Author’s Accepted Manuscript

o
Information
On the definition and design-time analysis of svStcms
process perfonnance indicators DATABASES: CREATION, MANAGEMENT AND UTILIZATION

Adela del-Rio-Ortega, Manuel Resinas, Cristina
Cabanillas, Antonio Ruiz-Cortés

ELECTRONIC ACCESS
www els evier comlocatelis

www.elsevier.com/locate/infosys

PII: S0306-4379(12)00146-9

DOI: http://dx.doi.org/10.1016/}.15.2012.11.004
Reference: 1S832

To appear in: Information Systems

Received date: 31 July 2012
Revised date: 6 November 2012
Accepted date: 8 November 2012

Cite this article as: Adela del-Rio-Ortega, Manuel Resinas, Cristina Cabanillas and
Antonio Ruiz-Cortés, On the definition and design-time analysis of process performance
indicators, Information Systems, http://dx.doi.org/10.1016/j.1s.2012.11.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://dx.doi.org/10.1016/j.is.2012.11.004
http://dx.doi.org/10.1016/j.is.2012.11.004
http://dx.doi.org/10.1016/j.is.2012.11.004
http://dx.doi.org/10.1016/j.is.2012.11.004
http://dx.doi.org/10.1016/j.is.2012.11.004
http://dx.doi.org/10.1016/j.is.2012.11.004

On the Definition and Design-Time Analysis of Process

Performance Indicators™

Adela del-Rio-Ortega®*, Manuel Resinas®, Cristina Cabanillas®, Antonio
Ruiz-Cortés®

®Dpto. de Lenguajes y Sistemas Informdticos, University of Seville, Av. Reina Mercedes
s/n, 41012 Seville, Spain

Abstract

A key aspect in any process-oriented organisation is the evaluation of pro-
cess performance for the achievement of its strategic and operational goals.
Process Performance Indicators (PPIs) are a key asset to carry out this eval-
uation, and, therefore, having an appropriate definition of these PPIs is cru-
cial. After a careful review of the literature related and a study of the current
picture in different real organisations, we conclude that there not exists any
proposal that allows to define PPIs in a way that is unambiguous and highly
expressive, understandable by technical and non-technical users and trace-
able with the business process (BP). In addition, like other activities carried
out during the BP lifecycle, the management of PPIs is considered time-
consuming and error-prone. Therefore, providing an automated support for
them is very appealing from a practical point of view.

In this paper, we propose the PPINOT metamodel, which allows such
an advanced definition of PPIs and is independent of the language used to
model the business process. Furthermore, we provide an automatic semantic
mapping from the metamodel to Description Logics (DLs) that allows the
implementation of design-time analysis operations in such a way that DL

*This work has been partially supported by the European Commission (FEDER), Span-
ish Government under the CICYT projects SETI (TIN2009-07366) and TAPAS (TIN2012-
32273); and projects THEOS (TIC-5906) and ISABEL (P07-TIC-2533) funded by the
Andalusian local Government.

*Corresponding author. Tel 434954557001

Email addresses: adeladelrio@us.es (Adela del-Rio-Ortega), resinas@us.es
(Manuel Resinas), cristinacabanillas@us.es (Cristina Cabanillas), aruiz@Qus.es
(Antonio Ruiz-Cortés)

Preprint submitted to Information Systems November 22, 2012

reasoners’ facilities can be leveraged. These operations provide information
that can assist process analysts in the definition and instrumentation of PPIs.
Finally, to validate the usefulness of our proposal, we have used the PPINOT
metamodel at the core of a software tool called the PPINOT tool suite and
we have applied it in several real scenarios.

Keywords: Business Process Management, Process Performance
Measurement, Process Performance Indicators, Automated Analysis

1. Introduction

Business Process Management (BPM) intends to support business pro-
cesses using methods, techniques, and software to design, enact, control and
analyse operational processes involving humans, organisations, applications,
documents and other sources of information [1]. There exists a growing in-
terest in business processes (BPs) for both, academia and business. Many
companies are taking this process-oriented perspective in their business, as
a way of identifying which steps really create value, who is involved in the
process and which is the exchanged information; ultimately, finding out how
to improve, where to increase quality, reduce waste or save time [2].

To achieve this improvement of processes, it is important to evaluate
their performance, since it helps organisation to define and measure progress
towards their goals. Performance requirements on business processes can be
specified by means of Process Performance Indicators (PPIs), a particular
case of KPIs. PPIs can be defined as quantifiable metrics that allow to
evaluate the efficiency and effectiveness of business processes. They can be
measured directly by data that is generated within the process flow and are
aimed at the process controlling and continuous optimization [3].

According to Franceschini et al. [4] and based on the conclusions drawn
in our previous works [5, 6], four requirements for the definition of PPIs can
be established: (1) expressiveness, the definition should be unambiguous and
complete; (2) understandability, PPIs should be understood and accepted by
process managers and employees; (3) traceability with the business process,
enabling to maintain coherence between both assets, BP models and PPIs;
and (4) possibility to be automatically analysed, allowing thus not only to
gather the information required to calculate PPI values, but also to infer
knowledge to answer questions like what are the business process elements

related to PPI P?.

Unfortunately, in practice, PPIs are usually defined either in an informal
and ad-hoc way, usually in natural language, with its well-known problems
of ambiguity, lack of coherence/traceability with the process, incompleteness
(missing information), and not amenable to automated analysis; or they are
defined from an implementation perspective, at a very low level, and too close
to the technical view, becoming thus hardly understandable to managers and
users and losing the perspective of the higher-level process. Furthermore,
there is a significative lack of support of standard business process notations
such as BPMN [7] or BPEL [8] to define such PPIs.

From an academic point of view, There already exists a number of re-
search proposals to define PPIs, but we argue that none of them cover all
of the four critical elements for indicators because of the following reasons.
First, they do not allow a complete definition of PPIs due to their limited
expressiveness. Most proposals allow the definition of PPIs related to control
flow and time. However, only Wetzstein et al. [9] allow the definition of PPIs
related to the state of the process and none of them can define PPIs related
to data. They also have limited expressiveness regarding the definition of
PPIs based on aggregated or derived measures and in the definition of the
period of analysis of the PPIs. A second issue of current proposals is that
in several of these proposals there is just a partial traceability between PPIs
and BP models. This may cause maintenance problems to keep the coher-
ence between both assets and it is also an important limitation to instrument
the information systems of the organisation to take the measures, specially
when these information systems are BPMS (Business Process Management
Systems). Finally, the automated analysis of the PPIs that these proposals
allow is almost inexistent. Only Popova et al. [10] provide mechanisms to
analyse the relationships between PPIs at design-time.

From this discussion we conclude that a definition of PPIs that fulfills
the aforementioned requirements is still an unresolved challenge. In this
paper we address this challenge by presenting the PPINOT metamodel of
which a preliminary version was introduced at [5]. Furthermore, we also
introduce a design-time analysis of the relationships between PPIs and BP
elements to automatically find out the business process elements that may
have an influence on a PPI and the BP elements that must be measured to
calculate the PPIs. The main benefits of our contribution can be summarised
as follows:

1. The PPINOT metamodel allows an unambiguous and complete defini-

tion of PPIs. It allows the definition of all of the PPIs found in the
literature review and addresses all of the aforementioned limitations.
Furthermore, its expressiveness has been tested in several real scenarios
so that it can provide a solid basis for defining PPIs in any organisation.
. Since the PPINOT metamodel is at the same level of abstraction than
business processes rather than at a more technical level such as in-
formation systems logs, it is easier to understand by process man-
agers and employees. In fact, the PPINOT metamodel is the foun-
dation of a graphical notation that extends BPMN to define PPIs
(http://www.isa.us.es/ppinot/) and a set of templates and linguis-
tic patterns [11] designed to make PPIs easier to understand by non-
technical people.

. A number of design-time analysis capabilities have been defined for
the PPINOT metamodel in terms of a set of analysis operations that
extract information from the relationships between PPIs and BP ele-
ments. Furthermore, these analysis operations are automated by map-
ping the PPINOT metamodel into a DL knowledge base and then using
standard DL reasoning operations to analyse it instead of implementing
ad-hoc analysis algorithms. This mapping can also be used to imple-
ment other new analysis operations such as the dependencies between
PPIs as outlined in [5].

. A PPI defined using the PPINOT metamodel can always be traced
back to the BP elements used in its definition. This traceability pro-
vides several benefits such as the possibility to extract information
from the relationships between PPIs and BP elements by means of the
aforementioned analysis operations, or the implementation of a tool
that automatically instruments an open source BPMS to calculate the
values of PPIs.

. The PPINOT metamodel is independent of the language used to model
the business process. In fact, a binding to use it with BPMN is de-
scribed in this paper.

To validate the usefulness of the PPINOT metamodel, we have devel-
oped a software tool called the PPINOT tool suite that uses the PPINOT
metamodel at its core to offer: (1) a graphical editor, which allows to model
PPIs over Business Process Diagrams (BPDs) using PPINOT graphical no-
tation; (2) a templates editor, which allows a textual definition of PPIs us-
ing templates and linguistic patterns; (3) an analyser, which implements the

4

aforementioned design-time analysis operations, and (4) an instrumenter and
reporter, which allows to extract the information required to calculate the
values of the defined PPIs during business process execution in the BPMS
Activiti, and present a report with such values. Furthermore, we have ap-
plied our proposal in several real scenarios, namely: the I'T Department of
the Andalusian Health Service, the Information and Communication Service
of the University of Seville, and the Consejeria de Justicia y Administracion
Publica of the Andalusian Local Government.

The remainder of this paper is organised as follows. In Section 2 we intro-
duce the main concepts related to the definition and management of PPIs.
In Section 3 we propose PPINOT metamodel for the definition of PPIs, that
serves as a basis for the automated analysis presented in Section 4. Section 5
describes the formalisation of our proposal using Description Logic and the
implementation of the aforementioned automated analysis. Some implemen-
tation details are given in Section 6. Section 7 presents the application of our
approach to a real scenario. In Section 8, we describe the actions conducted
to validate our proposal. The related work is presented in Section 9. Finally,
Section 10 draws the conclusions from our work, summarizes the paper and
outlines our future work.

2. Definition and Management of PPIs

The management of PPIs can be divided into several steps.

To illustrate them, we present an excerpt of a real scenario that takes
place in the context of the I'T Department of the Andalusian Health Service.
We focus on the business process of managing Request for Changes in the
existing Information Systems. This process was modelled by the quality office
of this department using BPMN, but for the sake of understandability, we
have simplified the real process obtaining the diagram depicted in Figure 1.

The process starts when the requester submits a Request For Change
(RFC). Then, the planning and quality manager must identify the priority
and analyse the request in order to make a decision. According to several
factors like the availability of resources, the requirements requested, and
others, the RFC will be either approved, cancelled, or raised to a committee
for them to make the decision.

The RFC is a data object with its states (cf. Figure 1) and some proper-
ties defined, from which we highlight the following ones, that will be referred
to throughout the paper: Project, which refers to the project to which such

Requester

Q
-
>

RFC

‘g [cancelled] |

@ R '

f

S :

= RFC — | Cancel RFC ——>®

= : [registered] Report RFC :

8 ' cancelled
£ 3 Y :
|2 V.o :
£12 ° Analyse RFC X Approve RFC |
£ | o v pprove .
o | = > .
o £ Receive RFC _ Y, [Report
als — RFC
E | Hevate approved

P decision to RFC
committee [approved]

Analyse in
committee

Committee

Figure 1: Process of the request for change management (simplified)

RFC is associated, InformationSystem, which defines the information system
for which a change is required or to which that change affects, type of change,
which classifies the change required in adaptive, corrective or perfective, and
priority, which refers to the importance of resolving that RFC.

After modelling the process, the first step is to define the PPIs that are
necessary to evaluate it. In our example, the IT department defined the
indicators using natural language and collected them in tables. Again, for
the sake of simplicity, we only show an excerpt of this table (Table 1). Target
values reflected in this table have been changed due to privacy reasons. The
responsible for all these PPIs defined in Table 1 is the “planning and quality
manager.”

