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Abstract

The representation of large subsets of the World Wide Web in the form of a directed graph has been
extensively used to analyze structure, behavior, and evolution of those so-called Web graphs. However,
interesting Web graphs are very large and their classical representations do not fit into the main memory
of typical computers, whereas the required graph algorithms perform inefficiently on secondary memory.
Compressed graph representations drastically reduce their space requirements while allowing their efficient
navigation in compressed form. While the most basic navigation operation is to retrieve the successors of
a node, several important Web graph algorithms require support for extended queries, such as finding the
predecessors of a node, checking the presence of a link, or retrieving links between ranges of nodes. Those
are seldom supported by compressed graph representations.

This article presents the k2-tree, a novel Web graph representation based on a compact tree structure
that takes advantage of large empty areas of the adjacency matrix of the graph. The representation not only
retrieves successors and predecessors in symmetric fashion, but also it is particularly efficient to check for
specific links between nodes, or between ranges of nodes, or to list the links between ranges. Compared to
the best representations in the literature supporting successor and predecessor queries, our technique offers
the least space usage (1–3 bits per link) while supporting fast navigation to predecessors and successors
(2–8 microseconds per neighbor retrieved) and sharply outperforming the others on the extended queries.
The representation is also of general interest and can be used to compress other kinds of graphs and data
structures.
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1. Introduction

Coherent subsets of the World Wide Web, such as crawls over large domains (e.g., comprising whole
countries and other geographic areas, languages, cultures, or organizations) are called Web graphs. The
representation of Web graphs as directed graphs is extremely useful to analyze their structure, behavior,
and evolution. Typically, the graph is constructed by defining each Web page as a graph node, and each
hyperlink as a graph edge, but it is also possible to build coarser graphs by considering that nodes are, for
example, domains or servers. Various analyses of Web graphs then boil down to running (often classical)
graph algorithms on their directed graph representation.

For example, Donato et al. [1] show that several common Web mining techniques, used to discover
the structure and evolution of Web graphs, build on classical graph algorithms such as depth-first search,
breath-first-search, reachability, and weakly and strongly connected components.
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Probably the most important analysis task on Web graphs is related to measuring the importance of
Web pages, as it lies at the heart of successful search engines. For example, one of the most important
algorithms to find hubs and authorities on the Web, HITS [2], starts by selecting random pages and finding
the induced subgraphs, which are the pages that point to or are pointed from the selected pages. Forward
and backward navigation is also inherent to the definition of the well-known PageRank algorithm [3, 4], as
well as variants such as Truncated PageRank [5] (especially if one wishes to estimate PageRank for isolated
pages rather than for the whole graph [6]).

Detecting Web spam is another important problem that can be addressed via Web graph analysis. Saito
et al. [7] present a technique that boils down to algorithms for finding strongly connected components, for
clique enumeration, and for minimum cuts. Becchetti et al. [5] show that detecting deceiving link structures
is intimately tied to the problem of estimating the number of “supporters” of a node, which are those
that can be found by navigating backwards a small distance. They develop alternative forward-navigation
techniques to avoid the need of backward navigation. They also mention various measures useful to detect
Web spam that require forward and backward navigation capabilities, such as “edge-reciprocity”, PageRank
distribution of iterated predecessors at small distance [8], and backward propagation of “spamicity” from
known spam nodes [9].

Yet another important target of Web graph analyses is the detection of communities, which is interesting
both to understand social processes and to better target searches and advertisement. Kumar et al. [10] are
strong supporters of the idea that communities can be automatically detected by analyzing the Web graph
structure. In particular, they argue that the most important measure is “co-citation”, that is, two pages
that point to a third one, and that Web communities can be found by looking for dense bicliques (two sets
of nodes, most of the first set pointing to most of the second). Those structures are most naturally found
via forward and reverse navigation, lacking which the authors focus on ways to detect the bicliques using
forward navigation only. Bicliques are also studied by Buehrer and Chellapilla [11] to detect communities
and to compress Web graphs. As another example, Gibson et al. [12] propose algorithms to find communities
that build on the HITS algorithm already mentioned. To measure the quality of the communities detected,
there exist several metrics, such as their conductance, expansion, or internal density [13]. To efficiently
compute these metrics, it is necessary to support single-link queries, so as to answer whether there is a link
from one Web page to another, and also range queries, which give the number of edges that connect nodes
from a community with nodes outside the community or within the community.

Range queries are also useful to regard Web graphs at different levels of granularity, for example deter-
mining whether there are links between two domains, sites, or subdirectories, or listing those links.

This brief recollection reveals, first, the importance of running complex graph algorithms on very large
Web graphs, and second, the importance of supporting both forward and backward navigation on those Web
graphs, as well as extra functionality such as single-link or range queries, as these provide a relevant tool
for many Web graph analysis activities.

The problem of analyzing large Web graphs has been addressed in two ways. One is to resort to external
memory and streaming graph algorithms. While various graph algorithms have external memory versions
[14], many others are not disk-friendly. The second solution, which is the focus of this article, is to use
compact graph representations. These are memory-efficient data structures that represent large graphs and
support fast navigation without decompressing them. Their aim is to support complex algorithms on large
graphs within main memory, over much larger graphs than those that could be fit using classical graph
representations.

In this article we introduce the k2-tree, a compact tree representation of the adjacency matrix of Web
graphs that supports forward and backward navigation in a symmetric fashion. It also supports other more
sophisticated functionality, such as querying for individual links, listing the links between ranges of nodes,
and determining the existence of links between ranges of nodes. The k2-tree exploits the clustering that
arises in the adjacency matrix of Web graphs, by factoring out large empty areas. As such, it is a more
general technique that can be used in other scenarios as well.

Our experimental results show that the k2-tree is the most compact Web graph representation in the
literature when both forward and backward navigation is to be supported, reaching 1–3 bits per link. It is
also efficient to support forward and backward navigation, taking 2–8 microseconds per retrieved neighbor.
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There exist faster alternatives in the literature but they require significantly more space. Thus the k2-tree
extends the range of Web graph sizes that can be handled in main memory with an efficient support for
various Web graph analysis tasks.

A conference version of this work appeared in SPIRE [15]. This article extends that work by incorporating
details and experiments of extended functionality of our proposal, that is, single-link and range queries, and
adding various improvements to the method, which have given significantly better space/time tradeoffs
(actually, the k2-tree is up to date the most space-efficient representation thanks to these improvements,
as the original version is not anymore competitive). It also includes an extensive experimental study,
where we analyze the effects of the node ordering, and also compare the results achieved by our technique
at compression and query time with other methods, including techniques that have appeared since the
publication of the preliminary version, and that are much more competitive than those existing by then.

2. Related work

Most of the research in Web graph compression focuses on obtaining a compact representation that
permits the efficient extraction of the successors of any Web page, that is, they emulate a classical adjacency
list representation. The space requirements for these methods is commonly measured in bits per edge (bpe),
that is, the number of bits that are necessary to operate with the graph in main memory divided by the
number of edges of the Web graph.

The most famous representative of this trend is surely Boldi and Vigna’s WebGraph Framework [16].
The WebGraph compression method is indeed the most successful member of a family of approaches to
compress Web graphs based on their statistical properties [17, 18, 19, 20, 21, 22]. It allows fast extraction
of the neighbors of a page while spending just a few bpe (about 1 to 6, depending on the desired navigation
performance). Their representation explicitly exploits Web graph properties such as: (1) the locality of
reference, and (2) the “copy property” (i.e., the set of neighbors of a page is usually very similar to that of
some other page). They effectively exploit the power-law distribution of the gaps between successors. More
recent variants of the WebGraph framework keep improving compression via better encodings and node
orderings [23, 24].

Claude and Navarro [25] showed that most of those properties are elegantly captured by applying Re-Pair
compression [26] on the adjacency lists, and that reverse navigation can be achieved by representing the
output of Re-Pair using sophisticated compact data structures for sequences [27]. While they cannot reach
the best compression ratios of WebGraph, their representation is faster when both use the same space.

Asano et al. [28] go further in explicitly exploiting the particularities of Web graph adjacency matrices,
by looking for known regularities (rows, columns, diagonal, L-shapes, etc.) and compressing them. While
they achieve good compression results on small graphs (the approach does not seem to scale up easily), their
navigation time is considerably high, as they need to uncompress full domains in order to find the neighbors
of a single page.

Apostolico and Drovandi [29] presented a method that orders the nodes of the Web graph following a
Breadth First Search (BFS) strategy, instead of using the popular lexicographic order. This retains the main
properties of Web graphs outlined above, actually improving locality. They achieve little space (about 1 to
4 bpe), less than Asano et al. [28], while maintaining a retrieval time comparable to WebGraph variants. In
addition, they introduce an efficient technique to determine whether two given nodes are connected, that
is, to find out whether a page p has a link to a page q within about 60% of the time needed to extract the
whole adjacency list of p.

Buehrer and Chellapilla [11] propose a Web graph compression technique based on finding bicliques on
the directed graph, and representing them in a compact way. Their method, called “Virtual Node Miner
(VNM)”, is highly scalable and supports incremental updates. While its authors do propose some encodings,
VNM is more properly described as a graph preprocessing method, as its output is still a graph that can be
in turn compressed with other techniques. In particular, Hernández and Navarro [30] combined VNM with
various techniques, including the k2-trees we present in this article (considering the conference version [15]).
We will discuss this and other followups of our work in the Conclusions.
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A recent proposal by Grabowski and Bieniecki [31] obtains very competitive time and space results.
Their method, based on list merging, is called “LM” and consists in representing blocks of h adjacency lists.
It converts each block into two streams: in the first one they store compactly all the different nodes that
appear at those lists, and in the other stream they store flags necessary to reconstruct the original lists, such
that the merge of the lists can be reversed. They use h bits in the second stream for each element of the
first stream, setting to 1 the bit for all the adjacency lists that contain that node. Both streams are then
compressed.

Finally, we point out that any representation that offers forward navigation functionality can be converted
into one that offers bidirectional navigation by simply storing the (compressed) graph and the (compressed)
transposed graph. Boldi et al. [24] suggest a more clever approach: Separate the bidirectional subgraph Gb

(formed by the edges whose reciprocal is also in the graph G) from G, leaving G′ = G−Gb. Then represent
Gb, G

′ and the transpose of G′. Then successors are queried in Gb and G′, and predecessors in Gb and the
transpose of G′.

To conclude our revision, a note on the identity of Web graph nodes is in order. It is customary in
compressed Web graph representations to assume that page identifiers are integers, which correspond to
their position in an array of URLs. The space for that array is not accounted for, as it is assumed to be
independent of the Web graph compression method. Moreover, it is assumed that URLs are alphabetically
sorted, which naturally puts together the pages of the same domains, and thus locality of reference translates
into closeness of page identifiers. It has been found, however, that other node orderings can be more
convenient than lexicographic ordering [29, 23, 24]. We note that it is not totally fair to assume that those
methods require the same space to represent the URLs as the lexicographic ordering, as the latter can
be taken advantage of by prefix omission compression methods [32]. However, most Web graph analysis
algorithms, including PageRank or HITS, are independent of the text of the URLs, and therefore one can
maintain the URLs on disk and retrieve them only at the very end of the analysis algorithm. For these
reasons, and following the literature, we will ignore the space to store the URLs of nodes when measuring
the space in all the compression methods, and will assume that nodes are integers that can be reordered.

3. Our Proposal

The adjacency matrix of a Web graph of n pages is a square matrix {aij} of n× n cells, where each row
and each column represents a Web page. Cell aij is 1 if there is a hyperlink in page i towards page j, and
0 otherwise.

As there are a few tens of links per Web page, this matrix is extremely sparse. Assuming that we use a
node reordering that favours the locality of reference, many 1s are placed around the main diagonal (that
is, page i has many pointers to pages nearby i). Due to the copy property, similar rows are common in the
matrix. Finally, due to skewness of distribution, some rows and columns have many 1s, but most have very
few.

