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Abstract

Consistent query answering is an inconsistency tolergmtoggeh to obtaining semantically correct an-
swers from a database that may be inconsistent with respéts integrity constraints. In this work
we formalize the notion of consistent query answer for gpatabases and spatial semantic integrity
constraints. In order to do this, we first characterize caotirflj) spatial data, and next, we define admissi-
ble instances that restore consistency while staying ¢totiee original instance. In this way we obtain
a repair semantics, which is used as an instrumental coneeajgfine and possibly derive consistent
query answers. We then concentrate on a class of spatialademistraints and spatial queries for which
there exists an efficient strategy to compute consistenycareswers. This study applies inconsistency
tolerance in spatial databases, rising research issueshifisthe goal from the consistency of a spatial
database to the consistency of query answering.

1 Introduction

Consistency in database systems is defined as the satisfagta database instance of a set of integrity con-
straints (ICs) that restricts the admissible databasesstalthough consistency is a desirable and usually
enforced property of databases, it is hot uncommon to findrisistent spatial databases due to data inte-
gration, unforced integrity constraints, legacy data,jmetlag updates. In the presence of inconsistencies,
there are alternative courses of action: (a) ignore incbaiscies, (b) restore consistency via updates on the
database, or (c) accept inconsistencies, without chartgandatabase, but compute the “consistent or cor-
rect” answers to queries. For many reasons, the first twenaliges may not be appropriate [6], specially
in the case of virtual data integratidn [5], where centediand global changes to the data sources are not
allowed. The latter alternative has been investigatederré¢hational case [4, 10]. In this paper we explore
this approach in the spatial domain, i.e., for spatial dagab and with respect to spatial semantic integrity
constraints (SICs).

Extracting consistent data from inconsistent databaselsl @ qualified as an “inconsistency tolerant”
approach to querying databases. A piece of data will be gatamnsistent answer if it is not logically
related to the inconsistencies in the database with respéist set of ICs. We introduce this idea using an
informal and simple example.
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Example 1 Consider a database instance with a relatiandP, denoting land parcels, with a thematic
attribute ¢dl), and a spatial attributggeometry, of data typepolygon. An IC stating that geometries of
two different land parcels must be disjoint or just touch,,ithey cannot internally intersect, is expected to
be satisfied. However, the instance in Figure 1 does nofsdtis IC and therefore it is inconsistent: the
land parcels with idlgdi, andidi3 overlap. Notice that these geometries are partially in cdrdhd what

is not in conflict can be considered as consistent data.

LandP & %
idl  geometry e
idly g1 i = E
idly 92
1dls g3

Figure 1: An inconsistent spatial database

Suppose that a query requests all land parcels whose geesnietiersect with a query window, which
represents the spatial region shown in Figdre 1 as a reetavith dashed borders. Although the database
instance is inconsistent, we can still obtain useful andmmegul answers. In this case, only the intersection
of g, andgs is in conflict, but the rest of both geometries can be coneitlepnsistent and should be part
of any “database repair” if we decide to restore consistéycyneans of minimal geometric changes. Thus,
since the non-conflicting parts of geometrigsand g3 intersect the query window, we would expect an
answer including land parcels with identitig8; , idl, andidls. O

If we just concentrate on (in)consistency issues in daedbhéesaving aside consistent query answering for
a moment), we can see that, in contrast to (in)consistenngling in relational databases, that has been
largely investigated, not much research of this kind has lole@e for spatial databases. In particular, there
is not much work around the formalization of semantic sp&@a, satisfaction of ICs, and checking and
maintenance of ICs in the spatial domain. However, somerpaulress the specification of some kinds of
integrity constraints_[g€, 20], and checking topologicahsistency at multiple representations and for data
integration [18[ 14, 31].

More recently, [[12] proposes qualitative reasoning witkadiption logic to describe consistency be-
tween geographic data sets. Inl[22] a set of abstract relatietween entity classes is defined; and they
could be used to discover redundancies and conflicts in $683Gs. A proposal for fixing (changing)
spatial database instances under different types of spat@nsistencies is given in [29]. According to it,
changes are applied over geometries in isolation; thatey, &re not analyzed in combination with multiple
SICs. In [27] some issues around query answering undertinfaof functional dependencies involving
geometric attributes were raised. However, the problemeafidg with an inconsistent spatial database,
while still obtaining meaningful answers, has not beenesystically studied so far.

Consistent query answering (CQA) from inconsistent databas a strategy of inconsistent tolerance
has an extensive literature (cf] [4,[6,] 10] for surveys). #swntroduced and studied in the context of
relational database ihl[2]. They defined consistent ansteerseries as those that are invariant under all the
minimal forms of restoring consistency of the original detse. Thus, the notion oépair of an instance
with respect to a set of ICs becomes a fundamental concegeforing consistent query answersrdvair
semantics defines the admissible and consistent alternative ins$attcan inconsistent database at hand.
More precisely, aepair of an inconsistent relational instanégis a consistent instancB’ obtained from
D by deleting or inserting whole tuples. The set of tuples bycWwhD and D’ differ is minimal under set



inclusion [2]. Other types of repair semantics have beediatuin the relational case. For example, in
[16],[32] repairs are obtained by allowing updates of atteélualues in tuples.

In comparison to the relational case, spatial databasesrudiv alternatives and challenges when defin-
ing a repair semantics. This is due, in particular, to theafssomplex attributes to represent geometries,
their combination with thematic attributes, and the natifrgpatial (topological) relations.

In this work we define a repair semantics for spatial databhagth respect to a subset of spatial semantic
integrity constraints (a.k.a. topo-semantic integritpstoaints) [29], which impose semantic restrictions on
topological predicates and combinations thereof. In paldr, we treat spatial semantic integrity constraints
that can be expressed by denials constraints. For exarhelecan specify that “two land parcels cannot
internally intersect”. This class of constraints are raititandardized nor integrated into current spatial
database management systems (DBMSSs); they rather depetheé application, and must be defined and
handled by the database developers. They are very impdréamatuse they capture the semantics of the
intended models. Spatial semantic integrity constrairitsbe simply calledspatial integrity constraints
(SICs). Other spatial integrity constraints [11] al@nain (topological or geometric) constraints, and they
refer to the geometry, topology, and spatial relations efgpatial data types. One of them could specify that
“polygons must be closed”. Many of these geometric consisaare now commonly integrated into spatial
DBMSs [23].

A definition of a repair semantics for spatial DBs and CQA foatsal range queries was first proposed
in [28], where we discussed the idea of shrinking geometoesolve conflicting tuples and applied to
CQA for range queries. In this paper we complement and extemgrevious work with the following
main contributions: (1) We formalize the repair semantita gpatial database instance under violations
of SICs. This is done through virtual changes of geomettias participate in violations of SICs. Unlike
[28], we identify the admissible local transformations amel use them to provide an inductive definition
of database repair. (2) Based on this formalization, a stersi answer to a spatial query is defined as an
answer obtained from all the admissible repairs. Extentlirgesults in[[28], we now define CQA not only
for range but also for spatial join queries. (3) Although thpair semantics and consistent query answers
can be defined for a fairly broad class of SICs and queried, lsscomes clear soon, naive algorithms for
computing consistent answers on the basis of the compautefiall repairs are of exponential time. For
this reason, CQA for a relevant subset of SICs and range amdjjeeries is done via eore computation.
This amounts to querying directly the intersection of aflaies of an inconsistent database instance, but
without actually computing the repairs. We show cases wtigsecore can be specified as a view of the
original, inconsistent database. (4) We present an expetahevaluation with real and synthetic data sets
that compares the cost of CQA with the cost of evaluating iqaetirectly over the inconsistent database
(i.e., ignoring inconsistencies).

The rest of the paper is organized as follows. In Sedfion 2 @seribe the spatial data model upon
which we define the repair semantics and consistent quevyesssA formal definition of repair for spatial
inconsistent databases under SICs is introduced in Sd8tidn Sectio # we define consistent answers
to conjunctive queries. We analyze in particular the casearmge and join queries with respect to their
computational properties. This leads us, in Sedtion 5, ¢p@se polynomial time algorithms (in data com-
plexity) for consistent query answering with respect tolevant class of SICs and queries. An experimental
evaluation of the cost of CQA is provided in Sectidn 6. Firmi@usions and future research directions are
given in Sectiof 7.



2 Preliminaries

Current models of spatial database are typically seen angrns of the relational data model (known as
extended-relational or object-relational models) witl tiefinition of abstract data types to specify spatial
attributes. We now introduce a general spatio-relatioashlthse model that includes spatio-relational pred-
icates (they could also be purely relational) and spatial I uses some of the definitions introduced in
[25]. The model is independent of the geometric data modg! &paghetti[30], topological [18, 30], raster
[19], or polynomial model[24]) underlying the represeittatof spatial data types.

A spatio-relational database schemais of the form%: = (U, A, R, T, O, BB), where: (a}/ is the possibly
infinite database domain of atomic thematic values. Ab¥ a set of thematic, non-spatial, attributes. (c)
R is a finite set of spatio-relational predicates whose aitiib belong tod or are spatial attributes. Spatial
attributes take admissible valuesM{R™), the power set oR™, for anm that depends on the dimension
of the spatial attribute. (dJ is a fixed set of binary spatial predicates, with a built-iterpretation. (e)

O is a fixed set of geometric operators that take spatial argtsnalso with a built-in interpretation. (f§
is a fixed set of built-in relational predicates, like compan predicates, e.g<, >, =, #, which apply to
thematic attribute values.

Each database predicalec R has a typer(R) = [n, m], with n,m € N, indicating the numben of
thematic attributes, and the spatial dimensionf the single spatial attribute (it takes valueﬁiiﬁRm))E In
Exampld1(LandP) = [1, 2], since it has one thematic attribut@) and one spatial attributgdometry)
defined by a 2D polygon. In this work we assume that each oeldihas a key of the forni{1) formed by
thematic attributes only:

VZ1ZoZzs152 (R(Z1,Z2;51) A R(Z1,Z3; 52) = (T2 = T3 A s1 = s2)), 1)

where thet; are sequences of distinct variables representing themt#iioutes ofR, and thes; are variables
for geometric attributes. Herg = s5 means geometric equality; that is, the identity of two gebiae

A database instancB of a spatio-relational scheniais a finite collection of ground atoms (gpatial
database tuples) of the formR(cy, ..., ¢,; s), whereR € R, {(cy, ..., ¢,) € U™ contains the thematic attribute
values, and € Ad C P(R™), whereAd is the class of admissible geometries (cf. below). The eiten
in a particular instance of a spatio-relational predicata subset of/™ x Ad. For simplicity, and to fix
ideas, we will consider the case whene= 2.

