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Abstract

This paper introduces a method for the automatic acquisition of a rich case representa-
tion from free text for process-oriented case-based reasoning. Case engineering is among
the most complicated and costly tasks in implementing a case-based reasoning system.
This is especially so for process-oriented case-based reasoning, where more expressive
case representations are generally used and, in our opinion, actually required for satis-
factory case adaptation. In this context, the ability to acquire cases automatically from
procedural texts is a major step forward in order to reason on processes. We there-
fore detail a methodology that makes case acquisition from processes described as free
text possible, with special attention given to assembly instruction texts. This method-
ology extends the techniques we used to extract actions from cooking recipes. We argue
that techniques taken from natural language processing are required for this task, and
that they give satisfactory results. An evaluation based on our implemented prototype
extracting workflows from recipe texts is provided.

Keywords: Automatic case acquisition, information extraction, natural language
processing, process-oriented case-based reasoning, textual case-based reasoning,
workflow generation.

1. Introduction

This paper introduces a method for the automatic acquisition of a rich case repre-
sentation from free text for process-oriented case-based reasoning. Case-based reasoning
(CBR) [1] is a reasoning paradigm used to solve problems by retrieving similar problem–
solution pairs from a case base and adapting the solutions. Because case engineering is
a complicated and costly process, automatic case acquisition from text has been a major
focus of research in the last 15 years. Methods used in textual CBR vary widely in their
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scope and their use of natural language processing (NLP) methods, depending on the
intended applications. At one end of the spectrum, a text is seen as a bag-of-words and
is mostly represented as a term vector. Weights are assigned according to the relative
frequency of the terms in a text versus its frequency in all the texts of the case base,
possibly taking synonymy into account. This method does not allow for sophisticated
inferences, such as adaptation of highly structured cases, taking into account domain
knowledge. At the other end, Gupta and Aha [2] propose using a full-fledged NLP so-
lution to translate free text into predicate logic. While such a system would indeed
allow for very sophisticated adaptation (including, if combined with a natural language
generation system, unlimited possibilities in terms of textual adaptation), existing NLP
systems translating from text to logic are far from being accurate.

In this paper, we argue in favour of using limited NLP techniques to extract, from
procedural texts, the verbs, their complements and their relevant modifiers, in order to
acquire rich case representations for processes. We are more open to linguistic-inspired
techniques than approaches to textual CBR based on information retrieval and even
information extraction. By limiting ourselves to procedural texts (an important but not
very varied type of text) and trying to extract only domain-relevant meaning from it, we
are able to achieve encouraging results. The approach presented herein is a generalisation
of our previous work in defining a case representation for recipes and implementing
software to acquire cases automatically from a recipe book [3]. This domain shows
numerous examples where case representations richer than a vector space and NLP are
a necessity.

Some background knowledge is required to understand certain choices made in de-
signing this extraction process. This is introduced briefly in sections 2 and 3. Section 2
presents two formalisms that are used in process case representations: workflows and
qualitative algebras. Some shortcomings of both are pointed out, which justifies making
sure that the proposed method can extract both workflows and qualitative constraints
from text. Additionally, two running examples are introduced: a cooking recipe and a
scientific experimental protocol. Section 3 presents different usages that are expected
for the case representation, and shows which effect they have on the extraction process.
More specifically, two approaches for textual case adaptation are presented: one based
on “grafting”, and one based on belief revision theory.

Section 4 is the core of the paper. It describes in details the process through which case
representations are extracted from texts. A text is analysed in many passes. All but the
last we use implement fairly typical NLP methods, and are detailed in subsection 4.1.
The last one, introduced in subsection 4.2, is an anaphoric reference solver that we
designed specifically for procedural texts. Subsection 4.3 explains how a structured
case representation is engineered from the information extracted in the previous steps.
This is sufficient to allow for adaptation of the formalised cases, but additional concerns
that must be kept it mind to facilitate the reuse of the actual text are introduced in
subsection 4.4. All the examples in this section come from recipes, but we show in
subsection 4.5 that the method presented is applicable to different types of texts by
applying them to the scientific protocol.

Section 5 presents a first evaluation of the extraction process by comparing the case
representations obtained automatically against a gold standard. Section 6 and 7 finally
discuss related and future work.
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Figure 1: Workflow patterns.

2. Formalisms for process representation

The most important method used to model cases representing processes is workflows.
For instance, all the papers presented at the first Process-oriented Case-based Reasoning
workshop [4] were based on workflows, except two, that used workflow-like graphs. Work-
flows efficiently model the actions required to complete a process: a workflow defines a
partial order over the actions and offers the possibility to express options (disjunctions),
simultaneity (conjunctions) and repetition of actions (loops). There exist different formal
languages in which workflow knowledge can be represented. In this paper, UML Activity
Diagrams are used.

The most basic control flow structure is the sequence (shown in figure 1a), which
means that a task B is ready to begin execution as soon as a task A is finished. Other
control statements are the fork, indicating the concurrent execution of workflows, the
join, synchronising them, the decision, leading to the exclusive execution of one workflow
from a set, and the merge, ending such a conditional execution [5]. The fork and join
control statements are used to create a conjunction control structure (figure 1b), while
the decision and merge statements can be used to create either a disjunction (figure 1c)
or a loop structure (figure 1d).

Workflows have some limitations, apparent in the representation of the biochemistry
procedure shown in figure 2. Temporal aspects that are important in certain types of
processes cannot be represented, including duration of actions (e.g. the fact that the
powder is refluxed for 3 hours in step 7d of the procedure) and fine temporal relations
between actions (e.g. the constraint that the powder must be dried immediately after
centrifugation in step 7e).

Qualitative algebras over intervals can be used, with actions reified as intervals, to
express fine temporal constraints between actions. Allen algebra [7, 8], for instance, pro-
vides 13 relations corresponding to all the possible order relations between the beginnings
and the ends of two intervals. 7 relations are illustrated in figure 3, the 6 others being
the inverse of the first 6 (eq is symmetric).
INDU [9] extends Allen algebra with relations over interval durations: each Allen

relation is augmented with either <, = or >. Since not all combinations are possible (e.g.
eq can only be combined with =), this actually yields 25 base relations. r? is a shortcut
notation for Allen relation r with any duration relation, and ?s is a shortcut for any Allen
relation with duration relation s (e.g., {m}?= {m<,m=,m>}; {d}?= {d<}; ?== {b=,m=

, o=, eq=, oi=,mi=,bi=}. Using intervals that correspond to fixed durations rather than
to actions with INDU makes it possible, up to a certain point, to express durations: for
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1. Suspend evenly 1 kg. of yeast in 4 liters of 0.5 m Na2HPO4 and boil for 3 hours.
2. Cool to 37 °and add 0.5 gm. of trypsin (Wilson 1:250) on the 1st, 3rd, 6th, and 10th

day of incubation at 37 °. Add 5 ml. of toluene on the 1st day, and 2.5 ml. of toluene
on the 3rd, 7th, 11th, and 15th day of incubation. Incubate for 16 days at 37 °, with
occasional stirring, and adjust pH daily to 7.8–8.0 by the careful addition of NaOH.

3. Collect precipitate by centrifugation. Discard supernatant.
[. . . ]

7. The precipitate from step 6 is added rapidly with vigorous stirring:–

(a) to 8 liters of absolute ethyl alcohol ; stir for 1 hour; centrifuge.
(b) The precipitate is added to 4 liters of absolute ethyl alcohol and treated as in (step

a).
(c) The residue is dried in vacuo.
(d) The dried powder is refluxed for 3 hours with 500 ml. of absolute ethyl alcohol.
(e) Centrifuge and dry immediately in vacuo and store in vacuo.