We propose a compact representation of the adjacency matrix that exploits its sparseness and clustering
properties. The representation is designed to compress large matrix areas with all 0s into very few bits.

3.1. Conceptual description

We represent the adjacency matrix by a k2-ary tree, which we call a k2-tree, of height h = ⌈logk n⌉. Each
node contains a single bit of data: 1 for the internal nodes and 0 for the leaves, except for the last level,
where all are leaves and represent bit values of the matrix. The first level (numbered 0) corresponds to the
root; its k2 children are represented at level 1. Each child is a node and therefore it has a value 0 or 1. All
the internal nodes (i.e., with value 1) have exactly k2 children, whereas leaves (which have value 0 or lie at
the last tree level) have no children.

The k2-tree represents the adjacency matrix as follows. Assume for a moment that n is a power of
k; we will soon remove this assumption. Conceptually, we start dividing the adjacency matrix following
a MX-Quadtree strategy [33, Section 1.4.2.1], into k2 submatrices of the same size, that is, k rows and k
columns of submatrices of size n2/k2. Each of the resulting k2 submatrices will be a child of the root node
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Figure 1: Representation of a Web graph (left) by its adjacency matrix (center), and the corresponding k2-tree (right).

and its value will be 1 iff there is at least one 1 in the cells of the submatrix. A 0 child means that the
submatrix has all 0s and therefore the tree decomposition ends there; thus 0s are leaves in our tree. The
children of a node are ordered in the tree starting with the submatrices in the first (top) row, from left to
right, then the submatrices in the second row from left to right, and so on.

Once the level 1 of the tree, which contains the children of the root node, has been built, the tree is
expanded recursively from each child with value 1. The expansion stops when we reach submatrices full of
0s, or when we reach a k × k submatrix of the original adjacency matrix, that is, we reach the last level of
the tree. In this last level, the bits of the nodes correspond to the adjacency matrix cell values, following
the node ordering we have previously defined. The height of the tree is h = ⌈logk2 n2⌉ = ⌈logk n⌉.

Figure 1 (left) illustrates a small Web graph consisting of four Web pages, p1 to p4. Its 4× 4 adjacency
matrix is shown in the center of the figure. On the right we illustrate the 22-tree built for this example. Its
height is h = ⌈log2 4⌉ = 2, where level 1 corresponds to the children of the root node and level 2 contains the
original cell values of the 2× 2 adjacency submatrices that are not all 0s. Following the ordering previously
defined, those submatrices containing at least one 1 are the first (top-left) and the fourth (bottom-right) of
the adjacency matrix.

If n is not a power of k, we conceptually extend our matrix to the right and to the bottom with 0s,
making it of width n′ = kh = k⌈logk

n⌉, that is, we round n up to the next power of k. This does not cause
a significant overhead because our technique is efficient to handle large areas of 0s.

Note that, since the height of the tree is h = ⌈logk n⌉, a larger k induces a shorter tree, with fewer levels
but with more children per internal node. Figure 2 shows an example of the adjacency matrix of a small
Web graph (the first 11 × 11 submatrix of graph CNR1), and how it is expanded to an n′ × n′ matrix for
n′ a power of k = 2 and of k = 4. The figure also shows the k2-trees corresponding to those k values. Note
that most empty cells in the original adjacency matrix are not explicitly represented, but rather grouped in
higher-level leaves of the k2-tree.

3.2. Data structures

As mentioned, the k2-tree can be seen as a compact representation of an MX-Quadtree [33, Section
1.4.2.1], which is a Quadtree variant designed for sparse matrices. This usage of Quadtrees is not new,
e.g. [34]. What is novel in the k2-tree is its compact representation. As we show later, this representation
which yields extremely good compression ratios and efficient navigation on Web graphs, due to the simplicity
and compactness of the data structures we use to represent the k-ary tree, and the fact that they match
well with the sparseness and clustering of the adjacency matrix of Web graphs.

Our data structure is essentially a compact tree of N nodes. There exist several such representations
for general trees [35, 36, 37, 38, 39], which asymptotically approach the information-theoretic minimum of

1From the Laboratory for Web Algorithmics, http://law.dsi.unimi.it
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Figure 2: Expansion and subdivision of the adjacency matrix (top) and resulting tree (bottom) for k = 2 (left) and for k = 4
(right).

2N + o(N) bits. In our case, where there are only arities k2 and 0, the information-theoretic minimum of
N + o(N) bits can be achieved with a so-called “ultra-succinct” representation [40] for general trees.

Our representation is much simpler and still uses N + o(N) bits. We use a variant of the so-called
LOUDS (level-ordered unary degree sequence) tree representation [35] tailored to the case where there are
only arities k2 and 0 (we note that just applying plain LOUDS on our tree would require 2N + o(N) bits).
Our representation gives in constant time the i-th child of any node, which is the only query we need (it
also gives the parent of a node, but we will not need that). We inherit the simplicity and practical efficiency
of the basic LOUDS representation, which was found in recent experiments to be the most convenient one
when its limited support of operations is sufficient [41].

3.2.1. Representation

We represent the whole adjacency matrix via the k2-tree using two bit arrays:

• T (tree): stores all the bits of the k2-tree except those at depth h. The bits are placed following a
levelwise traversal: first the k2 binary values of the children of the root node, then the values of the
second level, and so on.

• L (leaves): stores the last level of the tree. Thus it represents the value of (some) original cells of the
adjacency matrix.

A node in the k2-tree is identified with the position x of the corresponding bit in T ‖L, where “‖” is the
sequence concatenation operator. For example, to represent the 22-tree of Figure 2, arrays T and L are:

T = 1011 1101 0100 1000 1100 1000 0001 0101 1110,
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L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.

In T each bit represents a node. The first four bits represent nodes 0, 1, 2 and 3, which are the children of
the root. The following four bits represent the children of node 0. There are no children for node 1 because
it is a 0, then the children of node 2 start at position 8 and those of node 3 start at position 12. The bit in
position 4, the fifth bit of T , represents the first child of node 0, and so on.

This representation permits fast navigation to the i-th child of node x, childi(x), for any 0 ≤ i < k2.
Let x be a position in T (the first position being 0) such that T [x] = 1. Then childi(x) is at position
rank(T, x) · k2 + i of T ‖L, where rank(T, x) is the number of 1s in T [0, x]. To see this, consider the
following. Two different traversals of the k2-tree output the same T ‖L sequence. In traversal A, we traverse
the k2-tree levelwise starting at level 1 (i.e., skipping the root) and append the bits of the tree nodes visited.
In traversal B, we traverse the k2-tree levelwise starting at level 0 and append the k2 bits of the children
of the internal nodes visited. When traversal A visits the node corresponding to x, we are filling T ‖L at
position x. When traversal B visits the same node, we are filling T ‖L at the position of the first child of x.
To obtain this position we must add k2 per 1 visited in traversal A before position x. Since the 1 of the root
is not represented, this is (1 + rank(T, x − 1))k2 = rank(T, x) · k2 (the equality holds because T [x] = 1).
Thus the i-th child of x is at position rank(T, x) · k2 + i.

Note that internal nodes can only belong to the T part. To carry out operation childi(x) efficiently, we
need to support rank(T, x) queries. This operation can be supported in constant time and fast in practice
using sublinear space on top of the bit sequence [35, 42]. In practice we use an implementation that uses 5%
of extra space on top of the bit sequence and provides fast queries (if more space and less time is desired, one
could replace the bitmap by another that that uses 37.5% extra space and is much faster [43]; other more
recent bitmap implementations are also competitive [44]). Bitmap L, instead, does not need any additional
structure.

3.2.2. Space analysis

Assume the graph has n pages and m links. Each link is a 1 in the matrix, and in the worst case it
induces the storage of one distinct node per level, for a total of h = ⌈logk2 n2⌉ nodes. Each such (internal)
node costs k2 bits, for a total of k2m⌈logk2 n2⌉ bits. However, in the upper levels, not all the nodes in the
path to each leaf can be different. In the worst case, all the nodes exist up to level ⌊logk2 m⌋ (only since
that level there can be m different internal nodes at the same level). From that level, the worst case is that
each of the m paths to the leaves is unique. Thus, in the worst case, the total space in bits is





⌊log
k2 m⌋
∑

ℓ=1

k2ℓ



+ k2m
(

⌈logk2 n2⌉ − ⌊logk2 m⌋
)

= k2m

(

logk2

n2

m
+O(1)

)

.

This space formula is also valid when n is not a power of k. The formula suggests that, at least in a

worst-case analysis, a smaller k yields less space occupancy. For k = 2 the space is 4m(log4
n2

m
+ O(1)) =

2m log2
n2

m
+ O(m) bits, which is asymptotically twice the information-theoretic minimum necessary to

represent all the matrices of n× n with m 1s. In the experimental section we see that, on Web graphs, the
space is much better than in the worst case, as Web graphs are far from uniformly distributed.

3.3. Construction

We give in this section various alternatives to build the representation (T, L) of the k2-tree given a Web
graph. First we show in Section 3.3.1 that, if we start from the adjacency matrix, the time is O(n2(1/k +
1/w)), where w is the length in bits of the computer word and n is the number of graph nodes. The output
(T, L) is built within just s = t + ℓ bits of space, where t = |T | and ℓ = |L|, that is, the same space of the
final output. Then, since representing the adjacency matrix is not realistic, we show in Section 3.3.2 how
to simulate the same algorithm from the adjacency lists of the graph. This requires O(n) words of extra
construction space, and improves the time complexity to O(n2/k2 +m + s/w), where m is the number of
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ALGORITHM 1: Build(n, ℓ, p, q), builds the k2-tree representation from the matrix ai,j

C ← empty sequence
for i← 0 . . . k − 1 do

for j ← 0 . . . k − 1 do

if ℓ = ⌈logk n⌉ then /* last level */

C ← C‖ap+i,q+j

else /* internal node */

C ← C‖Build(n/k, ℓ+ 1, p+ i · (n/k), q + j · (n/k))
end

end

end

if C = 0k
2

then return 0;
Tℓ ← Tℓ‖C
return 1

graph edges. In Section 3.3.3 we improve the time to the output-sensitive O(t/k2+m+s/w) = O(s), yet the
construction space raises to O(t) words. Subsequently, in Section 3.3.4, we reduce the construction space
to just s+ o(s) bits, slightly raising the construction time to O(s(1 + log s/(k2 log log s))). In Section 3.3.5
we obtain a practical result where O(t) extra words and O(m logk n) time is needed, but the output is built
in order and the process has high locality of reference. Finally, in Section 3.3.6 we show how to build the
structure with the adjacency list in secondary memory.

3.3.1. From the adjacency matrix

Assume for a moment that our input is the n × n adjacency matrix. Construction of our tree is easily
carried out bottom-up in linear time and optimal space (that is, using the same space as the final tree).

Our procedure builds the tree recursively. It consists in a depth-first traversal of the tree that outputs a
bit array Tℓ for each level ℓ of the tree. If we are at the last level ℓ = h, we read the k2 corresponding matrix
cells. If all are 0, we return 0 and we do not output any bit string, as none of those 0s will be explicitly
represented; otherwise we output the k2 bits and return 1. If we are not at the last level, we make the
k2 recursive calls for the children. If all return 0, we return 0, otherwise we output the k2 answers of the
children and return 1.

The output for each call is stored separately for each level, so that the k2 bits that are output at each
level are appended to the corresponding bit array Tℓ. As we fill the values of each level left-to-right, the
final T is obtained by concatenating all levels but the last one, which is indeed L.