Among the different abstraction mechanisms for modellimgle spatial objects, we concentrate on
regions for modelling real objects that have an extent. Tdreyuseful in a broad class of applications in
Geographic Information Systems (GISs). More specifically, model will be compatible with the specifi-
cation of spatial operators (i.e., spatial relations omgetic operations) as found in current spatial DBMSs
[23]. Following current implementations of DBMSs, regiamild be defined as finite sets of polygons that,
in their turn, are defined through their vertices. This waulake regions finitely representable. However, in
this work geometries will be treated at a more abstract Jevieich is independent of the spatial model used
for geometric representation. In consequence, an adrigsgiometry of the Euclidean plane is either the
empty geometryy,,, which corresponds to the empty subset of the plane, or ss2dland bounded region
with a positive area. It holdg;, Ng = g N g = g5, for every regiory. From now on, empty geometries
and regions oR? are calledadmissible geometries and they form the clasdd.

Geometric attributes are complex data types, and their pn&tion may have an important effect on
the computational cost of certain algorithms and algorithpnoblems. As usual, we are interestediata

For simplicity, we use one spatial attribute, but it is ndfidillt to consider a greater number of spatial attributes.



complexity, i.e., in terms of the size of the database. §ize of a spatio-relational database can be defined
as a function of the number of tuples and the representaitzern$ geometries in those tuples.

We concentrate on binary (i.e., two-ary) spatial predsdtat represent topological relations between
regions. They have a fixed semantics, and become the elements dthere are eight basic binary rela-
tions over regions oR?: Overlaps (OV'), Equals (EQ), CoveredBy (CB), Inside (1S), Covers (CV),
Includes (IC), Touches (TO), and Disjoint (D.J) [15, IE]@ The semantics of the topological relations
follows the point-set topology defined in [15], which is natfided for empty geometries. We will apply
this semantics to our non-empty admissible geometriesthifeocase of the empty set, a separate definition
will be given below. According td [15], an atoffi(z, y) becomes true if four conditions are simultaneously
true. Those conditions are expressed in terms of emptyfigasd non-emptyness-() of the intersection
of their boundaries#) and interiors ¢). The definitions can be found in Talile 1. For example, for-non
empty regionse,y, TO(z,y) is true iff all of 6(z) N o(y) # 0, o(z) No(y) = 0, §(x) No(y) = 0, and
o(z) Nd(y) = 0 simultaneously hold.

Relation d(z) Nd(y) o(x)No(y) d(x)No(y) olx)Ni(y)
DJ(x,y) 0 0 0 0
TO(X,y) ] 0 0 0
EQ(X,y) =) =) 0 0
IS(X,y) 0 =() =() 0
CB(x,y) = () =) =) 0
IC(x,y) 0 =) 0 =()
CV(x,y) ] = () 0 =()
oV(x,y) =) =) =) =0

Table 1: Definition of topological relations between regidrased on point-set topology

In this work we exclude the topological relatidi sjoint from 7. This decision is discussed in Sectidn 3,
where we introduce the repair semantics. In addition to #mchtopological relations, we consider three
derived relations that exist in current SQL languages and can be logically ddfin terms of the other
basic predicatesintersects (IT), Within (WI), and Contains (CO). We also introduce a forth relation,
IIntersects (1), that holds when the interiors of two geometries intersdtttan be logically defined as
the disjunction ofOverlaps, Within and Contains (cf. Figure[2). For all the topological relations i,
their converse (inverse) relation is within the set. Som#hem are symmetric, lik&quals, Touches, and
Owerlaps. For the non-symmetric relations, the converse relatio@'@feredBy is Covers, of Inside is
Includes, and of Within is Contains.

As mentioned before, the formal definitions of the topolagielations [15/ 26] do not consider the
empty geometry as an argument. Indeed, at the best of ourl&dge; no clear semantics for topological
predicates with empty geometries exists. However, in oge age extent the definitions in order to deal
with this case. This will allow us to use a classical bi-valuegic, where atoms are always true or false,
but never undefined. According to our extended definitionafy T € T, T'(g1, g2) is false ifg; = g, or
g2 = go- In particular,IS (g, g ) is false, for every admissible regign In order to make comparisons with
the empty region, we will introduce and use a special preéelibdimpty(-) on admissible geometries, such

2The names of relations chosen here are in agreement withatheswused in current SQL languagdes [23], but differ slightly
from the names found in the research literature. The reiatiound in current SQL languages are represented in Figuri¢h2
thick borders.



Figure 2: Subsumption lattice of topological relationsizn regions: OV (Overlaps), CB (CoveredBy),
IS (Inside), EQ (Equals), CV (Covers), IC (Includes), TO{&bes), DJ (Disjoint), IT (Intersects), Il (lIn-
tersects), WI (Within), and CO (Contains).

that IsEmpty(s) is true iff s = g5,

Notice that the semantics of the topological predicatesnévr non-empty regions, may differ from the
intuitive set-theoretic semantics one could assign to thear example, for an admissible and non-empty
geometryg, OV (g, g) is false (due to the conditions in the last two columns in @&BlL In consequence,
the constraint/azVs792—(R(x; s) A OV (s, s)) is satisfied.

Given a database instance, additional spatial informagiasually computed from the explicit geometric
data by means of the spatial operator€irassociated wit. Some relevant operators arérea, Union
(binary), Intersection, Difference, Buffer, and Union Aggregation (GeomUm’on)E (Cf. [23] for the
complete set of spatial predicates defined within the Ope® Gdnsortium.) There are several spatial
operators used in this work; however, we will identify a partar subsetO* of spatial operators i, i.e.,

0 C O, which will be defined for all admissible geometries and useshrink geometries with the purpose
of restoring consistency, as we describe in Se¢fjon 3.

Definition 1 The setO® of admissible operations contains the following geometric operations on admissi-
ble geometrieg andg’:

(1) Difference(g, ¢') is the topological closure of the set-difference.

(2) Buffer(g,d) is the geometry obtained by buffering a distadaoundg, whered is a distance unit.
Buffer(g, d) returns a closed regiajncontaining geometry, such that every point in the boundary pfs
at a distancel from some point of the boundary ¢f In particular, Buffer(gg, d) = go. O

Notice that these operators, when applied to admissiblsngttes, produce admissible geometries.

Remark 1 The value ofd in Definition[d is instance dependent. It should be precoegbirtom the spatial
input data. For this work, we considéito be a fixed value associated with the minimum distance kaiwe
geometries in the cartographic scale of the database o&stan O

3OperatorGeom Union returns the geometry that represents the point set unioli géametries in a given set, an operator
also known as a spatial aggregation operator. AlthougHuhistion is part of SQL for several spatial databases (PestgostGIS,
Oracle), it is not explicitly defined in the OGC specificati{@B].
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Figure 3: A spatial database instance

A schemaX determines a many-sorted, first-order (FO) languége) of predicate logic. It can be used
to syntactically characterize and express SICs. For saitygliwe concentrate odenial SICSE which are
sentences of the form:

m n
VP059E ~(\ Ri(@sssi) Ao A\ T(vg,w;). )

i=1 Jj=1
Here,s = s1---sm, T = I1--- I, are finite sequences of geometric and thematic variablspectively,
and0 < m,n € N. Thus, eachz; is a finite tuple of thematic variables and will be treated a®tof
attributes, such that; C z; means that the variables in area also variables in;. Also, vz stands for
Vi - - Va,,; andv79 5 stands fols; - - - Vs,,, with the universal quantifiers ranging over all the non-smp
admissible geometries (i.e. regions). Hergw; € 5, R1,..., R,, € R, ¢ is a formula containing built-in
atoms over thematic attributes, afifc 7. A constraint of the form[{2) prohibits certain combinasoof
database atoms. Since topological predicates for empiynegieies are always false, the restricted quantifi-
cation over non-empty geometries in the constraints coeleliminated. However, we do not want to make
the satisfaction of the constraints rely on our particuksirdtion of the topological predicates for the empty
region. In this way, our framework becomes more generaljsband modular, in the sense that it would
be possible to redefine the topological predicates for thetgmegion without affecting our approach and
results.

Example 2 Figure[3 shows an instance for the scheRa= {LandP(idl, name, owner; geometry),
Building(idb; geometry)}. Dark rectangles represent buildings and white rectamgl@esents land parcels.
In LandP, the thematic attributes andl, name and owner, whereasgeometry is the spatial attribute of
dimension2. Similarly for Building, which has onlyidl as a thematic attribute.

The following sentences are denial SICs: (The symvstiands for the universal closure of the formula

that follows it.)
V= (LandP (idly,n1,01;81) A LandP (idly, na, 02; 82) Addly # idls A Intersects(sy, s2)). (3)

V—(Building(idb; s1) A LandP(idl,n,0;s9) A Overlaps(si, s2)). 4)

The SIC [[3) says that geometries of land parcels with differds cannot internally intersect (i.e., they
can only be disjoint or touch). The SICl (4) establishes thidting blocks cannot (partially) overlap land
parcels. O

“Denial constraints are easier to handle in the relatiorse e@ consistency with respect to them is achieved by tufgtiates

only [6].



A database instanc® for schemaX can be seen as an interpretation structure for the langdégg For
aset¥ of SICsinL(X), D = ¥ denotes that each of the constraintslirs true in (or satisfied byp. In
this case, we say thd? is consistent with respect tol. CorrespondinglyD is inconsistent with respect to
U, denotedD [~ ¥, when there is @ € U that isviolated by D, i.e., not satisfied by). The instance in
Exampl€2 is consistent with respect to its SICs.

In what follows, we will assume that the s&tof SICs under consideration is logically consistent; i.e.,
that there exists a non-empty database instdh¢eot necessarily the one at hand), such that ¥. For
example, any set of SICs containing a constraint of the féf# sVz —(R(Z; s) A Equals(s, s)) is logically
inconsistent. The analysis of whether a set of SICs is |dgicansistent or not is out of the scope of this
work.

3 A Repair Semantics

Different alternatives for update-based consistencyratbn of spatial databases are discussed in [28]. One
of the key criteria to decide about the update to apply ismatity of geometric changes. Another important
criteria may be the semantics of spatial objects, which makanges over the geometry of one type of object
more appropriate than others. For this work, the repair séinsis a rule applied automatically. It assumes
that no previous knowledge about the quality and relevafhgeometries exists and, therefore, it assumes
that geometries are all equally important.

On the basis on the minimality condition on geometric charaged the monotonicity property of some
topological predicates [28], we propose to solve incoaaisies with respect to SICs of the forinh (2) through
shrinking of geometries. Notice that this repair semamtiitisoe used as an instrumental concept to formal-
ize consistent query answers (no actual modification oved#tabase occurs). As such, it defines what part
of the geometry is not in conflict with respect to a set of intggonstraints and can, therefore, be part of a
consistent answer.

Shrinking geometries eliminates conflicting parts of getrieg without adding new uncertain geome-
tries by enlargement. In this way, we are considering a prepbset of the possible changes to fix spatial
databases proposed in [29]. We disregard translating tshjeecause they will carry potentially new con-
flicts; and also creating new objects (object splitting;daese we would have to deal with null or unknown
thematic attributes.

The SICs of the form[{2) exclude the topological predidatgoint. The reason is that falsifying an
atom DJ (g1, g2) by shrinking geometries is not possible, unless we make btigecn empty. However,
doing so would heavily depend upon our definition of this togial predicate for empty regions. Since
we opted for not making our approach and results depend sipdnticular definition, we prefer to exclude
the Digoint predicate from our considerations. The study of other reggnantics that sensibly includes
the topological predicat®isjoint will be left for future work.