Figure 2: Excerpts from a scientific experimental protocol for preparing zymosan [6].

b is before

m meets

o overlaps

s starts

d is during

f finishes

eq equals

Figure 3: Allen interval algebra’s relations.

instance, “cook ?= 15 min” would represent cooking for 15 minutes. On the other hand,
no qualitative algebra offers a satisfactory way to express either disjunctions or loops,
making them insufficiently expressive to represent certain abstract classes of processes.

Qualitative knowledge bases are often represented as graphs: the vertices are the
intervals, and the arcs are the relations. Relations are shown as sets, which represent a

disjunction of base relations. For instance, i
{b,m}<−−−−−→ j indicates that interval i is shorter

than interval j (< relation), and either i occurs entirely before j (b relation), or the end
of i coincides with the beginning of j (m relation).

In the rest of this paper, we will present the case representation extraction from text
with the perspective that it should primarily generate workflows. Because workflows are
nor always sufficiently expressive though, the formalism will be switched to INDU when-
ever information that cannot be expressed with workflows is encountered. Ultimately, we
consider that process-oriented CBR systems should be able to deal with both workflows
and qualitative algebras.
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Bucatini ammatriciana

• Some olive oil
• Two or three garlic cloves, crushed or (better) chopped
• One large minced onion
• One or two carrots, diced into tiny bits
• Some celery, diced as well
• A good slice of pancetta, either ground or finely chopped
• One tin of tomatoes, or the equivalent in fresh tomatoes
• 500 g pasta (bucatini work best)
• Romano cheese to taste

Sauté garlic in olive oil. Cook until brown. Discard garlic. Add the vegetables. Fry 10
minutes, stirring frequently. Stir in pancetta and cook 5 minutes. Add tomatoes and simmer
30 minutes. Meanwhile, bring water to a boil. Salt. Cook pasta until al dente. Combine pasta
and sauce and sprinkle some romano. Mix well. Serve immediately.

Figure 4: A recipe for cooking bucatini ammatriciana—the italicised part is represented
as a workflow in figure 5 and as a set of qualitative constraints in figure 6

We mostly illustrate our technique using cooking recipes because they are readily
understandable by almost anyone and their domain terminology needs no definition.

Figure 4 illustrates the recipe used as a running example. An excerpt from it is rep-
resented as a workflow in figure 5, and as a graph representing Allen algebra constraints
in figure 6. One can see that workflows are able to represent the end condition on the
“cook” action using a loop, whereas it cannot be represented in Allen algebra.1 On the
other hand, Allen algebra represents adequately the meaning of “meanwhile” with the
relation di,o,fi, whereas the workflow is not precise—simmering then cooking, cooking
then simmering, and doing both simultaneously are all correct interpretations of this
workflow.

We come back to the scientific protocol in subsection 4.5 to show that the same
algorithms can deal with it satisfactorily.

3. Case-based reasoning and adaptation

This section briefly introduces CBR and presents two reasoning tasks in which we
use the acquired cases. The purpose is to detail what types of information must appear
in the case representation in order to make those tasks possible, and thereby show that
highly structured case representations are indeed required, and cannot be acquired using
information retrieval or, it seems to us, information extraction techniques.

Both tasks fit within the framework of Taaable [10, 11, 12, 13], a CBR system con-
ceived to resolve cooking problems, and a contestant in the Computer Cooking Contest2

1 In this instance, technically, it could be represented if we accepted that states can be reified as
intervals and thus that one can write cook pasta {m} pasta al dente. This is not possible for all workflow
loops, however.

2http://computercookingcontest.net/
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combine

tomatoes bucatini

add bring
water to

a boil

cook
bucatini

not al dente

simmer

Figure 5: An excerpt from the recipe of figure 4 as a workflow. In addition to sequences,
a conjunction expressing simultaneous actions and a loop expressing an action continued
until a condition is met are shown.

add

tomatoes

{b,m}−−−−→ simmer
{di,o,fi}−−−−−→ bring water

to a boil

{b,m}−−−−→ cook pasta
{b,m}−−−−→ combine pasta

and sauce

Figure 6: An excerpt from the recipe of figure 4 as a set of qualitative constraints using
Allen algebra (di and fi are the inverse of d and f). The simultaneity is expressed by the
relation disjunction {di,o,fi}.

held annually at the International Conference on Case-Based Reasoning since 2008. User
queries such as “I want a dessert with rice and figs” are addressed by retrieving one or
more recipes that fit the criteria from a recipe book. If none exists, a similar recipe is
found and an ingredient substitution is suggested: “Cook glutinous rice with mangoes
but substitute figs for mangoes.”

CBR systems implement four steps, known as “the four Rs”: retrieve, reuse, revise,
and retain [1]. Taaable performs the retrieve task when it finds a similar recipe, and the
reuse task by suggesting that the answer to the user’s query is the retrieved recipe with
an ingredient substitution. It is possible, though, to go further in terms of reuse, and to
actually modify the retrieved recipe so that it works with the new ingredients. In this
work, we are mostly concerned with adaptation at two interleaved aspects: adaptation
of the preparation instructions in their formal form, and adaptation of the instruction
text itself. The two reasoning tasks we present are therefore adaptation tasks: one on a
workflow-like graph formalism, and one on interval-algebraic constraints.

6



3.1. Adaptation using grafting

In [3], we proposed a method to adapt cases represented in a workflow-like formalism
centred around the data stream (ingredients in this instance) rather than the actions. To
adapt a recipe in which the CBR inference engine had suggested replacing an ingredient
α with a new ingredient β, the processing specific to α is analysed with respect to all
recipes containing β in order to find the processing of β closest to the original.

The idea behind this work is that there exist certain “typical uses” of any given ingre-
dients, which can be extracted from the recipe book and used as adaptation knowledge.
A typical use is simply a sequence of cooking actions applied to an ingredient in one
recipe. When an ingredient α is replaced with an ingredient β, the sequence of actions
used to prepare α must be replaced with some typical use of β.

For instance, the mango from the glutinous rice recipe is peeled, sliced and pitted.
This sequence of actions is clearly not appropriate for figs. Thus, the action sequences for
fig in all available recipes are extracted, and compared to the mango sequence. The most
similar sequence is retained because we expect that the textual adaptation is less risky if
the adaptation effort is reduced. A piece of the retrieved case is pruned, and a piece from
an adaptation case is grafted in its place, hence the name. The same pruning–grafting
process is used both at the formal and at the text levels.

For this method to work, the exact sequence of cooking actions applied to each in-
gredient must be known. Using information retrieval would not be satisfactory: while
actions and ingredients would be known, one couldn’t know which actions were applied
to each ingredients. Information extraction does not seem practical either, since ingre-
dients are not mentioned by name close to each verb that applies to them—indeed, the
name of each ingredient appears at best once in most recipe preparation instructions.

3.2. Adaptation based on belief revision

Cojan and Lieber propose an approach to adaptation based on revision theory. Let
ψ and µ be two knowledge bases [14, 15]. The revision of ψ by µ intuitively consists
in (1) taking their conjunction and (2) repairing it to restore consistency, by minimally
modifying pieces of knowledge from ψ. Revision-based adaptation consists in revising
the case to be adapted (with respect to domain knowledge) by the user query (also with
respect to domain knowledge). Thus, it can be seen as an “adaptation by repair” process.