Algorithm 1 shows the construction process. It is invoked as Build(n′ = kh, 1, 0, 0), where the first
parameter is the (extended) submatrix width, the second is the current level, the third is the row offset of
the current submatrix, and the fourth is its column offset. After running it we have T = T1‖T2‖ . . . ‖Th−1

and L = Th.
The total time is clearly linear in the number of cells in the matrix, that is, O(n2). By accessing

up to w consecutive (say, horizontal) bits of the matrix in one operation, the time can be reduced to
O((n2/k2)k(1+k/w)) to scan the matrix plus O(n2/k2) for the recursive invocations, for a total complexity
of O(n2(1/k + 1/w)).

3.3.2. From the adjacency list

Representing the complete matrix for the construction process is not realistic on Web graphs, because
the matrix is too sparse. We use instead the adjacency lists representation of the matrix, that is, for each
Web page p we have the list of Web pages q such that p has a link pointing to q. By using the adjacency
lists we can still achieve the same time by setting up n cursors, one per row, so that each time we have to
access apq we compare the current cursor of row p with value q. If they are equal, we know apq = 1 and
move the cursor to the next node of the list of row p. Otherwise we know apq = 0. This works because all
of our queries to each matrix row p are increasing in column value.
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In this case we pay O(n2/k2) in recursive invocations to reach each leaf, plus O(t/w) to write down
bitmap T , plus O(1 + k2/w) to initialize each chunk of k2 bits in L, plus O(1) time to go over each entry of
the adjacency list and write the corresponding 1 in the chunk of L. This gives a total of O(n2/k2 + t/w +
ℓ(1/k2 + 1/w) +m) = O(n2/k2 +m + s/w). Note that we have improved the complexity as a function of
n2, and are more sensitive to the output size than in Section 3.3.1.

3.3.3. Output-sensitive time

When the input consists of the adjacency list representation of the graph, we can achieve time propor-
tional to the bit size of its compressed representation, s, instead of the bit size of the input matrix, n2 (note
s ≤ n2 · k2/(k2 − 1), and it is much less when compression works well). For this sake we insert the 1s one by
one into an initially empty tree, building the necessary part of the path from the root to the corresponding
leaf (we create the k2 children of each new internal node we build). After the tree is built we traverse it
levelwise to build the final representation, or recursively to output the bits to different sequences, one per
level, as in Section 3.3.1.

This builds the k2-tree in time in O(t/k2), by initializing the array of children in constant time [45,
Section III.8.1]. We then need O(t/w) time to write it down to bitmap T . As for the leaves, we preserve
the O(m+ ℓ/w) time complexity. The sum gives O(t(1/k2 +1/w)+m+ ℓ/w) = O(t/k2+m+ s/w) = O(s),
which is fully independent of the matrix size n2. However, the solution requires O(t) words (not bits) of
extra construction space, as we first build a classical tree, and this is considerable.

3.3.4. Optimal space again

We can reduce the construction space to s+ o(s) bits by building the compact tree directly, via insertion
of internal nodes (in T ) and leaves (in T and L). For this sake we use a dynamic bitmap representation for
T and L [46, 47]. This structure supports insertions and deletions of bits, as well as the rank operation, in
time O(log s/ log log s). Instead of traversing a classical tree and inserting the nodes on it as in Section 3.3.2,
we traverse (the current) T and L with the formula previously given for computing the i-th child of a node.
When we find a 0 in the path to a leaf that must be inserted in L, we turn it into a 1 and insert its k2 0s at
its children positions, and continue descending to the right child (which will be recursively expanded until
we reach L).

The time is now slowed down by the compact dynamic representation of T and L. As the bitmap
representations permit inserting k2 contiguous bits in time O((1 + k2/ log s) log s/ log log s), the total time
is O(t/k2) bit flips, plus O(s/k2) insertions of chunks of k2 bits, plus O(m) to traverse the adjacency lists,
which adds up to O(m+ s(1 + log(s)/k2)/ log log s) = O(s(1 + log s/(k2 log log s))).

3.3.5. Inplace construction

We now show how to build T and L in left-to-right order (which allows, for example, storing them to
disk immediately), within the same O(t) extra space of Section 3.3.3.

We will maintain a priority queue with subproblems yet to solve. Each subproblem has associated
a square matrix range (x1, x2) × (y1, y2) and the corresponding interval [a, b] in the array of graph edges.
Initially we enqueue the whole matrix (0, n−1)×(0, n−1) and the interval [1,m]. The general procedure is to
process the next subproblem in the queue, append bits to T and L, and possibly enqueue new subproblems,
until the queue becomes empty.

A subproblem with matrix range (x1, x2) × (y1, y2), where x2 − x1 + 1 = y2 − y1 + 1 = S, where S is
a multiple of k, and interval [a, b] is processed as follows. We subdivide the range into k × k subintervals
and assign to each edge (x, y) of the interval [a, b] a value i, 0 ≤ i < k with i = ⌊(x− x1)/(S/k)⌋ ∗ k+ ⌊(y−
y1)/(S/k)⌋. Then we sort the interval using counting sort, delimiting k2 subintervals [ai, bi] of [a, b].

Now, for each 0 ≤ i < k2, we append to the bitmap T a bit 1 if ai < bi, and a 0 otherwise. For each 1
appended, we also enqueue the corresponding submatrix range and the interval [ai, bi].

When the matrix range extracted is of size k × k, the corresponding interval [a, b] is appended to L in
the form of k2 bits that represents the small submatrix.

The time is O(t+ ℓ(1/k2 + 1/w) +m logk n) = O(m logk n). The construction is inplace, except for the
queue, which holds O(t) records in the worst case.

9



3.3.6. With the input on disk

The algorithm of Section 3.3.4 is easily adapted to the case where the input graph does not fit in main
memory (note we assume that the compressed k2-tree does fit in main memory). Since the adjacency lists are
traversed sequentially, we obtain O(m/B) I/O time by reading them in buffered form and building the tree
in compressed form in main memory. The variants of Sections 3.3.3 and 3.3.2 can also be easily implemented
I/O-optimally if there is sufficient main memory to hold the extra construction space (in Section 3.3.2 we
need the memory to hold n buffers of B words, as the lists are not read in synchronization).

Finally, if we have only O(k2B) integers of main memory available, we can use the algorithm of Section
3.3.5. The counting sort needs only k2 integers in main memory, we use k2 tree buffers for the sorting step,
and the queue and the output T and L can be fully buffered. The I/O cost becomes O((m/B) logk n).
It is also possible to construct the k2-tree in this way using O(B) integers of main memory, but with
O((m/B) log n) I/O time cost.

4. Navigation

In this section we detail the algorithms to navigate the k2-tree. More specifically, Section 4.1 shows
describes single-link queries, which determine whether or not one Web page has a link to another specific
Web page. This can be seen as checking the value of a specific cell in the adjacency matrix. Section 4.2
describes the retrieval of the successors and the predecessors lists of a Web page, that is, which Web pages
are pointed by or point to a specific Web page. Finally, Section 4.3 details how to proceed when we want
to retrieve all the links among two ranges of pages, such as determining all the links between two different
domains.

4.1. Checking individual links

In order to determine whether a given page p points to a given page q, most compressed (and even some
classical) graph representations have no choice but to extract all the successors of p (or a significant part
of them) and see whether q is in the set. We can answer such query in O(logk n) time, by descending to
exactly one child at each level of the tree, such that we can determine if the cell apq of the adjacency matrix
is 1 (page p points to page q) or 0 (page p does not point to page q).

We start at the root node and descend recursively to the child node that represents the submatrix
containing the cell apq of the adjacency matrix. We give now the formula that maps the relative row and
column numbers of the cell to the child number at each level and the formula that computes the new relative
cell row and column numbers for the child submatrix.

Recall that h = ⌈logk n⌉ is the height of the tree. Then the nodes at level ℓ represent square submatrices
of size kh−ℓ, and these are divided into k2 submatrices of size kh−ℓ−1. For instance, the root at level ℓ = 0
represents the whole square matrix of width kh = n′.

Let us call pℓ the relative row position of Web page p at level ℓ, and qℓ the relative column position of Web
page q at level ℓ. Cell (pℓ, qℓ) at a matrix of level ℓ belongs to the submatrix at row ⌊pℓ/kh−ℓ−1⌋ and column
⌊qℓ/kh−ℓ−1⌋. This corresponds to the child number k · ⌊p/kh−ℓ−1⌋+ ⌊q/kh−ℓ−1⌋ of the node that represents
the matrix at level ℓ. The relative row position for Web page p in this child node is pℓ+1 = pℓ mod kh−ℓ−1.
The relative column position for Web page q is qℓ+1 = qℓ mod kh−ℓ−1.

Hence, starting from the root node at level ℓ = 0, where p0 = p, q0 = q, at each level ℓ we descend to
child k · ⌊p/kh−ℓ−1⌋ + ⌊q/kh−ℓ−1⌋, if it is not a zero, and compute the relative position of cell (p, q) in the
submatrix. If we reach the last level and find a 1 at cell (p, q), then there is a link, else there is not.

For example, assume we want to know if page 2 points to page 3, that is, we want to know if there is a
1 at cell a2,3 of the adjacency matrix of Figure 1. We start at the root of the 22-tree and descend to the
second child of the root node, since the cell a2,3 belongs to the second submatrix of the adjacency matrix.
Since we find a 0, then page 2 does not point to page 3. If we want to know if page 3 has a link to itself,
then we start from the root node and go down through the fourth child of the node, which represents the
submatrix where the cell a3,3 is located. There is a 1 there, indicating that this submatrix has at least one
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ALGORITHM 2: CheckLink(n, p, q, z) returns 1 iff node p points to node q and 0 otherwise

if z ≥ |T | then /* leaf */

return L[z − |T |]
else /* internal node */

if z = −1 or T [z] = 1 then

y ← rank(T, z) · k2

y ← y + ⌊p/(n/k)⌋ · k + ⌊q/(n/k)⌋
CheckLink(n/k, pmod (n/k), qmod (n/k), y)

else
return 0

end

end

1. Since the cell a3,3 of the original adjacency matrix is the first cell of this submatrix, then we check the
bit value contained in the first child of the node. It contains a 1, hence page 3 has a link pointing to itself.

Algorithm 2 checks whether a Web page p points to a page q. It is invoked as CheckLink(n′, p, q,−1),
where the parameters are: current submatrix size, row of interest in the current submatrix, column of
interest in the current submatrix, and the position in T ‖L of the node to process (the initial −1 is an
artifact because our trees do not represent the root node). Values T , L, and k are global. It is assumed that
rank(T,−1) = 0.

4.1.1. Time analysis

The worst-case navigation time to check if a Web page p points to another Web page q is O(logk n),
since a full traversal from the root node to a leaf node is required for any pair of connected Web pages. The
time can be even lower for nonexistent links.

4.2. Successors and Predecessors

To find the successors(predecessors) of a page p(q) we need to locate which cells in row ap∗ (column a∗q)
of the adjacency matrix have a 1. Again, these are obtained by a top-down tree traversal, but instead of
choosing just one child node, as for single-link queries, the algorithm must choose k out of the k2 children
of a node.

As before, we give the formula that maps global row numbers to the children numbers at each level.
Being pℓ the relative row position of interest at level ℓ, row pℓ of the submatrix of level ℓ corresponds to
children number k · ⌊pℓ/kh−ℓ−1⌋+ j, for 0 ≤ j < k. Similarly, column q corresponds to in level ℓ to children
number j · k + ⌊qℓ/kh−ℓ−1⌋, for 0 ≤ j < k.

For instance, assume that we want to obtain the successors of Web page 10 of the Web graph represented
in Figure 2 (left). This Web page is represented at row p0 = 10 at level ℓ = 0, since the whole adjacency
matrix is considered at this level. When ℓ = 1 the relative position of Web page 10 inside the two submatrices
of size 8× 8 of the bottom of the matrix is p1 = 10 mod 8 = 2. The relative row inside the submatrices of
size 4 × 4 that overlap with row 10 at level ℓ = 2 is p2 = 2 mod 4 = 2, and finally, the relative position of
row 10 inside the submatrices of size 2× 2 that overlap with the row at level ℓ = 3 is p3 = 2 mod 2 = 0.