Technically, a databas® violates a constraint'z,z,V792s,s5 —(Ry(Z1; 51) A Ro(Za;82) A o A
T(s1,s2)), with T' € TE when there are data values, as, g1, g2, With ¢g1,92 # g, for the variables
in the constraint such thatR, (z1; s1) AR2(Z2;s2) A ¢ A T'(s1,s2)) becomes true in the database under
those values. This is denoted with |= (R1(Z1; s1) A Ra(Z2;52) Ao AT (s1,52)) a1, az, g1, g2]. When
this is the case, it is possible to restore consistendy bl shrinkingg; or g, such thatl’(g1, g2) becomes
false.

SFor simplicity and without lost of generality, in the examphve consider denial constraints with at most two spatatiomal
predicates and one topological predicate. However, a benistraint of the form[{2) may have more spatio-relatigmaldicates
and topological predicates.



We can compare geometries, usually an original geometryteistrunk version, by means of a distance
function that refers to their areas. We assume that < O is an operator that computes the area of a
geometry.

Definition 2 For regionsyy, g2, 6(g1,92) = area(Difference(g1,g2) U Difference(ga, g1))- O

Since we will compare a regiofn with a regiong, obtained by shrinking, it will hold 6(g1,¢g2) > 0. In-
deed, when comparing, C glﬁ, the distance function can be simplifieddy, g2) = area(Difference(g1, g2))-
We will assume that it is possible to compare geometriesutiirahe distance function by correlating their
tuples, one by one. This requires a correspondence betwsEmces.

Definition 3 Let D, D’ be database instances of schemaD’ is (D, fp/)-indexed if fp is a bijective
function from D to D’, such that, for alky, ..., ¢,,s: fp/(R(c1,...,cn;8)) = R(c1,...,cn; '), for some
regions’. O

Ina(D, fpr)-indexed instancd®’ we can compare tuples one by one with their counterpartsstarnceD.

In particular, we can see how the geometric attribute valifésr. In some cases there is an obvious function
fpr, for example, when there is a key from a subsetldb the spatial attribut&, or when relations have a
surrogate key for identification of tuples. In these casesivmply use the notion oD-indexed. When the
context is clear, we also ugeinstead off .

Example 3 (exampldR2 cont.) Consider the relational schebnadP (idl, name, owner; geometry). For
the instance) given in Examplé2, the following instand?’ is (D, f)-indexed

LandP
id name owner geometry
idly  ny 01 g7
idly  no 02 g8
idly  n3 03 99
Here, f(LandP(idli,n1,a1;91)) = LandP(idly,nq, a1; g7), €tc. O

When restoring consistency, it may be necessary to condifferent combinations of tuples and SICs.
Eventually, we should obtain a new instance, hopefully stast, that we have to compare to the original
instance in terms of their distance.

Definition 4 Let D, D’ be spatial database instances over the same schewi¢h D’ (D, f)-indexed. The
distance A(D, D’) betweenD and D’ is the numerical valué\(D, D) = X;cpo(I1s(t), Ls(f(2))),
wherellgs(¢) is the projection of tuplé on its spatial attribute.

Now it is possible to define a “repair semantics”, which isapendent of the geometric operators used to
shrink geometries.

Definition 5 Let D be a spatial database instance over schEmé a set of SICs, such thd (£~ V. (a)
An srepair of D with respect toV is a database instand®’ over %, such that: (i)D’ = V. (i) D' is
(D, f)-indexed. (iii) For every tupl&(cy, ..., c,;9) € D,if f(R(c1,...,¢n59)) = R(c1, ..., cn;4'), then
g C g. (b) Aminimal srepair D’ of D is a repair ofD such that, for every repaib” of D, it holds
A(D,D") > A(D, D). O

6C stands for geometric inclusion



Proposition 1 If D is consistent with respect 1, thenD is also its only minimal s-repair.

Proof: ForD’ = D,itholds: (i) D’ E ¥, (ii) D’is (D, f)-indexed, (iii) for every tupleR(cy, ..., cn;9) €
D, if f(R(c1, ... cn;9)) = R(c1,...,cn;¢), theng’ = g. In this case A(D, D') = 0. Any other con-
sistent instancé” obtained by shrinking any ab’s geometries and still obtaining admissible geometries
givesA(D, D") > 0. 0

This is an “ideal and natural” repair semantics that defineslizction of semantic repairs. The defini-
tion is purely set-theoretic and topological in essences orth exploring the properties of this semantics
and its impact on properties of consistent query answergyasant under minimal s-repairs) and on log-
ical reasoning about them. However, for a given databasanos we may have a continuum and infinite
number of s-repairs since between two points we have antmfinimber of points, which we want to avoid
for representational and computational reasons.

In this work we will consider an alternative repair semastibat is more operational in nature (cf.
Definition[8), leaving the previous one for reference. Tdperational definition of repair makes it possible
to deal with repairs in current spatial DBMSs and in termstahdard geometric operators (cf. Leminha 1).
Under this definition, there will always be a finite number @bairs for a given instance. Consistency will
be restored by applying a finite sequence of admissiblefyamation operations to conflicting geometries.

It is easy to see that each true relationship (atom) of tha fB(g;, g2), with " € T, can be falsified
by applying an admissible transformation@ to g; or go. Actually, they can be falsified in @anonical
way. These canonical falsification operations for the diffetepological atoms are presented in Tdble 2.
They have the advantages of: (a) being defined in terms ofdimésaible operators, (b) capturing the repair
process in terms of the elimination of conflicting parts abigetries, and (c) changing one of the geometries
participating in a conflict.

More specifically, in Tablé]2 we indicate, for each relatibne 7, alternative operations that falsify
a true atom of the fornT'(¢1,¢2). Each of them makes changes on one of the geometries, letheng
other geometry unchanged. The listoahonical transformations in this table prescribes particular ways of
applying the admissible operators of Definitidn 1. Later thiey will also become thadmissible or legal
ways of transforming geometries with the purpose of resgpconsistency.

For example, Tablel 2 shows that fGwerlaps(OV'), there are in principle four ways to make false an
atom Overlaps (g1, g2) that is true. These are the alternatives 1. to 4. in that entigre alternatives 1. and
2. change geometry; ; and alternatives 3. and 4. change geomeiryOnly one of these alternatives that
satisfies its condition is expected to be chosen to falsiéyatom. A minimal way to change a geometry
depends on the relative size between overlapping and nemapyping areas: (i) when the overlapping area
betweery,; andg is smaller than or equal to their non-overlapping areas,ramail change over geometry
g1 is Difference(g1, g2), and ovely, is Difference(go, g1) (cases 1. and 3. f@V in Table2). (i) When the
non-overlapping areas gf or g, are smaller than the overlapping area, a minimal changega@netryg,
is Difference(g1, Difference(g1,g2)), and over geometrys is Difference(gs, Difference(gs, g1)) (cases
2. and 4. forOV in Table[2).

For the case wheR'quals(g1, g2) is true, the transformations in Talile 2 make either geometryr g-
empty to falsify the atom. However, there are other altéraatthat by shrinking geometries would achieve
the same result, but also producing smaller changes in tefrthe affected area. A natural candidate update
consists in applying the transformatigh = Difference(g; , Buffer (Boundary(gz), d)) (similarly and alter-
natively for g2). In this case, we just take away frag the part of the internal area of widthsurrounding
the boundary ofj;, to make it different frony,. We did not follow this alternative for practical reasons:
having two geometries that are topologically equal couldnany cases, be the result of duplicate data, and
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Pred. T A true atomT'(g;, g2) becomes a false atoffii( ¢}, g5) with
ov 1. If area(g1 N g2) < area(gr \ g2):
g) = Difference(gi, g2), g = go-
2. If area(g1 N g2) > area(gr \ g2):
g) = Difference(gy, Difference(g1,g2)), g5 = go.
3. If area(g1 N g2) < area(gz ~ g1):
gy = Difference(ga, g1), 91 = 91-
4.1f area(g1 N g2) > area(ga ~ g1):
gy = Difference(gs, Difference(ga, g1)), g1 = g1-
1S, CB 1. If area(g1 N g2) < area(gz ~ g1):
gy = Difference(ga2,91), 91 = 91
2. If area(g1 N g2) > area(gz ~ g1):
gb = Difference(gs, Difference(ga, g1)), g1 = g1-
3.9y = Difference(g1, 92), g5 = go.
IC,Ccv 1. If area(gi N g2) < area(gr \ g2):
gi = Diﬁerence(Ql?QQ)! gé = g2-
2. If area(g1 N g2) > area(g1 ~ g2):
g} = Difference(g1, Difference(g1, g2)), g5 = go-
3. ¢4 = Difference(g2, g1), 95 = 91
II,WI,CO | 1.¢, = Difference(g1,g2), g5 = g2-
2. g, = Difference(g2, 1), 95 = 1.
TO,IT 1. ¢} = Difference(gi, buffer(ga,d)), g5 = go.
2. g4 = Difference(ga, buffer(g1,d)), g5 = g1.
(See Remarkl1 for definition af
EQ 1.d1 =90, 95 = 92.
2.95=90,91 = 91-

one of them should be eliminated. Moreover, this altereatin comparison with the officially adopted in
this work, may create new conflicts with respect to other SISsiding them whenever possible will be
used later, when designing a polynomial algorithm for CQAduhon the core of an inconsistent database
instance (see Sectigh 5).

Table2 shows thafouches andIntersects are predicates for which the eliminated area is not comlglete
delimited by the real boundary of objects. Actually, we needeparate the touching boundaries. We do so

Table 2: Admissible transformations
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by buffering a distancd around one of the geometries and taking the overlappingfiment the other onB.
The following result is obtained directly from Talble 2.

Lemma 1 For each topological predicatE € 7 and true ground atorii'(¢;, g2), there are geometries
g}, g5 obtained by means of the corresponding admissible tramsfion in TabldR, such that(g}, ¢5)
becomes false. O

The following definition defines, for each geometric pretéd, a binary geometric operator” such that,
if T'(g1,g0) is true, thentr™ (g, go) returns a geometry, such thafl’(g/, g») becomes false. The definition
is based on the transformations that affect geomgtin Table[2.

Definition 6 LetT € 7T be a topological predicate. We define an admissible tramstoon operatorr” :
Ad x Ad — Ad as follows:

(a) If T(gl, gg) is false, thenf’I“T(gl’ 92) = g1.

(b) If T'(g1, g2) is true, then:

17 (g1, gy) = { Dz:ﬁerence(gl,gg? if area(g1 Nga) < area(gl ~ 92)
’ Difference (g1, Difference(g1, g2)), otherwise
forT € {OV,IC,CV};
tr(g1,92) = Difference(gi,g2), forT € {IS,CB,I1I,WI,CO};
tr'(g1,92) := Difference(g1, Buffer(gs,d)) for T € {TO,IT};
tr'(g1,92) = goforT e {EQ}. 0

It can be easily verified that the admissible operatiorlg applied to admissible geometries, produce ad-
missible geometries. They can be seen as macros definedria tdrthe basic operations in Definitibh 1,
and inspired by Tablel2. The idea is that the operatdrtakes(gy, g2), for which T'(gy, go) is true, and
makes the latter false by transformipginto ¢}, i.e.,T'(¢}, g2) becomes false.