The principle of revision-based adaptation has been applied to cases, including recipes,
represented using a qualitative algebra [16]. The ingredient substitution is first blindly
applied to the preparation of the recipe to be adapted, with great chances of leading
to a formalised preparation that is inconsistent with the domain knowledge (e.g. the
preparation asks to pit the figs). Then, a repair process (based on a revision operator)
is triggered in order to obtain a consistent preparation satisfying the query. As future
work, the authors intend to examine the feasibility of applying this adaptation method
to workflows and to a combined workflow–interval algebra formalism.

Again, for this method to work, information about the processing of ingredients that
seems impractical to obtain through information extraction is required. For instance,
the heuristic used to resolve the scope of the conjunction introduced by the adverb
“meanwhile”, which will be presented in section 4.3, requires the system to know when
ingredients are mixed together as the effect of a cooking action.

7



4. Extraction process

This section goes into the details of the case acquisition process.
The first steps are the same as in any natural language understanding system, going

from the segmentation of the text into words to the identification of verb complements.
Subsection 4.1 quickly goes through those steps. It references some commonly used tools,
and especially discusses the ways in which they must be adapted to deal with issues that
are specific to process description texts.

Taking the output of those first steps as input, subsection 4.2 proposes a way to resolve
anaphoras, i.e. associate words from the text with the objects they are referring to, which
is mostly specific to assembly instruction texts. Then, using the actions, objects, and
temporal clues identified by the previous steps, subsection 4.3 details the process through
which the structured case representation itself is built. Finally, subsection 4.4 discusses
some special concerns that must be taken into consideration at the extraction step in
order to limit the computational complexity of the adaptation step of the CBR system.

The process is illustrated on recipe texts throughout. In order to demonstrate that
the same approach can be applied to different types of procedural texts, subsection 4.5
briefly illustrates the whole process on the scientific experimental protocol shown in
figure 2.

4.1. Standard NLP toolchain

This subsection goes through the standard steps taken by any natural language un-
derstanding system (NLU). The standard textbook for NLU is Jurafsky & Martin’s [20].
Several open-source tools that can greatly reduce the human cost of developing an NLU
system exist. While the Stanford CoreNLP toolsuite3 offers state-of-the-art performance
for general purpose text, frameworks such as GATE4 or OpenNLP5 offer the best flexi-
bility.

4.1.1. Segmentation

The very first step in processing unstructured text is to segment it into lexical items,
which are more or less equivalent to words. This process, named tokenization, is simple
for languages which separate words with spaces, though not as simple as it may appear:
for instance, “don’t” is really two lexical items, while “New Jersey” is really one.

Whereas, for a language such as Chinese, tokenization is one of the biggest NLP prob-
lems, in English, regular expressions implemented by deterministic finite-state automata
are sufficient to deal with it. Ready-to-use tokenizers exist for many languages (e.g. the
Stanford English Tokenizer6) which give quite satisfactory results.

At this stage, the text is also segmented in sentences using the punctuation as a
guide. Domain specific named entity recognition can be performed: for instance, in the
first sentence of the recipe in figure 4, “olive oil” corresponds to one ingredient and could
thus be grouped as one lexical item and annotated with respect to an ingredient ontology.

The first sentence of the example recipe, after tokenization, becomes: “Sauté – garlic
– in – olive oil – .”

3http://nlp.stanford.edu/software/corenlp.shtml
4http://gate.ac.uk/
5http://opennlp.apache.org/
6http://nlp.stanford.edu/software/tokenizer.shtml
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4.1.2. Morphological analysis

Part-of-speech tagging is the process through which each lexical item is tagged with
the appropriate class. Depending on the language considered, different techniques are
more or less appropriate. An inflectionally rich language such as Russian, in which a
word can have numerous forms, is not tagged in the same way as a language such as
English, in which it is for instance very usual for a related verb and noun to have the
same form.

Morphologically poor languages such as English are tagged based on the likelihood
of tag sequences as learnt from tagged corpora. Compare for instance the two sentences
“Cream the butter” and “Butter the cream”: there is no information inherent to the
words “cream” and “butter” that can be used to infer whether they are being used as a
verb or as a noun, but the determiner “the” makes it clear which is a noun, making the
other the verb.

General purpose, ready-to-use part-of-speech taggers exist, the most well-known be-
ing the Stanford Tagger7 [21], but they are not always useful when working with texts
describing processes, mainly because those tend to use imperative forms, which are not
so frequent in general purpose training corpora. Observe for instance the fact that verbs
are unlikely to begin a sentence in normal discourse, while this is generally the case in
imperative sentences. Consequently, it is preferable if the tagger can be trained on a
corpus of the same type of texts that will need to be tagged.

For our implementation, we used a purpose-made annotated corpus consisting of 82
recipes, making 12,125 lexical items, to train a transformation-based tagger, also known
as a Brill tagger. A Brill tagger first tags each lexical item with its most likely part-of-
speech independent of context, then applies increasingly more specific context-sensitive
rules to adjust for context [22]. A typical rule likely to be induced in any corpus would
be “retag any verb appearing after a determiner as a noun”. The first rule induced from
our corpus is “retag any noun appearing at the beginning of a sentence as a verb”.

Our tagger attains 93.1% accuracy, significantly under the 97.5% state-of-the-art
claimed by Søgaard [23], but 32% better than the same tagger trained with a general-
purpose corpus.

The first sentence of the example recipe is tagged by our system as: “Sauté/verb
garlic/noun in/preposition olive oil/noun ./punctuation”.8 The Stanford Tagger trained
on a general-purpose corpus mistakenly tags “Sauté” as a noun.

4.1.3. Syntactic analysis

The next step is parsing. There are many ways to parse natural language text,
depending upon the required results. Among the most effective parsers in existence
today are the probabilistic context-free parsers (which give one and only one parse for
any sentence) and the link parser (which gives as many parses as there are possible
interpretations of the syntax of a sentence, and possibly none). A natural language parser,
as a compiler, iteratively groups lexical items within phrases, until a whole sentence is
grouped as one phrase, yielding a parse tree.

7 http://nlp.stanford.edu/software/tagger.shtml
8This is a simplification obtained by grouping together different parts-of-speech. The Penn Treebank

tagset, for instance, recognises 45 parts-of-speech, including 4 for nouns and 6 for verbs.
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Parsing in Taaable is required only to identify the complements of verbs (which are
likely to be the arguments of the actions) and the modifiers (which are likely to identify
stopping conditions on the actions). Considering this, a complete parsing is not required.
Indeed, since the text can be parsed clause by clause and we do not need access to such
information as knowing, for instance, which noun phrase a prepositional phrase is related
to, our grammar does not need recursivity.

This means that a simpler process named chunking, which is equivalent in complexity
to a finite-state automaton, is sufficient, and a very simple grammar can be provided. For
instance, here is the grammar for identifying noun phrases, formulated as pseudo-regular
expressions:

• noun = singular noun | plural noun
• noun modifier = adjective | past participle
• determiner = article | numeral | WH-determiner9

• noun subphrase = pre-determiner?10 determiner? noun modifier∗ noun+

• noun phrase = noun subphrase ( (comma noun subphrase)∗ (comma? conjunction)
noun subphrase)?