Once PPIs are defined, the next step is to decide how to calculate them
from the data that is generated during the execution of the process. This
involves two actions: first, it is necessary to decide which measures must be
taken during the execution of the process to calculate the PPIs. For instance,
measures such as the moment when a RFC is received, the moment when
the committee starts and ends its analysis, or the number of RFCs received

Name | Description Target value Scope

PPI1 | RFCs cancelled from RFCs | 4% weekly
registered

PPI2 | Average time of committee | 1 working day weekly
decision

PPI3 | Corrective RFCs from ap- | 2% weekly
proved RFCs

PPI4 | Perfective and adaptive | 4% weekly
RFCs from approved RFCs

PPI5 | Average time of RFC analysis | 2 working days weekly

PPI6 | Number of RFCs under anal- | 2 RFCs weekly
ysis

20 corrective RFCs

PPI7 | Number of RFCs per type of | 30 adaptive RFCs monthly

change 20 perfective RFCs

50 for project rr.hh
PPI8 | Number of RFCs per project | 60 for project diraya | monthly

1 for project pharma
PPI9 | Average lifetime of a RFC 3 working days monthly

Table 1: PPIs defined for the RFC management process

in a period of time should be taken in the Request for Change Management
to calculate PPI5, PPI2 and PPI7, respectively. The second action is to
decide how to obtain the measures that are necessary to calculate the PPIs.
This usually requires the instrumentation of the information systems that
support the business process so that it provides such measures. For instance,
configuring the event log of the information system appropriately or using
an API of the information system to query its history.

After deciding how measures are obtained, they must be actually gathered
during the execution of the process so that the values of the PPIs can be
calculated based on them. If the gathering of the measures is carried out
automatically, BAM techniques [12] can be used to provide near real time
monitoring of business activities, measurement of PPIs, their representation
in dashboards, and automatic and proactive notification in case of deviations
[13]. Furthermore, this information, either obtained automatically or not,
can be analysed using techniques from the fields of process mining [14, 15],
business process intelligence [16], data warehousing and classical data mining

with the goal of evaluating and improving business process models and their
implementation.

Finally, PPIs can change because of an evolution of the business process
and, hence, they should be updated accordingly, or they can also change
independently of the business process. For instance, because there has been
a change in the business strategy that involve a change in the way a process
is evaluated, or because the evaluation of the PPIs has revealed they are
not measuring all important parts of the process. In any case, the change
involves a new definition of PPIs, either creating new ones or changing old
ones.

The management of PPIs that we have described can be improved by
the contributions presented in this paper as follows. On the one hand, the
PPINOT metamodel provides all of the steps that compose the PPI man-
agement with a common understanding of the PPIs defined for a business
process. This is a requirement to enable an automated management of PPIs
from their definition to their instrumentation, calculation or evaluation like
having a well-defined business process model is a requirement to enable an au-
tomated business process management. On the other hand, the design-time
analysis of the relationships between PPIs and BP elements can be used to
automatically find out the business process elements that may have an in-
fluence on a PPI at design-time, which helps during the definition of PPIs
to make sure that the PPIs measures all important parts of the process, and
the BP elements that must be measured to calculate the PPIs, which helps
in the step of deciding which measures must be taken during the execution
of the process to calculate the PPIs.

3. PPINOT: A Metamodel for Defining PPIs

When managing PPIs, the first obstacle is to delimit a PPI conceptually
since there is no consensus about the key elements and their relationships
that need to be taken into account when defining PPIs. Consequently, it
is necessary to design a representation simple and easy to understand, but
also expressive enough to accommodate the different domains and situations
where PPIs can be defined. In this paper, we tackle this problem by introduc-
ing the PPINOT metamodel. This metamodel is the result of an extensive
analysis of a variety of PPIs defined by different organisations, a careful
study of the related literature and a process of successive refinements of the
metamodel after applying it to different scenarios.

The following sections detail the main features of the metamodel, which
has been driven by these requirements:

Must have a high expressiveness. The metamodel must have a high expres-
siveness with respect to three different dimensions:

e PPIs properties: As with other indicators, it is recommended that PPIs
satisfy the SMART criteria [17]. SMART is an abbreviation for five
characteristics of good indicators, namely: Specific (it has to be clear
what the indicator exactly describes), Measurable (it has to be possi-
ble to measure a current value and to compare it to the target one),
Achievable (it makes no sense to pursue a goal that will never be met),
Relevant (it must be aligned with a part of the organisation’s strategy,
something that really affects its performance) and Time-bounded (a
PPI only has a meaning if it is known the time period in which it is
measured). Therefore, the metamodel must include all the information
that is necessary to define PPIs according to the SMART criteria.

e Type of measure: The metamodel must be able to express the measures
used in all of the PPIs found in both the literature review and in the
organisations whose PPIs have been analysed so that it can provide a
solid basis for defining PPIs in any organisation.

e Type of scope: The metamodel must be able to express a variety of
filters that selects the process instances that are considered for the
computation of the PPI.

Must keep the traceability with a business process model. The definition of a
PPI in the metamodel must be done so that it can always be traced back to
the BP elements used in its definition. As stated in Section 1, this is a desir-
able property since it provides several benefits such as the implementation
of a tool that automatically instruments an open source BPMS to calculate
the values of PPIs.

Must be possible to use it with different business process modelling languages.
The metamodel must be independent of the language used to model the
business process, but it must be able to use it with standard business process
models such as BPMN.

includes haslnstance

Process 7 e BPElement P EPElemertinstance

g b
ZF hasState
prec 1

«enumerations

= x

Runti me State
EBPFlowElement DataObject
= | = ! |\ x 1
hasProperty
S0 dataOutput ¢
DataProperty

Figure 2: Abstract Business Process Modelling Language

3.1. An Abstract Business Process Modelling Language for Defining PPIs

The PPINOT metamodel must keep the traceability with a BP model,
which means it must include elements that relate PPIs with business process
elements. However, at the same time, it must be independent of the language
used to model the business process. To address both requirements at the same
time, the solution used in the PPINOT metamodel is to define an abstract
business process modelling language so that any business process modelling
language whose elements can be mapped to it can be used together with
the PPINOT metamodel. Note that the abstract business process modelling
language is not a complete BP modelling language, but only includes the
minimum set of elements that is necessary to define PPIs.

The Abstract Business Process Modelling Language is composed of the
elements depicted in Figure 2. Every business process includes BP elements
that can be flow elements or DataObjects. BP flow elements have two rela-
tionships: suc and prec that references to the BP flow elements that succeeds
or precedes the BP flow element in the control flow, respectively. They also
have a dataQOutput relationship to relate BP flow elements with the data
object they modify. Examples of flow elements in typical BP modelling lan-
guages are activities or events. Regarding data objects, they have a set of
data properties defined.

Any BP element when instantiated has a state associated that changes as
the process instance is executed. The set of state values for every BP element
changes depending on the language or notation. Except for DataObjects,

10

whose state values are usually defined by the user, we consider that there
exist one or a set of values corresponding to the start or activation of the BP
element, and one or a set of values for its end. For instance, in BPMN 2.0 ac-
tivities can have the following states: ready, active, withdrawn, completing,
completed, failing, failed, terminating, terminated, compensating and com-
pensated. In this case, the start corresponds to the change to state active,
and the end can correspond to withdrawn, completed, failed, terminated or
compensated.

Any business process modelling language that we want to use together
with the PPINOT metamodel must be bound to this abstract business pro-
cess modelling language. This binding involve two actions: mapping the
elements of the BP modelling language to the ones used in the abstract BP
modelling language and defining which elements can be used together with
the modelling concepts defined by the PPINOT metamodel. Appendix C
provide details about how this binding can be done with BPMN 2.0.

3.2. Conceptual Modelling of PPIs

Process Performance Indicators (PPIs) can be defined as quantifiable
metrics that allow to evaluate the efficiency and effectiveness of business
processes. They can be measured directly by data that is generated within
the process flow and are aimed at the process controlling and continuous
optimization [3]. The PPINOT metamodel models a PPI (c.f. Figure 3)
according to this definition and taking into account the requirement that its
properties must include all the information that is necessary to define PPIs
according to the SMART criteria. In particular, its attributes are defined as
follows:

e identifier: string. Every PPI must be uniquely identified by an
identifier.

e name: string. It provides a descriptive name for every PPI.

e relatedTo: Process. It references to the process for which the PPI
is defined.

e goals: string [0..x*]. It allows the user to establish the strate-
gic or operational goal/s that the PPI is related to. It highlights the
relevance of the PPI (connecting to the Relevant characteristic of the

11

PFI

- identifier: String

latedT - : St scope
oLl name. r.|ng & ProcessinstanceFilter
1 =|- goals: String [0..7] 1.7 1

- responsible: HumanResource
- informed: HumanResource [0..7]
- comments: String [0..1] 1

] s target
definition

/\

1
e
MeasureDefinition

. -
SimpleTarget Value: String | ComposedTarget | CustomTarget
o=

- upperBound: any [0..1] o -
- lowerBound: any [0..1] - festriction: String

Figure 3: PPIs in PPINOT Metamodel

SMART criteria). It can be fulfilled with an expression in natural lan-
guage. A more formal definition of the relationship between the PPI
and the organisational goals is out of the scope of this paper. Some
approaches regarding this issue can be found in [10, 18]

e definition: MeasureDefinition. It provides a definition about
how the indicator is measured. This field is related to the two first
characteristics of the SMART criteria (Specific and Measurable).

e target: Target. Every PPI has an associated target value to be
reached indicating the consecution of the previously defined goals. In
order to fulfill the Achievable characteristic of the SMART criteria,
this target value must be reasonable, based on previous experiences
and predictions based on simulations. PPINOT allows the definition
of three kinds of target values: a simple target, a composed target
and a custom target. A simple target is used to specify the lower
bound and/or upper bound that make up the range within which the
PPI value should be (If only an upper bound is defined, it acts as a
maximum; if only a lower bound is defined, it acts as a minimum;
finally, if both bounds are set, they define a range within which the
PPI value must be). The composed target allows to define several
target values or ranges, for those cases where the value of the PPI is
a map (e.g. PPI7 and PPI8 from our case study). Finally the custom
target offers the possibility to define a restriction that the PPI value

12

must fulfill (allowing a higher case mix for the target value, e.g. utility
functions can be defined, or a metamodel of preferences like the one
presented in [19] can be used).

e scope: Filter. This attribute indicates the subset of instances of
the perviously specified process that must be considered to compute
the PPI value. This field is related to the Time-Bounded characteristic
of the SMART criteria.

e responsible: HumanResource. It refers to the human resource in
charge of the PPI. This human resource can be a person, a role, a
department or an organisation. A more detailed definition of the types
of human resources are out of the scope of this metamodel. However,
some approaches regarding this issue can be found in [20, 21].

e informed: HumanResource [0..x*]. It represents the human resources
that are interested in the PPI, i.e., who must be informed. This human
resource can be also a person, a role, a department or an organisation.
Unlike the responsible, which must be only one resource, there may be
many resources informed about the state of the PPI.

e comments: String. Other information about the PPI that cannot be
fitted in previous fields can be recorded here.

In the following sections, we detail how MeasureDefinition and Filter
are defined in the PPINOT metamodel. Furthermore, we also introduce the
concept of Condition, which is necessary to express the relationship between
MeasureDefinitions and the business process.

3.3. Measure definitions

Figure 4 depicts the two dimensions into which the definition of measures
for PPIs can be classified. The first dimension (Y axis) is the number of pro-
cess instances that are necessary to calculate the PPI value. There are two
possible values in this dimension, namely: single-instance measures if a single
process instance is used to calculate the measure, and multi-instance mea-
sures if the PPI value is calculated using a set of process instances. Usually,
most PPIs are defined using multi-instance measures. The second dimension
(X axis) represent the types of measure that can be used to calculate the
value of the PPI, namely: time, count, condition, data or derived.

13

Instances
A

Multi-instance |

AggregatedMeasure
© © ©6 o

re

p=

Single-instance {o Bas%ﬂeasus °] OE

| > Measures
Time Count Condition Data Derived

Figure 4: PPI dimensions

These dimensions are captured in the PPINOT metamodel by means of
three classes: BaseMeasure, AggregatedMeasure and DerivedMeasure (cf.
Figure 5). The relationship of these classes with the dimensions are depicted
in Figure 4. A BaseMeasure represents a single-instance measure that mea-
sures time, count, conditions or data. An AggregatedMeasure represents an
aggregation of single-instance measures, i.e., a multi-instance measure that
measures time, count, conditions or data. Finally, a DerivedMeasure repre-
sents either a single-instance or a multi-instance measure that calculates the
value of the PPI by performing a mathematical function over other measures.

Note that derived multi-instance measure can be defined either as a
DerivedMeasure, i.e., performing a mathematical function over other multi-
instance measures, or as an AggregatedMeasure, i.e., aggregating several
derived single-instance measures. Both ways of defining them are neces-
sary because a derived multi-instance measure cannot always be defined as
an aggregation of derived single-instance measures. For instance, a derived
multi-instance measure such ag merltimeinanalyseincommitice) .n ot he defined

mazx(timeinprocess)
timeinanalyseincommittee
as ma:c(timeinprocess) :

Next we detail how each type of measure definition can be specified in
the PPINOT metamodel. In addition, Appendix B provide a complete set
of invariants for the PPINOT metamodel defined in OCL.

