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Abstract—Recent advances in 3D modeling provide us with
real 3D datasets to answer queries, such as “What is the best
position for a new billboard?”’ and “Which hotel room has the best
view?” in the presence of obstacles. These applications require
measuring and differentiating the visibility of an object (target)
from different viewpoints in a dataspace, e.g., a billboard may
be seen from two viewpoints but is readable only from the
viewpoint closer to the target. In this paper, we formulate the
above problem of quantifying the visibility of (from) a target
object from (of) the surrounding area with a visibility color map
(VCM). A VCM is essentially defined as a surface color map
of the space, where each viewpoint of the space is assigned
a color value that denotes the visibility measure of the target
from that viewpoint. Measuring the visibility of a target even
from a single viewpoint is an expensive operation, as we need to
consider factors such as distance, angle, and obstacles between
the viewpoint and the target. Hence, a straightforward approach to
construct the VCM that requires visibility computation for every
viewpoint of the surrounding space of the target, is prohibitively
expensive in terms of both I/Os and computation, especially for a
real dataset comprising of thousands of obstacles. We propose an
efficient approach to compute the VCM based on a key property
of the human vision that eliminates the necessity of computing
the visibility for a large number of viewpoints of the space.
To further reduce the computational overhead, we propose two
approximations; namely, minimum bounding rectangle and tan-
gential approaches with guaranteed error bounds. Our extensive
experiments demonstrate the effectiveness and efficiency of our
solutions to construct the VCM for real 2D and 3D datasets.

I. INTRODUCTION

Recent advances in large-scale 3D modeling have enabled
capturing urban environments into 3D models. These 3D
models give photo-realistic resembling of urban objects such
as buildings, trees, terrains etc. and are widely used by popular
3D mapping services, e.g., Google Maps, Google Earth, and
Bing Maps. The increasing availability of these realistic 3D
datasets provides us an opportunity to answer many real-life
queries involving visibility in the presence of 3D obstacles.
For example, a tourist may check the visibility of a new year
firework event from different locations in the surrounding areas
so that he can pick a good spot to enjoy it; an apartment
buyer may want to check visibility of near-by sea-beach
and mountains from various available apartments; and an
advertising company may wish to determine visibility of their
existing billboards from surrounding areas and find a suitable
location for a new billboard accordingly.
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In this paper, we investigate efficient techniques to answer
the underlying query required by the above applications:
computing visibility of an object (e.g., firework event, bill-
board) from the surrounding continuous space, or that of
the surrounding space from a source viewpoint. Our target
applications treat visibility as a continuous notion—e.g., a
billboard may be more visible from one location than another,
depending on factors such as distance, viewing angle, and
obstacles between the viewpoint and the target. We therefore
use a visibility function that provides real-valued visibility
measures of various points in the (discretized) 3D space, where
the visibility measure of a point denotes its visibility from the
viewpoint or to the target object. Thus, the answer to our target
query is essentially the visibility measures for every point in
the 3D space. The result can be graphically represented as
a heat map, by assigning colors to various points according
to their visibility measures. We call this a visibility color map
(VCM) of the space for a given target or for a given viewpoint.

Recent works have shown how database techniques can
enable efficiently answering various types of visibility queries
in the presence of obstacles. Various nearest neighbor (NN)
queries consider visibility of objects [1I], [2]], [3]; for exam-
ple, the visible nearest neighbor query [1]] finds the nearest
neighbors that are visible from the source. However, these
works, like various other computer graphics works [4], [5],
[6], 171, [80, [Ol, treat visibility as a binary notion: a point is
either visible or not from another point. In contrast, in our
target applications, visibility is a continuous notion. Recently,
Masud et al. proposed techniques for computing continuous
visibility measure of a target object from a particular point
in 3D space (e.g., computing visibility of a billboard from a
given location) [10]]. On the contrary, our target applications
require visibility calculation from or of a continuous space
where there is no specific viewpoint.

One straightforward way to generate a VCM is to descretize
the 3D space and to use the techniques in [10] to com-
pute visibility measure for each discrete point in the space.
However, this can be prohibitively expensive. For example,
discretizing the surrounding space into 1000 points in each
dimension would give a total of 10° points in the 3D space;
and computing visibility measure for each point by using
techniques in [10] would take 128 days! The huge cost comes



from two sources: (i) computing the visibility measure based
on the distance and angle from all viewpoints, which is
computationally expensive and (ii) accessing a large set of
obstacles from the database, which is I/O expensive.

We address the above challenges with a three-step solution
that uses several novel optimizations to reduce computational
and I/O overhead. First, we partition the dataspace into a set
of equi-visible cells, i.e., all points inside a cell have equal
visibility of the target object in terms of visual appearance.
We exploit the key observation that when a lens (e.g., a
human eye) sees an object without any obstacles, it cannot
differentiate between its visual appearances from a spatially
close set of points within an angular resolution (or spatial
resolution) of ~ 4 arcminutes (= 0.07 degrees) [11l]. Thus, we
can safely prune the visibility computation for a large number
of viewpoints within the angular or spatial resolution without
affecting viewer’s perception. This optimization significantly
reduces the computation cost, as we can compute only one
visibility measure for each cell.

In the next step, we consider the effect of obstacles. We
compute visible regions, the regions in the space from where
the target object is completely visible in the presence of
obstacles. In the final step, we assign visibility measures to
these regions from the corresponding cells by spatial joins.
Both steps are I/O and computation intensive. For example,
they both require retrieving a large number of cells and
obstacles from the spatial database. To reduce I/O costs, we
employ various indexing techniques to incrementally retrieve
a small number of obstacles and cells near the target object.
These steps also require performing many computationally ex-
pensive operations such as polygon intersections of irregular-
shaped regions and cells. To reduce such costs, we represent
regions with regular shaped polygons in a quad-tree. We also
propose two approximations that further reduce the cost while
providing guaranteed small error bounds.

We have evaluated the performance of our solution with
real 3D maps of two big cities. We compare our solution
with a baseline approach that divides the space into a regular
shape grid of 500 cells in each dimension and computes
visibility from each grid cell. The baseline approach results
into more than 30% error while requiring about 800 times
more computation time and six orders of magnitude more /O
than our solution. Hence, in the baseline approach, dividing
the space into more cells for more accuracy is not feasible
for practical applications. On the other hand, our approach
provides efficient and effective solution.