A full parser would build the following syntax tree for the first sentence in the example
recipe:

sentence

prepositional phrase

noun phrase

noun

olive oil

preposition

in

verb phrase

noun phrase

noun

garlic

verb

Sauté

Our chunker, however, will give a simplified structure which still contains all the
information required by the algorithm:

9“Which”, “whose”, “that”, etc.
10“All”, “both”, etc.

10



sentence

prepositional phrase

noun

olive oil

preposition

in

noun phrase

noun

garlic

verb

Sauté

The depth of the “chunk tree” is strictly limited to 3 (root, phrases, part-of-speech
tags and lexical items), whereas the depth of a regular parse tree grows with the number
of lexical items.

Because procedural texts normally use simple sentence structures, the output of the
chunker, the punctuation and the conjunctions are sufficient to allow for clause splitting,
further dividing the text so that each finite verb11 sits in its own group. For instance
the sentence “Stir in pancetta and cook 5 minutes” is divided in two clauses by the
conjunction “and”: one centred around the verb “stir” and the other around the verb
“cook”. In language that use them, copular verbs (e.g. “to be”, “to become”) must be
discarded in order to obtain a single clause, i.e. “until the garlic becomes brown” would
be parsed as “until the garlic brown”.

4.2. Anaphora resolution

At this stage, each verb’s complements and modifiers can be identified:

• Any noun phrase located after the verb and referring to available ingredients is
considered as an object complement of the verb.

• Any prepositional phrase referring to available ingredients is considered as a prepo-
sitional complement of the verb.

• Any prepositional phrase referring to ingredient properties (e.g. “until brown”) is
considered as a relevant modifier of the verb.

• Any prepositional or noun phrase referring to a duration (e.g. “5 minutes” or “for
5 minutes”) is also considered as a relevant modifier of the verb.

Complements are thus known at a syntactic (surface) level, but this is not always
sufficient to know which actual ingredients they are referring to. Mapping words to
actual objects presents some special difficulties for instruction texts, which make heavy
use of different types of anaphoras:

Lexical anaphoras A noun is used to refer to some object. Instructions frequently
exhibit a little-studied phenomenon known as evolutive anaphora, in which a word
is used to refer to an object that exists at a given time, but not at another one,
e.g. “Add tomatoes and simmer for 30 minutes [. . . ] Combine pasta and sauce”,
where “sauce” references the result of the “simmer” action.

11 Non-finite verbs are typically those in the participle or indicative mood, e.g. “Fry 10 minutes,
stirring continually.” Finite verbs include verbs in the indicative and the imperative moods.

11



Grammatical anaphoras In common texts, those are often pronouns. In instructions
though, tedious repetitions are often avoided by removing a verb’s complement
altogether, yielding a zero-anaphora, e.g. “Sauté garlic in olive oil. Cook until
brown [implicitly: the garlic].” Zero-anaphoras are called that way because it is
postulated that they exist in the sentence as pronouns having no realisation. Thus,
the syntax tree of “Cook until brown” could be:

sentence

prepositional phrase

adjective

brown

preposition

until

verb phrase

noun phrase

∅

verb

Cook

Typically, NLP systems solve anaphoras in three steps: first finding candidates ref-
erents, second filtering the list with grammatical criteria, and finally selecting one using
varied heuristics. The first step can be made much easier by keeping an up-to-date set
of available objects that can be passed as arguments to actions. The second step is not
relevant for the present application because the anaphoras most often contain no gram-
matical clues about their referent. The third step is solved using a very simple heuristic.
In cooking, the objects referred to by anaphoras are components: raw ingredients that
are part of the set of foods created by previous actions.

4.2.1. Lexical anaphoras

To solve evolutive anaphoras, therefore we keep a set of available food components,
called domain, up-to-date. It is initialised with the ingredients from the ingredients
listings. The food components are considered as consumable resources, i.e. an action
will remove some food components from the domain and add some others. For instance,
the clause “mix flour, eggs and milk” would remove the three food components associated
to flour, eggs and milk from the domain, and would add a new food component in it,
which becomes available to the clause “pour batter”. Having an up-to-date domain
makes it simpler to identify the object(s) an evolutive anaphora is referring to.

The domain of food components available at step s is called Ds: D0 is the initial
domain, and Ds+1 is the domain after the sth action in the sequential order of the text
has been analysed. The domain is ordered with respect to the order of the ingredients
list, which is necessary to resolve anaphoras such as “the next 5 ingredients”. The order
of food components added subsequently is thus not important. The objects in the domain
are called “food components”. A function I is defined which, for a given food component
F , gives the set I(F ) of its ingredients.

Depending on how the domain is searched for the correct referent of an anaphora,
two types are distinguished: existential and universal references.

12



Existential references. An existential reference is so called because it captures a food
component which contains some specific ingredient. The ingredient is sometimes men-
tioned explicitly, making the reference trivial to solve, e.g. a “beef mixture” can be
whatever food component contains beef. Anaphoras such as “batter” are harder to
solve.

The NLP process described in the previous subsection was used to identify all the
nouns in a corpus of recipes that could not be associated to a listed ingredient, most
of which were indeed lexical anaphoras. Then, the set of ingredients referred to in each
instance was manually built. This makes it possible to show, for instance, that a “batter”
contains at least eggs or flour in over 99% of recipes from a given recipe book. This yields
a target set of ingredients expected in a food component, called T .12

We consider that any food component in the domain that contains at least one in-
gredient in the target set is the food component referred to. In practice, there is almost
always only one, but heuristics could be designed to choose one in other cases, such as
taking the one with the most ingredients from the target set.

The set of food components that could be the referent to an existential anaphora with
target set T at step s is defined by:

{F ∈ Ds | ∃i, i ∈ I(F ) ∧ i ∈ T } (1)

Universal references. A universal reference is so called because it captures a set of foods
for which all ingredients are of a certain type. This is the case, for instance, when a
recipe says to “sift all dry ingredients together”. Given that an ontology exists and that
it is possible to map the anaphoric reference to a concept of this ontology, solving a
universal reference is straightforward. For instance, “dry ingredients” represents the set
of foods which are exclusively made of ingredients appearing under the “dry ingredient”
concept in the ontology.

The set of food components that a universal anaphora pointing to ontology class C

refers to at step s is defined by13:

{F ∈ Ds | ∀i, i ∈ I(F )→ i v C} (2)

4.2.2. Grammatical anaphoras

The main kind of grammatical anaphora used in instruction texts is zero-anaphoras.
Their resolution, while a complicated problem in general, can usually be dealt in in-
structions with simple heuristics. As discussed earlier, most systems need to build a list
of candidate referents, though this is not necessary in this instance with the use of the
domain, then filter it, which is impossible in the case of zero-anaphoras. The last step is
to select one referent using preference heuristics.

The one heuristic all theories seem to agree on is recency: all other things being
equal, the most recently introduced entity among the candidate referents is selected.
This simple heuristic is usually sufficient in instruction texts, with a small adjustment to

12 On a very large corpus, it may be possible to automate this process by setting a threshold and
considering that all ingredients that have been mixed with others at the point where the anaphora is
met are candidates for the target set.

13 Where i is both an ingredient in the recipe and a concept in the ontology corresponding to this
ingredient, an abuse of notation which increases readability. i v C means that i is a subclass of C.
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fit within our evolutive domain model: a zero-anaphora is a reference to the objects that
were inserted in the domain by the last action that occurred before the current clause.

