs over R(U) are A
3−→ BC

and BC
5−→ DE. The first ND states that each value of A can never be associated

to more than 3 distinct values of BC, the second that each BC-value can never
appear with more than 5 distinct DE-values. The two NDs guarantee that in
each legal instance r of R(U) the cardinality of r[ABC] will never be higher than
3 times that of r[A] and that the cardinality of r[BCDE] will not be higher than
5 times that of r[BC], respectively.

3.1. Entailment of NDs

In this section we consider the problem of determining if an ND δ is entailed
by a set of NDs ∆. To this end we adapt the classical chase procedure [14] to
NDs, and show that exponential space is required in the worst case to solve the
problem. We preliminarily observe that NDs are a particular case of Disjunctive

Equality-Generating Dependencies (DEGDs) [15], since an ND δ : X
k−→ Y on a

schema R(XY Z) can be written as:

∀x, yi, zi :
k+1∧
i=1

R(x, yi, zi) =⇒
∨

1≤p<q≤k+1

yp = yq (1)

where x, yi, zi are X-, Y -, and Z-values, respectively. In [15], an extension to
the classical chase procedure suitable for DEGDs, called the disjunctive chase,
was introduced in the context of data exchange problems. Below we detail how
the disjunctive chase can be used to reason about NDs.

Let V = {v1, v2, . . .} be a countably infinite set of variables, and U a set of
attributes. A row over U is a mapping that associates a variable in V to each
Ai ∈ U . A (typed) tableau T over U is a set of rows over U , such that any
variable vq may appear only in one attribute Ai. Given two tableaux T1 and T2

over U , a homomorphism h from T1 to T2, h : T1 → T2, is a mapping such that:
(1) h(vq) = vp, p ≤ q, for each variable vq in T1; (2) h(T1) ⊆ T2, i.e., for each
row t1 ∈ T1 there exists a row t2 ∈ T2 such that it is h(t1[Ai]) = t2[Ai], for each
Ai ∈ U .

Next, we define chase steps and the disjunctive chase for NDs.
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Definition 2 (Chase step for NDs).

Let T be a tableau over U and δ : X
k−→ Y be an ND, with XY ⊆ U . Assume that

T contains k+1 rows t1, . . . , tk+1 which agree on X and are pairwise different on
Y , in which case we say that T does not satisfy δ. Let δj, j = 1, . . . , (k+1)k/2,
denote the j-th EGD obtainable from δ (i.e., the j-th disjunct in (1)). Let hj :
T → Tj be the homomorphism from T to Tj such that hj(tj,1[Y ]) = hj(tj,2[Y ]),
tj,1, tj,2 ∈ {t1, . . . , tk+1}. Thus, hj equates the Y-variables of rows tj,1 and tj,2
and is the identity elsewhere. An (ND-)chase step using δ transforms T into
the set of tableaux {Tj , j = 1, . . . , (k + 1)k/2}.

Definition 3 (Disjunctive chase for NDs).
Given a set of NDs ∆ over R(U), let T be a tableau over U . A chase tree of T
using ∆ is a finite tree whose root is T and:

• If Tj is a node in the chase tree with children {Tj,i, i = 1, . . . , (kj+1)kj/2},
then there exists δj : Wj

kj−→ Zj ∈ ∆ such that Tj does not satisfy δj
and the tableaux {Tj,i} are obtained from Tj by applying homomorphisms
{hj,i}, each equating a distinct pair of variables of Zj;

• If Tl is a leaf node, then all δ ∈ ∆ are satisfied by Tl.

Chasing a tableaux T with a set of ND ∆ yields a (finite) chase tree, whose set
of leaves, Chase∆(T ), consists of tableaux to which no further chase step can
be applied (because all ND are satisfied).

The disjunctive chase can be applied to test whether ∆ � δ : X
k−→ Y in a

way that generalizes the method used to test implication of FDs. To this end,
let the tableau for δ, denoted Tδ, be the tableau with k + 1 rows t1, . . . , tk+1

which agree on X and have distinct variables elsewhere.

Theorem 1. Given a set of NDs ∆ over R(U), let δ : X
k−→ Y be an ND and

Tδ be the tableau for δ. It is ∆ � δ iff, for all tableaux in Chase∆(Tδ), the
number of distinct rows on Y is at most k, in which case we say that the chase
succeeds on δ, otherwise it fails.

Having proved that the entailment problem for NDs is decidable, next we
detail how this result can be used in practice. From the definition of ND it

follows that, for any sets of attributes X and Y and any k value, it is {X k−→
Y } � X

k′

−→ Y , whenever k′ ≥ k. Let k⊥ = k⊥(X,Y ) be the minimum weight

of an ND from X to Y that is entailed by a set of NDs ∆, i.e., X
k⊥

−−→ Y ∈ ∆+

whereas X
k⊥−1−−−−→ Y ̸∈ ∆+. In order to determine k⊥(X,Y ) a possibility would

be to use a chase-based binary search procedure, which is roughly described as
follows. Let k⊤ be an upper bound of k⊥ (in Section 4 we will show that k⊤

can be easily determined in time linear in the size of ∆). The first iteration sets

k = ⌊k⊤/2⌋ and runs the chase with δ : X
k−→ Y . If the chase succeeds, then

we know that k⊥ ≤ k, otherwise it is k⊥ > k. Repeating this process Θ(log k⊤)
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times yields the result. However, the following theorem shows that, provided
an upper bound of k⊥ is known, a single chase invocation suffices.

Theorem 2. Given a set of NDs ∆ over R(U), let δ : X
k−→ Y be an ND and Tδ

be the tableau for δ. If the chase succeeds on δ, then the tableau in Chase∆(Tδ)
with the maximum number of distinct rows on Y has exactly k⊥(X,Y ) distinct
rows on Y .

Although the above theorem provides a logarithmic speedup over the binary
search approach, the next result shows that in the worst case the entailment of
NDs through the chase has exponential space complexity.

Theorem 3. For every set of attributes U = {A1, . . . , An} there exists a set ∆
of NDs over R(U) and an ND δ entailed by ∆ such that Tδ has Ω(2n) rows.

Proof. Let ∆ = {A1
2−→ Ai|i = 2, . . . , n}. Setting X = {A1} and Y =

{A2, . . . , An}, it is easy to show that k⊥(X,Y ) = 2n−1. Thus, for the chase
to succeed it has to be run using a tableau with at least k > 2n−1 rows. 2

The set of NDs used in the above proof is in some sense “simple” to deal
with (and this is confirmed by the rule-based approach in Section 3.2). However,
there are more difficult cases for which it is k⊥(X,Y ) ∈ Ω(2n), and determining
a tight upper bound of k⊥(X,Y ) is NP-hard (see Theorem 4 in Section 4). A
further source of complexity arising from the chase-based approach is related
to the size of the chase tree. In particular, it is not difficult to show that
Chase∆(Tδ) consists of exponentially many tableaux. Clearly, due to Theorem
2, it is conceivable that several optimizations might be developed to reduce
the size of the chase tree so as to locate the tableau in Chase∆(Tδ) with the
maximum number of distinct rows on Y . However, for not too small weight
values (which influence both the size of Tδ and the number of tableaux generable
at each chase step) and sets of NDs, an application of the chase procedure in
practical settings remains unaffordable. For this reason, in the following we
introduce a set of (incomplete) inference rules for NDs and provide a partial
characterization of which NDs such rules can derive.

3.2. Derivation of NDs

Unlike FDs and other types of database constraints, NDs do not admit a
finite set of sound and complete inference rules [1]. In particular, even if only
NDs with maximum weight 2 are considered, no p-ary complete axiomatization
is possible for NDs unless a restriction is posed on the number of attributes in
U .1 Thus, specific rules with an increasing number of hypotheses can be added
depending on (the number of attributes in) the schema, but these would not be
enough for another schema with more attributes.

1A rule is p-ary if its antecedent contains exactly p distinct members. An axiomatization
is p-ary if each of its rules is at most p-ary [16].
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A set of sound inference rules, that generalize those valid for FDs and hold
for any number of attributes in the schema and for any value of k and l (k, l ≥ 1),
is the following one [1]:

Reflexivity (R) : ⊢ X −→ X

Transitivity (T ) : X
k−→ Y ∧ Y

l−→ Z ⊢ X
k·l−−→ Y Z

Union (U) : X
k−→ Y ∧X

l−→ Z ⊢ X
k·l−−→ Y Z

Decomposition (D) : X
k−→ Y Z ⊢ X

k−→ Y

Successor (S) : X
k−→ Y ⊢ X

k+l−−→ Y

For the purpose of this paper it is more convenient to deal with a different,
yet equivalent, set of rules, which we call REDS, in which rules T and U are
replaced by the single Extended transitivity (E) rule:

Extended transitivity (E) : X
k−→ YW ∧ Y

l−→ Z ⊢ X
k·l−−→ YWZ

The two sets of rules are easily shown to be equivalent. Indeed, by rules R and

D it is derived YW −→ Y , and by rule T: YW
l−→ Y Z; a second application of

rule T yields rule E. Going the other way, observe that Rule T is just a special
case of rule E obtained when W = ∅. Rule U is obtained by first applying rule

E to X
k−→ Y (which holds by hypothesis) and X −→ X, obtaining X

k−→ XY .

Another application of rule E yields X
k·l−−→ XY Z, from which the result follows

by rule D.
Given the above REDS rules and a set of NDs ∆, we would like to know

whether a given ND δ : X
k−→ Y is REDS-derivable, ∆ ⊢REDS δ. Similarly to

what observed in Section 3.1, it is clear that if ∆ ⊢REDS X
k−→ Y , then, due

to Rule S, all the NDs X
k′

−→ Y , k′ > k, are also derivable. To this end, let
k⊥I = k⊥I (X,Y ) (≥ k⊥(X,Y )) denote the minimum value of the weight of an
ND from X to Y that can be derived from ∆ using rules I. Then, it makes
more sense to consider the optimization version of the problem, which can be
precisely stated as follows:

Problem 1.

Given a set of NDs ∆ over R(U) and two sets of attributes X and Y , XY ⊆ U

Determine k⊥REDS(X,Y ), i.e., the minimum value of k such that X
k−→ Y ∈

∆+
REDS, if there exists one.

The following result is obvious.

Lemma 2. The solution to Problem 1 does not change if only the RED rules
(i.e., Reflexivity, Extended transitivity, and Decomposition) are used, i.e., k⊥REDS(X,Y ) =
k⊥RED(X,Y ), ∀X,Y .
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Due to Lemma 2, in the following we will only consider the RED rules and
will call ∆+

RED the RED closure of ∆.

3.2.1. The Tight Closure of a Set of Numerical Dependencies

Unlike the case of FDs, the RED closure of a set of NDs ∆ has infinite

size even when ∆ consists of a single ND X
k−→ Y . Indeed, from X

k−→ Y one

can derive X
kp

−→ Y , for any p > 1. Intuitively, for the purpose of solving the
optimization Problem 1, such NDs are useless, as confirmed by the following
fact.