Algorithms 3 and 4 extract the successors and predecessors lists. The one for successors is invoked as
Successors(n′, p, 0,−1), and the one for predecessors is invoked as Predecessors(n′, q, 0,−1), with the
same meanings and assumptions as before. For the successors algorithm the second parameter is the row
of interest and the third parameter is the column offset of the current submatrix. For the predecessors
algorithm the second parameter is the the column of interest and the third parameter is the row offset of
the current submatrix

We note that the algorithms output the neighbors in order. Although we present them in recursive
fashion for clarity, an iterative variant using a queue of nodes to process turns out to be slightly more
efficient in practice, and what we use in our implementation.
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ALGORITHM 3: Successors(n, p, q, z) returns successors of page p

if z ≥ |T | then /* last level */

if L[z − |T |] = 1 then output q;
else /* internal node */

if z = −1 or T [z] = 1 then

y ← rank(T, z) · k2 + k · ⌊p/(n/k)⌋
for j ← 0 . . . k − 1 do

Successors(n/k, p mod (n/k), q + (n/k) · j, y + j)
end

end

end

ALGORITHM 4: Predecessors(n, q, p, z) returns predecessors of page q

if z ≥ |T | then /* last level */

if L[z − |T |] = 1 then output p ;
else /* internal node */

if z = −1 or T [z] = 1 then

y ← rank(T, z) · k2 + ⌊q/(n/k)⌋
for j ← 0 . . . k − 1 do

Predecessors(n/k, qmod (n/k), p+(n/k)·j, y + j ·k)
end

end

end

4.2.1. Time analysis

The navigation time to retrieve a successors or predecessors list has no worst-case guarantees better than
kh = O(n), as a row p− 1 full of 1s followed by p full of 0s could force a Successors query on p to go until
the leaves across all the row, to return nothing.

However, this is unlikely. Assume the m 1s are uniformly distributed in the matrix. Then the probability
that a given 1 is inside a submatrix of size (n/kℓ) × (n/kℓ) is 1/k2ℓ. Thus, the probability of entering the
children of such submatrix is (brutally) upper bounded by m/k2ℓ. We are interested in kℓ submatrices at

each level of the tree, and therefore the total work is on average upper bounded by m ·
∑h−1

ℓ=0 kℓ/k2ℓ = O(m).
This can be refined because there are not m different submatrices in the first levels of the tree. Assume we
enter all the O(kt) matrices of interest up to level t = ⌊logk2 m⌋, and from then on the sum above applies.
This is

O

(

kt +m ·
h−1
∑

ℓ=t+1

kℓ

k2ℓ

)

= O
(

kt +
m

kt

)

= O
(√

m
)

time. This is not the ideal O(m/n) (average output size), but better than O(n) or O(m).
Again, if the matrix is clustered, the average performance is indeed better than under a uniform distri-

bution: whenever a cell close to row p forces us to traverse the tree down to it, it is likely that there is a
useful cell at row p as well. This can be observed in the experimental evaluation described in Section 6.

4.3. Range queries

A more general operation is to find the successors of page p that are within a range of pages [q1, q2]
(similarly, the predecessors of q that are within a range [p1, p2]). This is interesting, for example, to find
out whether p points to a domain, or is pointed from a domain, in case we sort URLs in lexicographical
order2. The algorithm is similar to Successors and Predecessors in Section 4.2, except that we do

2Range queries can also be useful over other reorderings. For instance, when using “Layered Label Propagation” (LLP)
[24], which is described and used in Section 6, range queries can be used to support queries over communities.
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ALGORITHM 5: Range(n, p1, p2, q1, q2, dp, dq , z) lists all links from nodes [p1, p2] to [q1, q2]

if z ≥ |T | then /* leaf */

if L[z − |T |] = 1 then output (dp, dq);
else /* internal node */

if z = −1 or T [z] = 1 then

y ← rank(T, z) · k2

for i← ⌊p1/(n/k)⌋ . . . ⌊p2/(n/k)⌋ do
if i← ⌊p1/(n/k)⌋ then p′1 ← p1 mod (n/k) ;
else p′1 ← 0;
if i← ⌊p2/(n/k)⌋ then p′2 ← p2 mod (n/k) ;
else p′2 ← (n/k) − 1;
for j ← ⌊q1/(n/k)⌋ . . . ⌊q2/(n/k)⌋ do

if j = ⌊q1/(n/k)⌋ then q′1 ← q1 mod (n/k) ;
else q′1 ← 0;
if j = ⌊q2/(n/k)⌋ then q′2 ← q2 mod (n/k) ;
else q′2 ← (n/k) − 1;
Range(n/k, p′1, p

′

2, q
′

1, q
′

2, dp + (n/k) · i, dq + (n/k) · j, y + k · i+ j)
end

end

end

end

not enter all the children 0 ≤ j < k of a row (or column), but only those 0 ≤ j < k which also fulfil
⌊q1/kh−ℓ−1⌋ ≤ j ≤ ⌊q2/kh−ℓ−1⌋ (similarly for p1 to p2).

An even more general operation is to find all the links from a range of pages [p1, p2] to another [q1, q2].
This is useful, for example, to extract all the links between two domains, or to obtain significant measures
for community detection. The algorithm to solve this query indeed generalizes all of the others we have
seen: extract successors of p (p1 = p2 = p, q1 = 0, q2 = n − 1), extract predecessors of q (q1 = q2 = q,
p1 = 0, p2 = n − 1), find whether a link from p to q exists (p1 = p2 = p, q1 = q2 = q), find the successors
of p within range [q1, q2] (p1 = p2 = p), and find the predecessors of q within range [p1, p2] (q1 = q2 = q).
Figure 5 gives the algorithm. It is invoked as Range(n′, p1, p2, q1, q2, 0, 0,−1).

Moreover, we can check if there exists a link from a range of pages [p1, p2] to another range [q1, q2]
in a more efficient way than finding all the links in that range. If we just want to know whether there
is a link in the range, complete top-down traversals of the tree can be avoided if we reach an internal
node that represents a submatrix of the original adjacency matrix that is entirely contained in the range
sought and it is represented with a 1 bit in the k2-tree. This means that there is at least one 1 inside
that submatrix, and thus there is a link in the range of the query. This operation is performed analogously
to the range query described in Algorithm 5, except that it checks if the current submatrix is completely
contained in the range sought. In such a case it finishes by returning 1, avoiding the traversal to the leaf
level and any other extra top-down traversal of the k2-tree. Algorithm 6 details this process. It is invoked
as LinkInRange(n′, p1, p2, q1, q2,−1).

We can speed up this method, at least in theory, as follows. Rows r1 = ⌊p1/(n/k)⌋ and r2 = ⌊p2/(n/k)⌋
and columns c1 = ⌊q1/(n/k)⌋ and c2 = ⌊q2/(n/k)⌋ are dealt with individually, whereas the sub-area of the
k2 children [r1 + 1, r2 − 1]× [c1 + 1, c2 − 1] is processed using r2 − r1 − 1 rank queries on the children area
in T . Any 1 found in the sub-area finishes the query with a positive answer. In practice k2 is not so large
to justify this complication, however.

4.3.1. Time analysis

The total number of nodes of level ℓ that can overlap area [p1, p2]× [q1, q2] is

(

⌊p2/kh−ℓ−1⌋ − ⌊p1/kh−ℓ−1⌋+ 1
)

·
(

⌊q2/kh−ℓ−1⌋ − ⌊q1/kh−ℓ−1⌋+ 1
)
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ALGORITHM 6: LinkInRange(n, p1, p2, q1, q2, z) returns 1 iff there is a link from nodes [p1, p2] to [q1, q2]

if z ≥ |T | then /* leaf */

return L[z − |T |]
else /* internal node */

if z = −1 or T [z] = 1 then

if p1 = 0 and q1 = 0 and p2 = n/k − 1 and q2 = n/k − 1 then
return 1

end

y ← rank(T, z) · k2

for i← ⌊p1/(n/k)⌋ . . . ⌊p2/(n/k)⌋ do
if i = ⌊p1/(n/k)⌋ then p′1 ← p1 mod (n/k) ;
else p′1 ← 0;
if i = ⌊p2/(n/k)⌋ then p′2 ← p2 mod (n/k) ;
else p′2 ← (n/k) − 1;
for j ← ⌊q1/(n/k)⌋ . . . ⌊q2/(n/k)⌋ do

if j = ⌊q1/(n/k)⌋ then q′1 ← q1 mod (n/k) ;
else q′1 ← 0;
if j = ⌊q2/(n/k)⌋ then q′2 ← q2 mod (n/k) ;
else q′2 ← (n/k) − 1;
if LinkInRange(n/k, p′1, p

′

2, q
′

1, q
′

2, y + k · i+ j) then
return 1

end

end

end

end

return 0
end

≤
(

(p2 − p1 + 1)/kh−ℓ−1 + 2
)

·
(

(q2 − q1 + 1)/kh−ℓ−1 + 2
)

= A/(k2)h−ℓ−1 + P/kh−ℓ−1 + 2,

where A = (p2−p1+1)·(q2−q1+1) is the extension of the area to retrieve and P = 2(p2−p1+1)+2(q2−q1+1)
is the perimeter. Added over all the levels 0 ≤ ℓ < ⌈logk n⌉, the time complexity of the range query
that reports all the links adds up to O(A + P + logk n) = O(A + logk n). This gives O(n) for retrieving
successors and predecessors (we made a finer average-case analysis in Section 4.2.1), O(p2 − p1 + logk n) or
O(q2 − q1 + logk n) for ranges of successors or predecessors, and O(logk n) for queries on single links.

To analyze the algorithm that checks the existence of a link we consider that, at level ℓ, we only handle
individually the O(P/kh−ℓ+1) cells that lie in the perimeter of the query area, whereas those that are fully
contained in the query area can be checked using O(P/kh−ℓ+1) constant-time rank queries. This yields an
overall time of O(P + logk n) for this operation. This is indeed an unlikely worst case; we see in Section 6
that the times actually decrease for larger query areas, since nonempty subtrees contained in the query area
are found closer to the k2-tree root.

5. Improving the k
2-tree

We describe in this section various enhancements that improve the space and time performance of the
basic k2-tree.

5.1. Varying arities

As we can observe in the previous examples, the larger k is, the more space L needs, because its 1s have
to be covered with coarser leaves. On very sparse matrices, we may spend k2 bits to represent very few 1s.
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Figure 3: Expansion, subdivision, and resulting k2-tree using different values of k at each level.

For example, when k = 4 in Figure 2, we store some last-level submatrices containing a unique 1, spending
15 more bits that are 0. On the contrary, when k = 2, we use fewer bits for that last level of the tree.

On the other hand, the first levels of the k2-tree are likely to be nonempty, and in that case using a
smaller k does not reduce the space, but it slows down the process of reaching the deeper levels.

A possible solution to perform best in both situations is to use a larger k for the first levels of the tree
and a smaller k for the last levels. This strategy takes advantage of the strong points of both approaches:

• We use large values of k for the first levels of subdivision: the tree is shorter, so we will be able to
obtain the list of neighbors faster, as we have fewer levels to traverse.

• We use small values of k for the last levels: we do not store too many bits for each 1 of the adjacency
matrix, as the submatrices are smaller.

Figure 3 illustrates a variable-arity k2-tree, where we perform a first subdivision with k = k0 = 4 and a
second subdivision with k = k1 = 2. We store the first level of the tree in T1, where the subdivision uses
k0 = 4 and the second level of the tree in T2, where the subdivision uses k1 = 2. In addition, we store the
2× 2 submatrices in L, as before:

T1 = 1100010001100000,
T2 = 1100 1000 0001 0101 1110,
L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.