The most important problem they pose is their detection. A human would instinc-
tively know that something is missing from the instruction “add milk” (i.e. “to what?”).
For the computer to detect this implies a high level of linguistic knowledge. The fact
that an argument is missing could be found out using either syntactic or semantic frames,
the former being a much easier option to implement while the latter is less error-prone.
Subcategorization frames specify, for a given verb, the types of complements that must
accompany it, e.g. “add needs an object and a prepositional complement: add O to
P”, making it obvious when one is missing. Subcategorization frames can be acquired
automatically in corpora, or taken from online databanks such as VerbNet [24], but in
any case it is advisable to verify manually that they are fit for a given application (there
may be surprisingly few anyway, e.g. only 130 in our cooking application).

If the anaphora was an actual pronoun instead of being a zero-anaphora, e.g. if the
second sentence of the example recipe read “Cook it until brown”, the result would be
the same. Therefore, it is easiest to disregard the pronouns altogether, which will cause
the system to think a complement is missing and use the heuristic for zero-anaphoras.

4.2.3. Updating the domain

After resolving the anaphoras, the actual arguments of the action at step s are known.
This subsection shows how the domain of food components available at step s + 1 is
computed from the arguments, with respect to the nature of the action.

Most actions take sets of food components as arguments. Those will be identified
hereafter with capital letters, whereas sets of simple ingredients will be identified with
lower case letters. The set of food components which appear as an object complement
of the verb is called O, and the set of food components which appear as a prepositional
complement is called P . Certain verbs may take a set of ingredients as an object rather
than a set of food components. This is the case, for instance, of remove: “remove garlic
[implicitly: from the mixture in which it is]”. In this case, the set of ingredients is
identifies with a lower case o.

While we consider that any food component passed as an argument to any verb is
consumed by the associated action, deciding which food components are output by the
action is less straightforward. Four different classes of actions are distinguished according
to the food components they output. In the following, each output food component is
represented as N . When there is more than one (this is defined by the action class), the
set of Ns is called S.

Union actions Output only one object, the parts of which are the union of the parts
of all the inputs, e.g. “Combine pasta and sauce”.

Ds =(Ds−1\(O ∪ P )) ∪ {N}, with

I(N) = I(O) ∪ I(P )
(3)

Parallel actions Output as many objects as were input, implying that the action, while
expressed as one clause, is executed separately for each input, e.g. “Mince the
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cook until
brown

discard
garlic

sauté garlic
in olive oil

Figure 7: Extracted sequence.

onions, the carrots and the celery”.14

Ds =(Ds−1\O) ∪ S, where

∀F, F ∈ O → ∃!N,N ∈ S ∧ I(N) = I(F )
(4)

Splitting actions Input only one object and output several, e.g. “separate the egg’s
yolk from the white”.

Ds =(Ds−1\O) ∪ S, with

I(O) =
⋃
N∈S
I(N) (5)

Difference actions Output only one object, the parts of which are the parts of its
prepositional complement input minus the part specified as its object, e.g. “remove
the garlic from the oil”. Difference actions are distinguished from splitting action
from a practical point of view: the removed part is discarded from the domain.

Ds =(Ds−1\P ) ∪ {N}, with

I(N) = I(P )\o
(6)

4.3. Case acquisition

Because instruction texts are usually designed such that the instructions are to be
applied in the textual order of their description, the task of extracting a workflow from
them is not very complicated: once all the actions described in the text have been fully
analysed and the verb modifiers are known, generating a workflow primarily consists in
applying a mapping from the set of modifiers to the set of workflow structure patterns.
This last step can be implemented so as to operate iteratively at the same time as the
anaphora resolution process. Because it is partly dependent on the ingredients, though,
it is easier to describe assuming that all anaphoras are resolved.

Two actions textually juxtaposed without further precision are considered as taking
place sequentially. Therefore, disregarding the “until brown” condition for now, the first
two sentences of the example recipe of figure 4 are represented as shown in figure 7. In
interval algebra, the disjunctive relation {b,m} can express a sequence.

Explicit disjunctions in instruction texts are rare. They usually stem from a decision
that is made before the procedure begins. In recipes, for instance, most disjunctions
come from ingredient options, e.g. using either dried or fresh peppers. In this context,

14 In equation 4, ∃! represents uniqueness quantification, i.e. ∃!x, P (x) is defined as ∃x, P (x) ∧
∀y, P (y) → x = y.
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using dry peppers

using fresh peppers

immerse peppers in hot water

do nothing

Figure 8: Extracted disjunction.

cook pasta

do nothing

combine pasta
and sauce

pasta not al dente

pasta not al dente

pasta al dente

Figure 9: Extracted loop with short scope.

it is usually enough to say that an action is in a disjunction if it applies to an ingredient
that is itself in a disjunction. For instance, sentence “If using dry peppers, immerse them
in hot water” can be represented as in figure 8 without having fully to analyse the phrase
“If using dry peppers”—the condition can be inferred from the ingredient disjunction.

More frequently, disjunctions are used inside loops to specify a condition under which
an action can be stopped, as in “Cook pasta until al dente.” We have chosen to represent
this as a single task with an explicitly specified end condition, but it may easily be
represented as in figure 9 since the condition “until al dente” is identified at the chunking
step and it can be inferred that the property applies to the input of the action. The same
can be represented in interval algebra by considering that “al dente” is a state of “pasta”
which is reified as an interval, such that the “cook pasta” interval is in m relation with
the “pasta al dente” interval.

Loops are also used occasionally for true repetitions, triggered by the verb “repeat”.
While the end conditions will there again be specified as a verb modifier, the difficulty
is determining the scope of the repetition. We propose a simple heuristic: if the verb
“repeat” has a prepositional complement P and there previously was a splitting action
at step s, such that P can be resolved to a food component in Ds, then the loop is scoped
over the whole sequence from the splitting action to just before the “repeat”. In all other
cases, either there are cooking actions in the same sentence as “repeat” and the loop is
scoped over those, or then the loop is scoped over the actions of the previous sentence.
An example of the latter case would be: “Add a spoonful of water and knead. Repeat
until all flour is absorbed.” Loops can also be used with sporadic repetitions, such as in
“stir frequently”. In this case, the action is inserted in a sequence with a “do nothing”
action, and this sequence is looped. This normally appears as an action simultaneous
with another.
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fry vegetables

stir vegetables

Figure 10: Extracted conjunction with short scope.

add
tomatoes

bring
water to

a boil

simmer

salt
cook pasta

until
al dente

combine
pasta and

sauce

Figure 11: Extracted conjunction with long scope.

The conjunction workflow structure is used to represent a possible simultaneity. This
can be triggered by verb modifiers such as “meanwhile”, but also simply by the use of
the participle mood, e.g. “Fry 10 minutes, stirring constantly.” The latter case yields
a conjunction that is scoped only over the previous action, as shown in figure 10. In
interval algebra, while this does not have the exact same semantics, it would make sense
to represent this kind of simultaneity as inclusion using the relation d.

“Meanwhile”-like modifiers are more tricky: they initiate a sequence of actions that
can be simultaneous with the preceding action. In this case, we consider that the con-
junction extends all the way to just before a step on which any food component output
by an action in the sequence serves as input to the same union action as any food com-
ponent output from the previous action. For instance, the action immediately previous
to “Meanwhile, bring water to a boil” in the example recipe is “simmer”, which has the
sauce for output. Therefore, the conjunction extends to just before “Combine pasta and
sauce”, as shown in figure 11. In interval algebra, this is more straightforward, as the
relation {d,oi,f}? between the first action of the simultaneous sequence and the previous
action is sufficient—the other relations can be inferred.