Lemma 3. Given a set of NDs ∆ over R(U), if X
l·w(δi)

p

−−−−−→ Y ∈ ∆+
RED, then

X
l·w(δi)−−−−→ Y ∈ ∆+

RED for each δi ∈ ∆, X,Y ⊂ U , and l, p ≥ 1.

In light of this, in the following we will only consider derivations that use at
most once any ND in ∆, which implies that only a finite number of NDs can
be derived. However, as the following example shows, these may still include
several useless NDs.

Example 2. Let U = ABCD and ∆ = {A k1−→ B,B
k2−→ C,B

k3−→ D,D
k4−→ C}.

All the following NDs with the same left- and right-hand sides are in ∆+
RED:

δ1 : A
k1k2k3−−−−→ BCD δ2 : A

k1k2k3k4−−−−−−→ BCD δ3 : A
k1k3k4−−−−→ BCD

For instance, δ2 can be derived as follows:

1. A
k1−→ B,B

k2−→ C ⊢ A
k1k2−−−→ BC (rule E)

2. B
k3−→ D,D

k4−→ C ⊢ B
k3k4−−−→ CD (rule E)

3. A
k1k2−−−→ BC,B

k3k4−−−→ CD ⊢ A
k1k2k3k4−−−−−−→ BCD (rule E)

While it is impossible to say which ND, between δ1 and δ3, has the lowest weight
without knowing the values of the ki’s involved, δ2 is clearly “loose”. Indeed, it
is always true that w(δ2) ≥ w(δ1) and w(δ2) ≥ w(δ3), regardless of ki’s values.

For an ND δ : X
k1·...·kp−−−−−→ Y , let K(δ) denote the set of ki’s in δ. It is then

obvious that, given two NDs δ : X
w(δ)−−−→ Y and δ′ : X

w(δ′)−−−→ Y , if K(δ) ⊂ K(δ′)
then w(δ) ≤ w(δ′). For instance, in Example 2 it is K(δ3) ⊂ K(δ2) and K(δ1) ⊂
K(δ2), whereas neither K(δ1) ⊂ K(δ3) nor K(δ3) ⊂ K(δ1) hold. This leads us
to introduce the following definition, which characterizes the “interesting” part
of the RED closure:

Definition 4 (Tight RED Closure). An ND δ : X
w(δ)−−−→ Y ∈ ∆+

RED is tight

if, for any other ND δ′ : X
w(δ′)−−−→ Y ∈ ∆+

RED, it is not K(δ′) ⊂ K(δ), and is
loose otherwise. The tight (RED) closure of ∆ is the set ∆∗

RED of all the tight
NDs in ∆+

RED.

Thus, of all the NDs that can be derived from ∆, the tight closure includes only
those for which it is necessary to look at the values of the ki’s to determine
which one has the lowest weight.
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4. RED Rules: Complexity and Incompleteness

In this section we provide some results concerning the complexity of Problem
1 (minimum derivable weight for an ND from X to Y ) and the relationship
existing between entailed and derived NDs, the aim being to provide a partial
characterization of the cases in which RED rules indeed yield the minimum valid
weight, i.e., k⊥RED(X,Y ) = k⊥(X,Y ).

Our first result shows that, even using incomplete rules, derivation of NDs
can be a complex task.

Theorem 4. Given a set of NDs ∆ over R(U) and sets of attributes X,Y ⊆ U ,

determining if ∆ ⊢RED X
k−→ Y is NP-hard.

Noticeably, when all NDs can be applied from the start (i.e., all left-hand
sides of the NDs are subsets of X) the derivation problem is equivalent to the
weighted set cover problem2 (WSC), where the set to be covered is Y and the
collection of subsets is the collection of right-hand sides of the NDs. Although
WSC is known to be NP-hard, in some specific cases it turns out to become
tractable:

• If all subsets have cardinality 2, WSC becomes equivalent to the edge cover
problem. So, when all NDs in ∆ have two attributes in their right-hand
side, the derivation problem can be solved in polynomial time [17].

• If the subsets fulfill an acyclicity property known from the concept of
tree decompositions of graphs, the WSC is called tree-like. So, when the
right-hand sides of the NDs are tree-like, the derivation problem is fixed-
parameter tractable3 in the maximum cardinality of the right-hand sides
[19].

On the other extreme, when the NDs form a chain, ∆ = {δ1, . . . , δm} with δi =

Wi
ki−→ Zi, W1 ⊆ X, Wi ̸⊆ ∪j<i−1Zj ∪X, and Wi ⊆ ∪j<iZj ∪X (i = 2, . . . ,m),

the derivation of an ND from X to Y becomes a linear process, since at each
step only one ND can be applied.

Now we turn to consider issues that are relevant to characterize the relation-
ship between derivation and entailment of NDs.

Similarly to FDs, the ND-closure of a set of attributes X given a set of NDs
∆, denoted X+

ND(∆) or simply X+
ND, is defined as the set of those attributes

Ai such that an ND from X to Ai can be derived using the RED rules:

X+
ND(∆) = {Ai|∃ki : X

ki−→ Ai ∈ ∆+
RED}

2Given a set S and a collection C of subsets of S, each associated with a weight, find the
subsets in C with minimum overall weight and whose union contains all the elements in S.

3A problem is fixed-parameter tractable with respect to parameter p if it has a solution
running in f(p) × nO(1) time, where n is the input size and f is a function of p which is
independent of n [18].
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Let ∆FD be the set of FDs obtained by setting all weights of the NDs in ∆ to 1.
Because RED rules generalize inference rules for FDs, and actual weight values
of NDs are irrelevant to ND-closure computation, the following identity should
not be surprising:

X+
ND(∆) = X+

FD(∆FD) ∀X,∆ (2)

where X+
FD is the set of all attributes Ai such that the FD X → Ai holds. Now,

since the problem of computing the FD-closure of X can be done in time linear
in the length of the given set of constraints [20], the same result also applies to
NDs, which immediately yields the following result:

Lemma 4. Given a set of NDs ∆ over R(U) and sets of attributes X,Y ⊆ U ,
let len(∆) stand for the length of an encoding of ∆, i.e., the total number of non-
distinct attribute symbols appearing in ∆. Then, determining if k⊥RED(X,Y )
exists requires O(len(∆)) time.

This lemma guarantees that an upper bound of k⊥(X,Y ) can be easily found, if
it exists, which is a necessary condition for successfully applying the chase (see
Theorem 2). Note that this result is based on the simple observation that an
ND from X to Y is derivable iff Y ⊆ X+

ND.
A basic fact about RED rules is established by the following theorem, which

says that such rules are actually complete except for the value of the minimal
weight.

Theorem 5. Given a set of NDs ∆ over R(U), for any sets of attributes X,Y ⊆
U there exists an ND from X to Y iff an ND from X to Y is derivable using
the RED rules.

Theorem 5 provides a partial characterization of what kind of incompleteness
one can expect from using the RED rules. If the value of k⊥(X,Y ) is sought,
then the RED rules either provide an upper bound k⊥RED(X,Y ) of k⊥(X,Y ), if
this exists, or, in O(len(∆)) time, they can be used to determine that no ND
from X to Y exists.

Before presenting some cases in which the RED rules are indeed complete,
it is instructive to see an example in which this is not the case.

Example 3. Let U = ABCD and ∆ = {A 2−→ BC,A
2−→ CD,A

2−→ BD}.
Although it is k⊥RED(A,BCD) = 4, there is no instance r ∈ Sat(∆) where a
value of A appears in more than 2 tuples. For instance, given the instance:

A B C D
a1 b1 c1 d1
a1 b2 c1 d1

any attempt to add a third tuple with A = a1, for instance:

A B C D
a1 b1 c1 d1
a1 b2 c1 d1
a1 b2 c2 d1

11



will necessarily lead to violate an ND in ∆ (A
2−→ BC in this case); the same

holds for any other instance, thus k⊥(A,BCD) = 2 < k⊥RED(A,BCD) = 4.

In an attempt to provide a characterization of when RED rules can indeed derive
the minimum weight k⊥(X,Y ), let us consider a scenario in which the NDs in
∆ are “flat”, i.e., all of them have the same left-hand side X. Note that, when
X = ⊥, this is tantamount to saying that ∆ consists of a set of constraints
on the cardinality of some projections, which is indeed a relevant case. Also
observe that, in order to prove that k⊥RED(X,Y ) = k⊥(X,Y ), it is sufficient to
exhibit an instance r with k⊥RED(X,Y ) tuples, all with the same value on X
and distinct Y -values, and show that r ∈ Sat(∆).

With flat NDs we can prove the following preliminary result, assuming with-
out loss of generality that X ∩ Y = ∅.

Lemma 5. Let ∆ = {δi : X
ki−→ Zi, i = 1, . . . ,m}, Y ⊆ ∪iZi, and X ∩ Y = ∅.

Let ∆⊥ be the subset of NDs used to derive the ND from X to Y with weight
k⊥RED(X,Y ), i.e., k⊥RED(X,Y ) =

∏
δi∈∆⊥ ki. Then there exists an instance r⊥

with k⊥RED(X,Y ) tuples with the same value on X and distinct Y -values, such
that r⊥ ∈ Sat(∆⊥).

To get an intuition of how r⊥ is made, it is important to distinguish the at-
tributes in U in “local”,“join”, and “don’t care” ones. An attribute Ai is: 1)
local (to δi) if it belongs to Y and it only appears in the right-hand side of a
single ND in ∆⊥; 2) join if it appears in more than one ND in ∆⊥; 3) don’t care
otherwise (i.e., it is neither a join attribute nor is in Y ). Note that each ND
δi ∈ ∆⊥ has at least one local attribute, otherwise dropping δi from ∆⊥ would
still yield a valid ND from X to Y .

The instance r⊥ can be obtained as the join of a set of relations, each with
ki rows and attributes corresponding to the right-hand sides of the NDs in ∆⊥.
For the join to have k⊥RED(X,Y ) =

∏
i ki tuples with the same value on X and

distinct Y -values, each join attribute must have the same single value wherever
it appears (so the join reduces to a Cartesian product), whereas the values of
the local attributes must guarantee that tuples are indeed distinct. Don’t care
attributes are given the same value on all tuples. For instance, let U = ABCD,

X = ⊥ and Y = BCD. With ∆⊥ = {⊥ 2−→ BC,⊥ 2−→ CD} the instance r⊥ with
k⊥RED(⊥, BCD) = 4 tuples would be:

A B C D
a1 b1 c1 d1
a1 b2 c1 d1
a1 b1 c1 d2
a1 b2 c1 d2

where B and D are local attributes, C is a join attribute, and A is a don’t care
attribute.