In summary, we make the following contributions:

« We formulate the problem of efficiently constructing a
visibility color map (VCM) in the presence of obstacles
in 2D and 3D spaces.

« We propose an efficient solution to construct a VCM. The
solution uses various novel optimizations to significantly
reduce the computational and I/O overhead compared to
a baseline solution.

« We propose two approximations with guaranteed error
bounds and reduced computation to construct the VCM.

Fig. 1: Effect of distance and angle on visibility

« We conduct extensive experiments in two real datasets to
show the effectiveness and efficiency of our approaches.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem Formulation

The construction of a visibility color map (VCM) can be
seen from two perspectives: farget-centric VCM and viewer-
centric VCM. The construction of a rarget-centric VCM in-
volves determining how much a given target is visible from
every poin of the space. On the other hand, a viewer-centric
VCM involves determining how much visible each point in the
surrounding space is from a given viewer’s location.

In both cases, we need to compute visibility and produce
a color map of the space where each point of the space
is assigned a color value that corresponds to the visibility
measure of that point.

Definition 2.1: Visibility Color Map (VCM)

Given a d-dimensional dataspace R? and a set O of obsta-
cles, the VCM is a color map C, where for each point X € R?,
there exists a color c¢x € [0,1]. The color cx corresponds
to the visibility of a given target object T from X in case
of target-centric VCM and the visibility of X from a given
viewer’s location ¢ in case of viewer-centric VCM. Here, cx
is normalized between 0 and 1.

Without loss of generality, we limit our discussion to the
construction of target-centric VCM in the subsequent sections.
However, our solution is also applicable to the viewer-centric
VCM construction, as explained in Section [[V-B]

The core of computing a VCM is computing visibility of
the target from various points in the space. The most common
measure of visibility (or, the perceived size) of an object is the
visual angle [12], which is the angle imposed by the viewed
object on a lens. The visual angle mainly depends on the
characteristics of the viewing lens as well as the distance,
angle, and obstacles between the viewer and the target [13].

B. Factors Affecting Visibility

1) Relative Position of the Lens and the Target: The
perceived visibility of a target object mainly depends on the
relative position the viewing lens and the target. For a specific
target, the visibility varies with the change of distance and
angle between the lens and the target.

Distance: If the distance between a target 7 and a lens
increases, the perceived size of T becomes smaller. This is
because the visual angle imposed by an object decreases with
the increase of the distance between that object and the viewer.
As shown in Fig. [} AB is a target object of length S and the

'We have used point and viewpoint interchangeably.



position of a lens is O. When the midpoint of AB is at an
orthogonal distance D from O, the visual angle V is calculated
using the following formula [14],

S
V= 2arctan(ﬁ) (1)

Angle: The perceived size of a target T depends on the angle
a between the lens and T [[15)]. If an object is viewed from
an oblique angle, the perceived size of that object becomes
smaller than the original size. For the equidistant positions of
the lens from T, the visual angle V varies for different values
of . Let AB be a line of length S. A line gm connecting a
point g and the midpoint m of AB, creates an angle o with AB.
If a =90, the perceived size of AB from a nominal distance
is same as the original length, S. Otherwise, according to the
concept of oblique projection [15]], the perceived length Sy of

AB from q is

(04
S(X:WXS (2)

Thus, if we consider the effects of both distance and angle
between the target and the lens, the visual angle V can be
expressed as V = 2arctan(g—g). In Fig. (1} the visibility of
the target AB of length S is the visual angle V imposed at
the lens O. As in this case o = 90, so the visual angle

V is 2arctan(x200_) = 41.11°. If o = 45°, then V is

2arctan(%) =21.23°.

Besides the relative position of the lens, the visibility of a
target is also affected by the presence of obstacles.

2) Obstacles: To show the effect of obstacles on the
visibility, we first define the term point to point visibility.

Definition 2.2: Point to point visibility. Given two points
p,p’ and a set O of obstacles in a space, p and p’ are visible to
each other if and only if the straight line connecting them, pp’,
does not cut through any obstacle, i.e., Vo € O, pp'No = O.

Based on the definition of point to point visibility, we
formally define the obstructed region as:

Definition 2.3: Obstructed region. Given a set O of obsta-
cles, a bounded region R, and a target 7', the obstructed region
is the set of points where for each point p, (i) p is in R and
(ii) p is not point to point visible to all points of 7.

The obstructed region contains viewpoints from where the
target object is not completely visible. Thus, we only need
to measure the visibility for the viewpoints residing outside
the obstructed region that form the visible region, and assign
colors to these viewpoints of the visible region according to
the defined visibility measure (i.e., visual angle).

III. CONSTRUCTING A VCM

To construct a VCM for a given target 7, we need to
determine the visibility of 7' from all discrete points in the
surrounding space R in the presence of a set O of obstacles.
We represent visibility of each point X € R with a color cx,
which is proportional to the visibility of 7 from X. We use
the terms visibility measure and color interchangeably.

One naive approach to compute a VCM is to compute
visibility of 7 from every single viewpoint X € R. Depending
on how finely we discretize the space R, there can be a large

TABLE I: Notations used and their meanings

Notation | Meaning

The target object.

A set of b obstacles O={01,07,...,05}.

The visual angle imposed in a lens by 7.
The angular resolution of a lens.

The angle between T and the line connecting

the lens and the midpoint of 7.

QRI=|<|IQOIN

number of points, making the process prohibitively expensive.
The high overhead of this naive approach comes due to the
expensive visibility computation from a large number of points
and expensive I/O operations to retrieve a large collection of
obstacles from a spatial database.

To address these problems, we propose an efficient solution
to construct a VCM. The key insights of our solution come
from the following two observations. First, human eye cannot
visually differentiate a target from viewpoints in close proxim-
ity of each other, which eliminates the necessity of computing
visibility for all viewpoints in the surrounding space. Second,
in most cases, only a small subset of obstacles affect visibility
of the target, and thus retrieval of all obstacles is redundant.
Such redundancy can be avoided by using various indexing
techniques.

In the rest of the section, we describe how we exploit these
observations and propose an efficient approach to compute
a VCM with reduced computational and I/O overhead. Our
approach consists of three steps:

1) First, we partition the space into several equi-visible
cells in the absence of obstacles exploiting the limita-
tions of human vision. This enables us to compute one
single visibility measure for each cell. This significantly
reduces computational overhead in contrast to comput-
ing the color of each discrete viewpoint (Section [[II-A).