Some temporal phenomena that can be represented in interval algebra but not with
workflows may also be of interest for reasoning. It is expected that those are also to be
found in verb modifiers, and should be pretty easy to analyse. In the example recipes,
there are two different types: single action durations such as “Fry 10 minutes”, and
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relations between actions such as “Serve immediately.” The latter can be represented
simply using the m? relation, whereas the former requires the time to be reified by
creating an interval whose gist is to last 10 minutes and the use of the ?= relation from
INDU .

Workflows can also represent the dataflow. In the cooking domain, the dataflow is
the ingredients input and output by each task. This information is computed as part of
the anaphora resolution process of subsection 4.2, so it is straightforward to integrate it
within the generated workflow.

4.4. Annotating for text adaptation

The methodology presented thus far makes the automatic acquisition of cases rep-
resenting processes possible using a formalism similar to those most often used in the
domain. But this is still insufficient to allow for solid textual adaptation—that is, for
instance, to allow Taaable to answer a user query with an adapted recipe text generated
on the fly. This subsection presents ongoing work about the problem of annotating the
text during case acquisition in order to make the textual adaptation process easier.

Whatever the case representation formalism, the effect of any adaptation method
will be to modify the formal representation of the retrieved case to make it suitable as
a solution to the target problem. If the solution is to be presented to the user in text
format, it is necessary that these modifications be applied to the text at the same time
as to its formalised form.

In section 3.1, the adaptation method that consists in replacing sentences applicable
to an ingredient α with sentences more suited to a substitution ingredient β developed
in [3] was presented briefly. Compared with, for instance, complex and error-prone text
generation, this method is very economical in terms of textual adaptation, because it
makes it possible to prune a piece of text and replace it with a piece from a different text,
modulo minor linguistic adjustments (fixing capitalisation and punctuation), through a
parallel process.

It still requires an annotation of the text parallel to the extraction of its formal
representation. Minimally, the clause segmentation must be marked in the text, and
each clause must be annotated with the ingredients that its action take as input. In
order simply to replace whatever α-specific preparation steps in the recipe with β-specific
preparation steps, this is sufficient.

A more thorough type of adaptation, such as the one proposed by Minor et al. [25],
where a workflow representation is edited following a set of precise instructions, would
require a more thorough annotation of the text. It would require not only the workflow
tasks to be cross-referenced with the clauses, but also the control flow structures to be
cross-referenced with the phrases that materialise them in text, requiring a full temporal
annotation language.

TimeML [26] seems to be the most expressive language of this kind in existence.
It makes it possible to represent, directly in text, the relations between actions, states,
intervals, time points, and even sets of time points. Figure 12 shows one possible TimeML
of the instructions “Add tomatoes and simmer 30 minutes. Meanwhile, bring water to
a boil” in TimeML. Tasks in a process are represented as EVENTs. TIMEX3 tags encode
explicit temporal expressions that are related to an EVENT and specify the time of their
occurrence or their duration, whereas SIGNAL tags underline words or phrases that are
used to indicate the temporal relations between events.
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...

<EVENT eid="e9" class="OCCURRENCE">

Add

</EVENT>

<MAKEINSTANCE eiid="ei9" eventID="e9" tense="INFINITIVE" aspect="NONE"

pos="VERB"/>

tomatoes and

<EVENT eid="e10" class="OCCURRENCE">

simmer

</EVENT>

<MAKEINSTANCE eiid="ei10" eventID="e10" tense="INFINITIVE" aspect="NONE"

pos="VERB"/>

<TIMEX3 tid="t3" type="DURATION" value="PT30M">

30 minutes.

</TIMEX3>

<TLINK eventInstanceID="ei10" relatedToTime="t3" relType="DURING"/>

<TLINK eventInstanceID="ei10" relatedToEvent="ei9" relType="AFTER"/>

<SIGNAL sid="s2">

Meanwhile,

</SIGNAL>

<EVENT eid="e11" class="OCCURRENCE">

bring

</EVENT>

<MAKEINSTANCE eiid="ei11" eventID="e11" tense="INFINITIVE" aspect="NONE"

pos="VERB"/>

water to a boil.

<TLINK eventInstanceID="ei11" signalID="s2" relatedToEvent="ei10"

relType="IS_INCLUDED"/>

...

Figure 12: An excerpt from the recipe of figure 4 annotated with TimeML.

Those relations are annotated using the TLINK tag with a relType attribute that offers
values comparable to the relations of interval algebras. While TimeML can be used as a
temporal knowledge representation formalism in its own right, it can also be used merely
as a format to materially represent temporal annotations in a different formalism in text,
which is what the authors propose. Figure 12 shows a “regular” TimeML representation
of the recipe excerpt of figure 4, but it would be straightforward to replace the relType

values with INDU relations. It would be perfectly feasible as well, given a workflow
expressed as XML, to cross-reference an EVENT with a workflow task, as well as a SIGNAL

with a workflow with a workflow control structure. The text parts impacted by any
modification of the workflow would thereby be identified easily.

For workflow or algebraic adaptation as presented is section 3.2, though, linguistic
knowledge complementary to that described in the previous subsection is required. In-
deed, in section 4.3, we described the case acquisition as little more than applying a
mapping from verb modifiers (TIMEXs and SIGNALs) to workflow structure patterns (or
interval algebra relations). Text adaptation that is not purely grafting-based imply a
measure of text generation, which requires an inverse mapping from workflow patterns
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or algebra relations back to verb modifiers.
As an example, if the conjunction between the “simmer” and the “bring to boil”

actions, which was inferred because of the SIGNAL “meanwhile”, was to be replaced
by a sequence at the adaptation stage, it would become necessary to replace the word
“meanwhile” as well to ensure the equivalence of the text and its formal representation.
Since the sequence was defined as the default relation when no modifier is frequent, in this
case, the “meanwhile” could be removed altogether from the text, modulo capitalisation
and punctuation fixing.

4.5. Application to the scientific example

This section gives an overview of the additional work that would be required to
make the method described above work with a different domain, that of the scientific
experimental protocol shown in figure 2 on page 4.

As for the standard NLP toolchain, it can be applied in exactly the same way to
this experimental protocol as to recipes. This very example shows some sentences that
are not in the imperative, but since this also occurs in some recipes, the part-of-speech
tagger trained on recipes gave the expected results on the protocol.

For the anaphora resolution though, additional resources are required: the ontology
of objects, the dictionary of actions, and the target sets of lexical anaphoras.

The ontology must contain the chemicals that may be used in the protocol, such
as yeast, trypsin or Na2HPO4, and is used to find those objects in the text and to
resolve lexical anaphoras. The dictionary of actions must contain the relevant verbs,
such as “suspend”, “boil” or “centrifuge”, along with their subcategorization frame to
allow identification of zero-anaphoras, and their class for domain updating. For instance,
“suspend” is a union action requiring both an object and a prepositional complement,
and “centrifuge” is a splitting action requiring but an object.