Lemma 5 shows that only NDs not in ∆⊥ can be the cause of incompleteness.
We are now in the position to specify a set of cases in which k⊥RED(X,Y ) =
k⊥(X,Y ) is guaranteed to hold.
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Theorem 6. For each δi : X
ki−→ Zi ∈ ∆⊥ let Li ⊆ Zi be the set of local

attributes in δi and define Λ = ∆ \ ∆⊥ = {δj : X
kj−→ Wj}. If one of the

following cases occurs, then it is k⊥RED(X,Y ) = k⊥(X,Y ):

1. For all δj ∈ Λ and all δi ∈ ∆⊥ it is Wj ∩ Li = ∅;

2. Each ND in ∆⊥ has a single local attribute, Li = {Ai}, and it is:∏
i:Ai∈Wj

ki ≤kj ∀δj ∈ Λ (3)

3. For all δj ∈ Λ and all δi ∈ ∆⊥ it is |Wj ∩ Li| ≤ 1, i.e., Wj ∩ Li = {Ai,j}
or Wj ∩ Li = ∅, and there exists an instance r⊥ such that the following
system of inequalities admits solution:∏

Ap∈Li

|r⊥[Ap]| ≥ki ∀δi ∈ ∆⊥ (4)

∏
i:Wj∩Li ̸=∅

|r⊥[Ai,j ]| ≤kj ∀δj ∈ Λ (5)

In the above theorem it is immediate to recognize that case 3 generalizes both
cases 1 and 2 (which, on the other hand, are incomparable with each other). Any
attempt to extend the above results to more general scenarios has to face the
complex combinatorics arising when multiple NDs not in ∆⊥ provide a bound
to the same, arbitrary, set of attributes (whereas case 3 only allows for singleton
sets: Wj ∩ Li = {Ai,j}). Indeed, when no restrictions on the Wj ∩ Li = Si,j

intersections are put, in place of inequalities (4) and (5) one should check if it is
possible to obtain ki distinct Li-values given a set of upper bounds on the size
of some projections Si,j ’s. Not surprisingly, this is exactly the ND entailment
problem, now localized to the set of local attributes Li introduced by an ND
in ∆⊥. An interesting issue, which is however beyond the scope of the paper,
would be to understand if more general completeness results can be obtained by
(recursively) applying Theorem 6 to such more focused parts of the initial set
of attributes. Finding similar characterizations for general (i.e., not flat) sets of
NDs also remains an open problem.

5. A Graph-Based Characterization

The purpose of this section is to show that the tight closure of a set of NDs
∆ can be precisely characterized in graph-theoretical terms. Without loss of
generality we assume that ∆ does not contain two NDs with the same left- and
right-hand sides.4 We represent a set ∆ of NDs through a graph defined as
follows:

4If both X
k−→ Y and X

k′
−→ Y are in ∆, and k ≤ k′, then the second ND can be removed.
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Figure 1: The ND-graph for the set of NDs in Example 4

Definition 5 (ND-graph). Given a set ∆ of NDs over R(U), the ND-graph
G∆ = (V, E) induced by ∆ is the directed graph with nodes V ⊆ 2U , arcs
E = Ef ∪ Ed (Ef ∩ Ed = ∅), and an arc labeling function ω : E → N (weight)
such that:

1. For every ND δ : X
k−→ Y ∈ ∆ there are in V two nodes X and Y ,

and there is in Ef a full arc ⟨X,Y ⟩ (oriented from X to Y ) such that
ω(⟨X,Y ⟩) = k. Thus, ω(⟨X,Y ⟩) = w(δ).

2. For every compound node X ∈ V, X = A1, . . . , Ar, r > 1, there are r
simple nodes A1, . . . , Ar in V and r dotted arcs ⟨X,A1⟩, . . . , ⟨X,Ar⟩ in
Ed with ω(⟨X,Ai⟩) = 1.

3. If the empty set of attributes ⊥ is in V, then for each simple node Ai ∈ V
there is in Ed a dotted arc ⟨Ai,⊥⟩ with ω(⟨Ai,⊥⟩) = 1.

In the particular case ∆ = ∅, it is conventionally assumed that, for any choice
of X ⊆ U , the graph including node X, and completed respecting the above rule
2 if X consists of more than one attribute, is also an ND-graph. With a slight
abuse of terminology we say that this is the ND-graph induced by X. If Γ ⊆ ∆,
then GΓ is also called an ND-subgraph of G∆.

In the following, when necessary, we will use notation ⟨X,Y ⟩k to emphasize that
ω(⟨X,Y ⟩) = k.

Example 4. Here we introduce the running example that will be used through-
out the rest of the paper. Let U = ABCDEFG and consider the set of NDs:

∆ = {G k0−→ A,A
k1−→ B,A

k2−→ BC,E
k3−→ BC,A

k4−→ CD,A
k5−→ DE,E

k6−→ F}

The corresponding ND-graph is shown in Figure 1.

The ND-graph represents in compact form all the relevant information needed
to derive tight NDs. In particular, the attributes appearing in the nodes of a
suitably defined ND-subgraph of G∆, called ND-path, precisely characterize
which NDs can be derived using the RED rules. To this end, for any ND-
subgraph GΓ of G∆, let Attr(GΓ) denote the set of all the attributes that
appear in the nodes of GΓ.
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Figure 2: Examples of ND-paths from A obtained from the ND-graph in Figure 1

Definition 6 (ND-path from X). Given the ND-graph G∆ = (V, E) and X ∈
V, an ND-path from X is any ND-subgraph of G∆ that can be inductively ob-
tained as follows:

1. The ND-subgraph induced by X is an ND-path from X.

2. If GΠ is an ND-path from X induced by a set of NDs Π ⊂ ∆, and
⟨W,Z⟩k ∈ Ef , with W ⊆ Attr(GΠ) and Z ̸⊆ Attr(GΠ), the ND-subgraph

induced by Π ∪ {W k−→ Z} is also an ND-path from X.

3. No other ND-subgraph of G∆ is an ND-path from X.

In order to emphasize that an ND-subgraph GΠ is also an ND-path from X, the
notation GX

Π will also be used. The weight ω(GX
Π ) of GX

Π is the product of the
weights in its full arcs; by definition, the weight of GX

∅ , i.e., the ND-path from
X with no full arcs, is 1.

Note that, though any subset of NDs Γ ⊆ ∆ induces an ND-subgraph, due to
rule 2 in the above definition not all such ND-subgraphs are also ND-paths.

Definition 7 (ND-path from X to Y ). Given an ND-path GX
Π from X and

a set of attributes Y , if Y ⊆ Attr(GX
Π ) then GX

Π is also called an ND-path from
X to Y , and we say that Y is reachable from X (in GX

Π ). The ND-path GX
Π

from X to Y is Y -minimal iff there is no other ND-path GX
Π′ from X to Y such

that Π′ ⊂ Π.

Example 5. With reference to the ND-graph introduced in Example 4, Fig-
ure 2 shows three ND-paths from A. It is Attr(GΠ1) = Attr(GΠ2) = {ABCD}
and Attr(GΠ3) = {ABCDE}; the weights are ω(GΠ1) = k1k2k4, ω(GΠ2) =
k1k4, and ω(GΠ3) = k3k5, respectively. Both GΠ1 and GΠ2 are ND-paths to
BC and BCD, but only GΠ2 is both BC- and BCD-minimal. Conversely, GΠ3

is BC-minimal but not E-minimal. Finally, Figure 3 shows an ND-subgraph
that is not an ND-path; the reason is that, since there are two full arcs ending
in BC, there is no way to incrementally build the graph in a way that respects
rule 2 in Definition 6.

The building rules of ND-paths ensure that, for any GX
Π , Π ⊆ ∆, the set of

attributes that are reachable from X in GX
Π coincides with the ND-closure of X
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Figure 3: An ND-subgraph of the ND-graph in Figure 1 that is not an ND-path

computed using the NDs in Π, i.e., Attr(GX
Π ) = X+

ND(Π). This is made precise
by the following lemma.

Lemma 6. Let GX
Π be an ND-path from X to Y . Then X

ω(GX
Π )−−−−→ Y ∈ ∆+

RED.

Although ND-paths correspond to NDs in the RED closure of ∆, not all
of them are necessarily tight. This leads us to the following main result, that
precisely characterizes the tight RED closure of ∆ in terms of minimal ND-
paths.

Theorem 7. Let G∆ be the ND-graph induced by a set of NDs ∆, and let
X ∈ V. There exists in G∆ a Y -minimal ND-path GX

Π from X to Y having

weight ω(GX
Π ) iff δ : X

ω(GX
Π )−−−−→ Y ∈ ∆∗

RED.

The intuition behind Theorem 7 is that if δ is a tight ND, then any of
its derivations will add at each step some new attribute, thus all of them will
correspond to the same Y -minimal ND-path from X to Y . Conversely, if δ is
loose then there exists at least one derivation in which at some step no new
attribute is added, thus that step is redundant. This is also to say that an
ND-path is minimal iff all the ways to build it succeed without violating rule 2
in Definition 6.

So far, we have used G∆ to reason on NDs whose left-hand side is a node in
G∆. In order to generalize to arbitrary NDs it is sufficient to properly extend
G∆ by adding the required node.

Definition 8 (Extended ∆-Graph). Given the ND-graph G∆ = (V, E) and
a set of attributes X = A1, . . . , Ar, we call ND-graph extended to X the graph
G∆,X with nodes V ∪ {X,A1, . . . , Ar} and arcs E ∪ {⟨X,Ai⟩ dotted : Ai ∈
X,ω(⟨X,Ai⟩) = 1}.

The following is immediate.

Corollary 1. Let G∆ be the ND-graph associated with a set ∆ of NDs, and let
X ⊆ U . There exists in G∆,X a Y -minimal ND-path GX

Π with weight ω(GX
Π ) iff

δ : X
ω(GX

Π )−−−−→ Y ∈ ∆∗
RED.

Due to Corollary 1, in the following, without losing in generality and to avoid
unnecessary complication, we will always consider that X is a node in G∆.
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6. Finding the Minimal Derivable Weight

In this section we will lean on the theoretical results of Section 5 to show
how, given an ND-graph G∆ and two sets of attributes X and Y , the mini-
mal derivable weight k⊥RED(X,Y ) can be efficiently determined, thus solving
Problem 1.

A näıve method to determine k⊥RED(X,Y ) is to strictly exploit the definition
of ND-path. The Näıve algorithm (Algorithm 1) starts with the ND-graph GX

∅
induced by X, which is progressively extended by iteratively adding full arcs,
so that all possible ND-paths from X to Y , conveniently called solutions, are
enumerated. Due to Theorem 7, these include all the ones corresponding to the
tight NDs from X to Y , thus even the one(s) whose weight is k⊥RED(X,Y ).

Algorithm 1 The Näıve algorithm

Input: G∆, X, Y
Output: k⊥RED(X,Y )
1: k⊥RED(X,Y )←∞
2: ActiveNDPaths← {GX

∅ } ◃ ND-paths to be extended
3: while ActiveNDPaths ̸= ∅ do
4: GX

Π ← Pop(ActiveNDPaths)
5: for all GX

Πi
∈ AllExtensions(GX

Π ) do

6: if Y ⊆ Attr(GX
Πi
) then ◃ found a solution. . .