Definition[@ can also be used to formalize the transformatmmgeometry), indicated in Tablg]2. First,
notice that for the converse predicété of predicate” it holds: T¢(g1, g2) true iff T'(g2, g1). Secondly, the
converse of a transformation operator can be defined#y )¢ := (7). In consequence, we can apply
tr™" to (g2, g1), obtaining the desired transformation of geomefsy In this way, all the cases in Tadlé 2
are covered. For example, if we want to make false a true diotide(g;, g2), we can applytr'5(gi, go),
but alsotr'“(gs, g1).

Example 4 Table [3 illustrates the application of the admissible tfamsations to restore consistency of
predicated” € { Overlaps, Touches}. The dashed boundary is the result of applyBudfer (g, d). O

We now define the notion @&fccessible instance that results from an original instance, after applying admi
sible transformation operations to geometries. The agplioc of sequences of operators solves violations
of SICs. Accordingly, the accessible instances are defigedduction.

"The buffer operator does not introduce new points in the ggorepresentation of objects, but it translates the Hanna
distanced outwards.
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Table 3: Examples of admissible transformations

Definition 7 Let D be a database instanc®! is anaccessible instance from D (with respect to a finite set
of SICsW), if D’ is obtained after applying, a finite number of times, thedielhg inductive rules (any of
them, when applicable):
(1). D' =D.
(2). There is an accessible instan@gfrom D, such that, for somé& < ¥ with a topological predicaté&’,
Dy = ¢|§ through tuplesk; (a1; g1) and Ry (az; g2) in Dy, for whichT'(g1, g2) is true; and

(@) D' = Dy {R1(a1,q1)} U{Ry(aq, t’fT(gl,gg))}, or

(b) D' = Dy {Rg(dg,gg)}u{Rg(dg,tTTc(gg,gl))}. d

Example 5 Consider the database instance in Fidgure 4(a) that is irstens with respect to SIC{3). An
accessible instance from this inconsistent database igjureéf4(b), where only; has changed. This can
be expressed in the following wayiandP(idly, 1, 01; ¢y) = LandP(idly,n1,01; tr'(tr'1 (g1, g2), g3))-

O

Given a databasP, possibly inconsistent, we are interested in those adilessstanced)’ that are consis-
tent, i.e.,D’ = ¥. Even more, having the repairs in mind, we have to make sateatfmissible instances
from D can still be indexed withD.

Proposition 2 Let D’ be an accessible instance frath Then,D’ is f-indexed toD via an index function
f, that can be defined by induction @n.

Proof: To simplify the presentation, we will assume thathas an index (or surrogate kejyy) that is a
one-to-one mapping from to an initial segmenftl, N| of N. Let D’ be an accessible instance frdtn We
defineip/ (R(a; g)) € N for tuples inD’ by induction onD’:

(). f D" = D andR(a; g) € D, ip(R(a;g)) = io(1(a; g)).

(2). If there is an accessible instanBgfrom D and Dy (- ¢ € ¥ through the atom®&; (a1; g1), R2(a2; g2),

andT(g1, g2) with T'andT* the converse relation df:

8 may have more than one topological predicate.
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LandP £l
id name owner geometry

idly  ny 01 g1 =
idly  no 02 92 %

idly  n3 03 g3

(a)
LandP 3
id name owner geometry

Zdll ny 01 gll

idly 2 02 92 ) .
idly  n3 03 g3

(b)

Figure 4: An accessible instance: (a) original instance, (@) accessible transformation (geometry with
thick boundary changed)

(@) D' = Dy~ {Ri(a1,91)} U{R1(ar,tr" (g1, 92))}, andip/ (Ri(a1; tr’ (g1, g2))) = ipy(R1 (a1, 91))
andips (Rz(az; 92)) = ip, (R2(az, g2)), or

(b) D' = Dy~ {Ry(a2,92)} U {Ra(az, tr’" (g2,91))}, andip/ (R (a1; 1)) = ip,(Ri(@1, 1)) and
ipr(Ro(@n; tr™ (g2, 01))) = ip, (Ra(az, g2)). O

Any two accessible instancé® and D” can be indexed vid in a natural way, and thus, they can be com-
pared tuple by tuple. In the following, we will assume, whemparing any two accessible instances in this
way, that there is such an underlying index functjorNow we give the definition of operational repair.

Definition 8 Let D be an instance over schermaand ¥ a finite set of SICs. (a) Aw-repair of D with
respect tol is an instance)’ that is accessible frorf», such thatD’ = ¥. (b) A minimal o-repair D’ of D
is an o-repair ofD such that, for every o-repaip” of D, A(D,D"”) > A(D, D’). (c) Rep(D, V) denotes
the set of minimal o-repairs dp with respect tol. O

The distances\ (D, D”) andA(D, D') in this definition are relative to the corresponding indemdiions,
whose existence is guaranteed by Proposfion 2. Unlessvaieestated, this is the repair semantics we
refer to in the remainder of the paper, in particular, in teérdtion of consistent query answer in Section
[@. In consequence, in the following a repair is an o-repaid the same applies to minimal repairs. Even
more, whenever we refer to repairs, we should understandrtinémal repairs are intended.

Example 6 Consider database schema in Exariiple 2. The instArind-igurel® is inconsistent with respect
to the SICs[(B) and{4), because the land parcels with ge@sgirandgs overlap, and so do the land parcels
with geometrieg), andg,. Likewise, buildings with geometrys andgg partially overlap land parcels with
geometriesy; andgs, respectively.
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Figure 5: Inconsistent database instance
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Figure 6: Minimal repairs

Figure[6 shows the two minimal repairs bf. In them, the regions with thicker boundaries are the re-
gions that have their geometries changed. For the minirpairéen Figure_6(a), the inconsistency involving
geometriesy, andgs is repaired by applyingifference(gz, gs) to go, i.€., removing fromy, the whole
overlapping geometry, and keeping the geometryscdis originally. Notice that due to the interaction be-
tween integrity constraints, if we applifference(gs, g2) to gs, i.e., we remove the whole overlapping
area fromgs, we still have an inconsistency, because the building wathngetrygg will continue partially
overlapping geometrie® andgs. Thus, this change will require an additional transfororatio ensure that
ge IS completely covered or inside gf.

In the same minimal repair (Figuké 6(a)), the inconsistdmetyveengs andg, is repaired by shrinking
g2, eliminating its area that overlagg. This is obtained by applyin@ifference(gz2, g;) to g». Finally,
the inconsistency between and g; is repaired by removing frorg; its part that does not overlap with
geometryg;. In principle, we could have repaired this inconsistencyeliyinating the overlapping region
betweeny,; andgs, but this is not a minimal change.

In the second minimal repair (Figuré 6(b)), geometresind g5 undergo the same changes than those
in the first minimal repair (Figurgl 6(a)), but the inconsmste betweeny, andg, is restored by eliminating

geometrygy, i.e., applyingDifference (g4, 92) = go- O

Notice that, by applying admissible transformation opmnsto restore consistency, the whole part of a
geometry that is in conflict with respect to another geomistnemoved. In consequence, given that there
are finitely many geometries in the database instance anelyimany SICs, a finite number of applications

of admissible transformations are sufficient to restoressd@ncy. This contrasts with the s-repair semantics,
which can yield even a continuum of possible consistensyeration transformations. Keeping the number
of repairs finite may be crucial for certain mechanisms fanpating consistent query answers, as those
as we will show in the next sections. Actually, we will usestkig geometric operators as implemented in
spatial DBMSs in order to capture and compute the consigtestoring geometric transformations. This

will be eventually used to obtain consistent query answararh interesting class of spatial queries and SICs

in Sectio 5.P.
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Figure 7: An inconsistent database instance
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Figure 8: Minimal repairs: (a) minimal s-repair and (b) nmail o-repairs (thick boundaries show geometries
that have changed)

Despite the advantages of using o-repairs, the followireyrgle shows that an o-repair may not be
minimal under the s-repair semantics.

Example 7 The instanceD in Figure[T is inconsistent with respect to the SIQs (3) ahddcause the land
parcels with geometrieg, and g, internally intersect and buildings with geomely and g4 overlap land
parcels with geometrieg andg,, respectively.

Figured8(a) and (b) show the minimal s-repair (Definifibrasil o-repairs o) (Definition[8), respec-
tively. In them, the regions with thicker boundaries arerdbgions that had their geometries changed. Here,
by applying s-repair semantics we obtain one minimal refFagure[8(a)) that takes the partial conflicting
parts from both land parcelg andg, in conflict, and leave unchanged the geometries of buildiggand
g4. Instead, for the o-repair semantics, each repair takewlttode conflicting parts from one of the land
parcelsg; or g in order to satisfy SIC(3), and to satisfy SIC (4), each replininates the conflict between
the new version ofj; and buildinggs or between the new version 5 and buildingg,. This makes up to
four possible o-repairs (Figuké 8(b)), which are not mirimigh respect to the single s-repair. O

S-repairs may take away only parts of a geometry that ppatieiin a conflict. On the other side, they do not
force a conflicting geometry to become empty in cases wheepais would do so. For instance, consider
a true atomEquals(g;, g2) that has to be falsified. A s-repair can be obtained by shrgnkine of the two
geometries just a little, without making it empty. Howeuay, using admissible transformations, we can
only falsify this atom by making one of the geometries emgty.this case, a minimal o-repair is not a
minimal s-repair.

Proposition 3 Let D be a database instance, afida set of SICs. Then the following properties for o-
repairs hold: (a) IfD is consistent with respect t&, then D is its only minimal o-repair. (b) IfD’ is an
(D, f)-indexed o-repair oD and f(R(a; g)) = R(a;¢’), theng’ C g. (c) The set of o-repair fob is finite
and non-empty.

Proof: (a) By the inductive definition of o-repair, an admissiblensformation operator is applied to a
geometryg whenyg is in conflict with other geometry’ in D. Since a consistent database instance does not
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Figure 9: Example of a region’s boundary after geometriodfarmation

contain conflicting tuples, none of the transformationsrafmes is applicable and the consistent database
instance is its only o-repair.

(b) The application of each admissible transformatioh(g;, g»), with T € T, has five possible outcomes:
91, 9o, Difference(g1, g2), Difference(g1, Difference(gi, g2)), Of Difference(g1, Buffer(ga,d)). Then, by
definition of operatomifference (cf. Definition[),tr” (g1, g2) C g1.