Regarding lexical anaphoras needing target sets to resolve, it is less clear what may
be the requirements of different application domains. The semi-automatic process used
for building the target sets in the cooking domain rely on the ingredients list, but it
may also be used in texts without lists provided that the anaphoras don’t appear in the
ontology. Otherwise, those anaphoras may be difficult to deal with. An additional piece
of information about lexical anaphoras which is required for scientific protocols is the
names through which the outputs of a splitting action can be referred as. In cooking,
the only obvious case in which a splitting action assigns a specific name to its outputs
is the separating an egg into its yolk and white. In scientific protocols, most splitting
actions assign names to their outputs irrespective of the objects consider: for instance,
the outputs of “centrifuge” in the example protocol are “precipitate” or “residue” and
“supernatant”. Therefore the application must know that, e.g. in step 3, “precipitate”
refers to one of the two outputs of the “centrifuge” action, and “supernatant” to the
other.

Some sentences are in the passive voice and have subjects instead of objects. The
subjects are not considered when looking for action arguments. This has no effect in this
case, as the missing argument is interpreted as a zero-anaphora and correctly resolved.
Larger scale testing of the algorithm in domains other than cooking would make it possi-
ble to say whether this can be considered as a valid heuristic or whether this is a stroke
of luck. In the latter case, it would be straightforward to analyse the sentence correctly,
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since the output of the part-of-speech tagger makes it possible to infer whether a verb is
in the passive voice.

As far as the actual case acquisition step is concerned, what is suggested is mostly
sufficient to deal with the protocol shown. Because the rules were built by observing the
phenomena in recipe texts, some additional rules would be required for other domains.
For instance, all the durations and temporal relations are correctly identified by the
algorithm, except for the parts of step 2 in which the order of the text does not respect
the temporal order. In the expression “treated as in (step a)”, if one can identify the
“step a” and it refers to a series of actions in which each takes as input the output of
the previous, as is the case, it is easy to copy those actions. Identifying the step by its
number would require the implementation to remember the said number at the clause
segmentation stage—the current implementation internally numbers the clauses with no
respect to any numbering that may be present.

5. Case Acquisition Evaluation

A prototype workflow extractor for recipes following the algorithms presented
throughout section 4 has been implemented in Perl. This makes it possible to evalu-
ate our extraction process against a set of 15 recipes for which a workflow was created
by hand by Minor et al. [27].15 The prototype is quite fast, processing a recipe in an
average time of 0.01 second on a 2.5 GHz i5 CPU.

Those gold standard workflows are represented as labelled graphs as introduced by
Bergmann and Gil [28]. We evaluated the control flow (tasks and order) and the dataflow
(ingredients) separately. On average, a recipe contained 15 tasks and 12 ingredients. The
results are presented in table 1.

For the control flow, the task, and, xor and loop nodes were considered. A node
present in both the gold standard and the generated workflow, in the correct place and
labelled with the correct action verb, is counted as correct. A node present in the gold
standard workflow but not in the generated workflow is counted as a recall error (false
negative), and a node present in the generated workflow but not in the gold standard is
counted as a precision error (false positive). The gold standard has no condition for xor
or loop, therefore the proposed conditions were not evaluated.

Because different workflow structures may at times represent accurately the same
text, so much so that Walter et al. [29] suggested evaluating their workflow extraction
system through user experiments, we tolerated certain specific differences16:

• A task node corresponding to an action that exists in the recipe but was not
included in the gold standard for methodological reasons is discarded.

• A task node corresponding to an action A and specifying that the action is carried
out for a given length of time or until a given state is attained is considered equiv-
alent to the use of a loop containing a task node corresponding to action A in the
gold standard.

15 Those recipes are simply the first ones alphabetically in the recipe book provided by the Computer
Cooking Contest for the adaptation challenge, therefore we cannot guarantee representativeness.

16 To avoid the possible arbitrariness of having to define such equivalences and make automatic
evaluation possible, a future evaluation could operate on the workflow semantics instead, as discussed
by Schumaher et al. [30].
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Recall Precision
Control flow 75% 91%
Dataflow 73% 99%

Table 1: Workflow extraction evaluation results.

Recall Precision
Control flow 89% 100%
Dataflow 89% 100%

Table 2: Results without part-of-speech error.

• A task node corresponding to an action represented by one verb in the recipe text
but including many ingredients is considered equivalent to an and node that has
as many task children nodes as there are ingredients all corresponding to the same
action.

The recall is the ratio of the total amount of nodes correctly generated over the total
amount of nodes in the gold standard, and the precision is the ratio of the total amount
of nodes correctly generated over the total amount of nodes generated.

For the dataflow, only the first use of each ingredient was predictably annotated in the
gold standard, so the evaluation was based on the first appearance. An ingredient input
attached to the same task node in both the gold standard and the generated workflow is
correct. An ingredient indicated in the gold standard but not in the generated workflow
is a recall error. An ingredient indicated in the generated workflow but not in the gold
standard is a precision error.

When looking closely at the errors, it appears that a large part of the errors occur
because of wrong part-of-speech tagging of verbs as nouns or vice versa. For instance,
one recipe from the evaluation set triggered both a false negative and a false positive
because the verb “drain” was tagged as a noun, causing an action to be missed, whereas
the noun “heat” in “high heat” was tagged as a verb, causing an action to be wrongly
generated.

When the software was provided hand-corrected parts-of-speech, the recall increased
significantly, and all false positives disappeared, as shown in table 2.

A high score in control flow extraction indicates that the actions were correctly identi-
fied and that the appropriate workflow structures (sequences, conjunctions, disjunctions
and loops) were created. A high score in dataflow extraction means that the ingredients
were correctly identified and that each of them was associated with the correct action.
The high precision score of our implementation shows that when it makes an annotation,
it is usually right. Its lower recall score means that it sometimes omits to make a required
annotation. For certain applications, it is more important to have undoubted knowledge
than to have complete knowledge, making those results satisfactory. For adaptation pur-
poses, it isn’t clear which if any is more important, meaning that we should strive to
improve our recall score.

At 93.1% accuracy, the part-of-speech tagger is the weak link in the proposed NLP
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chain. Comparing tables 1 and 2 shows that the tagger is indeed responsible for most
errors. The tagger would probably perform better if it was trained using a larger corpus.
A less costly way to improve the results may be to change the tagger so that, when there
is high uncertainty in tagging a word as a noun or as a verb, it is allowed to output more
than one tagging. Then, considering that the NLP process is fast and that the tagger
applies an average of 5.7 verb-related rules in a recipe, it should be possible to carry on
the analysis of all possibilities and to define a heuristic to select what looks like the best
output. Considering that part-of-speech tagging is required for information extraction
as well, we do not think that this problem questions the choice of using NLP.

In the control flow, most of the remaining recall error (after part-of-speech correc-
tion) is due to the ontology of actions not being complete enough. Perhaps using lexical
databases such as WordNet17 could help with this problem and even be used to make
the application more easily ported to different domains. In the dataflow, most of the
remaining recall error is due to ingredients being used in the recipe text without being
called for in the ingredient list. This is actually an intrinsic problem to the implemen-
tation, which uses the list rather than the ontology when annotating the ingredients in
the text. In our opinion, the annotation should be made using the ontology.

While this evaluation is basic, the results are encouraging. However, there is little
hope to improve the system so that it reaches 100% recall and 100% precision on all
English procedural texts. For this reason, we have developed a semi-automatic procedure
for case acquisition: a first version of the procedural case is automatically generated, then
an interaction with an expert makes it possible to validate it, correcting it if needed [31].

Since the NLP process roughly follows the order of the text and since an error may
generate further errors, the expert fixes the first error (in the order of the text), then
the NLP process taking into account the correction is triggered again, and the correc-
tion/validation process resumes on the new version of the automatically acquired case.