Time Measure. It measures the duration of time between two time instants.
For instance:

14

M Definiti
5 = definition gesreDaintor It refersTo
«enumerations - Variable
A - 5 2 Strin
F 9 1 [jgescals 9 1 1
i etionFurolion - unitOfMeasure: String

- _name: Sting

Maximum -
Minimum 1
Average
Sum : "

[S——aggregationFunction uses

aggregationFunction : aggregates
</

DerivedMeasure

BaseMeasure *| AggregatedMeasure
i - function: Sti
CyclicTimeMeasure S T unction: String

—|>| TimeMeasure CountMeasure onditionMeasure| DataMeasure
LinearTimeMeasure meets

measulesDaia

from to p
When 2 BPEIemem Datacontemselec:tlon

aplliesTo

DerivedSinglelnstanceMeasure

|sGroupedBy

DerivedMultiinstanceMeasure

precondition

1 %) 1

Timelnstant Condition ProcessinstanceCondition

- changesTostate: RuntimeState

StateCondition DataPropertyCondition

- state: RuntimeState - restriction: String
- statesConsidered: RuntimeState

Figure 5: Measure definition in PPINOT Metamodel

The duration between the time instant when activity analyse RFC changes
to state active and the time instant when activity analyse RFC changes to
state completed.

In the PPINOT metamodel, the two time instants are represented by
means of associations from and to between class TimeMeasure and class
TimeInstantCondition. This latter class is used to model time instants by
defining the BP element to which the condition applies (association appliesTo)
and its change of state (attribute changesToState) or trigger in case of an
event. Although this definition is enough for modelling usual time measures,
there is one consideration that needs to be done if the time measure is taken
between elements located within a loop. In this case, two ways of measuring
time can be considered, namely:

e Linear (class LinearTimeMeasures), in which the measure is defined
taking into account the first occurrence of the time instant condition
from and the last occurrence of the time instant condition to.

15

e Cyclic (class CyclicTimeMeasures), in which the measure is defined
by aggregating the values for the time between the pairs of the time
instant conditions of each iteration. The kind of aggregation is defined
by means of attribute aggregationFunction

Count Measure. It measures the number of times something happens. For
instance:

The number of times activity analyse RFC changes to state completed.

In the PPINOT metamodel, the aforementioned “something happens”
is modelled by means of association when between class CountMeasure and
class TimeInstantCondition.

Condition Measure. It is a boolean value that measures the fulfillment of
certain condition in both running or finished process instances. There are
two types of conditions depending on whether it refers to the state of a BP
element such as:

The fulfillment of the condition activity analyse in committee is currently in
state active.

or to a restriction of a DataObject, such as:
The fulfillment of the condition priority=high over the dataObject RFC.

In the PPINOT metamodel, the condition whose fulfillment is being mea-
sured is modelled by means of association meets between class ConditionMeasure
and class ProcessInstanceCondition. In addition, ProcessInstanceCondition
is refined into the two types of conditions, namely StateCondition and
DataPropertyCondition. In the first one the condition must include the
state (attribute state). In the second one, the condition can include restric-
tions on both the content of the dataObject (attribute restriction) and
its state (attribute statesConsidered). Note that the PPINOT metamodel
does not prescribe any specific language for defining the restrictions on the
content of the dataObject, but it is something specific of the BP modelling
language used.

16

Data Measure. It measures the value of a certain part of a dataObject. For
instance:

The PPI is defined as the value of information systems of RFC.

In the PPINOT metamodel, the data measure is modelled by means of
attribute measuresData that selects the part of a dataObject that is being
measured (e.g. information systems in the previous example). Furthermore,
attribute precondition allows one to specify a condition that the dataObject
must fulfill when the measure is performed (for instance to be in certain
state). Finally, note that the PPINOT metamodel does not prescribe any
specific language for defining attribute measuresData since it depends on
the way the dataObject is modelled. For instance, if the dataObject is an
XML document, measuresData could be an XPath expression pointing to a
specific part of the XML.

Derived Measure. It is defined as a mathematical function over one or more
measure definitions. There are two types of derived measures depending on
whether the measure definitions are single-instance or multi-instance mea-
sures. An example of this measure is:

The PPI is defined as the mathematical function (a/b)*100 where a is the
number of times dataObject RFC is in state approved and b is the number of
times dataObject RFC is in state registered.

In the PPINOT metamodel, derived measures are modelled by means of
attribute function, which defines the mathematical function and associa-
tion uses, which is used to relate the variables used in function with their
corresponding measure definitions.

Aggregated Measure. 1t is defined by aggregating one of the previous mea-
sures in several process instances using an aggregation function such as sum
or average. Furthermore, when aggregating measures it is possible to group
them by the content of a certain dataObject. An example of this measure is:

The PPI is defined as the sum of the number of times event Receive RFC is
triggered and is grouped by project of RFC.

17

In the PPINOT metamodel, aggregated measures are modelled using at-
tribute aggregationFunction, which defines the kind of aggregation is being
applied, association aggregates, which specifies the single-instance measure
that is being aggregated, and attribute isGroupedBy, which may define the
grouping of the measure. Finally, a sampling frequency can be defined, so
that we do not need to measure every instance, but one out of X, being
X the sampling frequency. This makes sense in environments where taking
a measure is hard or costly (e.g. when the measure can not be obtained
automatically).

3.4. Scope

The scope of a PPI can be seen as a filter that selects the process instances
that are considered for the computation of the PPI. In particular, if the PPI
is defined as a single-instance measure, the filter selects the set of instances
whose value must be compared to the target value. If the PPI is defined as
a multi-instance measure, the filter determines the set of instances that have
to be taken into account when computing the value of the PPIL.

Since there are different types of filters that can be applied to the process
instances, the PPINOT metamodel (cf. Figure 6) allows the definition of the
scope based on:

e The last instances that have been executed (LastInstancesFilter)
e A temporal condition over the process instances (TimeFilter)

e The state of the process instances (ProcessStateFilter)

e Any combination of them using and, or and not (ComposedFilter).

In addition, for the particular case of the TimeFilter, two associations
are defined. First, the temporal condition, which allows the selection of
instances that started or finished “before”, “before or at”, “after” or “after
or at” a certain point in time. This point in time can be a concrete date or
a time window defined by the time from now and the unit. And second, the
periodicity, which indicates the frequency with which the PPI is calculated.
As usual, there are four types of periodicity: daily, weekly, monthly and
yearly. If a weekly periodicity is selected, the day of the week must be
completed, and for the case of monthly periodicity, whether to take into
account the day of the month (e.g. 3rd January) or the day of the week

18

“ scope ProcessinstanceFilter
1.7 1. id: int L% ‘
% filter

I

LastinstancesFliter

berOfinst, :int
numberDflnstances: in 1.7 1.7 processState 7

1
iodici ProcessState
Active And O Not

composes 1 Finished

start :

1 - eveny int[0..1)
4\ moment - ends: String [0..1] q-

«enumerations
Moment

Weekly

dayOfieek: String

Composition

condition
«enumeratio...
ConditionType

Monthly
before

beforeOrAt
after
afterOrAt AbsoluteTimeDefinition | | RelativeTimeDefinition

date: String - timeFromNow: int
e

unit
1

Figure 6: Filter definition

dayOfhonth: String
dayOfiteek: String

| AndComposition | OrComposition

(e.g. third tuesday of the month) must be selected. The frequency of such
periodicity (e.g. every 2 months, for a monthly periodicity) and when to
finish taking such measure (ends 31-12-2014) can also be specified.

4. Automated Analysis of Relationships between PPIs and BP El-
ements

The automated analysis of PPIs can be defined as the computer-aided
extraction of information from PPI models and instances and other models
related to them. This analysis allows to investigate properties of PPI specifi-
cations and their relationships with other models. It is often useful to define
the analysis of models in terms of analysis operations, which take a set of
parameters as input and returns a result as output, as it has been successfully
done in other fields such as feature models [22].

In this paper we focus on the automated analysis of the design-time rela-
tionships between PPIs and BP elements, which is a subset of the automated
analysis of PPIs. In the remainder of this section we detail two kind of rela-

19

tionships that can be defined between PPIs and BP elements and a number
of analysis operations that can be defined for each of them.

4.1. Operations for the relationship measured by

A BP element is measured by a PPI when the value of the PPI is calculated
by measuring some aspect of the execution of the BP element. For instance,
let us say we have a PPI that measures the average lifetime of an approved
RFC and, hence, it can be defined as the average of the duration between the
time instant when the event Receive RFC' is triggered and the time instant
when the end event Report RFC Approved is triggered. In this case, the
elements measured by the PPI are the event Receive RFC and the event
Report RFC Approved since the value of the PPI is calculated by measuring
the moment in which both events are triggered.

This relationship can be straightforwardly inferred from the measure def-
inition of a PPI in the PPINOT metamodel. If the measure definition is a
base measure, then the elements measured by the PPI are those to which the
condition used by the measure definition applies. If the measure definition
is an aggregated measure or a derived measure, then the elements measured
are those measured by the base measure that the aggregated or derived mea-
sure aggregates or uses, respectively. Two analysis operations can be defined
based on this relationship.

4.1.1. BP elements measured by a set of PPIs
This operation takes a set of PPIs and their corresponding BP model as

input and returns the set of business process elements that are measured by
those PPIs.

MeasuredBPElement(PPI[1..x], BP) : BPElement|0..x]

This operation is useful when processes are instrumented to take the
measures that are necessary to calculate the PPIs. It provides information
that helps process analysers and developers to abstract away from other
aspects of the PPIs and focus on the BP elements whose execution must be
measured. Furthermore, if PPIs change, it can provide useful information
about whether new BP elements should be instrumented.

20

4.1.2. PPIs that measure a given BPElement

This operation takes a set of PPIs, their corresponding BP model and a
BP element as input and returns the PPIs that are calculated by measuring
the given BP element.

MeasuredPPIs(PPI[1..x|, BP, BPElement) : PPI[0..x]|

The information provided by this operation is useful to find out about
which are the PPIs that are affected if there is a BP element whose execution
cannot be measured.

4.2. Operations for the relationship involved in

A BP element is involved in a PPI when it has an influence in the value
of the PPI. For instance, if we take the same example as before (the average
lifetime of an approved RFC'), the elements involved in the PPI are all the
elements that by taking more or less time to execute make the average life-
time longer or shorter. In this case these elements are the element in which
the time measure ends (event Report RFC Approved) and all the elements
between that element and the element in which time starts to be counted
(event Receive RFC), i.e. activity Analyse in committee, activity Analyse
RFC, activity Elevate decision to committee, activity Analyse in committee
and activity Approve RFC. Note that event Receive RFC' is not included
since time starts counting when Receive RFC' is triggered, which means it
does not have any influence on the duration of the RFC lifetime.

Unlike relationship measured by, the set of elements involved in a PPI
cannot always be directly inferred from the PPINOT metamodel since there
are many factors that can make a BP element to have an influence in the
value of a PPI. For example, the type of an RFC may have an influence on
the lifetime of an approved RFC since some activities may take more time if
the RFC involves an adaptive change than if it involves a corrective change.

Nevertheless, it is possible to leverage the definition of the PPI and the
control flow of the business process to make a design-time estimation of the
BP elements that may have an influence on the PPI as summarised in Table 2.
This estimation can be later refined by means of techniques similar to those
described in [10] such as:

e Knowledge of domain experts, which can be used to determine possible
domain-specific influences of a BP element in a PPI.

21

Measure type

Elements involved

Time

(1) The elements that are executed between the start and
the end of the time measure and (2) the elements at the
start or at the end if some of the time of their execution
is included in the time measure.

Count

(1) The element that is being counted and (2) the XOR
gateways that have taken the execution path to that ele-
ment.

Condition

(1) The element used in the condition and (2) if the con-
dition involves a data object, the activities that can write
In 1it.

Data

(1) The data object whose value is measured and (2) the
activities that can modify the data object.

Aggregated

(1) The elements involved in the measure that it aggre-
gates and (2) if it groups results by some value, the data
object that provides it.

Derived

The elements involved in the measures used in the math-
ematical function applied to calculate the value.

Table 2: BP elements involved in a PPI

e Data mining techniques, which can be applied to the data collected
during the execution of the process. For instance, an analysis of the
executions of a process may conclude that the content of the RFC have
an influence on the previous PPI if the likelihood of having a longer
average lifetime changes depending on the type of RFC.