7: if ω(GX
Πi
) < k⊥RED(X,Y ) then ◃ . . . better than the current one

8: k⊥RED(X,Y )← ω(GX
Πi
)

9: else
10: Push(ActiveNDPaths,GX

Πi
) ◃ GX

Πi
must be further extended

11: return k⊥RED(X,Y )

Algorithm 2 The AllExtensions method

Input: GX
Π

Output: {GX
Πi
}

1: ExtendedNDPaths← ∅
2: for all δi ∈ ∆ \Π, δi : Wi

ki−→ Zi do
3: if Wi ⊆ Attr(GX

Π ) ∧ Zi ̸⊆ Attr(GX
Π ) then

4: GX
Πi
← Extend(GX

Π , δi)

5: return ExtendedNDPaths

A brief description of the methods used by the algorithm follows:

• Pop(ActiveNDPaths) picks and removes from the ActiveNDPaths queue
the next ND-path to be extended.

• Push(ActiveNDPaths,GX
Πi
) adds the ND-path GX

Πi
to ActiveNDPaths.
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Figure 4: Part of the search space of the Näıve algorithm applied to the ND-graph in Figure 1
with X ≡ A and Y ≡ BE; boxed nodes represent BE-minimal ND-paths

• AllExtensions(GX
Π ), described in Algorithm 2, returns the set of ND-paths

obtained by extending GX
Π with one full arc in all possible ways (rule 2 of

Definition 6).

• Extend(GX
Π , δ) returns the ND-path GX

Πi
that extends GX

Π with the full arc
corresponding to δ (Πi = Π ∪ {δ}).

Example 6. Here we give an intuition on how the Näıve algorithm works on
the ND-graph in Figure 1, assuming that X ≡ A and Y ≡ BE. Figure 4
shows a tree representing part of the search space of the algorithm. Each node
corresponds to an ND-path from A and is represented by its set of attributes;
all leaves represent solutions. Each edge is labelled with the new full arc being
added. The tree includes two BE-minimal ND-paths (boxed in Figure 4), whose
weights are k1k5 and k2k5, respectively. At the beginning, GA

∅ = ({A}, ∅) is the
only active ND-path (ω(GA

∅ ) = 1). AllExtensions extends GA
∅ in four ways, by

adding full arcs ⟨A,B⟩k1 , ⟨A,BC⟩k2 , ⟨A,CD⟩k4 , and ⟨A,DE⟩k5 . None of the
obtained ND-paths is a solution, so all of them are pushed into ActiveNDPaths
to be further extended. If ActiveNDPaths is managed as a first-in-first-out
queue, the subsequent steps orderly add full arcs ⟨A,BC⟩k2 , ⟨A,CD⟩k4 , and
⟨A,DE⟩k5 (creating the leftmost path in the tree), plus simple nodes C, D and
E and related dotted arcs. A first solution is thus found, with weight k1k2k4k5.
All other solutions are found by progressively extending the partial solutions.

As Example 6 makes evident, the Näıve algorithm has several drawbacks: (i)
it creates some solutions using arc ⟨E,F ⟩k6 , that obviously can never contribute
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to reach BE; (ii) it generates twice or more the same ND-paths by adding the
same set of full arcs in different orders; (iii) it extends an ND-path even if
its weight is higher than that of the current solution; (iv) it does not detect
non-minimal ND-paths, so it wastes time in extending them.

In the following we present a branch & bound algorithm, BBND (Algorithm
3), that overcomes these problems. Before describing in detail how BBND works,

Algorithm 3 The BBND algorithm

Input: G∆, X, Y
Output: k⊥RED(X,Y )
1: k⊥RED(X,Y )←∞
2: ActiveNDPaths← {GX

∅ } ◃ ND-paths to be extended

3: if Y * Attr(G∆) then return k⊥RED(X,Y ) ◃ Y is not reachable from X

4: RemoveUselessNDs(G∆, X, Y )}
5: while ActiveNDPaths ̸= ∅ do
6: GX

Π ← Pop(ActiveNDPaths)
7: for all GX

Πi
∈ SmartExtensions(GX

Π ) do

8: if Y ⊆ Attr(GX
Πi
) then ◃ found a solution. . .

9: if ω(GX
Πi
) < k⊥RED(X,Y ) then ◃ . . . better than the current one

10: k⊥RED(X,Y )← ω(GX
Πi
)

11: else if ω(GX
Πi
) < k⊥RED(X,Y )∧

¬IsDominated(GX
Πi
, ActiveNDPaths) ∧ IsMinimal(GX

Πi
) then

12: Push(ActiveNDPaths,GX
Πi
) ◃ GX

Πi
must be further extended

13: return k⊥RED(X,Y )

we provide a brief description of the methods used.

• RemoveUselessNDs(G∆, X, Y ) removes from G∆ the subset of full arcs that
do not belong to any ND-path from X to Y (see Section 6.1).

• SmartExtensions(GX
Π ) returns the set of ND-paths obtained by extending

the ND-path GX
Π with one full arc by avoiding duplicates (see Section 6.2).

• IsMinimal(GX
Πi
) returns true if GX

Πi
is Attr(GX

Πi
)-minimal (see Section 6.3),

false otherwise.

• IsDominated(GX
Πi
, ActiveNDPaths) returns true if GX

Πi
is dominated (see

Section 6.4) by at least one of the ND-paths in ActiveNDPaths, false
otherwise. As a side effect, if GX

Πi
dominates some of the ND-paths in

ActiveNDPaths, these are dropped from the queue.

Note that the behavior of the Pop method actually depends on the specific
enumeration strategy of ND-paths adopted, as discussed in Section 6.5.

In the following subsections we will describe in detail the major ingredients
of BBND.
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Figure 5: Reduced search space without useless NDs; GA
Π1

is an ND-path including a useless
ND

6.1. Removing Useless NDs

The ND-graph G∆ includes all the full arcs corresponding to NDs defined in
the application domain, but only some of them might be relevant in determining
k⊥RED(X,Y ). For instance, with reference to the ND-graph in Figure 1, full arcs
⟨G,A⟩k0 and ⟨E,F ⟩k6 are obviously useless to compute k⊥RED(A,BE). These
arcs should be removed from G∆ in advance, since they would determine an
exponential number of extensions before BBND can discover that the so-obtained
ND-paths are non-minimal.

Removal of useless NDs is carried out by the RemoveUselessNDs method,
that works in two phases. In the first phase it navigates the ND-graph forward
starting from X, so as to mark all the nodes that can be reached from X, and
consequently a set of full arcs; in our example, all full arcs are marked except
⟨G,A⟩k0 , that is removed. In the second phase, RemoveUselessNDs navigates
the so-reduced ND-graph backward starting from the nodes corresponding to
each Ai ∈ Y , and marks all the full arcs from which Ai can be reached; in our
example, only the full arc ⟨E,F ⟩k6 is not marked and consequently removed.
Figure 5 shows in grey, with reference to the search space of Figure 4, the portion
of the search space that is pruned if useless NDs are removed in advance.

6.2. Avoiding Repeated ND-Paths

Different sequences of extension steps might lead to ND-paths sharing the
same set of full arcs. To avoid generating repeated ND-paths, it is necessary to
be able to recognize if a given set of full arcs has already been obtained in the
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Figure 6: Reduced search space without repeated ND-paths; GA
Π2

is a repeated ND-path.
Useless NDs are not shown for clarity

enumeration process. Clearly, keeping trace of all the sets of full arcs (whether
corresponding to a solution or not) generated so far would require an exponential
effort in terms of space. A simpler alternative is to impose an ordering criterion
on the set of NDs, such as a lexicographically ordering of their right-hand sides.
This can be easily implemented as follows.

Let ∆ = {δ1, δ2, . . . , δm} be the given set of NDs, where subscripts now reflect
the chosen ordering criterion. Consider an ND-path GX

Πi
, Πi ⊂ ∆, that has been

obtained by extending the ND-path GX
Π with (the full arc corresponding to) δi.

Furthermore, let Γ ⊆ ∆ \ Π be the set of NDs that could have been used to
extend GX

Π (these are precisely all the NDs in ∆ \ Π that satisfy rule 2 in
Definition 6) and Γi ⊆ ∆\ (Π∪{δi}) be similarly defined. Method AllExtensions
used by the näıve approach would extend GX

Πi
by picking all the NDs in Γi.

In order to guarantee that the same ND-path is not generated more than once,
method SmartExtensions does not pick from Γi those NDs δj such that δj ∈ Γ
and j < i, i.e., those NDs that lexicographically precede δi and that could have
been added at the previous extension step.

Figure 6 shows in grey, with reference to the search space of Figure 5, the
portion of the search space that is pruned using SmartExtensions.

6.3. Pruning Non-Minimal ND-Paths

The Näıve algorithm is likely to waste a lot of work in generating non-minimal
ND-paths. For instance, it is apparent from Figure 7 that any solution obtained
by extending the ND-path GA

Π3
is not BE-minimal. As the following result

shows, this can be avoided.
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is a non-minimal ND-
path. Useless NDs and repeated ND-paths are not shown for clarity

Lemma 7. Let GX
Π and GX

Γ be two ND-paths from X, with Γ ⊂ Π and GX
Π

obtained by extending GX
Γ . If GX

Γ is not Attr(GX
Γ )-minimal, then GX

Π is not
Y -minimal for all Y ⊆ Attr(GX

Π ).

Detection of non-minimal ND-paths is based on Definition 6. Given an
ND-path GX

Γ , if all the NDs included in Γ are removed one at a time and the
corresponding ND-subgraphs GΓi are generated, then if at least one of such
GΓi ’s is indeed an ND-path from X with Attr(GX

Γi
) = Attr(GX

Γ ) it follows that

GX
Γ is not minimal and can therefore be discarded. The worst-case complexity

of method IsMinimal is O(m len(Γ)), where m is the number of NDs in Γ and
len(Γ) is the length of a representation of Γ. Note that the len(Γ) complexity
factor directly follows from Lemma 4, since the problem here is just to check
that all the attributes in Attr(GΓi) are indeed reachable from X.

Method IsMinimal adopts two complementary strategies for reducing the ac-
tual number of ND-subgraphs to be tested. The first of them is based on the
concept of essential NDs. Intuitively, these are those NDs whose removal makes
some attributes not reachable anymore from X, thus method IsMinimal should
not try to remove them.

Definition 9 (Essential NDs). Given an ND-path GX
Π , the ND δ ∈ Π, δ :

W
k−→ Z, is said to be essential for GX

Π if there exists A ∈ Z \X such that no
other ND in Π includes A in its right-hand side.

Lemma 8. Let GX
Π be an ND-path from X, and GΠi be the ND-subgraph in-

duced by Πi = Π \ δ. If δ is essential for GX
Π , then Attr(GX

Πi
) ⊂ Attr(GX

Π ).

A second way to reduce the actual running time of the minimality check is
based on the following lemma.
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Figure 8: Reduced search space without dominated ND-paths if k1 = 20, k2 = 10, k3 = 15,
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Lemma 9. Let GX
Γ be an ND-path from X, obtained by extending a minimal

ND-path GX
Π with the ND δ : W

k−→ Z. Let δi : Wi
ki−→ Zi ∈ Π be a non-essential

ND for GX
Π . If Z ∩ Zi = ∅, then the ND-subgraph GΓi induced by Γi = Γ \ δi is

not an ND-path from X.