(c) D has afinite numbeN of tuples; andV, a finite number of integrity constraints. In consequertoerdis

a finite number of conflicts, i.e., sets of tuples that simdtausly participate in the violation of one element
1 of ¥ via their geometries. Each of these conflicts are solved biplshg some of those geometries.
Each application of an operatar, chosen for a finite set of them, according to the inductiviindien of
o-repair solves an existing conflict by falsifying at leasemf the7-atoms in a ground instance ¢f In
principle, the application of such an operat@rmay produce new conflicts; however, it strictly decreases
the total geometrical area of the database instance. Mexsply, if A(D’) := X p(zq)cprarea(g), then
A(D") > A(O(D")), whereO(D’) is the instance resulting from the conflict resolving oparét to D’. In
particular, A is the aread (D) of the original instance.

Now we reason by induction on the structure of o-repairs. dpyication of a one-conflict solving
operatorO to an instanceé),,_; produces an instande,, with A(D,,) < A(D,,_1). Moreover,A(D,,_1) —
A(D,,) > € > 0, wheree represents a lower bound of the area reduction at each inestep.

We claim that, due to our repair semantics, this lower bouddpends on the initial instande, and
not onn. In order to prove this, let us first remark that an admissibtgon is fully determined by its
boundaries. Now we prove that the regions in any accessibtarice depend on the regions in the original
database instance, or, more precisely, by the boundariesitiieg those regions. We prove it by induction
on the number of inductive steps of the definition of accéssitstances.

First, we prove that it works for the first repair transforroaton the original database instance. Let
gy = TrT (g1, g2) be the first transformation applied on regignto create the accessible instangefrom
the original database instande. ForT € T \ {70, IT}, and following the definitions of admissible
transformations in Tablel 2, the geometyis eitherg, or a region whose boundary is formed by parts
of the boundaries that limit regiong and g, (see example of overlapping regions in Figule 9). Foe
{TO,IT}, g) is formed by parts of the boundary of regign and the boundary created by bufferirg
aroundgs. So, in this case, the boundary gif depends exclusively on the boundariegypindg,, and of
the constant!.

Let assume that the geometries in an accessible instapabtained after: inductive steps are, or
regions whose boundaries depend on the original instandéeth + 1 inductive step, another transforma-
tion g, = TrT'(gZ-,gj) is applied. Following the definition of admissible transfations, g, becomes the
geometryg,, or a region whose boundary is formed by part of the boundagy ahd part of the boundary
of g;, as in the first inductive step. Thug,also depends on the original database instance. This isbibl
our claim.
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Now, by the Archimedean property of real numbers, there isnalier)/ such thatdg — Me < 0. Thus,
after a finite number of iterations (i.e. applications of ftictrsolving operators), we reach a consistent
instance or an instance with area.e. all of whose geometries are empty, which would be cbest too.

Notice that the numbekl/ provides an upper bound on the number of times we can applatps to
produce a repair. At each point we have a finite number of esoi§o, the overall number of o-repairs that
can be produced is finite. O

The following example shows that, even when applying adblessransformations, there may be expo-
nentially many minimal repairs in the size of the databagghenomenon already observed with relational
repairs with respect to functional dependencdiés [6].

Example 8 Consider the schema in Example 2, and the $IC (3). The da&absisince contains spatial
tuples, as shown in Figute]10. There are 1 overlappings ana overlapping geometries.

g] gz g3 ..... gn

Figure 10: Exponential number of repairs

In order to solve each of those overlaps, we have the optibstrinking either one of the two regions
involved. We have”~! possible minimal repairs. O

The following remark is important when estimating the datanplexity of repairs, because, in this case, data
complexity does not only depend on the number of tuples, Isat@n the size of geometric representations.

Remark 2 Transformation operators that make geometries empty ectihgcsize of geometric representa-
tions. Any other admissible transformation operatof (g1, g») shrinksg;, and useg; and g, to define
the new boundary aof,. Thus, we are using, in a simple manner, the original gedme&tpresentation (e.g.
points in the boundaries of the original geometries) to @sdimew geometry. It is clearly the case that there
is a polynomial upper bound on the size of the representati@nnew geometry in an o-repair in terms of
the size of the original database, including represemtatid geometric regions. O

4 Consistent Query Answers

We can use the concept of minimal repairs as an auxiliaryequirio define, and possibly compute, consistent
answers to a relevant class of querie£(ix).
A general conjunctive query is of the form:

Q) : IY(R1(T1581) A+ A Rp(Tps sn) A @), (5)

wherev = (|J,;(Z; U{s;})) \ g are the free variables, agdis a conjunction of built-in atoms over thematic
attributes or over spatial attributes that involve topatafpredicates ir¥~ and geometric operators @.
We also add aafety condition, requiring that variables ip also appear in some of thHe,. For example, the
following is a conjunctive query:

Ox,y;s) :  Isisa(R(x;81) A R(y; s2) A Intersects(sy, s2) A x # y A s = Difference(sy, $2)).
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We will consider the simpler but common and relevant classoofjunctive queries that amperator free,
i.e., conjunctive queries of the forrl (5) whepedoes not contain geometric operators. We will also study
in more detail two particular classes of conjunctive qugerie

(a) Spatial range queries are of the form
Q(u; s) + Iz(R(T;5) AT (s,w)), (6)

with w a spatial constant, and C z. This is a “query window”, and its free variables are those in
u=(x~ z)orin{s}.

(b) Spatial join queries are of the form
Q(us s1,82) + J2(R1(Z1; 51) A Ra(Ta;5 52) A T(s1,52)), (7)
with T € T, andz C z; U Zy. The free variables are thosedn= ((z; U Z2) \ z) or in {s1, s2}.

We callbasic conjunctive queries to queries of the forn{{6) of{7) wit" € { IIntersects, Intersects}.

Remark 3 Notice that for these two classes of queries we project othalgeometric attributes. We will
also assume that the free variables correspond to a setibtigs of R with its key of the form[(1L). More
precisely, for range queries, the attributes associatduantontain the key ofR. For join queriesq N 73
andu Ny contain the key for relation®,, Rs, respectively. This is a common situation in spatial dadaba
where a geometry is retrieved together with its key values. O

Given a queryQ(z; 5), with free thematic variables and free geometric variables a sequence of the-
matic/spatial constantg; g) is an answer to the query in instanbeif and only if D = Q(c; g), that is the
query Q becomes true irD as a formula when its free variablgss are replaced by the constantsdiy,
respectively. We denote wit@(D) the set of answers t@ in instanceD.

Example 9 Figure[11 shows an instance for the scheRa= {LandP(idl; geometry), Building(idb;
geometry)}. Here,idl, idb are keys for their relations. Dark rectangles represertlingis, and white
rectangles represent land parcels. The qu&dieand Q- below are a range and a join query, respectively.
For the former, the spatial constant is the spatial windoswshin Figure 111, namely the (closed) polygon
obtained by joining the four points in order indicated in theery.

Q1(idb;g) : Building(idb;g) N
Intersects(g, ([r1,y1], [z2,v1], [T2, y2], [1, yal, [x1,11]))-
Qs(idl,idl'; g,g') : LandP(idb;g) A LandP(idb';g") A Touches(g,q).

The answer t®); is (idby; g5). The answers tQ- are: {(idly, idls; g1, g2), (idla, idls; g2, g3), (idlq, idls;
91,93), (idla, idl1; ga, g1), (idls, idl2; gs, g2), (idls, idl1; g3, 91)}- O

Now we define the notion of consistent answer to a conjuncfilary.

Definition 9 Consider an instanc®, a set¥ of SICs, and a conjunctive que@(z; s). A tuple of the-
matic/geometric constantg,... ,cn;91,-..,9;) IS aconsistent answer to Q with respect tov if: (a)
For everyD’ € Rep(D, V), there existy], ..., g, such thatD’ = Q(ci,...,¢m;91,--.,9). (b)g;is the
intersection over all regiong that satisfy (a) and are correlated to the same tuplBh Con(Q, D, V)
denotes the set of consistent answer@tim instanceD with respect tob. O

®Via the correlation functiorf, cf. Definition[3.
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Figure 11: Example of a range query
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Figure 12: Consistent answers

Since Q is operator free, the regiong appear in relations of the repairs, and then' can be applied.
However, due to the intersection of geometries, the gedesdtr a consistent answer may not belong to the
original instance or to any of its repairs.

In contrast to the definition of consistent answer to a refeti query([2], where a consistent answer is
an answer in every repair, here we have an aggregation of @newers via the geometric intersection and
grouped-by thematic tuples. This definition is similar irispo consistent answers to aggregate relational
gueries with group-by 13,19, 17].

This definition of consistent answer allows us to obtain nsigaificative answers than in the relational
case, because when shrinking geometries, we cannot expleatée, for a fixed tuple of thematic attribute
values, the same geometry in every repair. If we did not usétiersection of geometries, we might lose or
not have consistent answers due to the lack of geometriesyimon among repairs.

Example 10 (exampldé_b cont.) Consider the spatial range query
Q(idl; geometry) : Iname owner(LandP(idl, name, owner; geometry) A

Intersects(geometry, ([x1,y1], [z2, y1], (22, yal, [1, v2], [21, 31])),
which is expressed in the SQL language as:

SELECT idl, geometry
FROM  LandP
WHERE  Intersects(geometry, ([x1,y1], [x2, y1], (T2, yol, [T1, y2], [1,41]))-

Now, consider the two minimal repairs in Figlide 6. In thenjeots:di; andidl3 do not change geometries,
whereas objecidl, does, fromy, to g5, g, resp. (cf. Figur€lé(a), (b), resp.).

From the first repair we get the following (usual) answersh®duery:(idly; g1), (idl2; gb), (idl3; gs).
From the second repair, we obta(fil;; g1), (idl2; g4 ), (idls; g3). The consistent answers are the tuples
shown in Figuré_12, where the answers obtained in the repegrgrouped by aidl in common, and the
associated geometries are intersected. In this figure, ébmetry with thicker lines corresponds to the
intersection of geometries obtained from different repair

From a practical point of view, the consistent query answeeitctinclude additional information about
the degree in which geometries differ from their correspagariginal geometries. For example, for the
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answer(idls; gh), an additional information could be the relative differefetween areag andg,, which
is calculated by (g2, g5)/area(gs). 0

5 Core-Based CQA

The definition of consistent query answer relies on the auyihotion of minimal repair. However, since we
may have a large number of repairs, computing consistemieassy computing, materializing, and finally
querying all the repairs must be avoided whenever there are gfficient mechanisms at hand. Along these
lines, in this section we present a methodology for comgutionsistent query answers to a subclass of
conjunctive queries with respect to certain kind of SICsvdtks in polynomial time (in data complexity),
and does not require the explicit computation of the da&bagairs.

We start by defining theore, which is a single database instance associated with tke ofarepairs.
We will use the core to consistently answer a subclass ofucative queries. Intuitively, the core is the
“geometric intersection” of the repairs, which is obtairt®dintersecting the geometries in the different
repair instances that correlate to the same thematic tuple.