2) Second, we compute the effect of obstacles and divide
the surrounding space into a set of visible regions such
that the target is completely visible from a viewpoint if
and only if it is within a visible region. To reduce the
I/0 overhead, we index all obstacles and incrementally
retrieve only the potential obstacles that can affect the
visibility of the target (Section [[II-B).

3) Finally, we join colors computed in the first step (that
ignores obstacles) and visible regions computed in the
second step to compute a VCM, i.e., colors of different
parts of the space in the presence of obstacles. To reduce
I/O overhead of retrieving results from the first two
steps, we employ various indexes (Section [[IT-C).

For ease of explanation, we assume a 2D space and a target
with the shape of line in the subsequent sections. However,
our approach is applicable to any target shapes in 2D and 3D
spaces. Table I lists the notations that we use.

A. Partitioning Space into Equi-visible Cells

As mentioned before, the ability of a human eye (or a lens)
to distinguish the variation of small details of a target T of
size S is limited by its angular resolution u. To exploit this
observation, we partition the space into a set § of n equi-visible



cells {£1,8,,...,8,}. Bach cell {; is constructed in a way so
that the deviation in visibility of 7" from the viewpoints inside
a cell, measured as visual angle V, is not visually perceivable.
Hence for any two points p,p’ € {;, visibility from p and p’
is perceived as same fif,

‘Vp —Vy ‘ e <u 3)

Note that visibility is a symmetric measure: visibility of a
target at location p from a viewer (i.e., the lens) at location ¢
is the same as that of a target at ¢ from location p. Thus,
visibility of a target 7 from the surrounding space is the
same as visibility of the space from 7’s location. Therefore,
in computing visibility of 7" from the space, we consider the
viewer at the target’s location and compute visibility of the
space from that location.

Since the value of visual angle depends on the distance and
angle between the lens and the target, the partitioning is done
in two steps: distance based partition and angle based partition.

1) Distance Based Partition: As the perceived size of
T varies with the change of distance between 7 and the
viewer’s location, our aim is to find a set D of m distances,
D = {dy,d,...,du—1}, where for each pair of points p,p’
between d; and diy1, 0 < i < m—2, the variation of the
perceived visibility from p and p’ is less than or equal to
the angular resolution u. Note that, since visibility varies as
a deviates from 90° (as explained in Section [[I-B1)), we set
a =907 as the default value for the distance based partitioning.

Partitioning starts from the near point distance dy, as a
lens cannot focus on any object that is nearer than dy [16].
Initially, the visual angle Vj from the distance dy is calculated
using Equation [I] Then, starting from Vj, the value of the
visual angle is decreased by the amount of u at each step and
the corresponding d; is calculated. When the imposed visual
angle from a distance d,,— is less than p, the distance based
partitioning process terminates as for any point farther than
dyn—1 (i.e., dpuay), the perceived visibility is indistinguishable
to the viewing lens. So, we have a set {do,di,...,dy_1} of
distances where every range < d;,d;;1 > is a distance based
partition. Fig. 2] shows the distance based partitions for a target
T, where dj is the near point distance and the distance based
partitions are < dy,d; >, < dj,d >, and so on.

At this stage, we assign a single color for every distance
based partition < d;,d;+1 >. However, every point in a distance
based partition does not perceive the same visibility of the
target, e.g., two viewpoints at a same distance partition may
have different perceived visibility due to different viewing
angles. Thus, in the next section we incorporate the effect of
viewing angle and partition the space into equi-visible cells.

2) Angle Based Partition: For each distance based partition
<dj,diy1 >, 0<i<m—2, we get [; numbers of angle based
partitions < % ;, % j+1 >, 0 < j <[;—2, where the value of /;
is different for each distance based partition. The visibility of
every point of a partition < d;,d;y1,% ,Y,j+1 > is considered
as the same. We call such a partition an equi-visible cell (or,
just cell in short).

As the change in perceived length due to change in « is
symmetric with respect to both the parallel and normal axes

Fig. 2: Partitioning based on distance and angle

of the object plane, we compute the angle based partitions only
for the first quadrant. The partitions in other quadrants are then
obtained by reflecting the partitions of the first quadrant. The
procedure of angle based partitioning is as follows:

(i) For each distance based partition < d;,d;+1 >, the angle
based partitioning starts by initializing o = 90°, ¥;0 = 907,
and Sp = S, where the size of T is S. The visual angle Vj is
calculated for o using Equationwhere D =d!. Here d] is the
average value of distances d; and d;1, i.e., d| = (di+di+1)/2.

(i) At each step j of the angle based partitioning for <
di,d;i;1 >, the perceived size §; is calculated for visual angle
V;=Vj_1 — u and distance d; using Equation |1} where j > 1,
e.g.,S1=2Dx tan%, for j= 1. The angle a;, for which §; is
perceived, is computed using Equation e.g., Q) = S1>§7900,
for j = 1. The visual angle V; is obtamed for the change in
Y..j—1 by the amount of «;, so ¥ ; is updated as ¥ j—1 — Q.
Thus we get an angle based partition < ¥ ;_1,%,; > for <
d;,d;i;1 > at each step.

(iii) When the perceived visual angle V; < u, the angle based
partitioning process for a distance based partition terminates.

The above process is repeated for each distance based
partition and finally we get the set § = {{1,8s,...,8,} of n
cells where n=m x [;, 0 <i < m— 1. Fig. 2] shows the angle-
based partitions for three distance-based partitions < dg,d; >,
<dj,dy >, and < dp,d; > for a target object 7.

After both partitioning steps are done, we compute visibility
(i.e., color) of each cell. Since all viewpoints within a cell have
the same visibility, we assign the color of the entire cell as
the visibility of the center of the cell to the target 7.

Note that we have not considered the effects of obstacles
yet. A caveat of this is that in the presence of obstacles, the
target 7 may not be visible from an entire cell or parts of a
cell even if the cell is assigned a good visibility value. We
address this next by considering the effect of obstacles.

B. Computing the Effects of Obstacles

Given a target object 7" and a set O of obstacles, we would
like to determine the set S of visible regions surrounding T
such that T is completely visible from a viewpoint ¢ if and
only if g is inside a visible region.