Obtaining automatically a design-time estimation of the BP elements that
have an influence on a PPI is useful because of the following reasons. First,
it is not necessary to have execution data available, which is an advantage
when execution data is very costly to obtain or when it refers to business
process or PPIs that are still being designed and, hence, no execution data is
available. Second, although domain experts can determine possible domain-
specific influences of a BP element with a PPI without execution data, this
task is error prone, specially when the number of PPIs or elements are high.
Therefore, this automated estimation can be used as an input or a comple-
ment for domain experts to determine domain-specific influences. Finally, if
the design-time estimation is obtained automatically, it helps the modeller

22

of PPIs to quickly analyse different configurations of PPIs in order to find
one that covers the most relevant BP elements.
Regardless of whether the relationship is inferred at design-time or refined

using one of the aforementioned techniques the following analysis operations
can be defined.

4.2.1. BP elements involved in a PPI
This operation takes a set of PPIs and the corresponding BP model as
input and returns the set of business process elements involved in those PPIs.

Involved BP Element(PPI[1..x], BP) : BPFElement]0..%]

Related to this operation other similar operations can be defined that returns:

e The BP elements that are not involved in any PPI:

NotInvolved BPElement(PPI|[1..x], BP) : BPElement|0..x]

e The BP elements that are involved in all of the PPIs:

InvolvedInAllBPElement(PPI[1..x|, BP) : BPElement|0..%]

The information provided by these operations is useful to find out which
are the elements in a business process that are not involved with any PPI.
This would mean that those elements are not being taken into consideration
by the current set of PPIs and, hence, that it may be convenient to introduce
or modify a PPI to cover them. It is also useful when a PPI must be replaced
with others (maybe because it is very costly to obtain its value) in order
to assure that every element of the business process that was taken into
consideration before is taken into consideration in the new case.

4.2.2. PPIs associated to a BP element

This operation is the inverse of the previous one. It takes a set of BP
elements, the BP model that contains those BP elements and the PPIs model
defined for that BP as input and returns the set of PPIs that are associated
to those BP elements.

AssociatedPPI1(BPElement, BP, PPI[1..x]) : PPI[0..x]

23

For instance, the following PPIs are associated to the activity Analyse
RFC:

e PPI5 because it directly measures the average duration of that activity.

e PPI6 because it measures the number of RFCs with state in analysis,
which is the state in which RFCs are while the activity Analyse RFC
is being executed. Therefore, this number may be influenced by the
throughput of this activity amongst other reasons.

e PPI9 because it measures the average lifetime of a RFC and, hence,
the duration of activity Analyse RFC has an influence on it.

The information obtained in this operation can assist during the evolution
of business processes. For instance, if part of the business process evolves
and is modified (e.g., an activity is deleted), this operation allows to identify
which PPIs will be affected and may be updated.

4.2.3. PPIs associated to the same, a subset or a superset of the elements of
other PPI
These operations take a PPI, the set of PPIs defined by a business process
and the corresponding BP model as inputs and returns the set of PPIs that
are associated to either:

e the same elements as the given PPI:

PPISameElements(PPI, PPI[1..x], BP) : PPI|0..%]

e a subset of the elements of the given PPI:

PPISubset Elements(PPI, PPI[1..x], BP) : PPI[0..x]

e a superset of the elements of the given PPI:

PPISupersetElements(PPI, PPI[1..x|, BP) : PPI|0..%]

The information provided by these operations can be useful to find out
about possible redundancies amongst the PPIs defined for a business process.
For instance, many PPIs associated to a superset of the elements of a given
PPI could be a sign that the PPI is providing redundant information. Nev-
ertheless, these operations just provides hints and it is always the task of the
PPI modeller to decide whether an indicator provides redundant information
or not.

24

5. Automating the Analysis of the PPINOT Metamodel Using DLs

In the previous section, we have provided a description of operations for
design-time analysis of relationships between PPIs and BP elements. How-
ever, their semantics has been defined in an intuitive way. In this section,
we provide a precise definition of them by means of a semantic mapping. A
semantic mapping is a way to provide semantics to a model by mapping the
concepts into a semantic domain, i.e., a target domain whose semantics has
been formally defined [23]. The advantage of defining such semantic map-
ping is that it allows one to use the techniques specific to the target semantic
domain for analysing the source models [24].

In this paper, we have chosen description logics (DLs) [25] as the semantic
domain for our mapping because of two reasons. On the one hand, the
definition of a set of PPIs for a business process fits nicely into the way DLs
express their concepts and, hence, it provides a very natural way to describe
the problem. On the other hand, powerful reasoning systems for DL like
Racer [26], Hermit [27] and Pellet [28] have been developed, allowing thus
to build upon such standard DL reasoning services to automatically analyse
PPIs instead of implementing ad-hoc analysis algorithms.

Note that other semantic mappings to formalisms different than DLs can
be defined for the PPINOT metamodel. However, a discussion of the appro-
priateness of other formalisms, although a relevant research topic, is outside
the scope of this paper.

5.1. Foundations of Description Logics

A DL-based knowledge base (KB) is a finite set of terminological and
assertional sentences. It thus has two components: the TBox and the ABox.
The TBox describes terminology, i.e., the ontology in the form of concepts,
which denote sets of individuals, role definitions, and their relations; the
ABox contains assertions about individuals using the terms from the ontol-
ogy.

Semantically, DL are found on predicate logic, but their language is
formed so that it would be enough for practical modeling purposes and also
so that the logic would have good computational properties such as decid-
ability [29]. As exemplified in Table 3 and Table 4 *, DL have a rich set

Tn this paper a syntax commonly used for DLs [25] is used.

25

Axiom DL Syntax Example
Sub concept C, C Oy TimeMeasure C BaseMeasure
Equivalent con. Cy =0, ComposedFilter = And U Or LU Not
Disjoint with Cy C =0y TimeMeasure & ~CountMeasure
Sub role P C PR when C relatesTo
Inverse role P~ 1sUsedBy~
Transitive role Pt suct
Equivalent role P=PR definition = isUsed By~
Role composit. PioP, refersTo™ ouses™ C isUsedToCualculate
Functional role TCL1P T E< ldefinition
Inv. func. role TCL< 1P T E<L lisUsedBy~
Table 3: Some DL axioms
Constructor DL Syntax Example
Intersection Cin---ndc, | MeasureDefinition I DataM easure
Union Ciu---uag, TimeMeasure L DataM easure
Complement =C = DeriwedMeasure
One of x4 U, PPI1UPPI3UPPIS
All values from VP.C Vde finition. MeasureDe finition
Some values iP.C drefersTo. TimeMeasure
Has value Pz 1sUsedBy.PPI1
Max cardinality <nP < lappliesTo
Min cardinality >nP > luses

Table 4: DL concept constructors

of knowledge representation constructs that can be used to formally spec-
ify PPI-domain knowledge, which in turn can be exploited by description
logic reasoners for purposes of inferencing, i.e., deductively inferring new
facts from knowledge that is explicitly available [30]. Amongst others, DL
reasoners usually implement the following reasoning operations:

e satisfiability(C): It determines whether a description of the concept
C' is not contradictory with the KB.

o subsumes(A, B): It determines whether concept A subsumes concept
B, i.e., whether description of A is more general than description of B.

e individuals(C):

It finds all

individuals that are instances of concept

26

C.

e realization(i): It finds all concepts to which the individual ¢ belongs.

5.2. Mapping the PPINOT Metamodel into DL

The mapping of the PPINOT metamodel into DL involves defining a DL
knowledge base that includes the classes and relations of the metamodel as
axioms of its TBox. In particular, we must create one DL concept for each
class of the metamodel (keeping the same names) and set in the knowledge
base the hierarchies that appear in the metamodel using the subclass axiom
(e.g. BaseMeasure T MeasureDe finition).

The directed associations in the metamodel are mapped into roles of the
TBox whose domain is the DL concept corresponding to the class of the meta-
model that acts as source, and whose range is the DL concept corresponding
to class that acts as target. The cardinality restrictions of the associations
are mapped as concept inclusion axioms to the source class. For instance, the
cardinality restriction: “each Condition appliesTo at most one BPElement”
is mapped into the following axiom: Condition C< lappliesTo.BP FElement.

Finally, we introduce two new DL roles. Role relatesTo is defined as
a super-role of the roles that relate measures with conditions (i.e. from C
relatesTo, to C relatesTo, when C relatesTo and so on) and role isU sedT oCalculate
is defined as the composition of the inverse of roles refersTo and uses
(refersTo™ o uses™ T isUsedToCalculate) to relate the derived measure
to the measures used to calculate it.

A complete mapping of the PPINOT metamodel and the abstract BP
modelling language into a DL knowledge base can be found at http://www.
isa.us.es/ppinot

5.8. Automated Analysis of PPIs using DL

On the basis of the mapping of the metamodel to DL, the analysis oper-
ations detailed in Section 4 can be formulated so that DL reasoners can be
used to implement them. The general approach we follow to formalise these
operations in DL is first to define the relationship as a new role in the knowl-
edge base and, then to formulate the operations in terms of DL reasoning
operations.

27

5.8.1. Operations for the relationship measured by

This relationship is formalised in DL by defining a new role in the KB
(measuredBy), whose domain is BP Element and whose range is PPI so
that measuredBy(e, p) means that a BP element e is measured by PPI p.

To give semantics to the relationship in terms of the elements defined in
the KB we use the fact that the relationship measured by can be inferred
from the measure definition of a PPI. The idea is to introduce a new role
measures with domain MeasureDefinition and range BPFElement that
relates measure definitions with BP elements and, then, use this new role in
the definition of measuredBy as follows:

measures” o definition” C measuredBy

Finally, role measures is used to relate each measure definition with the
BP elements used in the definition. In the KB, this can be formalised using
the composition of roles as follows:

relatesTo o appliesTo C measures
measuresData o data = measures
aggregates o measures L measures
1sGroupedBy o data T measures
uses orefersToomeasures C measures

The first two axioms define role measures for base measures, the next
two axioms define it for aggregated measures and the last axiom defines it
for derived measures. Note that in both aggregated and derived measures
role measures is defined recursively based on the measure definitions they
aggregate or compose.

Based on role measuredBy, the operations for this relationship can be
easily formulated as follows:

e The BP elements measured by a set of PPIs P are those elements e
that have a role measuredBy(e, p), where p € P. In DL, this can be
expressed as the result of individuals(3ImeasuredBy.P).

e Similarly, the PPIs that measure a given BPElement e is equivalent to
the result of individuals(ImeasuredBy~ .{e}).

28

5.8.2. Operations for the relationship involved in

Like in relationship measured by, the elements involved in a PPI P are
determined by its definition, which is expressed in the metamodel by means of
a measure definition. Therefore the approach we follow with this relationship
is very similar to the one followed with relationship measured by.

Specifically, we define two new roles in the KB, namely: role involvedIn
whose domain is BP Element and whose range is PP1 so that involvedIn(e, p)
means that a BPElement e is involved in a PPI p, and role inv whose domain
is also BPFElement, but whose range is MeasureDefinition. Finally, the
following axiom formalises the relationship between them by stating that the
elements involved in a PPI are those involved in its measure definition:

v o defines” C tnvolvedIn

Consequently, the definition of role involvedIn can be reduced to the
definition of role inv. However, this relationship is more complex than re-
lationship measured by and, hence, we cannot define role inv in a generic
way, but it is necessary to introduce an axiom that specifies the BP elements
involved in a measure definition for each measure definition m in the KB.
This axiom may vary depending on the type of the measure definition (i.e.
time, count, condition, data, aggregated or derived) as detailed in Table 2.
Next we detail each of the possible cases.