Definition 10 For an instance) and a seW of SICs, thecore of D is the instanceD* given by D* =
{R(a;g*) | R € R, thereisR(a;g) € Dandg* = (\{¢' | R(a;g') € D’ forsome D’ € Rep(D,V)
and R(a;¢') = fp/(R(a;g))}}. Here,fp: is the correlation function fop’ [ O

Sometimes we will refer td* by ("’ Rep(D, ¥). However, it cannot be understood as the set-theoretic
intersection of the repairs dP. Rather it is a form of geometric intersection of geomethetonging to
different repairs and grouped by common thematic attrutié is important to remark that the keys of
relations remain in the repairs, and therefore they appettuei core of a dimension instance.

Example 11 Figure[I3 shows theore of the database instance in Figlite 5 considering the rejpaig-
ure[6. Hereg; results from the geometric intersection of geometgieand ¢ of the minimal repairs in
Figure[®. Similarly,g? is g%, because the latter is shared by both minimal repairs inrE[u Geometry,
becomegy;, in the core. All other geometries in the core are unchangékl respect to geometries in the
original database instance. O

Notice the resemblance between the definitions of consiateswer and the core. Actually, it is easy to see
that D* = | per Con(Qr, D, V), where the quer@r(z; s) : R(7;s) asks for the tuples in relatioR.

The core is defined as the geometric intersection of all databasersepéowever, as we will show, for
a subset of SICs we can actually determine dbve without computing these repairs. This is possible for

10Here,ﬂ is a set-theoretic intersection of geometries.
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SICs of the form:
VZ1Zas150-(R(Z1;81) A R(Za;82) A &) # Ty A T(sq,52)), (8)

whereT € {IIntersects, Intersects, Equals}, T} C 1, T4 C T2, and bothz| andz’, are the key ofR. In
these SICs there are two occurrences of the same databdgmataen the same SIC. The following example
illustrates this class of SICs.

Example 12 For the schem& = { County(idc, name; geometry), Lake(idl; geometry)}, with idc the
key of County andidl the key of Lake, the following SICs are of the formh(8):

V= (County(idcy,n1;51) A County(idca, no; s2) Addey # idea A Intersects(sy, s2)). 9
V—(Lake(idly; s1) A Lake(idla; so) Aiddly # idla A Intersects(si, s2)). (10)
Od

Remark 4 This subset of SICs has the following properties, which wdluseful when trying to compute
the repairs and the core:

(i) Two SICs of the form[(B) over the same database predica&eeglundant due to the semantic in-
terrelation of the topological predicatéisitersects, Intersects, and Equals. only the constraint that
contains the weakest topological predicate has to be cenesld For exampldntersects is weaker
thanlintersects, andlIntersects is weaker tharkEquals.

(i) Conflicts between tuples with respect to SICs of the fd8pare determined by the intersection of
their geometries. The conflict between two tuplGi;; g1) and R(as; g2) is solved by applying a
single admissible transformation operatof (g1, g2) (or tr’" (g2, g1)) that modifiesg; (or go), and
makesI'(g1, g2) (@ndT“(g2, g1)) false.

(iii) Solving conflicts with respect to a SIC of the fori (8)iredependent from solving a conflict with
respect to another SIC of forinl (8) over a different databasdipate.

(iv) Solving a conflict between two tuples with respect to & 8F the form [8) does not introduce new
conflicts. This is due to the definition of admissible transfations and the monotonicity property of
predicated Intersects andIntersects, which prevent a shrunk geometry (or even an empty geometry)
from participating in a new conflict with an existing geonyeitr the database (cf. Examplel13).

(v) For any two geometrieg; and g- in conflict with respect to a SIC of the forrhl(8), there always
exist two repairs, one with the shrunk versiongef and another with the shrunk version@f This
guarantees that there exists a minimal repair that congammimum version of a geometry whose its
geometric intersections with original geometries in catbfiave been eliminated (cf. Leminia 2). As
a consequence, the core can be computed by taking from a ggcatiats intersections with other
geometries in conflict, disregarding the order in which ¢hiesersections are eliminated.

This property is not guaranteed for other kinds of SICs. Retance, consider Example 6 with the
instance in Figurg]5 and its corresponding repairs in FigLirglthoughgg was originally in conflict
with respect tgy,, there is no minimal repair where geometgyis shrunk. O

We illustrate some of these properties with the followingreple.
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Figure 14: An inconsistent database with SICs of the fgdm (8)

Example 13 (examplé_IPR cont.) Consider the inconsistent instanceguargil4. In it, counties with geome-
tries g1, g2 andgs are inconsistent with respect to SIG (9), because theynaligrintersect. Also, county
g3 internally intersects with geometiy. Lakes with geometriegs and g violate SIC [(ID), because they
intersect (actually they touch).

Conflicts with respect to SICE](9) arild{10) can be solved imdapendent way, since they do not share
predicates (cf. RemalK 4(iii)). To obtain a repair, consifilest SIC [9) and the conflict between and
g3, Which is solved by applyingr’’ (g, g3) or tr'! (g3, g2). Any of these alternative transformations do not
produce geometries that could be in conflict with other gdde®eunless they were originally in conflict (cf.
RemarK(iv)). For instance, if we apply’/ (g3, g2) we obtain a new geometry, that will be in conflict
with geometriesy; andgs. These conflicts are not new, singgwas originally in conflict with these two
geometries. Even more, by shrinkigg or g3, none of the modified geometries could be in conflict with
gs. In addition, although by making, = ¢ (g3, go) we also solve the conflict between and gs, this is
only accomplished due to the fact the conflicting pargpndg; has been already eliminated fray (cf.
Remark#(v)).

Figurel 15 shows the sixteen possible minimal repairs tleabhtained by considering the eight possible
ways in which conflicts with respect to SICl (9) are solved, ambination with the two possible ways in
which conflicts with respect to SIC(1L0) are solved. In thisifegthick boundaries represent geometries that
have changed. Notice that in this figure we only shgwand notg;,, since the later corresponds to the
empty geometry which is then omitted in the correspondimmirs. The core for this database instance is
shown in Figuré_16. O

It is possible to use a tree to represent all the versionsatgabmetryy may take in the repairs. The root of
that tree is the original geometry the leaves are all the possible versions of ghie the minimal repairs.
The internal nodes represent partial transformationsegpd g as different conflicts in whicl participates
are solved. For illustration, Figute]17 shows the tree thptasents the possible different versiong-pin
the minimal repairs for the inconsistent instance in Figldle Notice that a leaf in this tree represents a
version of g3 in a repair, which is not necessarily a minimum geometry. iRstance, in Figuré 17 the
minimum version ofs is g5 . For all other non-minimum versions g4 in the leaves, conflicting areas are
taken from other geometries. For example, geom%tgyresults by keepings as originally and shrinking
geometriesy, go andg,.

The following lemma establishes that when a geomeisjinvolved in conflicts of SICs of the forrl(8),
there exists a version gfin the repairs that is minimum with respect to set-theor@@ometric) inclusion.
This result is useful to show that the minimum versiory @ the one that will be in the core.

We need to introduce the sék v (a, g) that contains, for a given tuplB(a; g) in a database instance
D, all the possible versions of geomeiryn the minimal repairs oD.

Definition 11 Let D a database instance, a debf SICs of the form[(B) and a fixed tuplg(a; g) € D.
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Figure 17: A tree-based representation of derived geoesefromgs in some of the possible minimal
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Figure 16: The core of Example]13
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Then,Gruw(a,g) = {¢'|R(a;¢') € D', D’ € Rep(D,V)}, f~H(R(a; ¢')) = R(a; g).

Lemma 2 The set of geometrieSr v (a, g) has a minimum element,,;,, under set-theoretic inclusion.

Proof:
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By properties of SICs of the formii(8), for each conflict in whi€(a; g) € D participates, we can




or cannot shrinky. This leads to a combination of possible transformatiorsr geometryy that can be
represented in a binary tree as shown in Figuie 17. So, wezhawa-empty set of geometri€s; v (a, g).

In this tree, we always have a path from the root to a leaf irclvtiie geometry is always shrunk; that is,
all conflicting areas are eliminated frogn The leaf geometry in this path (repair) is the minimum geoyne
|

Imin -

Corollary 1 Consider a database instangea set¥ of SICs of the form[(B), and a fixed tupl(a; g) € D.
FOr gmin, the minimum geometry iGr v (a, g), it holds R(a; gmin) € D*.

Proof: Direct from LemmadR and the definition of the core as a geomettersection. O

5.1 Properties of the Core

In this section we establish that for the set of SICs of thenf@@), and basic conjunctive queries, it is
possible to compute consistent answers on the basis of tkeof@n inconsistent instance, avoiding the
computation of queries in every minimal repair. This is blishaed in Theorems 1 and 2, respectively.

Theorem 1 For an instancd), a set¥ of SICs of the form[(B), and a basic spatial range que(¥; s), it
holds(a; g) € Con(Q, D, V) if and only if (a; g) € Q(D*).

Proof: The projection of range queries always includes the keyefékation in the result. Thus, (&, g) €
Con(Q, D, V), then for everyD’ € Rep(D, V), there existsR(b; ¢'), such thata C b, f~1(R(b;g')) =
R(b;g) andR(b; g) € D, whereT (¢, w) is true for the spatial constaat of the range query angd= (¢
with the intersection ranging over afl.

By Lemmal2, there exists tuplB(b; gimin) € D’ € Rep(D,¥) With g,in € Gru(b;g). If (@;g) €
Con(Q,D, V), witha C b, g = (g = gmin- Als0, it must happen thafi; g,in) € Q(D’). Then by
Corollary[d,(a; gmin) € Q(D*), and thereforéa; g) € Q(D*).

In the other direction, if(a,¢*) € Q(D*) (with D* = (7 Rep(D, ¥)), then there exists a tuple
R(b;g*) € D*, witha C b andg* # g,. By the monotonicity ofl’ € {Intersects, IIntersects}, if
T(g*,w) is true, then for all geometrigg in R(b; ¢’) € Rep(D, V), With gin € ¢', ¢ # 9o, T(g',w) is
also true. Then, by Lemnia 2 and Corollaiyl,= ()¢ = gmin @and(a, g*) € Con(Q, D, V). O

A similar result can be obtained for basic join queries, igeleries that consider two database predicates
(not necessarily different). Notice that for a SEf the form [8) with a database predicdteand a basic
join query of the form[{I7) withR = R; = R, the consistent answers do not contain information from
tuples that were originally in conflict. This is because bivisg conflicts with respect to, all possible
intersections between tuples iwill be eliminated (a basic join query asks for geometried thtersect).

The following example illustrates how to compute consiségrswers to basic join queries. This example
will also illustrate the proof of Theorefd 2.

Example 14 (examplé_IB cont.) Consider the following basic join quenggd to the instancB in Exam-
ple[13. It is asking for the identifiers and geometries of ¢i@snand lakes that internally intersect.