A naive approach to determine the effects of obstacles is
to retrieve all obstacles of O and calculate the corresponding
changes in the visibility. But this approach is prohibitively
costly in terms of both I/O and computation, especially in the
presence of a large number of obstacles. Moreover, considering
all obstacles in the database is wasteful as only a relatively
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Fig. 3: Visible region construction

small number of obstacles around 7 affect visibility. To
efficiently retrieve this small number of obstacles around T,
we index all obstacles in an R*-tree [17], a variation of R-
tree [18)]. An R*-tree consists of a hierarchy of Minimum
Bounding Rectangles (MBRs), where each MBR corresponds
to a tree node and bounds all the MBRs in its sub-tree. Data
objects (obstacles, in our case) are stored in leaf nodes.

A recent work [10] has developed a technique to determine
the obstacles that affect the visibility of the target from a
specific viewpoint. On the contrary, we need to compute
the visible region of the whole space instead of a specific
viewpoint with respect to a target. Thus, we cannot adopt the
computation of the visible region from [10]. Our approach to
compute the visible region in the presence of large number of
obstacles is as follows.

Initially the set Vi of visible regions contains the region of
R that is covered only by the field of view (FOV) with respect
to the target 7. As shown in Fig. [3a] Vz is the region bounded
by the points Ty, Tp, A, and B where T and Ty are the corner
points of 7. Here, FOV=120°, the usual FOV of the human
eye [19]. Initially, the set Og of obstructed regions is the region
of R that is outside the FOV. As T cannot be viewed from the
region outside the FOV, the obstacles residing in this region
is discarded from consideration.

Next, we refine the set Vg and the set Og by considering one
obstacle at a time. The obstacle retrieval starts from the root
node of the R*-tree. Only the nodes that intersect with a region
in Vg are incrementally retrieved from the R*-tree according to
their non-decreasing distances from 7. If the retrieved node is
an MBR, its elements are further discovered. For example, in
Fig. @ when the MBR R; is accessed, its elements 01, 07,03,
and o4 are further discovered. If the retrieved node is an
obstacle o, the regions in Vg and Op are updated according to
the effect of 0. We term the effect of a single obstacle o on
visibility as the shadow of o, W,.

Definition 3.1: Shadow of an obstacle o, W,. W, is the
region formed by the set of points P, where for any point
p of P, there is at least a point 7, on T such that the line
segment joining ¢, and p either intersects or touches o.

From each point p of the W,, T is either completely or
partially obstructed. The boundary of a shadow W, contains
exactly two straight lines, which are tangents between the
obstacle and the target. If these lines are rays, not the line seg-

ments that meet each other, then the region W, is unbounded. If
W, is unbounded, we consider only the portion that is bounded
by the given region R. In Fig. Bal The shadow of o; is W,,
(shown with black shade), the region bounded by o; and the
points A,C, and D.

While updating the Vg and O for the shadow of a retrieved
obstacle, there are three cases to be considered:

(1) If the obstacle o or its shadow W, does not overlap with
any obstructed region of Og, we exclude W, from Vi and
include it in Og. In Fig. obstacle o is the first obstacle
retrieved according to its non-decreasing distance from 7'. As
there is no other obstructed region to be overlapped with o}
or its shadow W,, (shown as the black region), W,, is now
excluded from Vi and included in Og.

(i) If o or W, overlaps with one or more obstructed
regions of Og, we combine these regions and W, into a single
obstructed region and discard this region from V. Let N be the
set of W, and the obstructed regions that overlap with W,. To
combine the regions in N, we determine the leftmost tangent
line / and the rightmost tangent line r of all the shadows of
N such that the region bounded by /, r and the union of the
shadows of N enclose all the obstructed regions of N. This
shadow resembles the combined effect of the obstacles that
are included in N. We replace the regions of N from Og with
this combined region and discard it from Vk. As an example,
in Fig. @ the shadow W,, (shown with dotted lines) of the
next retrieved obstacle o, overlaps with the existing obstructed
region (shown with black shade). Here, the leftmost tangent
line and the rightmost tangent line of these obstructed regions
are the line connecting o1, C and the line connecting o;, E,
respectively. The region enclosed by these two lines and the
union of the shadows is discarded from Vg. Similarly, the next
retrieved obstacle o3 overlaps with Og. The shadows combined
for obstacle o1, 03, and 03 is shown in black shade in Fig.
where the shadow of o3 is shown with dotted lines.

(iii) If o is entirely inside any obstructed region, it will not
contribute to the visibility. So we discard o from consideration.
In Fig. [3b] the effect of obstacle o4 is not calculated as it is
entirely inside the current obstructed region.

Note that, the visible region includes viewpoints from where
the target is entirely visible. This approach is suitable for ap-
plications like placement of billboards, where partial visibility
of the target from a viewpoint does not make sense. There
can be some applications that require finding the viewpoints
from where a target is partially visible. We leave computing
the partial visible viewpoints as the scope of the future study.

C. Merging Cells with Visible Regions

In the final step of producing a VCM, we combine colors
computed in the first step (that ignores obstacles) and visible
regions computed in the second step to compute color of each
cell in the presence of obstacles. Intuitively, all obstructed
regions are assigned color zero (representing zero visibility),
while all visible regions are assigned colors from their corre-
sponding cells. This requires taking intersection (spatial join)
of all cells and visible regions.
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Fig. 4: Construction of visibility color map

The above process can be expensive for two reasons. First,
visible regions are usually irregular polygons and intersecting
them with cells incurs high computational overhead due to the
complex shapes of the polygons. We address this by storing
each polygon as a set of regular shapes (rectangles) with
a quad-tree [20]. Second, the number of cells can be quite
large and intersecting visible regions with all cells can be
expensive. We address this by indexing the cells in an R*-tree
and intersecting each visible region only with its overlapping
cells. We describe these optimizations below.