The navigation algorithms are similar to those explained for fixed k. Now we store a different sequence
Tℓ for each level, and L for the last level. There is a different kℓ per level, which tells how many children
have internal nodes of level ℓ in level ℓ + 1. Thus, the formula for childi and the navigation algorithms in
Section 4 must be modified accordingly. First, the i-th child of a node Tℓ[x] will be found in Tℓ+1 at position
childℓi(x) = rank(Tℓ, x− 1) · k2ℓ + i − 1. Second, we must extend n to n′ = Πh−1

ℓ=0 kℓ, which plays the role of
kh in the uniform case.
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5.2. Partitioning the first level

The previous discussion suggests that it is a good idea to use a large value for k0. It loses very little
space (as finding very large empty submatrices is unlikely) and allows the navigation arrive faster to the
deeper levels.

We go one step further and build separate k2-subtrees for the k20 first-level submatrices, of size n2/k20 .
This has several advantages. First, construction space decreases substantially, since we can build each k2-
tree separately and thus the space is a function of n2/k20 (this is important because the fastest construction
algorithms in Section 3.3 require extra space proportional to the size of the tree they build), without affecting
construction time. Second, navigation time improves because the bitmaps T and L are shorter and then
we have more locality of reference. The limit is, of course, the point where we start to represent explicitly
many submatrices of empty matrices.

In theoretical terms, one interesting choice is k20 = m, and some fixed kℓ = k for the other levels. This
spends k20 = m bits in the first level and k2m(logk2(n2/m)+1) on the rest, which is almost the same space as
in Section 3.2.2. The time to extract a single link is also improved to logk2(n2/m), which becomes faster as
the graph is denser. The gain in complexity for the other operations is less spectacular, from O(A+logk2 n2)
to O(A + logk2 (n2/m)). In practice, due to the clustering of the matrix, a much smaller value of k0 turns
out to be advisable.

5.3. Compressing the last level

The last level of the k2-tree is stored as a bitmap L that represents all the kL × kL submatrices of
the original adjacency matrix containing at least one 1 (we are using kL = kh−1 for readability). These
submatrices are represented consecutively following a depth-first traversal, composing a sequence of k2L-bit
strings, each string representing a submatrix of the last level. As explained, we aim at using a small k value
at the last levels of the k2-tree in order to reduce space, as a large k value wastes many bits in these sparse
submatrices. This, however, increases navigation time.

An alternative to reducing kL is to change the plain representation for these submatrices, so that instead
of using a fixed (k2L) number of bits, they are compressed. We create a vocabulary with all the kL × kL
nonempty submatrices that appear in the adjacency matrix, sort them by frequency, and represent each
submatrix in L with a pointer to its entry in the frequency-sorted array of distinct submatrices. Those
pointers are integer numbers, with the property that the smaller ones are more frequent than the larger
ones, and then a variable-length representation favoring small numbers is advisable. Now L becomes a
concatenation of those variable-length representations. To preserve efficient navigation over the compressed
graph, we must guarantee fast direct access to any of those variable-length integers. For this purpose, we
use Directly Addressable Codes (DACs) [48], which fit precisely these requirements. We use DACs in their
“optimal space” configuration, that is, we use the variant of the codes where the optimal values for the
configuration are obtained without any kind of restriction on the number of levels.

Using this technique not only allows us to use a larger kL at the leaf level, and consequently reduce
navigation time and space in T . It also reduces considerably the space for L. When we increase the
arity of the last level, the number of possible matrices grows fast (to 2k

2

L), so it seems we cannot go too
far with kL. However, only a few of these values appears in practice, due to sparseness, clustering and
statistical properties of the matrix. In the experiments we have successfully used kL values from 4 to 16. In
particular, this approach automatically exploits the different patterns described by Asano et al. [28], such as
horizontal, vertical, and diagonal runs. Submatrices containing those patterns will appear more frequently
and, consequently, fewer bits will be used to represent them.

6. Experimental evaluation

6.1. Experimental framework

We ran several experiments over someWeb crawls from the Laboratory for Web Algorithmics3 [49, 16, 24].
Table 1 gives the main characteristics of the graphs used: name (and version) of the graph, number of pages

3http://law.dsi.unimi.it
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File Pages (n) Links (m) Links/Page Size (MB)
CNR (2000) 325,577 3,216,152 9.88 14
EU (2005) 862,664 19,235,140 22.30 77
Indochina (2002) 7,414,866 194,109,311 26.18 769
UK (2002) 18,520,486 298,113,762 16.10 1,208
Arabic (2005) 22,744,080 639,999,458 28.14 2,528
UK-2007-05 (2007) 105,896,555 3,738,733,648 35.31 14,666

Table 1: Description of the Web graphs used.

and links, average links per page, and the size of a plain adjacency list representation of the graphs (using
4-byte integers).

The machine used in our tests is a 2GHz Intel R©Xeon R© (8 cores) with 16 GB RAM. It ran Ubuntu
GNU/Linux with kernel version 2.6.32-33-server (64 bits). The compilers used were gcc version 4.4.3, with
-O9 compiler optimizations, and javac 1.6.0 25. All tests use just one CPU core. Space is measured in bits
per edge (bpe), by dividing the total space of the structure by the number of edges (i.e., links) in the graph.
Time results measure average CPU user time per neighbor retrieved: We compute the time to search for
the neighbors of all the pages (in random order) and divide by the total number of edges in the graph.

6.2. Influence of node ordering

In this section we show that none of the properties exploited by other Web graph compression methods,
that is, the similarity of the adjacency lists, the skewed distribution, or the locality of reference, determine
the good performance of k2-trees. Rather, we show that this depends only on the clustering of the adjacency
matrix (which is a consequence of, but not equivalent to, the locality of reference).

In addition, we show that k2-trees perform better on other orderings than the lexicographic one, in
particular with BFS [29], and thus we use this ordering in the sequel.

We will also show that the space and time analyses of Sections 3.2.2 and 4.2.1 (calculated for uniformly
distributed graphs) are overly pessimistic for Web graphs.

In order to test these hypotheses, we create four graphs called RandReord, DomainReord, BFSReord,
and LLPReord, which are equal to the original graph Indochina (called Original in this subsection), yet
with a reordering of the identifiers of the Web pages. This reordering of the identifiers causes a reordering
of the rows and columns in the adjacency matrix, since each row and each column represents one Web
page according to its identifier. Web pages are alphabetically sorted by URL in graph Original (i.e.,
Indochina), so locality of reference translates into closeness of 1s in the adjacency matrix. DomainReord,
BFSReord, LLPReord and RandReord synthetic graphs are created as follows:

• Graph DomainReord tries to improve locality of reference by the folklore idea of sorting the domains
in reverse order, as then aaa.bbb.com will stay close to zzz.bbb.com. Within each full domain, paths
are sorted in the usual lexicographic order.

• Graph BFSReord permutes the nodes of graph Indochina in a breadth-first search fashion, following
the idea of Apostolico and Drovandi [29].

• Graph LLPReord permutes the nodes of graph Indochina using the “Layered Label Propagation”
(LLP) algorithm, a solution that mixes clusterings and orders and it was successfully applied in the
Webgraph framework, obtaining significant improvements in compression ratio for both social and
Web graphs [24].

• Graph RandReord is obtained by a random permutation of the Web page identifiers of Indochina.
This reordering eliminates the locality of reference, since the 1s in a row are no longer together
but distributed along all the row. Yet, note this graph retains row similarity and skewed degree
distributions.

17



Space (bpe) Leaves Voc. Num. Leaves |L|
Num.Leaves

Time (µs/e)
Original 2.03 33,088 36,984,217 6.541 3.354
DomainReord 2.02 33,445 36,976,002 6.527 2.622
BFSReord 1.46 30,890 27,410,836 6.363 2.030
LLPReord 1.46 38,063 25,278,358 6.686 2.862
RandReord kL = 4 32.43 218 192,861,682 5.062 141.211
Uniform 33.80 136 194,103,965 5.050 152.797
DomainsDisplace 4.22 35,151 44,684,209 6.551 27.193
DomainsDisplaceAndRand 10.77 65,528 136,516,474 5.697 30.933
Original 1.73 1,030,977 17,509,603 10.888 3.303
DomainReord 1.72 1,034,563 17,502,311 10.873 2.582
BFSReord 1.23 753,265 12,135,472 10.991 1.978
LLPReord 1.37 1,045,497 11,566,702 11.600 2.785
RandReord kL = 8 30.25 3,252 191,892,255 7.076 140.647
Uniform 31.60 2,085 194,087,567 7.051 151.780
DomainsDisplace 3.83 1,085,770 26,317,833 9.836 27.183
DomainsDisplaceAndRand 10.12 2,441,503 114,991,387 8.523 30.676
Original 3.32 1,855,823 8,551,140 14.711 3.227
DomainReord 3.31 1,859,297 8,545,746 14.663 2.510
BFSReord 2.57 1,468,960 5,943,097 15.248 1.924

LLPReord 2.92 1,695,613 6,107,242 15.330 2.757
RandReord kL = 16 28.18 85,164 190,628,173 9.105 139.505
Uniform 29.44 27,809 194,022,073 9.053 150.781
DomainsDisplace 5.31 1,874,531 17,930,554 11.825 26.928
DomainsDisplaceAndRand 20.49 9,431,141 79,369,216 8.000 30.756

Table 2: Effect of the reordering of the nodes for Indochina graph. kL is the value of k used for the leaf level. The columns
show, respectively, the space (in bpe); the size of the vocabulary of leaf submatrices, that is, the number of different non-zero
kL × kL submatrices that appear in the adjacency matrix; the total number of elements of the sequence of submatrices of the
last level; the required bits per leaf; and the average time per successor retrieved (in µs/e).

We create two more graphs that eliminate the locality of reference by displacing the domains randomly in
the adjacency matrix without overlaps. The first graph, DomainsDisplace, conserves the internal structure
of each domain, whereas for the second, DomainsDisplaceAndRand, we uniformly distributed the intra-
domain links inside each domain. For both graphs, the inter-domain links are then uniformly distributed
outside the domains.

In addition, we also create a uniformly distributed graph with the same number of nodes and edges of
graph Indochina. We call this graph Uniform. This graph is sparse but it does not preserve any of the
properties of Web graphs: outdegrees of pages no longer follow a skewed distribution and 1s are spread along
all the adjacency matrix, so there is no locality of reference nor similarity of adjacency lists.

Figure 4 shows the effect of these transformations for the smallest web graph of the dataset (graph CNR).

Table 2 compares the behavior of the k2-tree structure for these eight graphs. The first column indicates
the graph and the configuration used to compress it. For all the graphs we use DACs at the leaf level, using
their space-optimal configuration. We also partition the graph adjacency matrices into submatrices of size
220 × 220, and then create one variable-arity k2-tree for each submatrix. We use kℓ = 4 for the first 5 levels
of the tree and kℓ = 2 for the rest, except for the last level, kL. For each graph, we create 3 representations
with kL = 4, kL = 8, and kL = 16. Hence, the leaf submatrices are of size 4 × 4, 8 × 8, and 16 × 16,
respectively.

The second column of the table shows the space (in bpe) obtained by each representation. According
to the space analysis in Section 3.2.2, for k = 2 the space of the representation for uniformly distributed
graphs is asymptotically twice the information-theoretic minimum necessary to represent all the matrices

of n × n with m 1s, that is log2
(

n2

m

)

, which is 17.95 for graph Indochina. As we can see in the table, the
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(a) Original (b) DomainReord

(c) RandReord (d) Uniform

(e) DomainsDisplace (f) DomainsDisplaceAndRand

(g) BFSReord (h) LLPReord

Figure 4: Effect of different reorderings over the adjacency matrix of CNR graph.
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representation of the uniformly distributed graph occupies around 29–34 bpe, close to twice that value (and
in fact not very dependent on k).