Q(ide,idl; g1, g2) = In(County(ide,n; g1) A Lake(idl; g2) N IIntersects(gi, g2))-
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The consistent answer to this query(idcs, idls; ggl , 9’71>. Without using the core, this answer is obtained
by intersecting all answers obtained from every possibleimmal repair. The geometries in the repairs of
D with respect tol (SICs [9) and[(T0)) can be partitioned into the followingsé€tcounty, v (idci, n1; 91) =
{gil > g:’[g }1 gcounty,‘ll(idc% n2; 92) = {g®v gél > gég }1 gCounty,\I’(Z'dciiv n3; 93) = {gél > gég > gég > gé4 > gég) ) 9/36}’
gCounty,‘l/(idC4a 43 94) = {9111 ) 9112}- gCounty,\I/(idC57 ns; 95) = {gél }1 gLake,\P(idZG; 96) = {gél ) gé‘Q}.
Grake,w(idl7; g7) = {97,, 97, }- The minimum geometries in these seven setg/grey,, (corresponding to
the update of geometw), g5 , g4, 95, 96, » andgz. , respectively.

Also, for the database predicat€sunty andLake, there are two sets containing the possible extensions
of them in the repairs{County(D’)|D" € Rep(D,¥)}, containing the eight versions of counties (first
eight versions of counties in Figurel15); ahblake(D’)| D’ € Rep(D, ¥)}, with the two instances of lakes
(one with geometrieg;;, andg; , and the other with geometrig§ andgr, in Figure[15). Note that the pos-
sible minimal repairs contain combinations of geometmesatsg county,w (idc, n; g) andG ke w(idl; g).

In particular, there exists a repair that combines the minmgeometrieg; and g, , and another repair
that combinegy;, andgy, .

If the topological predicate in the basic join query is da by the combination of two minimum
geometries, then other versions of these geometries im p#pairs (which geometrically include the min-
imum geometries) will also satisfy it. In this examplg, and g, intersect and, by the monotonicity
property of predicatélntersects, all other versions ofi3 and g in other repairs also intersect. As result,
(ides,idly; g5, , 97,) IS an answer to the query. Finally, by Corolladygh, andg; are in the core of the
database instance and, therefdtigcs, idls; g5, , g7, ) iS also an answer to the query over the core. O

Theorem 2 For aninstancé, a set¥ of SICs of the form[(B), and a basic spatial join qu&iz, , To; s1, s2),
it holds (ay, as, g1, g2) € Con(Q, D, W) ifand only if (a1, as, g1, g2) € Q(D*).

Proof:  The projection of join queries also includes keys. Thu$aif as; g1, g2) € Con(Q, D, ¥), then
we have tuples?y (by; g;) € D', Ra(be; gb) € D', for everyD’ € Rep(D, W) with a; C by, az C bo, and
T(gy,45) true forT in Q. Thus,g; is the intersection of all thos¢, andgs, is the intersection of all those
9o

First, note that ifR; = R, only tuples that were not originally in conflict may be in tneswer. These
tuples will be trivially in the core, because no geometrangformations over their geometries are applied.
Thus, their geometries will be in the answer, if and onlytigy satisfy the topological predicate in the query.

By the property (iii) of SICs of the forni{8) (cf. Remdrk 4) gag conflicts on two different database
predicates?; andR, are independent. Letus assume that(D’)|D'Rep(D, V)} and{R2(D’)| D' Rep(D,
)} are the different extensions of predicafésand R, in all possible minimal repairs. TheRep (D, V)
contains database instances that result from the comtiinafithese two sets. Consequently, and using
Lemmal2, for two giverb; andb,, there exists a repaid’ € Rep(D, V) such thatR,(b1; 97 ) € D" and
Ry(by;gh ) € D', whereg] is minimum inGg, w(b1,91) andgs _ is minimum inGg, w (b2, g2).

We now prove that ifay, as; g1, 92) € Con(Q, D, V), then(ay, dz; g1, 92) € Q(D*). By definition of
consistent answer, {fi1, az; g1, g2) € Con(Q, D, V), then(ay, az, ¢ . ,g95 ) € Q(D’). By Corollaryl,
(a1,a2;91,92) € Q(D*), withg; = g7 . andgs =g .

In the other direction, ifa;, aq, g7, 95) € Q(D*), then(ay, as, 97, 95) € Con(Q,D, V). By Corol-
lary[, gt = ¢i . andgs = g5 ,andRi(bi;g; ) € D* andRy(by;gs ) € D*. Then, by mono-
tonicity property of predicatd’ € {Intersects, Intersects} in Q, if T'(¢}, g5) is true, it is also true for
all Ry(b1;g{) € D" and inRy(b2; g5) € D", with D" € Rep(D,¥) andg; ~ C g/ andgy ~ C gj.
Therefore(a, as, g7, 95) € Con(Q, D, V). O
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Figure 18: Core vs. consistent answers

The previous theorems tell us that we can obtain consisteswexr to basic conjunctive queries by direct
and usual query evaluation on the single instahce the core of D. This does not hold for non-basic
conjunctive queries as the following example shows.

Example 15 Consider a database instance with a database predicateose geometric attribute values
are shown in Figure_18(a). This database instance is instensiwith respect to a SIC that specifies that
geometries cannot overlap. Let us now consider a range aiiehe form3y(R(Z; g) A Touches(g, s)),
wheres is a user defined spatial window, apd- z. Figure[18(b) shows the query over the intersection of
all repairs (thecore), obtaining geometrieg; andg;, from where onlyg; touchess. Figured 1B(c) and (d)
show the query over each repair, separately. The answertfremepair in (c) igj}, and repair (d) does not
return an answer because none of the geometries in thig tepahess. Their intersection, therefore, is
empty and differs from the answer obtained from ¢bee. This difference is due to the fact that the query
window s touches geometry; in only one of the repairs. O

5.2 Computing the Core

We now give a characterization of the core of a databaseniostior a set of SICs of the form(8), which is
not explicitly based on the computation of minimal repairkis equivalent and alternative characterization
of the core allows us to compute the core without having tomate all the minimal repairs.

To simplify the notation, we introduce a logical formulathaptures a conflict around a tuple of relation
R € D and a SIC of the forni{8) with topological predicafe

VZ1728182(Conflp pr(T1,51,T2,52) = (R(T1581) AN R(T2;82) NT1 # T2 A T(s1,52))). (11)

Definition 12 Let D be a database instance ahd set of SICs of the forni.{8). For theere D* of D with

respect tol, it holds D* = D7y orceets N Dintersects 1 Diguarr Where:
(@) Dimterseets = 1R(@; Difference(g,t)) | R(a; g) € D,t = J{g'|for everyR(b, ¢') € D such thatD |=

Conflp g rmiersects(@, 9,0, 9')}}, wherelJ is thegeomUnion operator that calculates the geometric
union (spatial aggregation) of geometries.
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(0) Difptersects = 1R(@; Difference(g,t)) | R(@; g) € D,t = U{Buffer(¢',d) | forevery R(b,g') €
D such thatD ’: Conle,R,]ntemects(dvga bag/)}}'

(C) DEqual {R((_I; g) | R((_I, g) S D> it does not eXiSt$R(67 g) € Dv D ’: Conle,R,Equal(a> 9, 67 g))}

Notice thatt is the union of all the geometries that are in conflict with\aegigeometry. It is obtained by
using the spatial aggregation operageomUnion.
Now, we give the specification of the coreSy . ..., DHntmects. andDp,,,, @s views in a spatial

SQL Ianguag@ In the following specification, we assume a database met@nmth a relational predicate
R(id; geometry) and primary keyid. The following specification shows that our methodologiesld
be implemented on top of current spatial database managesystems. In particular, the definition of
D7 1orsects USES a fixed valué that represents the minimum distance between geometriles gartographic
scale of the database instance. The intersection of theas viaked*.

Table[4 shows three views that enables to compute the coteeafdtabase with a database predicate
R(idl; geometry).

Example 16 (exampld_ID cont.) The example considers only the reldtamlP with primary key:dl and
the SIC[B) of Examplel2. We want to consistently answer tieeygof Exampl€, i.eJname owner(LandP
(idl, name, owner; geometry) A IIntersects(geometry, ([x1,y1], [x2,y1], [T2, y2], [x1, y2], [x1,¥1]))-

To answer this query, we generate a view of thee applying the definition in Tablel4. That is, we
eliminate from each geometry the union of conflicting regiarith respect to each land parcel. In this case,
the conflicting geometries fap, aregs andg,; for geometrygs is g2; and for geometryy, is g». This is the
definition of the core in SQL:

CREATE VIEW  Core
AS (SELECT  [;.idl ASidl,l1.name AS name, l1.owner AS owner,
difference(li.geometry, geomunion(la.geometry)) AS geometry
FROM LandP ASly, LandP AS I3
WHERE l1.idl <> la.idl AND Intersects(l1.geometry, la.geometry) AND
NOT Touches(l1 .geometry, la.geometry)
GROUP BY l1.4dl, 11 .name, l1.owner,l1.geometry

UNION

SELECT 11.idl ASidl, 11 . name AS name, l1.owner AS owner, l1.geometry AS geometry
FROM LandP AS l;

WHERE NOT EXISTS(SELECTs.zdl, l2.geometry

FROM LandP AS [
WHERE!; .idl <> l2.idl AND Intersects(l1.geometry,la.geometry) AND
NOT Touches(l1.geometry, la.geometry)))

We now can pose the query to the core to compute the cons@stewer to the original query:

Mn current SQL Languagd Intersects(gi, g2) = Intersects(gi, g2) AND NOT Touches(gi, g2) = Overlaps(gi, gz2)
OR Within(g1, g2) OR Contains(g1,g2) OR Touches(gi, g2)-

20ptimizations to the SQL statements are possible by usirigriaized views and avoiding double computation of joireiep
tions.
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CREATE VIEW  Core_Intersects
AS (SELECT ry.1d AS id, difference(r; .geometry,
Buffer(geomunion(rz .geometry), d)) AS geometry
FROM RAS7T1, RAST2
WHERE ry.id <> rg.id AND
Intersects(r; .geometry, ro.geometry)
. GROUP BY ri.4id, r1.geometry
Dlntc'rsccts UNION
SELECT r1.id AS id, r1.geometry AS geometry
FROM RAS T
WHERE NOT EXISTS (SELECTr2.1d, r2.geometry
FROM R AS 1
WHERE; .id <> r2.id AND
Intersects(r1 .geometry, r2.geometry)))
CREATE VIEW  Core_IIntersects
AS (SELECT ry.1d AS id, difference(r; .geometry,
geomunion(rz .geometry)) AS geometry
FROM RAS7T1, RAST2
WHERE ry.id <> rg.id AND
Intersects(ry .geometry, ro.geometry) AND
NOT Touches(r; .geometry, ra.geometry)
D GROUP BY ri.4id, r1.geometry
IIntersects UNION
SELECT ri.id AS id, r1.geometry AS geometry
FROM RAST;
WHERE NOT EXISTS (SELECTr2.id, r2.geometry
FROM R AS 1
WHERE; .id <> r2.id AND
Intersects(ry .geometry, ro.geometry) AND
NOT Touches(r; .geometry, ra.geometry)))
CREATEVIEW  Core_Equal
AS (SELECT ri.9d AS id, r1.geometry AS geometry
FROM RAST;
ngual WHERE NOT EXISTS (SELECTr2.id, r2.geometry
FROM R AS 75
WHERE; .id <> r2.1d AND
Equals(r; .geometry, r2.geometry)))