Figure 7 shows in grey, with reference to the search space of Figure 6, the
portion that is pruned using IsMinimal.

6.4. Exploiting Weights

A first, simple way to exploit the numerical values of weights for reducing
the search space is to prune an ND-path if its weight is not lower than that of
the best solution found so far. We call this technique lazy domination because
it relies on a comparison with a solution.

A more effective way to exploit numerical values of weights is based on the
concept of eager domination among ND-paths.

Definition 10 (Eager Domination). Let GX
Π and GX

Γ be two ND-paths from
X. GX

Π is said to eagerly dominate GX
Γ if Attr(GX

Π ) ⊇ Attr(GX
Γ ) and ω(GX

Π ) ≤
ω(GX

Γ ).

For instance, in Figure 8, if k2 ≤ k1 then GA
Π4

eagerly dominates GA
Π5

since

Attr(GA
Π4

) = ABC ⊃ AB = Attr(GA
Π5

). Note that lazy domination does not
necessarily imply eager domination: though an ND-path is not a solution, it
could include some attributes that are not included in the best solution found
so far.

Lemma 10. Let GX
Π and GX

Γ be two ND-paths from X. If GX
Π eagerly domi-

nates GX
Γ then, for any ND-path GX

Γi
obtained by extending GX

Γ with an ND δi,

either (1) GX
Π eagerly dominates GX

Γi
, or (2) the ND-path GX

Πi
that extends GX

Π

with δi eagerly dominates GX
Γi
.
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Lemma 10 proves that dominated ND-paths can be safely discarded from
ActiveNDPaths. Eager domination is highly effective in reducing the size of
the search space because it can be applied to generic ND-paths, none of which
needs to be a solution, and even because it works in both directions. Indeed, for
each ND-path GX

Πi
being examined, method IsDominated not only checks if GX

Πi

is eagerly dominated by an ND-path in ActiveNDPaths, but it also verifies if
some of the ND-paths in ActiveNDPaths are eagerly dominated by GX

Πi
, in

which case they are removed from the queue.
Unlike the previous optimization strategies, the influence that both types of

domination have on the search space depends on the specific strategy adopted
for enumerating ND-paths.

6.5. Enumeration Strategies

Algorithm BBND assumes that a proper enumeration strategy is imple-
mented by the Pop method. In this section we propose and discuss four possible
strategies, namely depth-first (DF), breadth-first (BrF), best-first (BeF), and
cheapest-first (ChF). All four strategies will be extensively evaluated and com-
pared in Section 7.

The DF strategy minimizes the number of ND-paths simultaneously stored
in the ActiveNDPaths queue, thus minimizing memory requirements. Further-
more, DF quickly determines an initial solution, thus enabling lazy domination
to be earlier applied.

The BrF strategy first generates all ND-paths from X with m full arcs be-
fore proceeding to generate ND-paths with m+1 full arcs. Clearly, in the worst
case this leads to an exponential number of ND-paths to be simultaneously ac-
tive. Although a solution is obtained later than with DF, the higher number of
ND-paths available will make pruning based on eager domination more likely.
Furthermore, it is straightforward to verify that, using the BrF strategy, for
each non-minimal ND-path GX

Πi
generated, there is always in ActiveNDPaths

at least one ND-path that eagerly dominates GX
Πi
. This means that the BrF

strategy does not require the minimality check to be executed, since it is sub-
sumed by the eager domination check.

The BeF strategy extends the “most promising” ND-path, i.e., the one
chosen according to a heuristic function that attempts to predict how close the
ND-path is to a solution. The specific heuristic we use extends the ND-path
GX

Π for which the cardinality of Attr(GX
Π ) ∩ Y is maximum, i.e., the ND-path

that is “closest” to Y , first. In case of ties, the ND-path with the lowest weight
is chosen. Figure 8 shows in grey, with reference to the search space of Figure 7,
the portion of the search space that is pruned using domination with the BeF
strategy if weights are as follows: k1 = 20, k2 = 10, k3 = 15, and k4 = k5 = 5.
Next to each node, the weight of the corresponding ND-path is reported. Among
the first four nodes generated, ADE is the first to be extended since it includes
the highest number of attributes of Y and it has the lowest weight. Its only
possible extension is through arc ⟨E,BC⟩k3 , which leads to the first solution
with weight 75. The next node extended is ABC, which leads to a better
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solution with weight 50. Note that nodes AB and ABCD will never be extended
because they are dominated by ABC and ABCDE, respectively.

Finally, the ChF strategy is inspired by the worst case for our derivation
problem that, as discussed in Section 4, is equivalent to a weighted set cover
problem. According to [21], a greedy algorithm that builds a set cover by
choosing at each step the subset with minimal per-attribute weight is guaranteed
to find a cover whose weight is not higher than ln(Cardmax) times the weight of
the optimal cover (where Cardmax is the largest subset size). In our case, this
means extending first, at each step, the ND-path for which the last added ND

paid the lowest per-attribute weight. More precisely, let δ : W
k−→ ZV be the

last ND added to the ND-path GX
Π , in which Z are the newly added attributes.

This ND-path will be extended first if k/|Z ∩ Y | is minimal with respect to all
the other active ND-paths. In case of ties, the ND-path with the lowest weight
is chosen.

6.6. Complexity

In the worst case a branch & bound algorithm must explore every node in
the search space [22], so its worst case computational complexity is the size of
the search space (i.e., the same as the complexity of the brute force search). The
search space for BBND has maximum size when (i) no ND in ∆ is useless, and
(ii) all NDs in ∆ can be applied from the start (based on rule 2 of Definition 6,
this means that the left-hand sides of all NDs are included in X and the right-
hand sides of all NDs have non-empty intersection with Y ). Considering that
method SmartExtensions avoids duplicates, the search space in this case is the
power set of ∆ and has 2m nodes, where m is the number of NDs. Conversely,

the best case for BBND is when the NDs form a chain (e.g., X
k1−→ V , V

k2−→W ,
etc.), because in this case there is no branching in the search space and the
complexity decreases to O(m).

7. Experimental Results

We extensively tested the BBND algorithm for efficiency and effectiveness
using six different datasets. Considering that a valuable application of NDs is
the estimation of the cardinality of projections, we decided to push our tests in
this direction. We recall that a bound k of the cardinality of the projection on

a set of attributes Y can be established by an ND of the form ⊥ k−→ Y . Note
that in the following we use the term proper ND to denote an ND whose weight
is strictly higher than 1, i.e., an ND that is not also an FD.

So we defined a relation schema R(U) including 24 attributes and a basic set

∆0 of 24 proper NDs of the form ⊥ ki−→ Ai that put a cardinality constraint ki on
each attribute Ai of R. Note that, using only ∆0, the cardinality bound of (the
projection on) Y ⊆ U is simply computed as the product of the cardinalities of
the attributes in Y (basic bound). Then we defined six extended sets of NDs
over R:
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• Since deriving tight bounds is particularly crucial in physical design of
multidimensional databases and data warehouses, to define the first three
ND sets we took inspiration from a star schema including eight dimension
tables with three attributes each. So we created three ND sets (∆1, ∆2,
and ∆3) each including, besides the 24 proper NDs in ∆0, 16 FDs that
model multidimensional hierarchies (two for each hierarchy) plus 10, 25,
and 50 randomly-generated additional proper NDs, respectively. For each

additional ND Wi
ki−→ Zi, the total number of attributes in WiZi ranges

between 2 and 8, and its weight ki reduces the basic bound of WiZi by a
factor randomly ranging between 0.80 and 0.95.

• To investigate how efficiency and effectiveness depend on the topology of
constraints for a generic database (no multidimensional structure), we in-
troduced three more ND sets. To this end, we partitioned the 24 attributes
of R into 3 groups, each including 8 attributes. Overall, 50 proper NDs
and 16 FDs were introduced: in both ∆4 and ∆′

4, only intra-group FDs
were created; in ∆4 even all proper NDs are intra-group, while in ∆′

4 they
are freely defined over all attributes of R. In the last ND set, ∆5, all NDs
are freely defined over all attributes.

Finally, we randomly generated 300 subsets Yj (each including 2 to 8 at-
tributes); for each Yj and ∆m, we used the BBND algorithm to compute the
minimal derivable weight k⊥RED(⊥, Yj). All tests were carried out on a Pentium
4, 3.4 GHz, 2 GB RAM; all execution times are in seconds.

The goals and results of our tests can be summarized as follows:

1. Measure how effective NDs are in improving the basic cardinality bounds;
as shown in Subsection 7.1, even a solution that includes a very few NDs
can drastically cut the basic bound by about 90%.

2. Compare the four enumeration strategies proposed in Section 6.5; it turns
out that the BeF strategy is by far more efficient than the others (Sub-
section 7.2).

3. Evaluate to what extent the optimization techniques discussed in Section
6 do actually reduce the algorithm search space; the results point out that
removing useless NDs highly improves efficiency and the most effective
pruning technique is the one based on domination (Subsection 7.3).

4. Discuss how BBND scales with the problem size; remarkably, though ob-
viously the execution time increases with the number of attributes in Yj

and with the number of NDs, good bounds are always found during the
very early stages of search space exploration (Subsection 7.4).

5. Analyze how efficiency and effectiveness depend on the topology of NDs;
we found that performances with clustered NDs progressively deteriorate
when the FDs are defined on larger groups of attributes (Subsection 7.5).
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Table 1: ND effectiveness
∆1 ∆2 ∆3

additional NDs 10 25 50
% bound reduction 57% 89% 96%

# used NDs

% bound reduction
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Figure 9: Bound reduction of BBND as a function of the number of additional proper NDs
used in the optimal solution

7.1. Effectiveness

To evaluate the effectiveness of NDs, we measure how the basic bound of each
Yj is reduced using the different ND sets. The percentage average reductions
are reported in Table 1 for increasing numbers of NDs. Besides, Figure 9 shows
how the average reduction depends on the number of additional proper NDs
used in the optimal solution. Clearly, NDs are highly effective in reducing
cardinality bounds: even having a single additional proper ND in the optimal
solution reduces the cardinality bound by about 80%. The percentage reduction
is similar for the three sets of NDs; ∆3 is slightly more effective since more NDs
are available, so finding a lower weight —for the same number of used NDs—
is more likely.