1) Indexing Visible Regions: We index visible (and ob-
structed) regions in a 2D (3D) space with a quad-tree (octree).
Quad-trees (Octrees) partition a 2D (3D) space by recursively
subdividing it into four quadrants (eight octants) or blocks.
Initially the whole space is represented with a single quad-tree
block. In the visible region computation phase, when a region
is obstructed due to a retrieved obstacle, a quad-tree block
is partitioned into four equal blocks if it intersects with the
obstructed region. The partitioning continues until (i) a quad-
tree block is completely visible, or (ii) completely obstructed,
or (iii) the size of a block is below a threshold value ¥. The
threshold size is determined from the partitioning phase. If the
set of the boundary points of an equivalence cell {; is B, the
minimum distance between any two opposite boundaries over
all cells is specified as ¥, i.e.,

© = argmin(arg min(mindist(p, p’))
Gi1<i<n p,p'€PBy.
where, points p,p’ € ﬁéi are p01hts of opposite boundaries.

As ¥ is the minimum size of a cell obtained in the
partitioning phase and the deviation in the perceived visibility
for a block-size less than ¥ is not distinguishable due to
angular resolution of a lens, dividing a quad-tree block into
size smaller than ¥ for more accuracy is redundant.

Fig. 42| shows the quad-tree of the obstructed region (black
blocks) and visible region (white blocks inside FOV). After the
quad-tree is constructed, we start assigning color to each of its
blocks. We get the VCM after all the blocks are assigned col-
ors. The blocks that fall in the obstructed region are assigned
zero visibility. The remaining blocks (i.e., visible region) are
assigned colors based on the colors of their corresponding
cells, as described next.

2) Indexing Cells and Constructing VCM: For each quad-
tree block with unassigned color, we need to find all overlap-
ping cells in order to find its color. To expedite this process,

we index cells with an R*-tree that we call the color-tree.
Leaf nodes in the color-tree represent cells and non-leaf nodes
represent MBRs containing the shapes of their children nodes.
Then, for each quad-tree block, we run a range query on
the color-tree. The color for an unassigned quad-tree block is
obtained by calculating the intersection of the spatial region
of that block and the cells from the color-tree. If the quad-tree
block intersects with a single cell of the color partition, the
block is assigned the color of that cell. If a quad-tree block
intersects with multiple cells, in a 2D (3D) space we further
divide that block into four (eight) equal blocks. The division is
continued until either a block intersects with a single cell or the
size of a block is below the threshold value ¥ (Section [[II-CT).
The process terminates when all quad-tree blocks of the visible
region are colored according to the visibility measure. Fig.
shows the resulting VCM constructed by combining the color
partitions of Fig. 2] and the quad-tree of Fig. fa|

The steps of constructing a VCM are shown in Algorithm 1]
Lines 1.6-1.9 shows accessing the color-tree nodes. If an
accessed node is an MBR, its elements are further discovered
from the color-tree (Lines 1.21-1.22). If the accessed node
is a leaf node, the quad-tree nodes that are not colored yet
and intersects with this node are either colored or partitioned
further (Lines 1.15-1.20). Finally, the colored quad-tree is
returned as the complete VCM.

Algorithm 1: ConstructVCM(T,FOV,$,Qtree,CTree)

11 Initialize Q to an empty queue;

12 Initialize L to an empty list;

1.3 node < CTree.root; end < false;

14 L <+ Get_unassigned_quad leaf(Qtree, FOV);
1.5 while node # empty and end = false do

1.6 for each element n, of node do

17 if Inside_visibility_region(n,) = true then
18 | Enqueue(Q,n.);

19

1.10 continue < true;

111 while continue = true do

112 continue < false; node < Dequeue(Q);
113 if node = empty or L = empty then
114 | end < true;
115 else if node is a data object then
1.16 Initialize Still_unassigned_quads to an empty list;
117 for each element L; of L do
118 Still_unassigned_quads <—
L insert(Divide_and_color(L;,node,9));
1.19 L < Still_unassigned_quads;
1.20 continue < true;

else
| node « child(node);

1.21
1.22

1.23 return Qtree;

IN)

Since the color partition results in complex shaped cells
(e.g., curves), it is computationally expensive to combine these
shapes with the quad-tree blocks of visible region. Thus, we
propose two approaches to approximate color partition cells.



Ci+1 Mi+1

(a) (b)
Fig. 5: Approximating a cell using MBR and tangents
IV. EXTENSIONS

In this section, we discuss a few extensions to our basic
algorithm described in the previous section.

A. Approximation of Partitions

The algorithm in the previous section partitions the space
according to the relative distance and angle between the
lens and the target. Based on these parameters, the cells are
bounded by arcs and straight lines. To construct the VCM, we
need to compute the intersection of these cells with the quad-
tree blocks. The process is computationally expensive due to
the complex shape of the cells and the target.

To address this, we introduce two approximations that re-
duce the computational overhead at the cost of small bounded
errors: (i) minimum bounding rectangle (MBR) of a cell and
(ii) tangents of the arcs of a cell. For the ease of explanation
we analyze errors for targets with regular shapes, e.g., lines
without loss of generality. For such targets, the complex
shaped partitions are bounded by two arcs and two straight
lines. Here we discuss the approximations of color partitions
and the maximum error resulting from these approximations.

MBR Approximation: An approach to approximate the
curves of a cell is to enclose the cell using its MBR where the
area covered by the cell is approximated by the area covered
by the enclosing MBR. This is illustrated in Fig. [5a] where
a cell consists of two concentric arcs ¢; and c;;+ (centered at
a corner O of the target) of radius r; and r;; 1, respectively.
ABCD is the MBR of this cell. Let ¢; and ¢+ create 6; and
6,11 angles (in degrees) at the center respectively. We denote
the area of the MBR as A,. So the area bounded by the cell,
Ay is (%21 % mri?) — (325 x mri?). Hence the area that gets
wrong color due to this MBR approximation is A, —A, (shaded
region in Fig. [5a).