Time measure. According to Table 2 the elements involved in a time measure
tm are Jinv.{tm} = ElemStart,,, U ElemEndy,, U ElemPathy,,, where:

e FElemStarty,, is the element where time starts to be measured unless
the state in which the measure starts is an end state. In that case,
ElemStart,,, is empty: ElemStarty,, = JappliesTo~.(Ifrom= . {tm}N
—dstate. EndState)

e FElemEnd,, is the element used in the condition that specifies when
time ends to be measured unless the state specified by the condition is a

start state, in which case it is empty: ElemEndy,, = JappliesTo~ .(Fto™ . {tm}

—dstate.StartState)

o ElemPathy, is the BP elements that succeeds the element where time
starts to be measured and precedes the element where time ends to
be measured: ElemPathy,, = Jsucc™.(3appliesTo™.(Ifrom™ {tm}))N
dprect.(3appliesTo™.(Fto~.{tm}))

29

Count measure. In this case, the elements involved in a count measure cm
are: Jinv.{ecm} = ElemCount., Ll InvolvedX or.,, where:

o ElemCount., is the element that is being counted: ElemCount,.,, =
JdappliesTo~.(Jwhen™.{cm})

e InvolvedXor,, is the set that includes every XOR gateway that pre-
cedes the element that is being counted: InvolvedXor,,, = XorGatewayrl
dprect.(3appliesTo~.(Jwhen —{cm}))

Condition measure. The elements involved in a condition measure cm are:
Jinv.{cm} = ElemCond.,, U ElemWriters.,,, where:

e FElemCond,,, is the element whose condition is being evaluated: ElemCond,,, =
JdappliesTo~.(Imeets {cm}).

o ElemWriters., correponds to every activity that can modify, i.e.,
write the data object whose state is being evaluated if there is any:
ElemWriterse, = IdataOutput.(DataObject 1N ElemCond,,,)

Data measure. The elements involved in a data measure dm are: Jinv.{dm} =
DataM easuredy,, J ElemW ritersg,,, where:

o DataMeasuredg, is the data object that is being measured: DataMeasuredg,, =
ddata™.(ImeasuresData™.{dm}).

e FElemWritersy,, is the activities that could have modified that data
object ElemWriters,,, = ddataOutput. DataM easuredg,y,

Aggregated measure. The elements involved in an aggregated measure am
are: dinv.{am} = Jinv.{bm} U InvolvedData,,, where:

e Jinv.{bm} is the elements involved in the base measure that the ag-
gregated measure aggregates (i.e. bm € Jaggregates™.{am}).

e InvolvedData,,, is the data that the aggregated measure groups by if
there is any: InvolvedData,, = Idata™.(FisGroupedBy~ .{am})

30

Derived measure. The elements involved in a derived measure dm are: Jinv.{dm} =
dinv{d, }U---UFinv.{d,}, where Jinv.{d;} is the elements involved in each

of the measures used in the mathematical function applied to calculate the

value ({dy,...,d,} € FisUsedToCalculate.{dm}).

These definitions have two limitations regarding time measures and count
measures that are worth mentioning. The first one is the definition regarding
time measures considers all of the elements between the first occurrence of the
element that starts the time measure and the last occurrence of the element
that ends the time measure. However, if the time measure is cyclic, it should
only include the elements until the first occurrence of the element that ends
the time measure. The consequence is that if the time measure is cyclic,
then the definition may include more involved elements than it should (i.e.
those between the first and the last occurrence of the element that ends the
time measure). However, from a practical point of view, this only affects
when the time measure is defined in a loop since in other cases the first
and the last occurrence of the element that ends the time measure coincides.
The second limitation is that in count measures we consider every preceding
XOR gateway without excluding those opening gateways that were already
closed with another one (that is, for instance, a splitting gateway with its
corresponding merge).

Both limitations could be solved using another formalism to analyse the
control flow of the business process and then including the result of the
analysis in the KB. For instance, Petri nets could be used to obtain the
process fragment between the first occurrence of the element that starts the
time measure and the first occurrence of the element that ends it. However,
the specific mechanism on how to do so is out of the scope of this paper.

Like relationship measured by, operations for relationship nvolved in can
be formulated based on role tnvolvedIn as follows:

e Operation Involved BP Element, which returns the BP elements that
are involved in a set of PPIs P can be formulated as individuals(JinvolvedIn.P)

e Operation NotInvolved BP FElement, which returns the BP elements
that are not involved in any PPI of the set of PPIs P can be formulated
as individuals(—(JinvolvedIn.P))

e Operation InvolvedInAllBP Element, which returns the BP elements
that are involved in all of the PPIs included in a set of PPIs P can be

31

formulated as individuals(JinvolvedIn{p,}N...NJinvolvedIn.{p,}),
where py,...p, € P.

e Operation AssociatedPPI, which returns the PPIs in which a given BP
element e is involved can be formulated as individuals(JinvolvedIn~ .{e}).

The last three operations that returns the PPIs associated to the same,
a subset or a superset of the elements of a given PPl p must be done
in three steps. First, a concept Involved BPFElement, that represents all
the BP elements that are involved in a PPI ¢ (InvolvedBPElement, =
JinvolvedIn.{q}) is defined for each PPI ¢ included in the KB. This al-
lows the DL reasoner to classify all these concepts by using DL opera-
tion subsumes. Then, depending on whether we are defining operation
PPISameFElements, PPISubset Elements or PPISupersetElements, this
classification is used to obtain the concepts that are equivalent or a subset or
a superset to the concept Involved BP Element,, respectively. In each case,
the result is a set of Involved BPElement,, , ..., Involved BP Element,,, con-
cepts. The final step is to obtain the PPIs pq,...,p, associated to those
Involved BP Element concepts. These are the resulting PPIs.

6. Implementation

We have developed PPINOT Tool Suite that includes: (1) two comple-
mentary tools to define PPIs, namely a graphical editor based on Oryz [31]
to define them together with their corresponding BPs (cf. Figure 7) and a
templates-based editor that uses natural language patterns to allow a tex-
tual definition of PPIs; (2) a design-time analyser of PPIs that implements
the operations described in Section 4; (3) a PPIs instrumenter that allows
to gather the required information to compute their values from Activiti (an
open source BPMS, http://activiti.org), and (4) a reporter that shows
these values®. Furthermore, PPINOT Tool Suite is BPMN 2.0 compliant,
since PPIs can be defined over BP diagrams (BPDs) previously defined us-
ing this specification®.

2In its current version, this reporter provides a simple list of values. We plan to extend
it to improve the GUI and provide an enriched report.

3Further information related to PPINOT Tool suite, as well as some guidelines and the
links to try it, can be found at http://www.isa.us.es/ppinot.

32

ORsX

BE&~ 0 ool [~ &~ |5 5| © L] d(==) = x xEE
Shape Repository «

4 Start Events = [6 33 ’ PPI-inventadoz

4 catching Intermediate Even'

4 Throwing Intermediate Even] aggregates 2

 End Events oo) BPElements

2 S ® RrcUndaranalysis Involved

I reen ~N !

° PPI-inventadol

o Tinetteasure

21 countieasure

B3 DataCondtionMeasure

) ElementCondtionMeasure

Requesters .~ .

B Datameasure i

(;u P

3 DerivedMeasure

[E) perivednstancenteasure
U DerivedProcesshieasure
=) AggregatedMeasure
agregatedMeasure
5 Timeagoregatedmeasure

B countagoregatedeasure

]

DataConditionAggregatedieasure

Elevate
decision to
ommittee

Planning & Quality Manager

A, D
RFC
approved

ElementConditionggregatedMeasur]

Committee

B Datasggregatedmeasure

ERT

[T
e =
<

= PRI Connectors

corrective chahge

#" Time connector

A appliesTo

o Aggregetes
o IsGroupedBy PPI
N\ e J Palette

Figure 7: PPINOT screenshot

The PPINOT metamodel is the central part of the PPINOT Tool Suite
since all of the tools use it as a common base for their implementation. The
PPIs models used in the PPINOT Tool Suite are serialized in XML and links
to refer to elements of a BPMN model are provided. Furthermore, this XML
can be embedded into the XML serialization of a BPMN 2.0 process model
using the extension mechanisms provided by BPMN. Therefore, models de-
fined according to the PPINOT metamodel can be used together with BPMN
models seamlessly. These XML files with information about both PPIs and
BP models are generated by both editors and used by the PPINOT Instru-
menter and the Reporter as inputs to instrument processes and calculate
PPIs values, respectively.

Regarding the analyser, it implements the operations described in Section
4 as depicted in Figure 8. Therefore, the interface of the analyser contains
those operations together with an additional load operation that must be
called before any of the other operations can be invoked.

33

; g7
PPINOT Tool Suite
e
PPINOT
Graphical Editor
2]
Oryx PPINOT Analyser
S o P
? g] 5 XML20WL !
mapper [~
PPINOT Oryx —@—ﬁ}—DO— PPINOT = Br+pris]! T
Plu.gm Sanice - B - i
| <] J
! PPINOT [5][.~ PPl | —
: eta%odel F-——={ analyser ->| PPIAE%IWS B
i |
|
| /:\ Hermit
L O] £ E o
"""" XML e s e ;
e —= Templates :
/ 1 Editor
[! Other reasoners
a v ﬂ V a could be used
i ® PPINOT O) PPINOT
. _< Instrumenter e Reporter
[o |

Figure 8: PPINOT component model

The goal of the load operation is to map both the BP model and the
PPI model into a DL knowledge base serialized in OWL, which is a W3C
recommendation for the representation of ontologies and is based on DLs.
It involves the following steps. First, it receives the BP model and the PPI
model together as a BPMN 2.0 xml file. Then, it maps them to the ABox
of a DL knowledge base, i.e., as instances of the concepts defined in the KB.
The TBox of the DL knowledge base, i.e., the concepts, have been previously
defined according to the mapping described in Section 5.2. The next step
is to add the axioms that are necessary to formalise the operations for the
relationship involved in into the KB. Finally, it loads the KB serialized as an
OWL file into a DL reasoner, in this case HermiT.

After this process, the user can invoke any other operation of the anal-
yser, which are all implemented in a very similar way. First, the analyser
invokes the appropriate reasoning operation in the DL reasoner as detailed in
Section 5.3 and, then, it traces back the results obtained by the DL reasoner
to the BP and PPI model and sends them to the user.

PPINOT Analyser has been integrated as a plugin on Oryx so that the
user can obtain the design-time analysis information while modelling the

34

PPIs (cf. Figure 7), although it can be used in other environments as well.

7. Application to a Real Scenario

In order to show the application of the approach presented in this paper
to a real scenario, we will use the scenario introduced in Section 2. This
scenario takes place in the context of the IT Department of the Andalusian
Health Service. This department engaged some years ago in an initiative
to adopt the set of good practices proposed by ITIL*. This entailed, among
others, to define business process models as well as performance indicators
for them. After accomplishing this goal, they had two kinds of documents:
the business process models, produced by the departments/roles in charge of
the modelling and execution of business processes; and the documents con-
taining the definition of their associated PPIs in natural language, produced
by the departments/roles in charge of the definition and consecution of goals
and its associated indicators. This situation led to several problems, already
introduced in Section 1. First, the ambiguity, inherent in natural language,
and incompleteness in PPI definitions, in the sense of missing information re-
quired to instrument business processes for the PPI values computation. Sec-
ond, the lack of traceability between the two kinds of documents, that makes
it really complicated to maintain the coherence across them, since changes
in one document had to be reflected in the other by hand and vice-versa.
As a result of the coexistence of these two worlds unable to communicate to
each other, inconsistencies between them appeared and it was necessary the
human intervention to solve them, which was quite tedious and error-prone.

To illustrate the application of PPINOT, let us focus on the Request For
Change (RFC) management process (the one presented in Section 2), from
the set of processes defined for the IT Service Management (ITSM) of this
organisation. The (simplified) business process model is depicted in Figure
1 and the set of PPIs defined for it are listed in Table 1. Taking these doc-
uments as starting point, the RFC management process model was refined
and its associated PPIs were defined using PPINOT Graphical Editor. Fig-
ures 9 and 10 depict the RFC management process together with the 9 PPIs
defined for it5. It was possible to define the whole set of PPIs required,

4Information Technology Infrastructure Library [32].
5 Appendix A contains the corresponding specification of these PPI definitions according
to the PPINOT metamodel.

35

° PPI1
T 1
100 I

T
(a/b)*

RFC Cancejéd out of NtC rsgisterd
©

@

Planning & Quality Manager

Elevate
decision to
Committee

RFC
[approved] =+, o
B

&,

-
v,

L S

RFC
[registered]|

Committee
35
B3
SN Bz
I

£ 1
S

e

Avg time of committee decision SUM

Corrective RFCs out of RFCs approved

Figure 9: RFC management process together with PPIs graphically defined (PPIs 1 to 4)

what shows the expressiveness of PPINOT metamodel. In particular, within
these 9 PPIs, there were 3 time aggregated measures, 6 count aggregated mea-
sures, two of them using isGroupedBy, 1 state condition aggregated measure,
2 data property condition aggregated measures, and 2 derived multi-instance
measures. These definitions of PPIs eliminate ambiguities and incomplete-
ness, since they are based on the PPINOT metamodel and contain all the
information required for their computation.