To make a larger-scale evaluation possible, two things would be required:

1. A larger set of hand-created or validated workflows associated to text, of which the
obtention will be facilitated by the semi-automatic process just described, and

2. A framework making it possible automatically to compare workflows at a semantic
level, which removes the necessity of manually looking for equivalent workflow
structures.

6. Related work

Ever since what can arguably be described as the foundational paper in textual CBR
methodology by Brüninghaus and and Ashley [32], techniques beyond information re-
trieval (IR) were seen as too knowledge-intensive to be practical for use with CBR. IR
approaches can as a matter of fact be entirely satisfactory for CBR systems manipulating
feature-based case representations. Some systems used to acquire this type of cases are
indeed quite advanced, such as Wiratunga et al.’s [33]. In fact, some featureless textual
CBR systems have been shown to give better results than the equivalent feature-based
systems, e.g. Delany and Bridge’s [34].

17http://wordnet.princeton.edu
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The usual bag-of-words model has also been improved, for instance using graphs to
represent text [35], taking into account the position of words, which makes it possible to
identify the negation of terms. Some approaches, such as the one presented by Asiimwe
et al. [36], proposed even richer case representations, requiring the need of information
extraction (IE). IE has been shown to improve significantly results in CBR, as shown
in Recio Garćıa et al. [37], where a significant increase in recall in observed for the
retrieval task. And indeed, IE has become more efficient over the years [38]. For instance,
Walter et al. [29] proposed a simple, term-based IE approach for extracting workflows
from recipes, based on hand-made rules dealing with action verbs and ingredient nouns.
Schumaher [30] implemented this proposal, as well as a more advanced one, in which
verbs instantiate frames containing slots that must be filled with content extracted from
text. Those frames are similar to the subcategorization frames we use to detect zero-
anaphoras.

We argue that there can be a significant advantage to go further and exploit different
techniques taken from NLP research. For instance, Schumaher’s method is likely to be
easier to implement, but it also seems to have some limitations. Because it does not deal
with the anaphora problem, for instance, we expect its recall to be lower than ours. Also,
not fully processing the input and output of each action will make it more complicated
to compute the scope of the conjunctions and loops operating over sequences of actions.
As a matter of fact, to our knowledge, no IE approach has been proposed so far to deal
with those workflow structures.18

Additionally, while it is commonly said that the more general a domain is, the more
complex the linguistic models required to process text are, the converse is also true: a
textual CBR system using deep NLP techniques, such as the one proposed by Gupta
and Aha [2], would be able to deal with texts from any domain. While we do not go
as far, we think that the case acquisition system we presented in this paper could easily
be used with different types of procedural cases, given a proper ontology of the action
inputs and a proper verb dictionary including subcategorization frames and action types
can be provided. On the other hand, a system based on IE would additionally need a
new set of extraction rules.

This paper also suggests that the case acquisition process should be designed with
textual case adaptation in mind. While natural language generation is a possibility, it has
been observed that the results is absolutely not comparable in quality to text produced
by a human, creating a need for text reuse [39]. Foundational work on this idea was
accomplished by Lamontagne and Lapalme [40]. We believe the main originality of our
work is the fact that the tie we maintain between texts and their formal representation
makes it possible to use adaptation methods not specifically designed for textual CBR to
adapt text. This however means that our framework is strictly symbolic, making most
of the existing work on textual reuse difficult to apply for us.

18 Walter and Schumaher’s approaches were tested by having a panel of human experts grade the
results of their two extraction processes. This means that there is unfortunately no straightforward
way for us to compare our actual results to theirs. It would be an interesting perspective to agree to a
common evaluation framework for workflow extraction.
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7. Conclusion

Process-oriented case-based reasoning requires a highly structured case representa-
tion, making case engineering especially complicated and costly. This paper introduces
a method for the automatic acquisition from procedural texts, and especially instruction
texts, representing processes. Our methodology was implemented in a system to generate
workflows from cooking recipes, obtaining a 75% recall and 94% precision performance
in a basic evaluation.

Although this automatic case acquisition process has been developed and tested on
recipes, it should also be applicable to the procedural texts of other domains (e.g. chem-
istry protocols as the one presented in figure 2). This would require an ontology of the
inputs of such procedures (e.g. ingredients for recipes) and a dictionary of the relevant
verbs containing subcategorization frame and the action type of each.

The automatic acquisition could also be improved by following on some leads devel-
oped in section 5: improving the part-of-speech tagger or implementing a tagger with
multiple output for cases with high uncertainty, improving the ontology of actions, and
actually using the ontology of objects when annotating the text in the implementation.
Those improvements would be easier to implement and test if a better, entirely automatic
evaluation framework was designed.

This paper has focused on case acquisition, but this cannot be considered outside the
context of the intended reasoning tasks. One such task that is very important to us is
adaptation, including textual adaptation, which comes with certain requirements that
must be taken care of at acquisition time. Reflections on this topic were discussed in
section 4.4, and are expected to be the object of further work within a short time frame.
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textual cases. In P. Funk and P. A. González Calero, editors, Advances in Case-Based Reasoning,
volume 3155 of LNCS, pages 251–267. Springer, 2004.

[34] S. Delany and D. Bridge. Catching the drift: Using feature-free case-based reasoning for spam
filtering. In R. Weber and M. Richter, editors, Case-Based Reasoning Research and Development,
volume 4626 of LNCS, pages 314–328. Springer, 2007.

[35] C. Cunningham, R. Weber, J. M. Proctor, C. Fowler, and M. Murphy. Investigating graphs in
textual case-based reasoning. In P. Funk and P. A. González Calero, editors, Advances in Case-
Based Reasoning, volume 3155 of LNCS, pages 573–586. Springer, 2004.

[36] S. Asiimwe, S. Craw, N. Wiratunga, and B. Taylor. Automatically acquiring structured case repre-
sentations: The SMART way. In Applications and Innovations in Intelligent Systems XV. Springer,
2007.
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for textual CBR. In H. Muñoz-Ávila and F. Ricci, editors, Case-Based Reasoning Research and
Development, volume 3620 of LNCS, pages 421–435. Springer, 2005.
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[39] P. Gervás, R. Hervás, and J. Recio-Garćıa. The role of natural language generation during adap-
tation in textual CBR, 2007.

[40] L. Lamontagne and G. Lapalme. Textual reuse for email response. In Advances in Case-Based
Reasoning, pages 234–246. Springer, 2004.

[41] I. Bichindaritz and S. Montani, editors. Case-Based Reasoning Research and Development (ICCBR
2010), volume 6176, Alessandria, Italy, July 2010. Springer-Verlag.

[42] B. Dı́az Agudo and I. Watson, editors. Case-Based Reasoning Research and Development (ICCBR
2012), volume 7466, Lyon, France, September 2012. Springer-Verlag.

27


	1 Introduction
	2 Formalisms for process representation
	3 Case-based reasoning and adaptation
	3.1 Adaptation using grafting
	3.2 Adaptation based on belief revision

	4 Extraction process
	4.1 Standard NLP toolchain
	4.1.1 Segmentation
	4.1.2 Morphological analysis
	4.1.3 Syntactic analysis

	4.2 Anaphora resolution
	4.2.1 Lexical anaphoras
	4.2.2 Grammatical anaphoras
	4.2.3 Updating the domain

	4.3 Case acquisition
	4.4 Annotating for text adaptation
	4.5 Application to the scientific example

	5 Case Acquisition Evaluation
	6 Related work
	7 Conclusion