Table 4: SQL statements to compute ViewsE,,.,.c.cis» Dlmiersects: @NAD L0

SELECT dl, name, owner, geometry (12)
FROM  Core
WHERE  Intersects(geometry, ([x1, y1], [z2, v1], [v2, y2l, [71, yal, [z1,31]))
The answer is shown in Figure]12. This query is a classic setefrom the Core view. O

This core-based method allows us to compute consistenteaasw polynomial (quadratic) time (in data
complexity) in cases where there can be exponentially mapgirs. In Examplgl8, where we havé!
minimal repairs, we can apply the quegyover thecore, and we only have to compute the difference of
a geometry with respect to the union of all other geometriesonflict. This corresponds to a polynomial
time algorithm of order polynomial with respect to the sizéhe database instance.
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6 Experimental Evaluation

In this section we analyze the results of the experimentaueation we have done of the core-based CQA
using synthetic and real data sets. The experiment incladeslability analysis that compares the cost of
CQA with increasing numbers of conflicting tuples and insie@ sizes of database instances. We com-
pare these results with respect to the direct evaluatiomasichbconjunctive queries over the inconsistent
database (i.e., ignoring inconsistencies). The latteectflthe additional cost of computing consistent an-
swers against computing queries that ignore inconsisgenci

6.1 Experimental Setup

We create synthetic databases to control the size of théaksdanstance and the number of conflicting
tuples. We use a database schema consisting of a singlegte@{id; geometry), whereid is the numeric
key andgeometry is a spatial attribute of type polygon. We create three detgrihetic database instances
by considering SICs of the forrhl(8) with different topologlipredicates:

[Set Sic |

Equals V —(R(z1;51) A R(22;82) A 71 # 22 N Equals(sy, 52))
Intersects  V —(R(#1;51) A R(#2;82) A @1 # @2 A Intersects(sy, s2))
lintersects V —(R(z1;51) A R(%2;82) N @1 # @2 N IIntersects(sy, s2))

For each set we create five consistent instances includd@)510,000, 20,000, 30,000, and 40,000 tuples
of homogeneously distributed spatial objects whose getesedre rectangles (i.e., 5 points per geometric
representation of rectangles). Then, we create inconsiststances with respect to the corresponding SICs
in each set with 5%, 10%, 20%, 30%, and 40% of tuples in conffiot database instances with a SIC and
topological Fquals, we create inconsistencies by duplicating geometries eregmtage of geometries. For
database instances with a SIC and topologi¢aiersects, we create inconsistencies by making geometries
overlap. Finally, for database instances with a SIC andltgpcal Intersects, we create inconsistencies by
making a percentage of geometries to touch.

Due to the spatial distribution of rectangles in the sets ctbres for database instances with SICs using
topological predicates if Intersects, IIntersects} have the same numbers of points in their geometric
representations than their original instances. For thefsgatabase instances with SICs using topological
predicateEquals, the numbers of points in the geometric representationkedf tores are less than in the
original databases, because we eliminate geometries astoea consistency. Thus, we are not introducing
additional storage costs in our experiments.

To have a better understanding of the computational cosQ#,Qve also evaluate the cost of CQA over
real and free available data of administrative boundarfi€hde [1]. Chilean administrative boundaries have
complex shapes with many islands, specially, in the Sou@hile (e.g., a region can have 891 islands). For
the real database, we have two predicatlesnties and Provinces. Notice that, at the conceptual label,
Provinces are aggregations afounties. In this experiment, however, we have used the source data as
is, creating separated tables fOvunties and Provinces with independent spatial attributes. For this real
database, we consider SIC of the forth=(R(71;51) A R(79;82) A @1 # @2 A Ilntersects(sy, s2)),
with R being Counties or Provinces.

Table[® summaries the data sets for the experimental ei@iudthe percentage of inconsistency is cal-
culated as the number of tuple in any conflict over the totahlner of tuples. The geometric representation
size is calculated as the number of points in the boundafiasegion.
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| Source | Name Tuples Inconsistency (%) Geometric representatis|si

Synthetic| Equals 5,000-40,000 5-40 25,000-200,000
lintersects 5,000-40,000 5-40 25,000-200,000
Intersects  5,000-40,000 5-40 25,000-200,000
Real Provinces 52 59 35,436
Counties 307 12.7 72,009

Table 5: Data sets of the experimental evaluation

We measure the computational cost in terms of seconds néedethpute the SQL statement on a Quad
Core Xeon X3220 of 2.4 GHz, 1066 MHz, and 4 GB in RAM. We use adiapDBMS PostgreSQL 8.3.5
with PostGIS 1.3.5.

6.2 Experimental Results

Figure[19 shows the cost of the core computation for the rdiffesynthetic database instances. To make
this experimental evaluation easier and faster, we usedriabted views so that we computed only once
the core and applied queries on this core’s view. Howeveradded the computational cost of the core to
each individual query result to have a better understandiiige cost of applying CQA.

The time cost of computing the core for inconsistent daebasth respect to a SIC with a topological
predicateEquals decreases as the number of tuples in conflicts increases, tsia core eliminates geome-
tries in conflict and, therefore, these empty geometriethareignored in geometric computations. The cost
of computing the core is largely due to the spatial join gibgrithe topological predicate of a SIC, which
could decrease using more efficient algorithms and spatil@xing structures.

Time cost of core computation
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Figure 19: Time cost of the core computation for differenC$§| different levels of inconsistency, and
different sizes of databases instances

For the synthetic database instance, Figlrés 20 and 21 $leowost rate between computing a CQA
with respect to simple range or join queries (with the spatiadicatel ntersects) that ignore inconsistencies.

31



Range queries use a random query window created by a reetahgke side is equivalent to 1% of the total
length in each dimension. Notice that the time cost of coingua range query for a database instance
with 10,000 was approximately 15 ms, which, in average, vi#stBnes less than computing a join query.
These reference values exhibit linear and quadratic gréwwthange and join queries, respectively, as we
consider increasing sizes of database instances. The tatiopal cost of CQA to join queries include the
computation of the core; however, this cost could be anmemitiz we use a materialized view of the core
for computing more than one join query. In the time cost of CfQArange queries, we have optimized
the computation by applying the core-computation over @asubf tuples previously selected by the query
range. This optimization is not possible for join querigscs no spatial window can constrain the possible
geometries in the answer.

Relative CQA cost to range queries
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Figure 20: Relative cost of CQA to range queries

The results indicate that CQA to a range query can cost 108stiime cost of a simple query. This is
primarily due to the join computation of the core. Indeedewltomparing the CQA to a join query, we
only duplicate the relative cost, and in the best case, keepame cost. However, join queries have a
significant larger computational cost. Notice that the cotation cost for a CQA to range query is around
60s in the worst case (40,000 tuples). With exception ofsasgeen the core contains empty geometries, the
percentage of inconsistencies does not affect drastittedlyesults.

We also evaluate the scalability of the CQA cost to rangeigsien function of the size of the query
window (i.e., spatial window). In Figure_R2 we show the reiCQA cost to range queries on a synthetic
database instance with 10,000 tuples and range querieewdéiodom spatial windows varied from 1% to
5% of the size in each dimension. The results indicate thatdlative cost increases logarithmical as we
increase the size of the query window. Also, only for datebastances with a SIC and topological predicate
Equals, the relative cost suffers some variation across diffepamtentages of inconsistencies, primarily,
due to the elimination of geometries in the database.

Finally, we applied the core-based computation of CQA ta¢a¢database instances in TdHle 5. Table 6
summaries the results obtained with these data, which weagreement with the results obtained with the
synthetic database instances. In this talll&oints represents the relative difference in the size of the geo-
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Relative CQA cost to join queries
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Figure 21: Relative cost of CQA to join queries

Escalability of relative CQA cost to range queries
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Figure 22: Relative cost of CQA to range queries and diffeseaes of the query window (using a database
instance with 10,000 tuples )

metric representation between the core and the originabdae. Notice that computing the core increased
the geometric representation &fovinces up to 5.0%, which is bounded by the shape of geometries in
conflict (i.e., the size of the original geometric repreaénn). In the case of'ounties, however, the size

of the geometric representation of the core decreases dow.03%. Since the geometry of provinces
should be the geometric aggregation of counties, we coydaxo have a relationship betwe&rPoints

for Provinces and Counties. However, the source data set uses independent geometriBgobinces and
Counties and no comparison can be made.
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Range Join
Data A Points Core Simple CQA Simple CQA
Provinces| +5.0% 17.7 0.04 0.25 29.8 63.4
Counties | -0.03%0 18.1 0.1 2.1 40.6 55.7

Table 6: CQA cost with real data (costs of core and querieséorsds)

7 Conclusions

We have formalized a repair semantics and consistency queswers for spatial databases with respect
to SICs. The repair semantics is used as an auxiliary corfoegtandling inconsistency tolerance and
computing consistent answers to spatial queries. It ischaseupdates that shrink geometries of objects,
even at the point of deleting geometries for some exceticases, as for predicai@igoint. Geometries
are virtually updated applying admissible geometric ofesa which are available in most spatial DBMSs.

By restricting ourselves to the application of the admissitansformations, we have a finite number of
possibilities for making a pair of geometries consisterthwispect to a SIC. However, there may still be
exponentially many repairs for a given instance and set 66SWith the purpose of avoiding to compute
and query all repairs, we have identified cases of SICs anjinctive (range and join) queries where the
consistent answers can be obtained by posing a standangtqueesingle view of the original instance. This
view is equivalent to the intersection of all possible mialrepairs, what we called there of a database
instance, which for a subset of SICs can be computed in poljaldime without determining each repair.

An experimental evaluation of the core-based computati@(@A reveals that answering range queries
has a cost that varies drastically in function of the topialgpredicates in SICs and the number of tuples
in the database instance, reaching up to 100 times the cessioiple range query. This is mainly due to
the spatial join involved in computing the core. For join des, instead, the cost of CQA is the double
of a simple join query. These results do not use optimizatwith spatial indexing, which has been left
for future work. Even more, they assume that we have to coenjingt core for each query, which could be
optimized by using materialized views.

This work leaves many problems open. Most prominently, aaadglity and complexity issues have
to be explored. For example, some interesting decisionlg@nub are deciding if non trivial repairs (i.e.,
not obtained by cancellation of geometries) exist for ataimse and a set of SICs, or deciding whether or
not a particular instance is a repair of an inconsistentbdeta instance. The complexity of deciding if a
spatio-relational tuple is a consistent answer is also .oparin the relational case, we expect to find hard
cases for all these problems. For them, it would be intargdth obtain lower complexity approximation
algorithms.

We have considered only regions to represent spatial abjécnatural extension of this work would
be to define a repair semantics for other spatial abstragtismch as polylines, points, networks, and so
on. We would also like to explore not only denial SICs, bubadther classes of semantic ICs, and other
types of repair semantics that include solving conflictdhwéspect to a topological predicaiisjoint.
This includes also the possibility of considering combiorad of spatial with relational constraints, e.g.
functional dependencies and referential ICs.
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