Furthermore, the availability of the set of analysis operations described
in Section 4 allowed them to solve the problem of the lack of traceability.
In particular, these operations were mainly used in the context of process
evolution. Within this organisation, it was quite frequent to raise the pos-
sibility of eliminating or modifying certain activity within a process as part
of its continue improvement. In this case, the operation AssociatedPPIs

36

G PPI6
()
aggregates _I
<> SUM I
Avg lifeffime,of an RFC REC in analysis #RFCs in analysis

Lo

. &L
. Requester & |

& H
Cancel RFC

o)

> .

.
] H
g :
f=4 ..A N :
o] H
= RFC

> [canceled]|
2 H
E

o Analyse RFC x Approve RFC é
< ﬁ

2 Ty

Z RFC

c Elevate [approved]

o decision to

= Committee

Analyse in
Committee

Committee
3
(-3
o
o
2
W0
(o)

Y oy L
AN = \
c;"Q K P2 .
& R "
& . HE-S Q K
s 4
o P < .

AVG

Avg time of RFC analysis

#RFCs per type of change #RFCs per project

Figure 10: RFC management process together with PPIs graphically defined (PPIs 5 to
9)

was used to obtain the information about which were the PPIs that could
have been affected because of the aforementioned change, so that those PPIs
could be updated. Besides, the operation Measured BP Elements was also
used to maintain an updated list of which were the elements that needed to
be measured in the process to obtain the PPI values®. As an example, Table
5 depicts the result of applying this Measured BP Elements operation to the
9 PPIs defined for the RFC management process.

In addition, this department has also recently adopted a change in its
business policy and they established that new software developments for

6The traceability between this list and the concrete way of obtaining the required
information from the corresponding information systems was maintained manually.

37

Name | Measured BPElements

PPI1 | Event Receive RFC & dataObject REC' [cancelled]

PPI2 | Acitvity Analyse in comittee

PPI3 | Event Report RFC approved & dataObject RFC' [approved]
PPI4 | Event Report RFC approved & dataObject RFC' [approved]
PPI5 | Activity Analyse REC

PPI6 | Activity Analyse RFC

PPI7 | DataObject REC [registered]

PPI8 | dataObject REC [registered]

PPI9 | dataObject RFC [registered] & pool RFC Management

Table 5: Summary of the result of applying the operation Measured BPElements to the
9 PPIs of the RFC management process

the Andalusian Health Service must include the definition of the business
processes to which they provide support; and, as a consequence of their
experience with PPINOT, it is planned to use it for the definition of PPIs
for those business processes.

8. Validation

We have validated our proposal by means of several actions. On the one
hand, the implementation of PPINOT Tool Suite has served as a proof-of-
concept that shows the applicability of our proposal. On the other hand,
we have successfully applied PPINOT to manage PPIs in three different real
scenarios including the one described in previous section, the I'T Department
of the Andalusian Health Service, as well as the Information and Communi-
cation Service of the University of Seville and a part of the administration of
the Andalusian Regional Government. Next we detail how these validation
actions have allowed us to validate different aspects of our proposal.

The validation scenarios in which we have applied our proposal have
helped us to test and improve the expressiveness of the PPINOT metamodel.
In summary, with PPINOT metamodel we have been able to model all of
the 54 PPIs for 10 different process models ranging from a Request For
Change (RFC) management process to user management process and eval-
uation and certification management process, and belonging to 3 different

38

organisations’. All of those PPIs were defined on multi-instance measure.

In particular, 14 were time aggregated measures; 54 were count aggregated
measures, 2 of them using isGroupedBy; 1 was state condition aggregated
measure, 2 were data condition aggregated measures, 1 was data aggregated
measure, 8 were derived multi-instance measures and 5 were aggregated of
single-instance measures. From this evaluation we can conclude that the
PPINOT metamodel provide a solid basis for defining PPIs in any organisa-
tion. Furthermore, one of the main benefits that organisations obtained from
the modelling of PPIs using the PPINOT metamodel was that it helped to
identify ambiguities and missing information that contained previous defini-
tions of PPIs, chiefly caused because they were expressed in natural language
(an example is the PPIs detailed in Table 1). Instead, the PPI definitions ob-
tained with PPINOT are now precise and contain all the information required
to compute their values from the corresponding systems if the appropriate
mechanisms are implemented.

Regarding the traceability provided by the PPINOT metamodel, the im-
plementation of PPINOT Tool Suite helped assure the completeness of this
traceability. On the one hand, the design-time analysis operations imple-
mented by the PPINOT Analyser require full traceability between PPIs and
BP elements since their main goal is to identify all of the relationships be-
tween them. On the other hand, without such traceability it would have
been impossible for PPINOT Instrumenter to automatically instrument the
processes in order to obtain the measures that are necessary to calculate
PPIs. Furthermore, the traceability provided by the PPINOT metamodel
helped solve many issues regarding the definition of PPIs in the three vali-
dation scenarios. These issues were caused because in all three organisations
the process model and the PPI definitions were two separate documents and,
hence, it was really complicated to maintain the coherence across them. In
fact, in one of the organisations, the PPIs associated with a process were
defined using different terms and even at a different abstraction level than
those used in the process. This made it really hard to relate them with the
process and, hence, they can hardly be used to improve it.

Finally, the implementation of PPINOT Tool Suite have shown that the
PPINOT metamodel is useful to enable the automation of many PPI man-
agement tasks. As a matter of fact, PPINOT Tool Suite has been built

"Because of privacy reasons these processes and PPIs cannot be included in this paper.

39

around the PPINOT metamodel so that it provides a common way to repre-
sent PPIs that is useful for all of the tools that we have implemented. Both
editors create PPI models according to the PPINOT metamodel. This PPI
model can be used later on by PPINOT Instrumenter to instrument Activiti
by configuring event generators when one of the conditions used by the PPIs
in the PPI model take place. PPINOT Reporter receives these events at
run-time, calculate the value of the PPIs according to the definition specified
in the model and shows these values to the user. Finally, PPINOT Analyser
is a proof of our automated design-time analysis approach.

9. Related Work

Performance measurement is a current research field in management sci-
ence that have gained interest in both academia and business [10]. Many
works have been done in the identification and classification of key perfor-
mance indicators for any company [33] and those relevant for specific domains
such as logistics, production, supply chains, etc. (e.g. [34, 35, 36, 37])

Process management is becoming a part of the language and actions
of many organisations. Hence, many authors recognize the importance of
process orientation of performance management systems [38]. Actually, the
Academia of Business Process Management Professionals provides a defini-
tion for process performance measurement: “the formal planned monitoring
of process execution and the tracing of results to determine the effectiveness
and efficiency of the process” [39].

There already exists a number of proposals to evaluate the performance of
business processes defined in the literature and, in some cases, implemented
in products.

Popova et al. present in [10] a framework for modeling performance in-
dicators within a general organisation modeling framework. They define in-
dicators by assigning values to a set of attributes, but they do not point out
the way these indicators are calculated. They also define relations between
PPIs and the processes, and relationships between PPIs (causality, correla-
tion and aggregation). This work is extended in [40], where they also present
formal techniques for the analysis of executions of organizational scenarios.
Furthermore, in [18] they establish the connection of performance indicators
with goals and discuss analytic issues for consistency and verification checks
of the goal structures and between goals and PPIs. Regarding the definition
of a scope, they define temporal properties over PPIs (called PI expressions)

40

n [41], but our proposal is more flexible and allows to define some kind of
filters that they do not take into account (e.g. a composition of a TimeFilter
with a ProcessStateFilter). Moreover, they do not consider derived measures
nor offer design-time automated analysis facilities to obtain what we call in
this work PPI-BPElements Interaction.

In[42] Mayerl et al. discuss how to derive metric dependency defini-
tions from functional dependencies by applying dependency patterns. To
this end, they propose a model that distinguishes between a functional part,
where they define dependencies between application, service and process lay-
ers (based on concepts of BPEL and WSDL), and another part for metric
dependencies, based on concepts of the CIM metrics model [43] and the
QoS UML profile described in [44]. They also introduce a mathematical for-
malism in order to describe dependency functions and the so-called metric
characteristics or metrics calculable based on other metric values. Finally
they cover the mapping of these models to a monitoring architecture that
contains functions to instrument and collect metrics, functions to aggregate
and compare metrics with agreed service levels and functions to report SLA
compliance and violations. However, they do not delve into the definition
of measures, they only set the semantics of some elements to consider when
defining measures.

Castellanos et al.’s approach [45] is implemented in the IBOM platform,
that allows, among other things, to define business measures and perform
intelligent analysis on them to understand causes of undesired values and
predict future values. The user can define business measures (through a
GUI) to measure characteristics of process instances, processes, resources
or of the overall business operations. Specifically, they characterize metrics
through four attributes: name (unique), target entity (objet to be measured),
data type (numeric, boolean, taxonomy or SLA) and desirable metric values.
For the computation logic definition, templates are used. These templates
map data and metadata about process executions into numeric and boolean
measures. This approach is not focused on business processes but on the
whole organisation. Anyway, during the definition of what they call metrics,
as far as we can deduce from the paper, they do not take into account some
aspects we do, as the scope, the unit of measure, the dimension to be mea-
sured. It is not possible to accurately know which is the set of measures than
can be defined with this approach.

Momm et al.’s approach [46] consists of a top-down approach for develop-
ing an uniform I'T support based on SOA in conjunction with the monitoring

41

aspects required for processing the PPIs. Momm et al build the approach on
the principles of the Model Driven Architecture (MDA) to enable the sup-
port of different SOA platforms as well as an automated generation of the
required instrumentation and monitoring infrastructure. Particularly, they
present a metamodel for the specification of the PPI monitoring, an exten-
sion of the BPMN metamodel for modeling the required instrumentation for
the monitoring, and an outline of methodology for an automated generation
of this instrumentation. However, the metamodel for the specification of per-
formance indicators does not consider those related to data or events (PPI6
from our example can not be defined according to this metamodel); and it
lacks some properties when defining PPIs like the scope or the function to
calculate derived measures. Moreover, the absence of a formal foundation
for this PPI definition does not allow an automated analysis of them.

Another work which is close to ours is the one presented by Wetzstein
et al. in [9]. This paper introduces a framework for BAM as part of the
semantic business process management. The authors describe a KPI ontology
using WSML to specify KPIs over semantic business processes. However, our
ontology improves this one, since they do not take into account indicators
related to data (they can not define PPI6).

The integrated methodology GRAI/GIM [47, 48] explicitly models per-
formance indicators. They establish three parameters or attributes to define
performance indicators: name, value domain or dimension and procedure to
calculate the value. However this definition is not process-aware and is only
made informally and without taking into account the relationships among
the performance indicators and between them and the BP elements.

ARIS [49] models key performance indicators and allow for using the
Balance Scorecard approach for modelling cause-and-effect relationships and
assign KPIs to the strategic objective. Furthermore, in [50], the ARIS Process
Performance Manager is described. This tool provides a mechanism to define
measurement points over BPs defined using EPCs, as well as the data sources
and calculation rules required to calculate PPIs. However this tool, to the
best of our knowledge, is not able to define PPIs related to data and is more
restrictive regarding the definition of the scope. Furthermore, the definition
of PPIs must be done over EPCs, loosing thus the flexibility of our proposal,
that can be applied to any business process language.

Pedrinaci et al. [51] describe a Semantic Business Process Monitoring
Tool called SENTINEL. This tool can support automated reasoning, though
the authors point out that one aspect to be improved is the analysis engines

42

in order to support deviations. In this paper, they also present a metric
ontology to allow the definition and computation of metrics, which take into
account many of the aspects we do , for instance the concept of population
filter, which is somehow similar to our scope, though they do not delve into
the detail of the types of scope that can be defined. However, it is not clear
how PPIs can be analysed and queried based on this concept nor it is clear
whether it allows an explicit relation between PPIs and the elements of a
business process. Furthermore, they deal with runtime analysis, but not
design-time.

In Table 6 we establish an explicit comparison between the previously
commented approaches for the process performance measurement and PPINOT
(our proposal). We highlight those requirements for an appropriate definition
of PPIs established in Section 1: Expressiveness (unambiguous and complete
definition, taking into account the possibility to define SMART PPIs and
the different types of measures and scopes described, feature 1), traceability
with BP elements (feature 2), and automated analysis, in the table repre-
sented through ”Aut An” due to space constraints (feature 3). We do not
include the understandability requirement in this comparison since this is-
sue, though commented in the presented implementation and addressed in
our other work, is out of the scope of this paper. Furthermore, we also in-
clude in the table two additional features we consider important to enable
such an appropriate PPI definition and analysis (tooling support, feature 4,
and support for BPM standards like BPMN or BPEL, feature 5). We use the
following notation: A ¢ sign means that the proposal successfully addresses
the issue; a ~ sign indicates that it addresses it partially; N/A means the
information is not available; and a blank cell indicates that it does not con-
template the issue. We use v'* for two features: time measures, when those
approaches that addresses this feature do not distinguish between linear and
cyclic time measures; and aggregated measures, when those approaches that
addresses this feature do not take into account the possibility of grouping by
certain property (isGroupedBy).