The results for RandReord show that, if we remove locality of reference, the performance of the k2-tree is
very close to that on a random graph. We remind that RandReord preserves the skewed degree distributions
and row similarities, yet the compression performance of k2-trees turns out to be blind to them. This seems
to show that locality of reference is the important property that makes Web graphs compressible with k2-
trees. However, we show with DomainsDisplace and DomainsDisplaceAndRand that k2-trees are indeed
sensitive to the clustering of the adjacency matrix (in this case we consider the squares of intra-domain links
as a rough clustering) and not necessarily to the locality of reference (note that locality of reference implies
some clustering, but not vice versa). On DomainsDisplace, which conserves the intra-clustering structure
but loses the locality of reference, we require only twice the space of the original graph. Even when inside
those clusters the links are uniformly distributed, the compression achieved is significantly better than in
the Uniform graph.

On graphs Original, DomainReord, LLPReord, and BFSReord, the space is much better than on Uniform,
as Web graphs are far from uniformly distributed and the k2-tree technique takes advantage of this fact.
The domain reordering slightly improves the compression ratio, since it is common that pages point to other
pages inside the same domain, even if they do not share the same subdomain. These pages are distant
in graph Original if their subdomains are not alphabetically close, but they are near to each other in
graph DomainReord. LLPReord clusters the adjacency matrix and improves the compression ratio. Yet,
BFSReord obtains the best compression ratio by a good margin (except for kL = 4, where it obtains the
same compression ratio as LLPReord), as it creates larger areas of zeroes in the adjacency matrix.

The third column shows the size of the vocabulary of leaf submatrices, that is, the number of different
non-zero kL × kL submatrices that appear in the adjacency matrix, as explained in Section 5.3. The fourth
column shows the number of elements of the sequence of submatrices of the last level, that is, the total
number of submatrices that are represented with DACs. We can observe that the vocabularies of leaves
for Original, DomainReord, LLPReord, BFSReord and DomainsDisplace are larger than for RandReord and
Uniform. This is because the adjacency matrices of these last two graphs have their 1s spread all along
the matrix, such that it is rare that several 1s coincide in the same leaf submatrix. Hence, since there are
very few possible submatrices at the leaf level, the vocabulary of submatrices is small, but the sequence
of submatrices is longer. In DomainsDisplaceAndRand, instead, the vocabulary is much larger because
we have random and dense areas of the matrix. Moreover, due to the uniform distribution of the 1s in
the adjacency matrix, the distribution of frequency of the submatrices of the vocabulary is also uniform.
Consequently, DACs cannot obtain a very compact representation of the sequence. On the contrary, the
vocabulary of leaves for a Web graph, such as Original, DomainReord, LLPReord, and BFSReord, is larger,
but it follows a skewed distribution. Typical patterns such as horizontal, vertical, and diagonal runs [28] are,
at some degree, captured inside those leaf submatrices. Some of them appear more frequently than others,
so they are encoded using fewer bits than less frequent submatrices. Hence, the space required for the leaves
representation is lower than for random graphs, taking into account the size of the leaves vocabulary. The
fifth column show this ratio. Note also that the compression of leaves makes the space non-monotonic on
kL.

The last column of the table shows the efficiency of successors retrieval by measuring the average time
per neighbor retrieved in microseconds per edge (µs/e). In Section 4.2.1 we anticipated that navigation over
Web graphs would be more efficient than over random graphs. This is because the k2-tree has numerous
leaves in the case of RandReord and Uniform graphs, as we can see in the table, and this implies that the
retrieval of the neighbors must traverse many more leaves to return usually just one neighbor per submatrix,
or none. In the case of a Web graph, instead, the clustering makes that a visited leaf submatrix is likely
to retrieve several neighbors, which reduces the navigation time. As a result, the navigation time is two
orders of magnitude lower for Web graphs than for random graphs. It can also be seen that using a larger
kL slightly improves navigation times.

More precisely, in Section 4.2.1 we predicted that the navigation time to retrieve a successors or prede-
cessors list would be O(

√
m) on a random uniformly distributed matrix. We show now that this is indeed the

case, whereas on a Web graph the time is basically linear in the size of the output list. Figure 5a compares
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(a) Adjacency list retrieval time (in ms) for Web graphs
and random graphs.
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(b) Successor retrieval time (in µs/e) for Web graphs and
random graphs.

Figure 5: Time performance for Web versus random graphs, all Indochina variants.

the time to extract an adjacency list on grahs Original, RandReord and Uniform. The times are separated
by the length of the retrieved list, on the x axis. The y axis has been cut in order to properly visualize
the curves, since results are considerably faster for graph Original than for RandReord and Uniform, as
we have already seen in Table 2. We can observe that the time to retrieve an adjacency list is always
linearly dependent on its length; however on the random graphs RandReord and Uniform there is a very
large additive constant that shadows this effect. This dependence on the list length can be better seen in
Figure 5b, where the average query time to retrieve an adjacency list is divided by the length of the list.

Figure 6 shows the effect of this additive constant O(
√
m). We show the average time per retrieved

neighbor (in µs/e) for the original version of graphs CNR, EU, Indochina and UK, compared to their RandReord
and Uniform versions. Note that the time per query is O(

√
m) and thus the time per retrieved neighbor is

O(
√
m/(m/n)) = O(n/

√
m), so we represent the value n/

√
m for each graph in the x axis. We can observe

that for RandReord and Uniform all the points are almost perfectly linearly aligned, thus confirming our
theoretical analysis.

6.3. Space usage

Before comparing the k2-tree with other techniques, we first show the effects of DACs on our method.
We measure the space required by six different configurations of the k2-tree for graph Indochina: k=2 P

uses 2 × 2 subdivisions and the leaf level in plain form; k=4 P uses 4 × 4 subdivisions and the leaf level in
plain form; k=4 C uses 4× 4 subdivisions and the leaf level compressed with DACs; finally, k L=4 HC, k L=8

HC, and k L=16 HC use the same configuration as in Table 2, that is, a hybrid approach and compressed leaf
level. We consider separately the space for representing the tree (T ), the leaves (L) and the vocabulary of
leaf submatrices if needed. In addition, we also compute the successors time per edge, as in Section 6.2.

Figure 7 shows the benefits of using DACs compared with using a plain representation of the leaf sub-
matrices. Comparing k=4 P with k=4 C we can observe that we can achieve higher compression by just
compressing the leaf submatrices with DACs, at the expense of increasing retrieval times. In addition, by
using a hybrid approach as in Table 2, that is, k L=4 HC, we can obtain even better spaces. If we use larger
8 × 8 leaf submatrices (k L=8 HC), we decrease retrieval times and improve compression; with 16 × 16 leaf
submatrices (k L=16 HC) we obtain better times than with k L=8 HC, but we double the space due to the
overhead of representing the large resulting vocabulary. All the compressed alternatives outperform k=2 P

both in space and in time.

Now we compare the space of our proposal with others. Table 3 compares our k2-trees with the best
alternatives in the literature that support direct and reverse navigation within reasonable time, that is,
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Figure 6: Successors retrieval time (in µs/e) for Web graphs and random graphs compared to the corresponding constant n/
√
m

for different Web graphs.

Crawl k2-tree Re-Pair Re-Pair Re-Pair WebGraph AD LM
WT GMR (bi+dir+rev) (dir+rev) (dir+rev) (dir+rev)

EU 3.22 3.93 5.60 6.79 5.62 * 5.48 3.40 *
Indochina 1.23 2.20 3.44 4.15 2.04 2.00 2.14
UK 2.04 3.73 5.79 7.10 3.29 3.49 3.68
Arabic 1.67 2.51 3.80 4.92 2.47 3.02 2.67
UK-2007-05 1.69 — — — 2.11 2.68 2.26

Table 3: Space consumption (in bpe) of the most compact representations of the k2-tree and previous work, on different Web
graphs. We include the alternative (dir+rev or bi+dir+rev) used to provide forward navigation on the methods that support
only direct navigation. The exceptions when a particular graph uses a different alternative than the one indicated in the column
are marked with an asterisk. The ordering used for each graph and technique is detailed in Section 6.3.

much faster than decompressing the whole graph4.
The first column refers to our proposal. The space reported corresponds to the representation using BFS

ordering and obtained with a partition of submatrices of size 218 × 218 for graph EU, 220 × 220 for graph
Indochina, and 222×222 for graphs UK, Arabic and UK-2007-05. For the next levels we use a variable-arity
k2-tree using k = 4 for the first 5 levels for graphs EU and Indochina, and for the first 6 levels for graphs
UK and Arabic, and then k = 2 for the rest of the levels. Finally, we use kL = 8 at the last level of the tree
and DACs with optimal-space configuration.

The second and third columns of Table 3 correspond to alternatives Re-Pair WT and Re-Pair GMR

presented by Claude and Navarro [27] (code from the authors), which used BFS ordering, except for Re-Pair
WT over graph EU, where lexicographic ordering was better. They apply Re-Pair compression to the adjacency
lists and then encode the resulting sequences using compact data structures (WT and GMR) that offer direct
and reverse navigation. We could not build those representations on the largest graph, UK-2007-05.

The rest of the columns correspond to techniques that only support direct navigation, where we represent
the original and the transposed graph (denoted by dir+rev) or we use the technique proposed by Boldi et
al. [24] to extract the “undirected” part of the graph, and transpose only the rest (denoted by bi+dir+rev).

4A similar table reported before [27] did not include recent improvements on the k2-tree obtained after the conference
version [15], such as using DACs and BFS.
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Figure 7: Time and space results for different k2-trees over graph Indochina using BFS ordering. We include three settings
where no compression of the leaf levels is used (k=2 P and k=4 P) and four settings using DACs (k=4 C, k L=4 HC, k L=8 HC,
and k L=16 HC). P stands for plain, C for compressed with DACs, and H for hybrid. We represent the successor retrieval time
(in µs/edge) as a line and the space (in MB) as bars. We separate the space requirements among the different parts of the
structure (tree bitmap, leaves and vocabulary).

We apply both techniques to the Re-Pair compression of Claude and Navarro [25] (Re-Pair, code publicly
available at http://webgraphs.recoded.cl), to the best representative of the WebGraph framework [16]
(WebGraph, code publicly available at http://webgraph.dsi.unimi.it), and to the technique of Apostolico
and Drovandi [29] (AD, version 0.3.2 of their software, publicly available at http://www.dia.uniroma3.it/

~drovandi/software.php). We also included the LM method by Grabowski and Bieniecki [31], using the
source code provided by the authors.5 Then we chose the most compact configuration of those methods for
each graph: bi+dir+rev is used for Re-Pair and dir+rev for WebGraph, AD, and LM, except for graph EU,
which achieves smaller representations for WebGraph and LM using alternative bi+dir+rev (those are marked
with an asterisk in Table 3).

For WebGraph we have used their version 3.0.2, which uses the so-called “layered label propagation”
(LLP) algorithm [24]. Only the space required by their structure on disk is reported, even if the process
requires some extra memory to run6. For this comparison, WebGraph parameters are set to favor compres-
sion over speed (window size 10, maximum reference unlimited). With this parameterization, they retrieve
successors in about 100 µs/e, which is much slower than all the others (we consider more time-efficient
parameterizations when we measure time performance).

For Re-Pair(bi+dir+rev)we use BFS reordering except for EU graph, which obtains its best result with
natural order. We could not build this representation on the largest graph, UK-2007-05. Although some
specific construction techniques for very large graphs are proposed by Claude and Navarro [25], they were
more difficult to run and the structure is too far from competitive with the other (dir+rev) alternatives.

For LM(dir+rev) we use LLP reordering, except for EU graph, which also obtains its best result with
natural order.