7.2. Comparison of Enumeration Strategies

The first set of tests aims at comparing the four strategies for exploring
the search space: breadth-first (BrF), depth-first (DF), best-first (BeF), and
cheapest-first (ChF). Table 2 reports, for each strategy, the execution time, the
total number of search space nodes (i.e., the number of ND-paths generated),
the number of search space leaves (i.e., the number of ND-paths that are not
extended either because they are solutions or because of the application of some
pruning technique), the percentage of leaves pruned by lazy/eager domination,
and the maximum number of active ND-paths in the queue. Clearly, BeF is
by far more efficient than the other strategies. In particular, DF generates
a huge number of nodes (more than five millions) due to the lack of a smart
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Table 2: Comparison of enumeration strategies using ∆1 (all data are averaged on 300 opti-
mization problems)

BeF DF BrF ChF
BBND execution time (secs.) 11.81 134.72 2 433.59 217.39

no. nodes 316 417 5 255 043 305 890 91 155
no. leaves 247 187 2 950 032 254 389 74 506

% lazily dominated leaves 62.63% 15.01% 68.98% 57.19%
% eagerly dominated leaves 24.02% 7.59% 30.03% 11.46%

max. active ND-paths 457 27 30 482 3 850

strategy for choosing the next ND for extension, which leads to an increase of
the time to find a strict bound and makes numerical pruning less effective. This
is confimed by the percentage of nodes pruned by lazy/eager domination, that
is much lower than the one of BeF. As to BrF, its execution times are large
(almost 2 500 secs.) despite the fact that minimality checks need not be carried
out; indeed, BrF wastes most of the time in handling its huge queue of active
ND-paths. Similar considerations hold for ChF, that generates a long queue
thus suggesting that this enumeration strategy is quite ineffective. In light of
the above, we adopt BeF for all subsequent tests.

7.3. Evaluation of Pruning Techniques

In order to verify how effective the proposed optimization techniques are in
improving efficiency by pruning the search space, we compare BBND with three
variants: BBNDuseless (where useless NDs are not initially removed), BBNDminimal

(where no minimality check is executed), and BBNDeager (where no eager dom-
ination check is executed). The Näıve algorithm, where all pruning techniques
are switched off, is not evaluated because its computational costs with our test
sets would be prohibitive.

Table 3 summarizes the results. Besides the execution times, it reports
the number of useless NDs, the total number of nodes in the search space,
the number of leaves in the search space, and the percentages of leaves that
correspond to solutions, to lazily/eagerly dominated ND-paths, to non-minimal
ND-paths, and to repeated ND-paths, respectively. It is apparent from these
results that: (1) although the problem is NP-hard, our algorithm finds the
optimal solution within a reasonable time even for a very large problem size
thanks to its optimization strategies; (2) removing useless NDs highly improves
efficiency, because detecting these NDs requires a small computational effort
and may drastically cut the search space; (3) checking ND-path minimality
may significantly reduce the search space size, but for large sets of NDs the cost
may overcome the benefit; (4) the most effective pruning technique is the one
based on eager domination, in fact the execution times of BBNDeager are one
order of magnitude higher than those of BBND.

The previous results could be somehow misleading when comparatively eval-
uating pruning techniques, because their actual effectiveness is partially hidden
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Table 3: Comparison of pruning techniques (all data are averaged on 300 optimization prob-
lems)

∆1 ∆2 ∆3

execution time (secs.)

BBND 11.81 14.62 62.09
BBNDuseless 79.8 15.63 90.97
BBNDminimal 15.54 15.57 39.7
BBNDeager 152.85 593.27 –

no. useless NDs 6 2 5

no. nodes

BBND 316 417 572 061 1 952 367
BBNDuseless 807 787 573 485 2 005 973
BBNDminimal 367 923 778 018 2 169 724
BBNDeager 5 282 603 6 057 819 –

no. leaves

BBND 247 187 472 294 1 696 905
BBNDuseless 639 960 471 038 1 745 219
BBNDminimal 271 244 638 476 1 883 072
BBNDeager 3 984 943 5 137 935 –

% solution leaves

BBND 0.17% 0.46% 0.69%
BBNDuseless 0.12% 0.45% 0.63%
BBNDminimal 0.19% 0.49% 0.69%
BBNDeager 0.10% 0.27% –

% lazily dominated leaves

BBND 62.63% 77.89% 86.56%
BBNDuseless 60.86% 77.64% 86.66%
BBNDminimal 67.55% 81.96% 87.23%
BBNDeager 81.12% 95.28% –

% eagerly dominated leaves

BBND 24.02% 13.72% 10.64%
BBNDuseless 22.92% 14.30% 10.67%
BBNDminimal 28.45% 14.29% 10.81%
BBNDeager 0.00% 0.00% –

% non-minimal leaves

BBND 10.57% 4.11% 0.87%
BBNDuseless 10.59% 3.37% 0.74%
BBNDminimal 0.00% 0.00% 0.00%
BBNDeager 16.24% 2.90% –

% repeated leaves

BBND 2.62% 3.82% 1.24%
BBNDuseless 5.51% 4.25% 1.31%
BBNDminimal 3.81% 3.26% 1.27%
BBNDeager 2.54% 1.56% –
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Table 4: Order-independent comparison of pruning techniques for BBND

∆1 ∆2 ∆3

% lazily dominated leaves 62.80% 78.35% 87.25%
% eagerly dominated leaves 25.05% 15.36% 13.40%

% non-minimal leaves 44.75% 18.81% 6.16%
% repeated leaves 5.90% 4.48% 1.53%
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Figure 10: Efficiency of BBND and BBNDminimal as a function of the number of additional
proper NDs used in the optimal solution

behind their execution order. In our implementation, “low-cost” techniques
are applied first; so, for instance, an ND-path that is both dominated and
non-minimal will be pruned by domination since the domination check is less
expensive than the minimality check. To gain further insight into this issue, Ta-
ble 4 shows the actual percentages of nodes generated by BBND that would be
pruned by each technique independently of their execution order (i.e., all checks
were applied before actually pruning the node).5 These results show that the
pruning capability of the minimality check is actually higher than shown in Ta-
ble 3. However, the order we adopt for carrying out pruning is easily justified
by considering that a large part of non-minimal ND-paths are also dominated,
and that minimality checks have higher costs.

7.4. Scalability

After the above discussion, it is clear that the two more efficient variants
of the algorithm are BBND and BBNDminimal. A closer analysis reveals that
their average execution times are strictly related to the number of proper NDs
included in the optimal solution (see Figure 10). In both cases, the execution
time increases much faster with the number of NDs for ∆3 because the search

5The percentages do not sum to 100 because a node may satisfy two or more checks.
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Figure 11: Efficiency of BBND as a function of the number of attributes in the bounded
projection

space is larger. Besides, a comparison between the two parts of Figure 10
confirms that BBNDminimal is more convenient than BBND for large problems
due to the cost of minimality checks. Since there is no other notable difference
between BBNDminimal and BBND, in the following we will focus on the latter
only.

There is a strong correlation between the number of proper NDs used in
the optimal solution and the number of attributes in the projection Yj whose
cardinality is bounded. In fact, the number of NDs used turns out to be roughly
proportional to the number of attributes in the bounded projection. As a con-
sequence, the execution time scales with the number of attributes of Yj in much
the same way as it scales with the number of used NDs (see Figure 11).

Remarkably, regardless of the number of attributes in Yj , good bounds are
always found during the early stages of search space exploration. Figure 12
shows how the best bound found so far improves with elapsed time. After only
5 seconds, a bound that differs from the optimal one by less than 10% is found
even for projections including 8 attributes. So, adopting a heuristic approach
that returns the best bound found after a fixed amount of time would be highly
effective.

7.5. Topology

Finally, we analyze how performance depends on the topology of NDs. An
ND is useful to bound Yj if it directly bounds some attributes in Yj or if it can
be used to build an ND-path to Yj . The presence of chains of NDs positively
affects the probability of building such ND-paths. In a database showing no
multidimensional structure, the probability of having two or more FDs in a
chain is higher if these are defined on a reduced group of attributes. This is
confirmed by the tests made with ∆3, ∆4, and ∆5: they include the same total
numbers of FDs, but defined within increasingly larger groups of attributes. As
shown in Table 5, effectiveness progressively decreases when FDs are defined
over larger groups of attributes. A similar behavior is shown by proper NDs,
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Figure 12: Best bound for BBND as a function of the elapsed time

as confirmed by comparing ∆4 with ∆′
4 (in the latter, proper NDs are defined

over a single larger group).
Overall, the effects of topology can be summarized as follows:

• The effectiveness in reducing the bound is much higher for ∆3 than for
the other ND sets, because in a multidimensional schema all the attributes
in a hierarchy belong to the same chain of FDs (e.g., A −→ B, B −→ C)
while in the other ND sets the attributes in each FD are randomly chosen
within a single group of attributes (e.g., AB −→ DE, CE −→ F ).

• The efficiency is maximized for ∆4 and ∆′
4, since lazy and eager domina-

tions avoid node proliferation and reduce non-minimality checks. On the
other hand, though the number of nodes generated is higher in ∆3 than
in ∆5, the efficiency over ∆5 is lower due to a large number of minimality
checks. This behavior is related to FD chains: in ∆3 their presence de-
termines a large number of ND-paths, while in ∆5 their absence prevents
from finding solutions or partial solutions capable of pruning the search
space.

8. Related Work and Conclusions

In this paper we have considered the problem of reasoning with numerical
dependencies (NDs). We have first shown that entailment of NDs can be decided
using a variant of the classical chase procedure, which requires exponential space
in the worst case. For the syntactic derivation of NDs, we have introduced a set
of rules, called RED, which, although incomplete, can always determine if an
ND from a set of attributesX to another set of attributes Y exists. We have also
provided a partial characterization of the cases in which RED rules guarantee
completeness. After characterizing the “interesting” derivable NDs in graph-
theoretical terms, we have introduced an efficient branch & bound algorithm,
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Table 5: Effectiveness and efficiency for ND sets with different topologies (all data are averaged
on 300 optimization problems)

∆3 ∆4 ∆′
4 ∆5

% bound reduction 96% 79% 73% 58%
execution time (secs.) 62.09 5.59 12.05 105.13

no. useless NDs 5 7 3 7
no. nodes 1 952 367 730 373 409 301 899 452
no. leaves 1 696 905 683 108 382 662 693 155

% solution leaves 0.69% 0.79% 0.44% 0.43%
% lazily dominated leaves 86.56% 94.08% 94.40% 63.35%

% eagerly dominated leaves 10.64% 4.99% 4.82% 31.35%
% non-minimal leaves 0.87% 0.06% 0.18% 2.19%

% repeated leaves 1.24% 0.09% 0.15% 0.68%

BBND, and evaluated its performance over several ND sets, demonstrating its
efficiency with respect to a näıve derivation approach.

Two issues we left for future research are a deeper analysis of the cases
in which RED rules can guarantee completeness, and the development of an
optimized chase-based procedure.

The present work follows that from the same authors in [5], which focused
on estimating the cardinality of aggregate views in multidimensional databases.
The basic formal problem addressed by [5] was that of determining whether one
set of NDs always provides a tighter bound of the cardinality of a view than
another set of constraints. However, no algorithm for determining the best
(least) upper bound was proposed.

Our ND-graph representation is largely inspired to the one proposed in [23]
for FDs; the major difference with [23] is that, in the worst case,6 we have to
generate all possible minimal ND-paths from X to Y , which is not an issue for
FDs.