10. Conclusions and Future Work

In this paper we demonstrate that it is possible to provide PPI definitions
that are: unambiguous and complete, understandable by non-technical users,
traceable with the business process elements and amenable to automated
analysis. This is done by presenting PPINOT Metamodel. This mechanism

43

[esodoxd mo pue seyprordde pesAeur ot} jo uostredwro)) :9 9[qe],

110ddns prepueis NINIY (G

110ddns Surjooy, (¥ w seansesw poALd((97 T)

uz paajoaur diysuorye(ay (z'¢) soinseswl paye8aIsdy (¢'gT)

fiq paunsvow drysuoryey (1°¢) soamseawr eye((F°2°1)

s[opoul ¢ pue s[Jd Uoamjoq Ajiiqeaoed], (g) seanseswr uompuo)) (£¢'1)

odoos age)s sse001d (£°¢'T) seanseswt yunoy) (7' T1)

odoos erodway, (7°¢T) seanseswt oW (TG T)

odoos seouegsur Jo equmy (1°¢'1) Idd TMVINS (T°7)
VAl A Al R s B A B s B A B s B A B sl B Al B Al BV A B 4 LONIdd
/ ~VING L L L LS VING Ll st /L ® 10 DruLpad
/ ~ LA ~ LA L SIdv
VIN | o V/N | V/N | V/N NID/IVYD
~ / ~ VAR L L s/ L] TR IO UISZIOMN
~ / x/ Va4 8 10 o
ys ~ ~ AL VIN A ‘Te 10 soue[EISE))
~ /| xS VIN | AL WP Te 10 [1oAR]\
~) ~ S, | VN /| VN | V/IN [V/IN| A Vs Te 10 eaodog

)) €eT |2eT |TeT (92T (92T [¥2TT (82T |2eT [T2 |
5 ¢e | T'e z o1 1 T [esodoxg
€ T

44

to define PPIs is expressive enough to allow the definition of a wide range of
PPIs, including all of the PPIs found in the literature and the real scenarios
studied; it is also highly flexible since it is independent of the business pro-
cess model language. Furthermore we have provided an implementation of
such metamodel using DL. This formal foundation in the definition of PPIs
enables their analysis at design-time in a way that is amenable to automated
reasoning. Concretely we have presented a novel analysis operation to au-
tomatically derive the dependences between BP elements and PPIs, helping
thus to, for instance, assist during the evolution of business processes. In ad-
dition we have developed a software prototype comprising a graphic editor,
an implementation of the aformentioned analysis operation and a mechanism
to extract the information required to calculate PPIs’ values from the open
source BPMS activiti. The applicability of this proposal has been studied by
applying it to several real scenarios.

A number of directions for future work are considered. The extension
of the PPINOT metamodel in order to support the specification of PPIs re-
lated to (human) resources and of the analysis mechanism will be necessary
in order to extract information related to the resources assigned to the BP
activities (workload for instance). New analysis operations are being inves-
tigated to predict conflicts between PPIs and future behaviour. Another
aspect to work in is the research of the concrete activities related to the PPI
lifecycle that must be performed along the BPM lifecycle (identifying which
of them must be accomplished in each phase of the BPM lifecycle). In this
sense, more investigation is needed in the integration of the tool with the
execution aspects of the supporting information systems in the context of
performance evaluation (although as previousy mentioned, some first steps
using the Activiti BPM Platform has been already made).

Acknowledgments

We would like to thank to the Quality Office of the Information Tech-
nology Department of the Andalusian Health Service for kindly providing
us their internal business process models and its PPIs. We also would like
to thank J. Mendling, A. Sharpanskykh, V. Popova, D. Ruiz, C. Pedrinaci,
M. Weske, E. Cardoso and Christian Janiesch for their helpful comments in
earlier versions of this paper.

45

Appendix A. PPINOT specification of PPIs for the case study

In this appendix we present the specification of the 9 PPIs contained in
Table 1 of our case study - RFC management process (Section 2). We have
used an adapted version of the HUTN (Human-Usable Textual Notation)
notation presented by the OMG in [52].

PPIL{
identifier: PPI1
name: RFCs cancelled from RFCs registered
relatedTo: RFCManagement
goals: Improve customer satisfaction
definition: DerivedMultiInstanceMeasure{
function: (a/b)*100
uses: a.refersTo: AggregatedMeasure {
scale: float
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: CountMeasure{
when: TimelInstantCondition{
changesToState: cancelled
appliesTo: dataObject RFC

}
}

uses: b.refersTo: AggregatedMeasure {

scale: float

unitOfMeasure: RFC

aggregationFunction: sum

aggregates: CountMeasure{

when: TimelInstantCondition{

changesToState: registered
appliesTo: dataObject RFC

}
}
target .upperBound: 4
scope: ComposedFilter{
And|
ProcessStateFilter. processState: finished
Timefilter. periodicity : Weekly.dayOfWeek: Friday
]
}
responsible: Planning and Quality Manager

informed: CIO
}

PPI{
identifier: PPI2
name: Average time of committee decision
relatedTo: RFCManagement
goals: Reduce RFC time—to—response
definition : AggregatedMeasure{
scale: int
unitOfMeasure: day

46

aggregationFunction: average
aggregates: TimeMeasure{
from: TimelInstantCondition{
changesToState: active
appliesTo: activity Analyse in Committee

to: TimelnstantCondition{
changesToState: completed
appliesTo: activity Analyse in Committee

}
}
target .upperBound: one day
scope: ComposedFilter{
And |
ProcessStateFilter. processState: finished
Timefilter. periodicity : Weekly.dayOfWeek: Friday
]
}
responsible: Planning and Quality Manager
informed : CIO

}

PPI{
identifier: PPI3
name: Corrective RFCs from approved RFCs
relatedTo: RFCManagement
goals: Improve customer satisfaction
definition: DerivedMultiInstanceMeasure{
function: (a/b)*100
uses: a.refersTo: AggregatedMeasure {
scale: int
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: ConditionMeasure{
meets: DataPropertyCondition{
restriction: type of change = corrective
statesConsidered: approved
appliesTo: dataObject RFC

}
}
uses: b.refersTo: AggregatedMeasure {
scale: int
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: CounttMeasure{
when: TimelInstantCondition{
chagesToState: triggered
appliesTo: event report RFC approved

}
}
target: SimpleTarget.upperBound: 2

scope: ComposedFilter{
And|

47

}

ProcessStateFilter. processState: finished
Timefilter. periodicity : Weekly.dayOfWeek: Friday

]
}
responsible: Planning and Quality Manager
informed: CIO
comments: values up to 5 \% are reasonable

PPI{

}

identifier: PPI4
name: Perfective RFCs from approved RFCs
relatedTo: RFCManagement
goals: Improve customer satisfaction
definition: DerivedMultilnstanceMeasure{
function: (a/b)*100
uses: a.refersTo: AggregatedMeasure {
scale: int
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: ConditionMeasure{
meets: DataPropertyCondition{
restriction: type of change = perfective
statesConsidered: registered
appliesTo: dataObject RFC

}
}
uses: b.refersTo: AggregatedMeasure {
scale: int
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: CounttMeasure{
when: TimelInstantCondition{
chagesToState: triggered
appliesTo: event report RFC approved

}
}
target: SimpleTarget.upperBound: 4
scope: ComposedFilter{
And |
ProcessStateFilter. processState: finished
Timefilter. periodicity : Weekly.dayOfWeek: Friday
]
}
responsible: Planning and Quality Manager
informed: CIO

PPI{

identifier: PPI5

name: Average time of RFC analysis
relatedTo: RFCManagement

goals: Reduce RFC time—to—response
definition : AggregatedMeasure{

48

scale: int
unitOfMeasure: day
aggregationFunction: average
aggregates: TimeMeasure{
from: TimelInstantCondition{
changesToState: active
appliesTo: activity Analyse RFC
}
to: TimelnstantCondition{
changesToState: completed
appliesTo: activity Analyse RFC

}
}
target: simpleTarget.upperBound: two days
scope: ComposedFilter{
And [
LastInstancesFilter . numberOrlnstances: 100
Timefilter. periodicity : Weekly.dayOfWeek: friday
]
}
responsible: Planning and Quality Manager
informed: CIO

}

PPI{
identifier: PPI6
name: Number of RFCs in analysis
relatedTo: RFCManagement
goals: Improve customer satisfaction. Reduce RFC time—to—response
definition: AggregatedMeasure{
scale: int
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: ConditionMeasure{
meets: StateCondition{
state: active
appliesTo: activity analyse RFC

}
}
target: 2 RFCs
scope: ComposedFilter{
And [

ProcessStateFilter. processState: active
Timefilter. periodicity : Weekly.dayOfWeek: friday

}

responsible: Planning and Quality Manager
informed: CIO

}

PPI{
identifier: PPI7
name: Number of RFCs per type of change
relatedTo: RFCManagement

49

goals:
definition: AggregatedMeasure{
scale: map
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: CountMeasure{
when: TimelInstantCondition{
changesToState: registered
appliesTo: dataObject RFC

}

isGroupedBy: type of change
}
target: ComposedTarget |
corrective —20 RFCs
evolutive —30 RFCs
perfective —20 RFCs
]
scope: ComposedFilter{
And|
ProcessStateFilter. processState: finished
Timefilter. periodicity : Monthly.dayOfMonth: 25
]
}
responsible: Planning and Quality Manager
informed: CIO
comments: the ideal situation is that corrective RFCs tend to zero

}

PPI{
identifier: PPI8
name: Number of RFCs per project
relatedTo: RFCManagement
goals:
AggregatedMeasure{
scale: map
unitOfMeasure: RFC
aggregationFunction: sum
aggregates: CountMeasure{
when: TimelInstantCondition{
changesToState: registered
appliesTo: dataObject RFC

}

isGroupedBy: project
}
target: ComposedTarget |
RR.HH-50 RFCs
Diraya—60 RFCs
Pharma—1 RFCs
]
scope: ComposedFilter{
And |
ProcessStateFilter . processState: finished
Timefilter. periodicity : Monthly.dayOfMonth: 25

50

responsible: Planning and Quality Manager
informed: CIO

}

PPI{
identifier: PPI9
name: Average lifetime of an RFC
relatedTo: RFCManagement
goals: Reduce RFC time—to—response
definition : AggregatedMeasure{
scale: float
unitOfMeasure: day
aggregationFunction: average
samplingFrequency :
aggregates: TimeMeasure{
from: TimelInstantCondition{
changesToState: triggered
appliesTo: event Receive RFC

to: TimelnstanceCondition{
changesToState: completed
appliesTo:pool RFC management

}

}

target: 3

scope: ComposedFilter{
And |

ProcessStateFilter . processState: finished
Timefilter. periodicity: Monthly.dayOfMonth: 25

]
}
responsible: Planning and Quality Manager
informed: CIO

Appendix B. OCL Constraints

This section provides the complete set of OCL invariants for the PPINOT
metamodel presented in Section 3

OCL Constraint 1 AggregatedMeasures can only aggregate single-instance
measures, that is a BaseMeasure or a DerivedSingleInstanceMeasure.

context AggregatedMeasure inv:
self.aggregates.oclIsTypeOf (BaseMeasure) or
self.aggregates.oclIsTypeOf (DerivedSingleInstanceMeasure)

OCL Constraint 2 DerivedSingleInstanceMeasures are calculated by
using single-instance measures in their mathematical functions, i.e.,

51

they can only be calculated by using BaseMeasures and/or
DerivedSingleInstanceMeasures.

context DerivedSingleInstanceMeasure inv:
self.uses->forall (v: Variable |
v.refersTo.oclIsTypeOf (BaseMeasure) or
v.refersTo.oclIsTypeOf (DerivedSingleInstanceMeasure))

OCL Constraint 3 DerivedMultiInstanceMeasures are calculated by us-
ing multi-instance measures in their mathematical functions, i.e., they
can only be calculated by using AggregatedMeasures and/or
DerivedMultilInstanceMeasures.

context DerivedMultilnstanceMeasure inv:
self.uses->forall (v: Variable |
v.refersTo.oclIsTypeOf (AggregatedMeasure) or
v.refersTo.oclIsTypeOf (DerivedMultilInstanceMeasure))

OCL Constraint 4 AggregatedMeasures that aggregates ConditionMeasures
can only use the aggregation function sum.

context AggregatedMeasure inv:
self.aggregates.oclIsTypeOf (ConditionMeasure) implies
self.aggregationfFunction = AggregationFunction: :sum

OCL Constraint 5 The BPElements to which a DataPropertyCondition
can be applied in BPMN are: dataObjects.

context DataPropertyCondition inv:
self.appliesTo.oclIsTypeOf (DataObject)

52

Appendix C. OCL Constraints for BPMN binding

The following constraints are defined for the case where BPMN is used
to define business processes, defining thus the specific bp elements and their
states.