Error Bound Analysis. For targets with regular shapes such
as lines (Fig. [2), the largest cell that can yield the maximum
possible error consists of two half circles centered at a corner
point of the target. Hence we formulate the maximum error
bound by referring to Fig. [5b] Here, we want to approximate
the area of a cell p; bounded by two half circles ¢; and
ci+1 centered at O, a corner point of target 7 of length S.
Here, ¢; and c;;1 belong to distance based partition d; and
di+1, respectively. We approximate p; by taking its MBR,
ABCD. So, the darkly shaded region is wrongly colored for
MBR approximation. The lightly shaded region is wrongly
colored too, but it is considered for distance based partition
<d_1,d; > i.e., for cell p;_;. As the total error is calculated

incrementally for each cell, so the error for this lightly shaded
region is calculated only once for the cell p;_;. Let, r; and 7y
be the radii of ¢; and c;11, respectively. Hence, the width of
cell p; is riy1 —r;. The farthest distance from O to any point
of the MBR is Ar =+/2 x r;, 1. So the points of the MBR that
fall within the distance r;;| and V2 x riy1 from point O, get
wrongly colored with the p;’s color. From Equation [T we get
that the width of the distance based partitions increase with the
increase of the distance between the target and the partition.
So the maximum number of distance based partitions in d; |
that can be wrongly colored is n = %

For each distance based partition, cérresponding angle based
partitions are calculated by taking the angle from the midpoint
of the target. So only the angle based partitions that fall within
the range (arctan ;‘%, —arctan 372‘ ) can lie in the darkly shaded
region. Let there are a; such angle based partitions in total. As
the difference in visual angle in consecutive partitions is U,
the maximum variation in color for a cell is, Ac,,, =n x a; x |.
So when the total number of partitions is k and the area of ith

cell is A;, the total error in coloring is:
k

Eypr = ZACm,- x A; €]
i=1

Tangential Approximation: We obtain another approxima-
tion approach by taking tangents in the midpoints of the two
arcs that encloses a cell. Here the area enclosed by two arcs
is approximated by the area enclosed by the tangents at their
midpoints. In Fig. [5c| the cell is bounded by arcs ¢; and c;y
centered at a corner O of the target 7. We take two tangents
AB and CD of ¢; and c;4; at their midpoints m; and m;y,
respectively. So we want to approximate the area bounded
by these two arcs with the trapezoid ABDC. Let, the angles
created at O by ¢; and ¢;y; are 6; and 6,41 (in degrees). If
we color the trapezoid ABDC instead of the cell, the region
that gets wrong color is the shaded region of Fig. Let the
area of the trapezoid ABDC be A;,, the radius of c;y1 is riyq,
the midpoint of EF is G, and the length of OG is x. Then the
length of EG is /712 — x2. The area of the segment bounded
by EG and c;\q, A, is (2’6*0‘ X Trig1?) —x x \/rig 2 —x2 If
the area of the trapezoid ABFE is A,,, then the area of the
shaded region A, is A;, — A, —A;,. According to this tangential
approximation the region that is wrongly colored due to cell

HIFE is this shaded region with area A,.
Error Bound Analysis. In case of MBR approximation the
cell bounded by two half circles is approximated by an
enclosing MBR, while for tangential approximation that cell is
approximated by a rectangle bounded by the tangents of those
two half circles. Referring to Fig.[5b] the cell bounded by arcs
¢; and ¢y is approximated by rectangle ABDC and rectangle
FBDE for MBR and tangential approaches, respectively. In
this figure, G is the midpoint of ¢; and the farthest distance
from G to any point inside the approximated cell is Ar =
*/’"1'2+1 + (rix1 —ri)%. So the points inside the darkly shaded
region are wrongly colored. As the width of the distance
based partitions relates inversely to the distance between the
target and the partition (Equation [I)), the maximum number of




distance based partitions in d;;| that can be wrongly colored
%. In case of angle based partitioning, only the
angle based partitions that fall within the range (arctan S/”; ir_,

— arctan S/”z* Jiri) can lie in the darkly shaded region inside the
rectangle EFBD. Let there are a; such angle based partitions
in total. As the difference in visual angle in consecutive
partitions is u, the maximum variation in color for a cell is,
Acy; =n x a; x 1. So when the total number of partitions is &

and the area of ith cell is A;, the total error is:
k
ETangent = ZACti X Aj &)
i=1

=

is n=

In the above sections, we discussed our approach to con-
struct target-centric visibility color map. The approach is same
for the viewer-centric visibility color map with an additional
initialization step. The details of viewer-centric VCM is dis-
cussed below.

B. Viewer-centric VCM

A viewer-centric VCM is constructed by calculating the
visibility of the surrounding space for a given viewpoint g and
a set O of obstacles. Unlike the rarget-centric VCM where
a particular target is specified, in case of the viewer-centric
VCM, a particular viewer position is specified. To measure
the visibility using Equation [I] and Equation [2]in case of the
viewer-centric VCM, first we need an initial value of the size
S of a target from the given information.

The visibility of any point farther than a distance d;
is not visually distinguishable if the perceived visual angle
of that point is less than the angular resolution p from g
(Section [I-AT). Based on this fact, we assume a circular
region R of radius d,,, centered at g to construct the VCM
of R only, as the visibility of the points outside R are not
distinguishable by a viewer at g. Using Equation [I] we
calculate the size S of a target for which visual angle V = u
is perceived at distance d.. After taking S as the size of
the target, the steps of our approach discussed for the target-
centric VCM is applied in the same manner to construct the
viewer-centric VCM.

C. Incremental Processing

During the computation of the VCM, we have assumed that
the field of view (FOV), i.e., the orientation of the viewpoint or
the target is fixed. At a particular orientation or gaze direction,
only the extents of the space that is inside the FOV, is visible.
With the change in viewing direction, some areas that were
previously outside the FOV become visible. In this case, we
do not need to compute the full VCM each time, rather we
can incrementally construct the VCM by computing for the
newly visible parts only.

In the incremental process, the only information that varies
is the gaze direction. So, as a preprocessing step we can
construct the color-tree and the visible region quad-tree in the
above discussed method by considering the FOV as 360°. A
VCM is then constructed by combining the color-tree and the

TABLE II: Parameters

Parameter Range Default
Angular Resolution (i) 1,2,4,8, 16 4
Minimum Block Size (%) | 1, 2, 4, 8, 16 1
Query Space Area (Ap) 0.05, 0.10, 0.15, 0.2, 0.25 0.15
Field of View (FOV) 60, 120, 180, 240, 300, 360 | 120
Length of Target (L) 0.05, 0.10, 0.15, 0.2, 0.25 0.15
Dataset Size (Dg) 5k, 10k, 15k, 20k, 25k

quad-tree for a particular gaze direction. When the gaze direc-
tion changes, only the uncolored quad-tree blocks that are now
included in the visibility region are assigned colors. Hence the
color-tree and the quad-tree are constructed only once. This
reduces the computational complexity to a great extent by
avoiding same calculations repetitively. From our conducted
experiments we also observe that the processing time required
to combine the color-tree and the quad-tree is much smaller
than the processing time required to construct the visibility
region quad-tree for a dataset of densely distributed large
number of obstacles (Section [V-C1I] and [V-DI). So for such
cases we can significantly improve the performance of our
proposed solution by adopting the preprocessing strategy.

V. EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed algorithm for
constructing the visibility color map (VCM) with two real
datasets. Specifically, at first we compare our approach with
a baseline approach that approximates the total space into
a regular grid and compute visibility from the midpoint of
each grid cell, and then we compare our two approximation
algorithms, i.e., MBR approximation (VCMy) and tangential
approximation (VCM7) with the exact method (VCME). The
algorithms are implemented in C++ and the experiments are
conducted on a core i5 2.40 GHz PC with 3GB RAM, running
Microsoft Windows 7.

A. Experimental Setup

Our experiments are based on two real datasets: (1) Britislﬂ
representing 5985 data objects obtained from British ordnance
surve and (2) BostorE] representing 130,043 data objects in
Boston downtown. In both datasets, objects are represented as
3D rectangles that are used as obstacles in our experiments.
For both datasets, we normalize the dataspace into a span
of 10,000 x 10,000 square units. For 2D, the datasets are
normalized by considering z-axis value as 0. All obstacles are
indexed by an R*-tree, with the disk page size fixed at 1KB.

The experiments investigate the performance of the pro-
posed solutions by varying five parameters: (i) angular res-
olution (u) in arcminutes, (ii) the threshold of the quad-tree
block size (1) as the multiple of the calculated minimum size
(as explained in Section [[II-CI)), (iii) the area of the space
(Ap) as the percentage of the total area, (iv) field of view
(FOV) in degrees, and (v) the length of the target (L7) as the

Zhttp://www.citygml.org/index.php?id=1539

3http://www.ordnancesurvey.co.uk/oswebsite/index A.html

4http://www.bostonredevelopmentauthority.0rg/BRA_3D_Models/
3D-download.html
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(a) British ordnance survey

(b) Boston downtown

Fig. 6: Real datasets used in the experiments
percentage of the length of total dataspace. We have also varied
the dataset size using both Uniform and Zipf distribution of
the obstacles. The range and default value of each parameter
are listed in Table |lI} In concordance with human vision, the
default values of u and FOV are set as 4 arcminutes [11] and
120° [19], respectively. The minimum threshold of quad-tree
block size as calculated in Section [[II-CT]is used as the default
value of . The default values of other parameters are set to
their median values.

The performance metrics that are used in our experiments
are: (i) the total processing time, (ii) the total I/O cost, and (iii)
the error introduced by the two approximations: VCM,, and
VCMr. We calculate the approximation error as the deviation

from the color map of VCMg, i.e.,
error = Eilce X Ai — qy X A (6)
Zi Ce; X Ai
Here c,, is the color of ith cell in VCME, c,; is the color of
ith cell in VCM,; or VCM7y, and A; is the area of the ith cell.
For each experiment, we have evaluated our solution for
the target at 100 random positions and reported their average
performance. We have conducted extensive experiments using
two datasets for both 2D and 3D spaces. Since, 2D dataspace
is a subset of 3D dataspace and most of the real applications
involve 3D scenario, we omit the detailed results of 2D due
to the brevity of presentation.

(a) British ordnance survey (b) Boston downtown

Fig. 7: Dataset distribution
B. Comparison with the Baseline

The performance improvement of our approach over the
baseline approach is measured in terms of the total pro-
cessing time required for computing the VCM. In the naive
approach, we need to compute visibility of the target from
infinite number of points to construct the VCM as every point
in the dataspace acts as a viewpoint. Even discretizing the
surrounding space into 1000 points in each dimension would
give a total of 10° points in the 3D space. We observe that the
time required for such computation using British and Boston
datasets are approximately 74 days and 128 days, respectively.
As such naive approach is trivial, we can further improve it
by dividing the dataspace into 500 x 500 x 500 cubic cells in

3D and choose the visibility from the middle point of each
cell to represent the visibility of that entire cell. In the rest of
the paper we refer to this approach as the baseline approach
to construct the VCM. The comparison between the baseline
approach and our proposed solution VCME is presented in
Table in terms of total processing time and introduced
error. In this case the parameters are set to their default values
(Table . We observe that when compared to VCME, for
British dataset the baseline approach runs 818 times slower
and introduces 30% error, while for Boston dataset the baseline
approach runs 837 times slower and introduces 32% error.

TABLE III: Comparison with the baseline

Dataset Baseline VCMg
Total time | Error (%) | Total time

British | 58hrs 30.33% 253.07s

Boston | 61hrs 31.76% 245.26s

C. Performance in 2D

In this section, we present experimental results for 2D
datasets.
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Fig. 8: Effect of u in 2D British (a-b) dataset

1) Effect of u: In this experiment, we vary the value of u as
1,2, 4,8, and 16 arcminutes and measure the total processing
time and I/Os for British datasets (Fig. [8). We also present the
errors resulted in the two approximations (Table [IV).

For British dataset, on average VCMy, and VCMr are
65% times and 17% times faster than VCME, respectively. In
general, with the increase in U, the cell size increases and the
number of total partition in the dataspace decreases. Moreover,
larger u yields fewer branching in the visibility region quad-
tree. So, with the increase in U, total processing time and I/O
cost decrease rapidly for both datasets. The total I/O cost is
composed of (i) cost of partitioning the total dataspace to form
the color-tree, (ii) cost of retrieving obstacles to form visibility
region quad-tree, and (iii) cost of combining the color-tree and
quad-tree to form the VCM. As these three costs hardly differ
for all three approaches, they result into similar I/O cost. On
the other hand, as with the increase in u, the area of partition
cells (A;) gets larger, the estimated error increases for both
VCMy and VCMy (Equation[6)). The average errors introduced
in VCMy; and VCMr are 3.5% and 1.5%, respectively.