Other works using NDs in different contexts are mentioned in the following.
Some works have considered cardinality constraints in the context of concep-

tual models. Since a cardinality constraint also imposes a lower bound, problems
of consistency of a set of constraints arise, which is not an issue with NDs. For
instance, in [8] an approach is presented for modeling n-ary relationships in
conceptual schemata by unifying and extending the cardinality constraints ex-
pressed in a number of existing models. Rules for identifying inconsistencies
among cardinality constraints are then defined by extending the work done in
axiomatization of functional and NDs for relational databases.

More specifically, some works use dependencies of different types to express
constraints in the Entity-Relationship model. For instance, in [9] the notion

6This arises if, depending on weights, no ND-path leading to a (non-optimal) Y -minimal
ND-path is dominated.
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of strong satisfiability is introduced to ensure that, given a set of cardinality
ratio constraints that impose restrictions on the mappings between entities and
relationships, no entity or relationship is compelled to be empty in all of the
legal instances of the schema. In [24] the focus is on cardinality constraints,
that impose restrictions on the number of relationships an object may be in-
volved in. The entailment problem is faced, and combinatorial methods for
reasoning about sets of cardinality constraints are proposed; besides, the inter-
play between cardinality constraints and FDs is discussed. Similarly, in [10] the
satisfiability and implication problems for numerical constraints are faced with
reference to the XML language. A numerical constraint is defined in terms of
path expressions, and restricts the number of nodes that have the same values
on some selected subnodes.

Other works use NDs in connection with conditional, nondeterministic, or
approximate information. In [25] an extension of conditional FDs is proposed
to uniformly express cardinality constraints, domain-specific conventions, and
patterns of semantically-related attribute values. Intuitively, a conditional func-
tional dependency specifies a pattern of values for two sets of attributes X and
Y : each tuple that matches the pattern on X must also respect the pattern on
Y , and an upper bound of the number of distinct values of Y related to each
value of X is specified. Complexity bounds for the satisfiability and implication
problems associated with conditional FDs are also established. In [13] a set of
constraints expressed by NDs enable efficient query processing in nondetermin-
istic databases. In [11], NDs enable management of indefinite information in
relations, in particular they are used to mine a relation to see how well a given
set of FDs is approximated.
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Appendix

Appendix A. Proofs of Formal Results

Theorem 1. Given a set of NDs ∆ over R(U), let δ : X
k−→ Y be an ND and

Tδ be the tableau for δ. It is ∆ � δ iff, for all tableaux in Chase∆(Tδ), the
number of distinct rows on Y is at most k, in which case we say that the chase
succeeds on δ, otherwise it fails.

Proof. (⇒) If there exists a tableau Tl ∈ Chase∆(Tδ) with k + 1 distinct rows
on Y (i.e.,the chase fails), then any relation r with k+1 tuples obtained from a
valuation ρ of Tl, r = ρ(Tl), i.e., a homomorphism that transforms each variable
of Tl into a value of the corresponding domain, and such that k + 1 different
Y-values are generated, would represent a violation of δ. On the other hand,
since Tl satisfies all NDs in ∆, so does r = ρ(Tl), from which it follows that
∆ ̸� δ.
(⇐) Consider a relation r ∈ Sat(∆) and k+1 tuples t′1, . . . , t

′
k+1 in r which agree

on X. We have to prove that the number of distinct Y-values in such tuples
is at most k. Let ρ be a valuation from Tδ to {t′1, . . . , t′k+1}. We show that
there exists a tableau Tl ∈ Chase∆(Tδ) such that ρ is also a valuation from Tl

to {t′1, . . . , t′k+1}, from which the result follows since by hypothesis ρ(Tl) cannot
yield more than k distinct Y -values.

Let T1, . . . , Tp, with T1 ≡ Tδ and Tp ≡ Tl be a sequence of tableaux, where
Tj+1 is obtained from Tj through a chase step. We prove by induction on j
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that, for each j = 1, . . . , p, ρ is a valuation from Tj to {t′1, . . . , t′k+1}. The
basis, j = 1, trivially holds. Then, assume that the result holds for Tj , j < p.

Since Tj is not a leaf of the chase tree, there exists δij : Wij

kij−−→ Zij ∈ ∆
that is not satisfied by Tj . Since {t′1, . . . , t′k+1} satisfies δij (because r does),
there exists (at least) one tableaux, say Tj,s, obtained from Tj using δij and
homomorphism hs, such that {t′1, . . . , t′k+1} is obtained from a valuation of Tj,s.
Assume that hs is hs(ts,1(Zij )) = hs(ts,2(Zij )), and the identity elsewhere.
Thus, the only difference between Tj and Tj,s is that all occurrences of the Zi,j-
variable appearing in ts,2(Zij ) are replaced by occurrences of the Zi,j-variable
appearing in ts,1(Zij ), or viceversa. It follows that ρ is also a valuation from
Tj,s ≡ Tj+1 to {t′1, . . . , t′k+1}, proving the assert. 2

Theorem 2. Given a set of NDs ∆ over R(U), let δ : X
k−→ Y be an ND and Tδ

be the tableau for δ. If the chase succeeds on δ, then the tableau in Chase∆(Tδ)
with the maximum number of distinct rows on Y has exactly k⊥(X,Y ) distinct
rows on Y .

Proof. The result is a direct consequence of Theorem 1. Indeed, for any relation
r ∈ Sat(∆) with k+1 tuples t′1, . . . , t

′
k+1 which agree onX, the proof of Theorem

1 shows that there is a tableau Tl ∈ Chase∆(Tδ) and a valuation ρ such that
ρ(Tl) = {t′1, . . . , t′k+1}, from which the result immediately follows. 2

Lemma 3. Given a set of NDs ∆ over R(U), if X
l·w(δi)

p

−−−−−→ Y ∈ ∆+
RED, then

X
l·w(δi)−−−−→ Y ∈ ∆+

RED for each δi ∈ ∆, X,Y ⊂ U , and l, p ≥ 1.

Proof. We start by observing that case p ≥ 3 can easily be led back to case
p = 2 by induction. We also note that, since E is the only rule in RED that
introduces new weight factors, then the repeated factor must necessarily have
been introduced by rule E. Three cases are possible:

1. The repeated factor has been introduced by applying E as follows:

X
l·ki−−→ VW ∧ V

ki−→ Z ⊢ X
l·k2

i−−→ VWZ

where the second ND used in the premise is δi : V
ki−→ Z ∈ ∆. Since

δi has already been used to derive X
l·ki−−→ VW , then Z ⊆ VW and

VWZ ≡ VW .7 This means that no new ND has been derived by this
application of E, which proves the assertion.

7If also rule D has been used to derive X
l·ki−−→ VW , it may not be Z ⊆ VW ; however, if

this is the case, an alternative derivation of X
l·w(δi)

p

−−−−−−→ Y can always be found where D is
applied at the end, which ensures that Z ⊆ VW .
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2. The repeated factor has been introduced by applying E as follows:

X
l′·ki−−−→ VW ∧ V

l′′·ki−−−→ Z ⊢ X
l′·l′′·k2

i−−−−→ VWZ

where the second ND used in the premise is not in ∆ and has been derived
using also δi, with w(δi) = ki. Since the RED rules preserve the left-
hand sides of the NDs they are applied to, the derivation τ that brought

to V
l′′·ki−−−→ Z started with an ND δ with left-hand side V . Then an

alternative derivation for X
l′·l′′·k2

i−−−−→ VWZ can be written that applies

rule E to X
l′·ki−−−→ VW and δ to derive δ

′
, and then orderly applies the

derivation steps in τ using δ
′
instead of δ as a premise. By repeatedly

applying this argument we go back to case 1, which proves the assertion.

3. The repeated factor has been introduced by applying E as follows:

X
ki−→ VW ∧ V

l·ki−−→ Z ⊢ X
l·k2

i−−→ VWZ

where δi : X
ki−→ VW ∈ ∆. Since δi has already been used to derive

V
l·ki−−→ Z, it is VW ⊆ Z and VWZ ≡ Z, so the same argument used in

case 1 proves the assertion.

2

Theorem 4. Given a set of NDs ∆ over R(U) and sets of attributes X,Y ⊆ U ,

determining if ∆ ⊢RED X
k−→ Y is NP-hard.

Proof. The proof is by polynomial-time reduction from the Minimum Cover
problem, whose NP-hardness is well known [17]. Given a finite set S = {s1, . . . , sn}
and a collection C = {C1, . . . , Cm} of subsets of S, a cover of S is a subset
C ′ ⊆ C such that each element of S belongs to at least one member of C ′. The
Minimum Cover problem is to determine if C contains a cover of S of size
|C ′| ≤ K.

For each element si ∈ S define an attribute Ai, i = 1, . . . , n, and let U be
the disjoint union of X and S, i.e., U = XS, X ∩S = ∅. For each Cj define the

ND δj : X
2−→ Cj , and let ∆ = {δj |j = 1, . . . ,m} and Y ≡ S. We show that C

contains a cover of S of size K iff X
2K−−→ Y ∈ ∆+

RED.
(⇒) Assume C contains a cover C ′ = {Ci1 , . . . , CiK} of size K. By applying

K − 1 times the Union (U) rule (which is derivable from the RED rules) to the

NDs δi1 , . . . , δiK , the ND X
2K−−→ Y is derived.

(⇐) Going the other way, assume δ : X
2K−−→ Y ∈ ∆+

RED. Since all NDs have
the same weight, it is obvious that δ has been derived using K NDs in ∆. The
right-hand sides of such NDs are a cover of S of size K, as it can be immediately
verified.
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We conclude the proof with a remark on the Successor (S) rule. As said,
this rule can be safely ignored if one aims to find the ND from X to Y with the
minimum derivable weight, yet it is needed to show that the derivation problem

for NDs is in NP, i.e., that the derivation of δ : X
k−→ Y has polynomial length.

For this, let δ⊥ : X
k⊥
REDS−−−−→ Y , which is in ∆+

REDS by hypothesis. Since in the
derivation of δ⊥ all NDs in ∆ are used at most once (See Lemma 3), this also
proves that there exists a derivation of δ of polynomial length, because a single
application of the S rule suffices.8 2

Theorem 5. Given a set of NDs ∆ over R(U), for any sets of attributes X,Y ⊆
U there exists an ND from X to Y iff an ND from X to Y is derivable using
the RED rules.

Proof. (⇐) Obvious, since RED rules are sound.
(⇒) The proof is based on arguments that generalize those used to prove the
completeness of Armstrong axioms for FDs. In particular, we exhibit, for each
finite value of k, an instance rk ∈ Sat(∆) with k + 1 tuples such that: 1)

∆ ̸⊢RED X
k−→ Y and 2) the ND X

k−→ Y does not hold in rk. From this it
follows that if no ND from X to Y can be derived, that no ND from X to Y is
entailed by ∆.