OCL Constraint 6 The BPElements to which a TimeInstantCondition
can be applied in BPMN are: activity, pool, event and dataObjects.

context TimelInstantCondition inv:
self.appliesTo.oclIsTypeOf (Activity) or
self.appliesTo.oclIsTypeOf (Pool) or
self.appliesTo.oclIsTypeOf (Event) or
self.appliesTo.oclIsTypeOf (DataObject)

OCL Constraints 7-8 Depending on the type of bp elements, the possible
states that are considered for tTimeInstantConditions are specified
in the two following constraints. The states of dataObjects, as stated
in Section 3, are defined by the user in the BP diagram.

context TimelInstantCondition inv:
self.appliesTo.oclIsTypeOf (Event) implies self.changesToState = ‘‘triggered’’

context TimelInstantCondition inv:
self.appliesTo.oclIsTypeOf (Activity) implies
(self.changesToState = ‘‘ready’’ or
self.changesToState = ‘‘active’’ or
self.changesToState = ‘‘withdrawn’’ or
self.changesToState = ‘‘completing’’ or
self.changesToState = ‘‘completed’’ or
self.changesToState = ‘‘failing’’ or
self.changesToState ‘‘failed’’ or
self.changesToState = ¢ ‘terminating’’ or
self.changesToState = ‘‘terminated’’ or
self.changesToState = ‘‘compensating’’ or
self.changesToState = ‘‘compensated’’)

OCL Constraint 9 The BPElements to which a StateCondition can be
applied in BPMN are: activity, pool, event and dataObjects.

53

context StateCondition inv:
self.appliesTo.oclIsTypeOf (Activity) or
self.appliesTo.oclIsTypeOf (Pool) or
self.appliesTo.oclIsTypeOf (Event) or
self.appliesTo.oclIsTypeOf (DataObject)

OCL Constraints 10-11 Depending on the type of bp elements, the pos-
sible states that are considered for tStateConditions are specified in
the two following constraints. The states of dataObjects, as stated in
Section 3, are defined by the user in the BP diagram.

context StateCondition inv:
self.appliesTo.oclIsTypeOf (Event) implies self.state = ‘‘triggered’’

context StateCondition inv:
self.appliesTo.oclIsTypeOf (Activity) implies

(self.sToState = ‘‘ready’’ or
self.state = ‘‘active’’ or
self.state = ‘‘withdrawn’’ or
self.state = ‘‘completing’’ or
self.state = ‘‘completed’’ or
self.state = ‘‘failing’’ or
self.state = ‘‘failed’’ or
self.state = ‘‘terminating’’ or
self.state = ‘ ‘terminated’’ or
self.state = ‘‘compensating’’ or
self.state = ¢ ‘compensated’’)

[1] W. M. van der Aalst, A. H. ter Hofstede, M. Weske, Business process
management: A survey, in: Business Process management, volume 2678,
Springer, 2003, pp. 1-12.

[2] G. D. Alexander Grosskopf, M. Weske, The Process. Busisness Process
Modeling using BPMN, Megan-kiffer Press, Mar 2009.

[3] G. Chase, A. Rosenberg, R. Omar, J. Taylor, M. Rosing, Applying Real-
World BPM in an SAP Environment, SAP Press, Galileo Press, Incor-
porated, 2011.

o4

[4]

F. Franceschini, M. Galetto, D. Maisano, Management by Measure-
ment: Designing Key Indicators and Performance Measurement Sys-
tems, Springer Verlag, 2007.

A. del Rio-Ortega, M. Resinas, A. Ruiz-Cortés, Defining process perfor-
mance indicators: An ontological approach, in: Proceedings of the 18th
International Conference on Cooperative Information Systems (CooplS).
OTM 2010, Part I, pp. 555-572.

A. del Rio-Ortega, M. Resinas, A. Ruiz-Cortés, PPI Definition and Au-
tomated Design-Time Analysis, Technical Report, Applied Software En-
gineering Research Group, 2012.

Object Management Group (OMG), Business process modeling notation
(BPMN) version 1.2, 2009.

OASIS, Web services business process execution language (BPEL) ver-
sion 2.0, oasisstandard. published via internet, 2007.

B. Wetzstein, Z. Ma, F. Leymann, Towards measuring key performance
indicators of semantic business processes, in: BIS, pp. 227-238.

V. Popova, A. Sharpanskykh, Modeling organizational performance in-
dicators, Inf. Syst. 35 (2010) 505-527.

A. del Rio-Ortega, M. Resinas, A. Duran, A. Ruiz-Cortés, Defining
process performance indicators by using templates and patterns, in:
Business Process Management (BPM), pp. 223-228.

H. Dresner, Business activity monitoring: BAM architecture, 2003.

W. van den Heuvel, Survey on Business Process Management, Technical
Report, 2008.

W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, A. J. M. M. Weijters, Workflow mining: a survey of issues
and approaches, Data Knowl. Eng. 47 (2003) 237-267.

W. M. P. van der Aalst, M. Pesic, M. Song, Beyond process mining:
From the past to present and future, in: B. Pernici (Ed.), CAiSE,
volume 6051 of Lecture Notes in Computer Science, Springer, 2010, pp.
38-52.

95

[16]

[17]

[18]

[19]

[21]

D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, M.-C. Shan,
Business process intelligence, Computers in Industry 53 (2004) 321-343.

A. Shahin, M. A. Mahbod, Prioritization of key performance indicators:
An integration of analytical hierarchy process and goal setting, Interna-
tional Journal of Productivity and Performance Management 56 (2007)
226 — 240.

V. Popova, A. Sharpanskykh, Formal modelling of organisational goals
based on performance indicators, Data Knowl. Eng. 70 (2011) 335-364.

J. M. Garcia, D. Ruiz, A. Ruiz-Cortés, A model of user preferences for
semantic services discovery and ranking, in: L. Aroyo, G. Antoniou,
E. Hyvonen, A. ten Teije, H. Stuckenschmidt, L. Cabral, T. Tudorache
(Eds.), ESWC (2), volume 6089 of Lecture Notes in Computer Science,
Springer, 2010, pp. 1-14.

C. Cabanillas, M. Resinas, A. Ruiz-Cortés, Defining and analysing
resource assignments in business processes with ral, in: G. Kappel,

Z. Maamar, H. R. M. Nezhad (Eds.), ICSOC, volume 7084 of Lecture
Notes in Computer Science, Springer, 2011, pp. 477-486.

C. Cabanillas, M. Resinas, A. R. Cortés, Ral: A high-level user-oriented
resource assignment language for business processes, in: F. Daniel,
K. Barkaoui, S. Dustdar (Eds.), Business Process Management Work-
shops (1), volume 99 of Lecture Notes in Business Information Process-
ing, Springer, 2011, pp. 50-61.

D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature
models 20 years later: A literature review, Inf. Syst. 35 (2010) 615-636.

D. Harel, B. Rumpe, Meaningful modeling: What’s the semantics of
"semantics”?, IEEE Computer 37 (2004) 64-72.

J. Rivera, E. Guerra, J. de Lara, A. Vallecillo, Analyzing rule-based be-
havioral semantics of visual modeling languages with Maude, in: Soft-
ware Language Engineering 2008, volume 5452/2009 of Lecture Notes in
Computer Science, Springer, 2009, pp. 54-73.

56

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, P. F. Patel-
Schneider (Eds.), The Description Logic Handbook: Theory, Implemen-
tation, and Applications, Cambridge University Press, 2003.

Racer Systems, RACER: Renamed ABox and Concept Expression Rea-
soner, http://www.racer-systems.com, 2011. [Online; accessed 30-
July-2012].

Knowledge Representation and Reasoning Group, Hermit OWL rea-
soner. the new kid on the OWL block, http://hermit-reasoner. com,
2011. [Online; accessed 30-July-2012].

Clark & Parsia, Pellet OWL 2 reasoner for java, http://clarkparsia.
com/pellet, 2011. [Online; accessed 30-July-2012].

D. Nardi, R. J. Brachman, An introduction to description logics, in:
Description Logic Handbook, pp. 1-40.

M. Bhatt, W. Rahayu, S. P. Soni, C. Wouters, Ontology driven semantic
profiling and retrieval in medical information systems, Web Semantics:
Science, Services and Agents on the World Wide Web 7 (2009) 317 —
331.

G. Decker, H. Overdick, M. Weske, Oryx - an open modeling platform
for the bpm community, in: BPM, pp. 382-385.

O. O. of Government Commerce), Information technology infrastructure
library (ITIL) v3, Collection of books, 2007.

R. S. Kaplan, D. P. Norton, The balanced scorecard: Measures that
drive performance, Harvard Business Review January-February 1992
(1992) 71-79.

P. Brewer, T. Speh, Using the balance scorecard to measure supply
chain performance, Journal of Business Logistics 21 (2000) 75-93.

F. Chan, Performance measurement in a supply chain, International
Journal of Advanced Manufacturing Technology 21 (2003) 534-548.

E. Krauth, H. Moonen, V. Popova, M. C. Schut, Performance mea-
surement and control in logistics service providing, in: ICEIS (2), pp.
239-247.

o7

37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

G. Vaidyanathan, A framework for evaluating third-party logisics, ACM
48 (2005) 89-94.

M. Benner, M. L. Tushman, Exploitation, exploration and process man-
agement: the productivity dilemma revisited, Academy and Manage-
ment Review 28 (2003) 238-256.

A. of Business Process Management Professionals (ABPMP), Guide to
the business process management common body of knowledge, 2009.

V. Popova, A. Sharpanskykh, Formal analysis of executions of orga-
nizational scenarios based on process-oriented specifications, Applied
Intelligence (2009).

V. Popova, A. Sharpanskykh, Formal goal-based modeling of organiza-
tions, in: MSVVEIS, pp. 19-28.

C. Mayerl, K. Hner, J.-U. Gaspar, C. Momm, S. Abeck, Definition of
metric dependencies for monitoring the impact of quality of services on
quality of processes, in: Second IEEE/IFIP International Workshop on
Business-driven IT Management (Munich), pp. 1-10.

Distributed Management Task Force (DMTF), Common information
model (CIM) metrics model, 2003.

Object Management Group (OMG), UMLTM profile for modeling qual-
ity of service and fault tolerance characteristics and mechanisms speci-
fication, 2006.

M. Castellanos, F. Casati, M.-C. Shan, U. Dayal, ibom: a platform
for intelligent business operation management, in: Proceedings. 21st
International Conference on Data Engineering, 2005., Hewlett-Packard
Laboratories, pp. 1084— 1095.

C. Momm, R. Malec, S. Abeck, Towards a model-driven development
of monitored processes, in: Wirtschaftsinformatik (2), pp. 319-336.

D. Chen, B. Vallespir, G. Doumeingts, Grai integrated methodology and
its mapping onto generic enterprise reference architecture and methol-
ogy, Computers in Industry 33 (1997) 387-394.

58

[48] G. Doumeingts, B. Vallespir, D. Chen, Handbook on Architectures of
Information Systems, Springer-Verlag, pp. 313-338.

[49] R. Davis, E. Brabnder, Aris design platform, Springer, 2007.

[50] A. Scheer, W. Jost, H. Hef8, A. Kronz, Corporate Performance Manage-
ment: Aris in Practice, Springer, 2006.

[51] C. Pedrinaci, D. Lambert, B. Wetzstein, T. van Lessen, L. Cekov,
M. Dimitrov, Sentinel: a semantic business process monitoring tool,
in: OBI, p. 1.

[52] Object Management Group (OMG), Human-usable textual notation
(HUTN) specification, 2004.

59

OLT_Highlights_EP_2012.txt
we developed a numerical model to find the output solution of an APM fiber Tlaser
of two-coupled linear cavities.

Numerical results are analyzed for different cavities lengths.

Experimentally we found a relation between the pulse repetition frequency and the
cavities lengths.

Dependence of the time pulse width with the repetition frequency was confirmed
for an reflectivity value.

we found a very good correlation between experimental and simulations results.

Page 1