As we can see, our proposal obtains the best space from all the alternatives of the literature, by a
good margin. Previously, Re-Pair WT had been shown to achieve the smallest space when supporting the
retrieval of successors and predecessors within microseconds [27], but our new k2-tree outperforms it (and,
in addition, it is much faster, as we see soon).

We have excluded from the table the technique of Asano et al. [28]. We do not have access to their
code, but they report 1.99 bpe on graph CNR and 2.78 on graph EU. Their time performance, as we see later,
is several orders of magnitude slower, because they need to decompress whole domains in order to extract

5k2-tree is implemented in C, Re-Pair and LM are implemented in C++, whereas WebGraph and AD are implemented in Java.
6This conservative estimate is used because it is difficult to measure the actual memory footprint of their process.
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Memory Time dir Time dir+rev
k2-tree (Section 3.3.3) 20.32 GB 22 22
k2-tree (Section 3.3.5) 16.73 GB 19 19
WebGraph 4.29 MB 82 183
AD 43.29 GB 116 211
LM 31.42 MB 29 58

Table 4: Memory usage and user time (in minutes) required for compressing graph UK-2007-05 (just for successors or for
successors and predecessors) with different techniques.

adjacency lists. In this sense, their method is closer to a plain compression method than to a compact
data structure. While they only support the successors functionality, it is possible that they could support
extracting predecessors within little more space, because they have to decompress a whole domain anyway,
and most of the predecessors can be found in the process. They would only need to represent inter-domain
links separately, and these are not many.

6.4. Construction space and time requirements

We have detailed several methods for constructing the k2-tree. The most practical ones in RAM are
those described in Sections 3.3.3 and 3.3.5. Thus, we compare now the memory usage and construction time
for compressing graph UK-2007-05 using those two construction algorithms of the k2-tree with the rest of
the techniques configured to achieve high compression as in Section 6.3.

For this experiment, the machine used was a Intel R©Core
TM i7-3820 CPU @ 3.60GHz (8 cores) with 64

GB RAM. It ran Ubuntu GNU/Linux with kernel version 3.2.0-44-generic (64 bits). The compilers used
were gcc version 4.6.3 and javac 1.6.0 25. All tests use just one CPU core. Time results measure CPU
user time computed using the command time from Debian GNU/Linux distribution. The memory usage
reported is the peak virtual memory size used by the program, which is read from the /proc/[pid]/status
file, being [pid] the process identifier of the program.

Table 4 shows the results. The first column shows the memory requirements, the second column shows
user time (expressed in minutes) to compress the graph to answer just successors, and the third column
shows user time to compress the graph to answer successors and predecessors, that is, to compress the direct
and the transpose graph. The two construction algorithms for the k2-tree obtain similar results, but the
inplace construction requires 20% less space and 15% less time. This algorithm uses a space similar to the
input size of the graph (see Table 1), which shows that the space of the queue is not significant in practice.
This is because the algorithm at Section 3.3.3 does require O(t) words of extra space for building the tree,
whereas the O(t) words of extra space for the queue is an unusual worst case for the inplace algorithm. Also,
the inplace algorithm obtains the lowest time, even compared to the time needed by the other techniques
to compress just the direct graph. However, it requires much more space than WebGraph and LM. AD, on the
other hand, obtains both higher space and time requirements.

6.5. Single link retrieval

We now study the efficiency of the navigation using the k2-tree, and compare it with previous work. We
start by analyzing its performance to determine if there is a link from a specific Web page to another.

In Section 4.1 we showed how to determine the existence of a link between two given pages p and q. Most
other techniques can answer this query only by extracting the adjacency list of p until they can determine
that q is not present. The only proposals we know of that solve this query faster than via extracting the
whole adjacency list are AD, which achieves on average 60% of the time needed to retrieve the whole adjacency
list, and WebGraph, which is able to retrieve successors lazily in increasing order, thus, on average, only half
of the list has to be retrieved.

Table 5 shows, on graphs EU and Indochina, the average time needed by the k2-tree to retrieve a whole
adjacency list, the corresponding time per link retrieved, and the time of a single-link query. We have used
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Time (µs) Whole adjacency list Average time per link Single Link
EU 55.120 2.472 0.124
Indochina 51.781 1.978 0.106

Table 5: Time for checking individual links of Web graphs using k2-trees.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6  7

tim
e 

(m
ic

ro
se

c/
qu

er
y)

space (bits/edge)

EU - single link queries

k2-tree
WebGraph(dir)

AD(dir)
Re-Pair(dir)

LM(dir)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  0.5  1  1.5  2  2.5  3  3.5  4

tim
e 

(m
ic

ro
se

c/
qu

er
y)

space (bits/edge)

Indochina - single link queries

k2-tree
WebGraph(dir)

AD(dir)
Re-Pair(dir)

LM(dir)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  1  2  3  4  5  6

tim
e 

(m
ic

ro
se

c/
qu

er
y)

space (bits/edge)

UK - single link queries

k2-tree
WebGraph(dir)

AD(dir)
Re-Pair(dir)

LM(dir)

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

tim
e 

(m
ic

ro
se

c/
qu

er
y)

space (bits/edge)

Arabic - single link queries

k2-tree
WebGraph(dir)

AD(dir)
Re-Pair(dir)

LM(dir)

Figure 8: Space/time tradeoff to solve single-link queries on graphs EU, Indochina, UK, and Arabic using different methods.

the smallest k2-tree variants, as described in Section 6.3. We measure the average time to test links between
random pairs of nodes (i.e., existing and non-existing links).

It can be seen that the time used by the k2-tree to retrieve a single link is two orders of magnitude lower
than the time to retrieve the whole list. What is more striking is that the single-link query time is also one
order of magnitude faster than the per-link time of a successor query. This is because the latter needs to
explore the whole row of the matrix (hopefully, but not always, avoiding to enter up to the k2-tree leaves),
whereas the single-link query goes directly to a single cell.

Figure 8 shows the comparison with other methods of the state of the art. We measure the average
time per single-link query over Web graphs EU, Indochina, UK, and Arabic. In addition to our k2-tree, we
include AD(dir), WebGraph(dir), LM(dir), and Re-Pair(dir), all of them using only the space to support
successor queries. AD(dir) was configured with parameter ℓ = 4, 8, 16, 100, and we used the specific query
for checking single-links. WebGraph(dir) was configured with different values for parameters w and m and
we used the lazy successors retrieval until the link can be confirmed or discarded. Finally, for LM(dir)

and Re-Pair(dir) we estimate the time to answer a single-link query as half of the time required for
retrieving the whole list of successors7. LM was used with their parameter h set at power-of-two values

7Notice that this is an optimistic estimation, thus, WebGraph and AD may obtain better times than those reported for LM.
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Configuration Space (bpe) Time (µs/e)
k2-tree (as in Section 3) 1.69 4.874
Webgraph w = 70,m = 1000 2.61 16.771
Webgraph w = 70,m = 300 2.65 4.801
Webgraph w = 3,m = 3 3.32 0.121
AD ℓ = 1000 2.68 12.666
AD ℓ = 200 2.73 2.528
AD ℓ = 16 3.38 0.267
LM h = 256 2.26 1.294
LM h = 64 2.41 0.449
LM h = 8 3.33 0.062

Table 6: Time per link for retrieving the successors list for different configurations of several methods over graph UK-2007-05.

between 8 and 64. Finally, we configured Re-Pair(dir) with the same parameters used by the authors in
their experiments [25].

As we can see from the figures, k2-tree is faster than the rest of the alternatives (5–10 times), even when
only the space for supporting successors is taken into account and those methods are configured to be as
efficient as they can. When those alternatives are configured to achieve the smaller space as possible, our
proposal becomes one order of magnitude faster (20–50 times). Hence, k2-tree outperforms the rest of the
methods by a large margin when retrieving single links.

6.6. Successors and predecessors retrieval times

The technique Re-Pair WT [27], which had obtained the smallest space reported in the literature (and
is superseded by the new k2-tree in Table 3), can navigate the graph in compressed form, but it requires
around 35 µs/e for the successors list and 55 for the predecessors list. For example, this would require
more than one hour to completely traverse a small/medium-sized Web graph, such as Indochina. This
technique will be excluded from our time comparisons, because all the other techniques, including k2-tree,
offer navigation times (usually well) below 10 µs/e. To be concrete, Re-Pair WT loses by a wide margin, in
space and time, to the new k2-tree. Instead, we include a variant of Re-Pair GMR labeled Re-Pair GMR(2),
which uses a complementary form of the GMR sequence representation that favors successors over predecessors
retrieval [27].

Figure 9 shows the space/time tradeoff for retrieving successors and predecessors over different graphs.
We measure the average time efficiency in µs/e as before. Representations providing space/time tuning
parameters appear as a line, whereas the others appear as a point.

The space/time tradeoffs for Re-Pair(bi+dir+rev), Re-Pair GMR and Re-Pair GMR(2) were obtained
using the same parameters used by the authors in their experiments [25, 27]. For WebGraph(dir+rev) we
chose the dominant points among the results obtained by varying parameter m between 0 and 5,000 and
parameter w between 0 and 70. For AD(dir+rev), we varied their parameter ℓ between 4 and 1,500. We
include the space for the offsets and indexes of the first node of each chunk (64 and 32 bits per chunk,
respectively) to support random access to the graph. For LM(dir+rev), we varied their parameter h using
power-of-two values between 8 and 512. Finally, we obtained several space/time tradeoffs for the k2 tree by
varying the k parameter in different levels (combining alternatives k = 2 to 8), using or not a large k0 for
the first level, using kL = 4 to 9 for the last level, and using either an optimal-space or a faster variant in
DACs for the last level. We then show the dominant points.

Figure 10 shows the comparison on a much larger graph, UK-2007-05. As said before, here we do not
include the representation Re-Pair GMR (nor Re-Pair GMR (2)), since we could not build them for such a
large graph. We also discarded Re-Pair(bi+dir+rev), as explained before. For the k2-tree we show only a
single point because other alternatives were larger and slower. Table 6 shows the figures for some of these
points.
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Figure 9: Space/time tradeoff to retrieve successors (left) and predecessors (right) on graphs EU, Indochina, UK, and Arabic.
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Figure 10: Space/time tradeoff to retrieve successors (left) and predecessors (right) for graph UK-2007-05.

As we can see, our representation achieves the best compression (as low as 1.3 to 3 bpe, depending on
the graph) among the techniques that provide successors and predecessors retrieval. The alternatives that
get closest in space are LM(dir+rev) and AD(dir+rev), depending on the graph. They achieve very fast
navigation when occupying about twice the space of k2-trees, but they get considerably slower when using
less than that space. WebGraph(dir+rev) behaves similarly, yet the lowest space where it reaches very
fast navigation is larger than that of AD(dir+rev) and LM(dir+rev), especially on the smaller graphs (all
these methods become very similar on the largest graphs). Re-Pair GMR obtains attractive space results
on the smallest graph, but not on the larger ones. Moreover, it is much slower to retrieve successors (just
like Re-Pair GMR (2) on predecessors; this technique is strongly asymmetric). Re-Pair(bi+dir+rev) also
gives attractive times, but it is not competitive in space with techniques that are as fast as it. Finally, it
is interesting to note that LM(dir+rev) performs particularly well on the smallest graph, EU, where it gets
much closer than the others to our minimum-space configuration. Yet, on the larger graphs, it becomes very
similar to AD(dir+rev) and WebGraph(dir+rev).

The k2-tree obtains the best results when little space is available, and this is its main value when
bidirectional navigation is required. However, if more main memory space is available, representations like
LM, AD, and WebGraph obtain the list of predecessors or successors many times faster, using 2-4 times the
space. Further, if we only require to carry out forward navigation, alternatives Re-Pair, WebGraph, AD and
LM become preferable (smaller and faster than ours) in most cases.