For any value of k consider a relation rk with k+1 tuples which agree on the
attributes of X+

ND, and have pairwise different values on all the other attributes.
We claim that rk ∈ Sat(∆). By contradiction, assume that there exists an ND

δi : Wi
ki−→ Zi ∈ ∆ that is violated by rk. For this, it has to be Wi ⊆ X+

ND

and Wi ̸⊆ X+
ND. But this would contradict the hypothesis that X+

ND is the
ND-closure of X, from which we conclude that rk is a legal instance. Since

X
k−→ Y is not derivable, it is Y ̸⊆ X+

ND, thus X
k−→ Y is not entailed by ∆.

Since this holds for any value of k, it follows that there is no ND from X to Y .
2

Lemma 5. Let ∆ = {δi : X
ki−→ Zi, i = 1, . . . ,m}, Y ⊆ ∪iZi, and X ∩ Y = ∅.

There exists an instance r⊥ with k⊥RED(X,Y ) tuples with the same value on X
and distinct Y -values, such that r⊥ ∈ Sat(∆⊥).

Proof. We distinguish the attributes in U in “local”,“join”, and “don’t care”
ones. An attribute Ai is: 1) local (to δi) if it belongs to Y and only appears in
a single right-hand side of an ND δi ∈ ∆⊥; 2) join if it appears in more than

8We note that the problem is not in NP if the S rule is replaced with the one: X
k−→ Y ⊢

X
k+1−−−→ Y , as in the original paper by Grant and Minker [1], since in this case the length of

a shortest derivation of δ would depend on the value of k.
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one ND in ∆⊥; 3) don’t care otherwise. Notice that a don’t care attribute is
not in Y and that each ND in ∆⊥ necessarily has at least one local attribute,
otherwise dropping δi from ∆⊥ would still yield a valid ND from X to Y .

The instance r⊥ has k⊥RED(X,Y ) tuples which agree on the values of all join
and don’t care attributes. Let Li ⊆ Zi ∩ Y be the set of local attributes of δi.
For each δi ∈ ∆⊥ we choose ki distinct Li-values from dom(Li), and generate
all possible

∏
i ki = k⊥RED(X,Y ) distinct combinations, each of which identifies

a specific tuple of r⊥. Notice that, since each join attribute has a single value
in r⊥, this construction is indeed possible.

By construction, for each δi : X
ki−→ Zi ∈ ∆⊥ there is a single X-value in

r⊥ (since attributes in X cannot be local) and there are exactly ki distinct Zi-
values (since there are ki distinct Li-values, and each attribute in Zi \ Li has a
single value). Thus, r⊥ satisfies all NDs in ∆⊥. 2

Theorem 6. For each δi : X
ki−→ Zi ∈ ∆⊥ let Li ⊆ Zi be the set of local

attributes in δi and define Λ = ∆ \ ∆⊥ = {δj : X
kj−→ Wj}. If one of the

following cases occurs, then it is k⊥RED(X,Y ) = k⊥(X,Y ):

1. For all δj ∈ Λ and all δi ∈ ∆⊥ it is Wj ∩ Li = ∅;

2. Each ND in ∆⊥ has a single local attribute, Li = {Ai}, and it is:∏
i:Ai∈Wj

ki ≤kj ∀δj ∈ Λ (3)

3. For all δj ∈ Λ and all δi ∈ ∆⊥ it is |Wj ∩ Li| ≤ 1, i.e., Wj ∩ Li = {Ai,j}
or Wj ∩ Li = ∅, and there exists an instance r⊥ such that the following
system of inequalities admits solution:∏

Ap∈Li

|r⊥[Ap]| ≥ki ∀δi ∈ ∆⊥ (4)

∏
i:Wj∩Li ̸=∅

|r⊥[Ai,j ]| ≤kj ∀δj ∈ Λ (5)

Proof. Case 1: Any instance r⊥ ∈ Sat(∆⊥), as defined in Lemma 5, has exactly
ki distinct Li-values and a single value on each other attribute, as the proof of
the same lemma shows. Thus, no ND in Λ can influence the validity of r⊥.

Case 2: An ND δj : X
kj−→ Wj ∈ Λ is violated by an instance r⊥ ∈ Sat(∆⊥) iff

r⊥ has more than kj distinct Wj-values. Thus, when inequality (3) is satisfied,
so it is δj .
Case 3: Inequalities (5) are a generalization of (3) to the case in which Li

can consist of more than one local attribute, thus what observed for case 2

applies also here. Since when an ND δi : X
ki−→ Zi ∈ ∆⊥ introduces more
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than one local attribute there are several possibilities to obtain ki distinct Li-
values, inequalities (4) are there to guarantee that each attribute Ap ∈ Li has a
sufficient number of distinct values so that ki distinct Li-values can indeed be
obtained. 2

Lemma 6. Let GX
Π be an ND-path from X to Y . Then X

ω(GX
Π )−−−−→ Y ∈ ∆+

RED.

Proof. It is sufficient to prove that X
ω(GX

Π )−−−−→ Attr(GX
Π ) ∈ ∆+

RED, the case
Y ⊂ Attr(GX

Π ) following by rule D. The proof is by induction on the number of
steps needed to build the ND-path.

In the base case the ND-path is GX
∅ , i.e., the ND-graph induced by X, for

which it is Attr(GX
∅ ) = X and ω(GX

∅ ) = 1. This represents the trivial ND

X −→ X ∈ ∆+
RED (rule R). Assume now that one has an ND-path GX

Π′ from
X, obtained by m applications of the 2nd rule in Definition 6. At step m + 1

GX
Π′ is extended with the full arc ⟨W,Z⟩k, thus using the ND W

k−→ Z ∈ ∆,
with W ⊆ Attr(GX

Π′) and Z ̸⊆ Attr(GX
Π′). From the inductive hypothesis, it is

X
ω(GX

Π′ )−−−−−→ Attr(GX
Π′) ∈ ∆+

RED. Since W ⊆ Attr(GX
Π′), the result follows by rule

E. 2

Theorem 7. Let G∆ be the ND-graph induced by a set of NDs ∆, and let
X ∈ V. There exists in G∆ a Y -minimal ND-path GX

Π from X to Y having

weight ω(GX
Π ), iff δ : X

ω(GX
Π )−−−−→ Y ∈ ∆∗

RED.

Proof. (⇐) The proof is by induction on the number of NDs of ∆ used in a
derivation of δ. In the base case no ND is used, thus it has necessarily to be
Y ⊆ X. Since X ∈ V by hypothesis, the ND-graph induced by X is the required
Y -minimal ND-path. For the inductive step, assume the result holds for all NDs
whose derivation requires no more than m − 1 NDs from ∆ (m ≥ 1), whereas
δ can be derived by using m NDs. Since δ ∈ ∆∗

RED by hypothesis, no proper
subset of such NDs can derive it. The last application of rule E in a derivation
of δ has therefore the form:

δ′ : X
ω(GX

Π′ )−−−−−→ Ym−1, δm : Wm
km−−→ Zm ⊢ X

ω(GX
Π′ )·km−−−−−−−→ Ym

where Wm ⊆ Ym−1, δm ∈ ∆, and Y ⊆ Ym = Ym−1Zm. Since δ is tight, it is
Y ̸⊆ Ym−1.

By the inductive hypothesis, δ′ ∈ ∆∗
RED and there exists a Ym−1-minimal

ND-path GX
Π′ from X to Ym−1 with weight ω(GX

Π′). The ND-path obtained by
adding to GX

Π′ node Zm and the full arc ⟨Wm, Zm⟩km is the required Y -minimal
ND-path for δ.

(⇒) Let GX
Π = (V ′′, E ′′). By Lemma 6 we have that δ : X

ω(GX
Π )−−−−→ Y ∈ ∆+

RED.
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It remains to show that δ is tight. By contradiction, assume δ is loose, i.e.,
there exists a tight ND δ′ ∈ ∆∗

RED with K(δ′) ⊂ K(δ). From the first part of
the proof we know that there exists a Y -minimal ND-path GX

Π′ = (V ′, E ′) for δ′.
Since K(δ′) ⊂ K(δ) implies E ′ ⊂ E ′′, this contradicts the hypothesis that GX

Π is
Y -minimal. 2

Lemma 7. Let GX
Π and GX

Γ be two ND-paths from X, with Γ ⊂ Π and GX
Π

obtained by extending GX
Γ . If GX

Γ is not Attr(GX
Γ )-minimal, then GX

Π is not
Y -minimal for all Y ⊆ Attr(GX

Π ).

Proof. By contradiction, assume there exists Y such that GX
Π is Y -minimal, yet

GX
Γ is not Attr(GX

Γ )-minimal. Then, there exists GX
Γ′ , with Γ′ ⊂ Γ, such that

Attr(GX
Γ′) = Attr(GX

Γ ). Let Π′ = Π \ Γ ∪ Γ′. The ND-subgraph GX
Π′ is an

ND-path, since it can be obtained by extending GX
Γ′ using the same sequence of

steps as in the extension from GX
Γ to GX

Π . It follows that GX
Π is not Attr(GX

Π )-
minimal. Since Y ⊆ Attr(GX

Π ), GX
Π cannot be Y -minimal, a contradiction.

2

Lemma 9. Let GX
Γ be an ND-path from X, obtained by extending a minimal

ND-path GX
Π with the ND δ : W

k−→ Z. Let δi : Wi
ki−→ Zi ∈ Π be a non-essential

ND for GX
Π . If Z ∩ Zi = ∅, then the ND-subgraph GΓi induced by Γi = Γ \ δi is

not an ND-path from X.

Proof. Consider the ND-subgraph GΠi induced by Πi = Π \ δi. Clearly, it is
Attr(GΠi) = Attr(GX

Π ), since δi is not essential forG
X
Π . However, by hypothesis,

GΠi is not an ND-path from X (otherwise GX
Π would not be minimal). In turn,

this implies that there exists at least one ND δ∗ : W ∗ k∗

−→ Z∗ in Πi such that
the node W ∗ is not reachable from X in GΠi .

Since Γi = Πi∪{δ}, and the ND-subgraph induced by a set of NDs is univo-
cally determined, it follows that GΓi equals GΠi plus the full arc corresponding
to δ. Since Z∩Zi = ∅ by hypothesis, it follows that the nodeW ∗ is not reachable
from X also in GΓi , thus GΓi is not an ND-path from X. 2

Lemma 10. Let GX
Π and GX

Γ be two ND-paths from X. If GX
Π eagerly domi-

nates GX
Γ then, for any ND-path GX

Γi
obtained by extending GX

Γ with an ND δi,

either (1) GX
Π eagerly dominates GX

Γi
, or (2) the ND-path GX

Πi
that extends GX

Π

with δi eagerly dominates GX
Γi
.

Proof. Let Γi = Γ ∪ {δi : Wi
ki−→ Zi}, thus Attr(GX

Γi
) = Attr(GX

Γ ) ∪ Zi and

ω(GX
Γi
) = ω(GX

Γ ) · ki. If δi can be used to also extend GX
Π , then the re-

sult immediately follows. If this is not the case, since Zi ⊂ Attr(GX
Π ), it is

Attr(GX
Γi
) ⊆ Attr(GX

Π ) and ω(GX
Γi
) ≥ ω(GX

Π ), thus GX
Π eagerly dominates GX

Γi
.
2
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