We now consider proposals for which we do not have access to the code, but still can carry out some
meaningful comparisons thanks to the shared WebGraph testbed. Buehrer and Chellapilla [11] proposed a
technique we will label VNM, for “virtual node mining”, which transforms the graph into a smaller one, and
then encodes it.

Table 7 shows in the first column, VNM(∞), the space consumption they report for graphs EU, UK, and
Arabic. This space does not include the storage of the offset per node, which is essential to provide direct
access to the graph (and hence navigation). It is to be taken as a compression method. The second column,
VNM, adds the space of their pointers array, such that the compressed graph can be randomly navigated. In
the last column we repeat the space results of our smallest navigable representation of the k2-tree (from
Table 3). As we can observe, VNM obtains significantly worse compression ratio than the k2-tree, even
considering that VNM supports only successors retrieval (we would need to use a “(dir+rev)” variant, that
could up to double the space, to have predecessors functionality as well). No traversal times are reported
by Buehrer and Chellapilla [11].

However, the technique of Buehrer and Chellapilla [11] is still of interest in this scenario, since the output
of the first part of the method is another graph, which can be encoded with any other technique. Hernández
and Navarro [30] explore this path, and find in particular that the combination of the graph-reduction
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Space (bpe) VNM(∞) VNM k2-tree
EU 2.90 4.07 3.22
UK 1.95 3.75 2.04
Arabic 1.81 2.91 1.67

Table 7: Space comparison between the k2-tree and VNM on various graphs.

Space (bpe) Asano k2-tree k2-tree no-L
CNR 1.99 3.11 0.80
EU 2.78 3.22 0.90
Time (msec/list)
CNR 2.34 0.017 0.022
EU 28.72 0.055 0.073

Table 8: Comparison with approach Asano on small graphs.

method with k2-trees (considering the conference version [15] with the DAC improvement, but not BFS)
achieves a slight space reduction with respect to the plain k2-tree. However, this comes at the price of a
10-fold increase in navigation times.

We also compare our proposal with the method by Asano et al. [28] (Asano). We used our smallest
graphs, on which they have reported experiments. Table 8 shows the space and average time needed to
retrieve the whole adjacency list of a node, in milliseconds per list. For this experiment, we represent graph
EU with the configuration described in Section 6.3 and graph CNR using BFS ordering and a partition of
submatrices of size 216 × 216, k = 4 for the first 4 levels, and then k = 2 for the rest of the levels. Finally,
we use kL = 8 at the last level of the tree and DACs with optimal-space configuration. The resulting
compression ratio and time results are shown in the third column of the table (we remind that Asano does
not support predecessors retrieval).

We observe that our method is two orders of magnitude faster to retrieve an adjacency list, while the
space is slightly larger. The time difference is so large that it is possible to be more space-competitive and
still much faster if part of our structure (e.g., L) is on disk. Our main memory space in this case, omitting
bitmap L, is reduced to about half the space of the k2-tree. The last column of the table shows the space
needed by the T part of our structure, and the navigation time (real time) required when the accesses to L
resort to disk. The structure is about 30% slower than the main k2-tree but still two orders of magnitude
faster than Asano.

6.7. Range searches

We now study the performance of range queries on the k2-tree representation of Web graphs (recall
Section 4.3). We compare the average time needed to retrieve r > 0 consecutive lists of successors, of nodes
p to p+ r − 1, with the time spent to obtain all the links in the range [p, p+ r)× [0, n] with a range query.
Figure 11a shows the results for r = 1 to 20. For these experiments we used the k2-tree of graph Indochina

that chooses k = 2 at each level of the tree and represents the leaves in plain form, to make the results of
the experiments independent of the effects of the leaf vocabulary.

As it can be seen, except for r = 1 (when the range includes just 1 node, and the query is equivalent
to a successor query), retrieving consecutive lists of successors is slower than the corresponding range query
(for 1 node, the range query adds a small overhead that is not present in neighbor queries). As r grows, the
time of the range query stays almost constant (which is much better than the worst-case theoretical result
of O(A + logk n) = O(rn) given in Section 4.3.1), while retrieving r consecutive list of neighbors increases
linearly with r, as expected.

Section 4.3 shows that checking the existence of a link in a range can, in turn, be done faster than listing
all the links. Figure 11b shows the average query time in milliseconds for this operation, on the same ranges
as before. This is compared with the time of the range query that reports all the links in the same range
(i.e., the same of Figure 11a). Now that it is not dwarfed by the time to extract individual lists, it can be
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Figure 11: Performance of range queries.

seen that the time to extract all the links in a range does increase with r, albeit rather slowly. Instead,
checking the existence of a link inside the same range not only performs significantly faster, but its time
decreases as the range width increases. This was already intuitively anticipated in Section 4.3.1.

These two operations can be useful to regard the graph at a higher level, for example formed by domains,
while being able to list the domains some domain points to, the domains that point to some domain, whether
two domains are linked, and so on. (For this sake we need to use the lexicographic ordering of nodes.)

7. Conclusions and future work

We have presented a new compact representation for Web graphs, the k2-tree, that uses very little space
(as little as 1.3–3 bits per edge, 60%–80% of the best alternative representations), by taking advantage of
the sparseness and clustering of the adjacency matrices. It supports various queries on the graph, such
as checking the presence of single links (in about 0.1 microseconds, 10 times faster than existing represen-
tations), bidirectional navigation towards successors and predecessors of a page (in 2–8 microseconds per
neighbor retrieved, which is 10–20 times slower than the best alternatives), and even more general range
queries such as recovering all the connected pairs of Web pages inside a range, or determining whether there
exists a link between ranges of Web pages.

Our experiments show that the k2-tree offers, by a significant margin, the smallest graph representation
that efficiently supports direct and reverse navigation. No alternative can reach its space without being
orders of magnitude slower. The most competitive alternatives [29, 24, 31] use about twice the space of the
k2-tree, in which case they do offer significantly faster navigation. On the other hand, to test individual
links the k2-tree is an order of magnitude faster than the other representations, even if they use much more
space.

This makes the k2-tree an attractive alternative to handle Web graphs that require very efficient com-
pression to fit in the available main memory, and where we want to carry out specific queries such as testing
individual links between nodes or ranges of nodes, or find predecessors or successors of specific nodes. We
have described in the Introduction various Web graph analysis problems where such a functionality is of
interest. On the other hand, when we only need limited functionality such as computing successors, or
need bidirectional navigation but have enough main memory space to hold the graph and its transpose,
alternative representations are much faster, especially if we aim at traversing a large portion of the graph.

Since the conference publication [15], the k2-tree has been used in other scenarios, some of which have
already been commented along the article. Claude and Ladra [50] combined a k2-tree representation for
intra-node edges with a Re-Pair compression of inter-node edges, achieving more space but less time than
plain k2-trees (in many cases the result matches the most interesting space/time tradeoff of Apostolico and
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Drovandi [29]). Hernández and Navarro [30] combined k2-trees with virtual node mining [11], achieving
slightly less space but 10-fold slowdown. They have also combined k2-trees with other structures and
obtained good results on compressing social networks, particulary using dense subgraphs [51]. Shi et al. [52]
also applied k2-trees to social networks, and postulated that the “maturity” of the network can be estimated
from the compression ratio achieved by the data structure. The k2-tree has also been successfully applied to
represent RDF graphs [53], whose labels have attributes, and then various k2-trees must be used. Finally,
k2-trees have also been used to compress more general graphs [54].

The structure we have introduced can be of more general interest than graph compression. It could be
fruitful, for example, to use it to represent general binary relations, as its range search capabilities are useful
to handle many queries of interest [55]. For example, an application can be the representation of discrete
point grids, for computational geometry applications or geographic information systems. The k2-tree would
take advantage when the data is clustered. Romero et al. [56] used the k2-tree as a basis to create a succinct
moving object structure for timestamp and interval queries. Dynamic variants of the k2-tree have also been
pursued [57], and these increase the applicability of this versatile structure.

8. Acknowledgments

Funded by MICINN (PGE and FEDER) grants TIN2009-14560-C03-02 and Xunta de Galicia (co-funded
with FEDER) grants 2010/17 and CN 2012/211 (for the first and second authors); and for the third author
by Millennium Nucleus Information and Coordination in Networks ICM/FIC P10-024F. We also thank the
reviewers for their comments, which improved the quality of the article

References

[1] D. Donato, S. Millozzi, S. Leonardi, P. Tsaparas, Mining the inner structure of the Web graph, in: Proc. 8th Workshop
on the Web and Databases (WebDB), 2005, pp. 145–150.

[2] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, The Web as a graph: Measurements, models, and
methods, in: Proc. 5th Annual International Conference on Computing and Combinatorics (COCOON), LNCS 1627,
1999, pp. 1–17.

[3] S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer Networks 30 (1998) 107–117.
[4] L. Page, S. Brin, R. Motwani, T. Winograd, The PageRank Citation Ranking: Bringing Order to the Web., Technical

Report 1999-66, Stanford InfoLab, 1999.
[5] L. Becchetti, C. Castillo, D. Donato, R. Baeza-Yates, S. Leonardi, Link analysis for Web spam detection, ACM Transac-

tions on the Web 2 (2008).
[6] M. Henzinger, A. Heydon, M. Mitzenmacheri, M. Najork, On near-uniform URL sampling, Computer Networks 33 (2000)

295–308.
[7] H. Saito, M. Toyoda, M. Kitsuregawa, K. Aihara, A large-scale study of link spam detection by graph algorithms, in:

Proc. 3rd International Workshop on Adversarial Information Retrieval on the Web (AIRWeb), 2007, p. 48.
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[43] R. González, S. Grabowski, V. Mäkinen, G. Navarro, Practical implementation of rank and select queries, in: Poster

Proc. Volume of 4th Workshop on Efficient and Experimental Algorithms (WEA), 2005, pp. 27–38.
[44] S. Gog, M. Petri, Optimized succinct data structures for massive data, Software: Practice and Experience (SPE) (to

appear) DOI: 10.1002/spe.2198 (2013).
[45] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, EATCS Monographs on Theoretical Computer

Science, Springer-Verlag, 1984.
[46] M. He, I. Munro, Succinct representations of dynamic strings, in: Proc. 17th International Symposium on String Processing

and Information Retrieval (SPIRE), LNCS 6393, 2010, pp. 334–346.
[47] G. Navarro, K. Sadakane, Fully-functional static and dynamic succinct trees, ACM Transactions on Algorithms (TALG)

(2013). To appear.
[48] N. Brisaboa, S. Ladra, G. Navarro, DACs: Bringing direct access to variable-length codes, Information Processing and

Management (IPM) 49 (2013) 392–404.
[49] P. Boldi, B. Codenotti, M. Santini, S. Vigna, Ubicrawler: A scalable fully distributed web crawler, Software: Practice

and Experience (SPE) 34 (2004) 711–726.
[50] F. Claude, S. Ladra, Practical representations for Web and social graphs, in: Proc. 20th ACM Conference on Information

and Knowledge Management (CIKM), 2011, pp. 1185–1190.
[51] C. Hernández, G. Navarro, Compressed representation of web and social networks via dense subgraphs, in: Proc. 19th

International Symposium on String Processing and Information Retrieval (SPIRE), LNCS 7608, 2012, pp. 264–276.
[52] Q. Shi, Y. Xiao, N. Bessis, Y. Lu, Y. Chen, R. Hill, Optimizing K2-trees: A case for validating the maturity of network

32



of practices, Computers and Mathematics with Applications 63 (2012) 427–436.

[53] S. Álvarez-Garćıa, N. R. Brisaboa, J. Fernández, M. Mart́ınez-Prieto, Compressed k2-triples for full-in-memory RDF
engines, in: Proc. 17th Americas Conference on Information Systems (AMCIS), 2011.
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