TABLE IV: Error in VCMy; and VCMr for varying u in 2D

Dataset | Method Error (%)
1 2 4 8 16
British VCMy | 2.0 1.64 | 425 | 442 | 5.38
VCMr 0.01 | 0.0 | 0.01 | 3.64 | 3.91
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TABLE V: Errors in VCMy; and VCM7 for ¥ in 2D

Dataset | Method Error (%)
I 2 4 8 16
British VCMy; | 0.01 | 2.74 | 9.29 | 12.59 | 12.83
VCMy 0.01 | 0.77 | 437 | 6.26 7.54

2) Effect of ¥: In this experiment, we vary the quad-tree
block size () as 1, 2, 4, 8, and 16 times of the minimum
threshold of a quad-tree block. The results are presented in
Fig. O] and Table

For British dataset, VCM) is approximately 2.3 times faster
than both VCMr and VCME. As explained earlier, VCM); and
VCM7 yield I/O costs similar to VCMg. On average, VCM)y,
and VCMr introduce 7.5% and 3.8% errors, respectively.
These amounts of errors do not have noticeable impact on
many practical applications. We observe from Equation [I] that
the cells generated near the target are very small. Therefore
the approximations of the cells close to the target are almost
similar to the corresponding exact cells. The cell size increases
with the increase of distance and a significant portion of errors
is introduced for these distant cells. As the visibility of the
target from distant cells is insignificant in most of the cases,
the error in such cells is tolerable.

In general, with the increase in ¢, the introduced errors
in VCMy; and VCM7 increase as a larger quad-block size
approximates the cells with lesser accuracy. But with the
increase in ¥}, the total processing time and I/O cost reduce
significantly. Hence for applications that can tolerate reduced
accuracy, a large ¥ can result into better performance.

D. Performance in 3D

In this section, we present the experimental results for 3D
British and Boston datasets by varying different parameters.

1) Effect of u: In this experiment, we vary the value of u as
1,2, 4,8, and 16 arcminutes and measure the total processing
time and I/Os for British and Boston datasets (Fig. [I0). We
also present the errors resulted in the two approximation
methods (Table [VI).

TABLE VI: Errors in VCMy; and VCMy for u in 3D

Dataset | Method Error (%)
1 2 4 8 16
British VCMy, | 456 | 8.02 | 8.11 | 1046 | 15.25
VCMy 4.1 7.63 | 776 | 8.89 13.89
Boston VCMy, | 331 | 5.03 | 8.02 | 9.12 10.05
VCMy 312 [ 470 | 7.62 | 8.57 9.79

TABLE VII: Errors in VCM,; and VCMy for ¥ in 3D

Dataset | Method Error (%)
1 2 4 8 16
British VCMy, | 8.11 | 931 | 10.15 | 11.83 | 14.96
VCMr 7.76 | 9.00 | 9.86 11.05 | 12.72
Boston VCMy | 8.02 | 9.08 | 9.38 9.82 11.03
VCMr 7.62 | 8.82 | 9.06 8.98 10.29

For British dataset, on average VCMj; and VCM7 run only
5% and 3% faster than VCME, respectively. The difference in
I/O cost, i.e., the number of pages accessed is also negligible
among the three methods. As discussed earlier in Section
the three methods differ only in the final phase, i.e., combining
the outcome of previous two steps to produce the VCM. As
we consider only full visibility of the target object from a
partition cell, a huge number of cells in the dataspace fall into
the obstructed region. So in the final phase the three solutions
perform similarly as they have to combine the same color-tree
and visible region quad-tree. The average errors introduced in
VCM)y; and VCM7t are 9% and 8%, respectively.

Although the results for both British and Boston datasets
follow similar pattern, Boston dataset causes much smaller
I/O and computational cost. Because, in case of the densely
populated Boston dataset, most of the obstacles are pruned
rapidly during the visible region quad-tree formation. So there
are lesser number of visibility computation and page access
to construct VCM in Boston dataset. The processing time of
VCM)y is on average 8% faster than that of VCMg and VCMr.
The average error introduced in VCMy; is 7%, whereas the
more accurate VCMr yields 6% error.

The I/O costs in the obstacle retrieval phase are same in all
three methods. Thus in subsequent sections, we show only the
I/O cost required to combine the quad-tree and the color-tree
(i.e., the final phase of constructing the VCM).
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2) Effect of ¥: In this experiment, we vary the quad-tree
block size ¥ as 1, 2, 4, 8, and 16 times of the minimum
threshold of a quad-tree block and show the results in Fig. [T1]
and Table

For British dataset, the computational and I/O costs are



The I/O cost and the total processing time increase for all three
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Like the previous cases, the total processing time and I/O
cost are similar for all three methods. For British and Boston
dataset, VCMy; runs 3% and 4% faster than both VCMg and
VCMr, respectively. With the increase of FOV from 60 to 360
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Fig. 11: Effect of ¥ in 3D British (a-b) and Boston (c-d) and Boston dataset, respectively.
5) Effect of Lr: In this experiment, we vary the length

of target Lt as 5%, 10%, 15%, 20%, and 25% of the total
length of the dataspace. In general, with the change in Lz, no
significant change in performance is observed for any of the
datasets (not shown).

similar for all three methods, e.g., on average VCM), runs
only 3% faster than VCMg. Because, similar to the case of
varying U, the three phases of constructing VCM differ slightly
for these methods. The average error introduced in VCM),
and VCM7y is about 10%. The results derived from Boston
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Fig. 14: Effect of varying dataset size in 3D (a-b)

6) Effect of varying Dg: In this experiment we vary the
number and distribution of obstacles and measure the perfor-
mance of our approximation methods in terms of I/O cost,
total processing time, and approximation errors. We vary Dg
as a set of 5k, 10k, 15k, 20k, and 25k obstacles while keeping
the other parameters at their default values. We consider both
Uniform (U) and Zipf (Z) distributions of the obstacles.

In general, as the number of obstacles increases, the area
350 v, & Vo, & von x of the dataspace gets more obstructed. So during the final
~% phase of VCM construction (i.e., combining color-tree and
visible region quad-tree), computational costs and I/O costs
get reduced. Consequently, the overall costs decrease with the
increase in Dg for both Uniform and Zipf distribution. In case
of Uniform and Zipf distributions, as the number of obstacles
60 120 180 240 300 c0 120 180 240 300 360 1S varied from Sk to 25k, the total processing time decreases

Fov Fov nearly 40% and 20%, respectively for all three methods. On

() (b) .
Fig. 13: Effect of FOV in 3D British (a) and Boston (b) the other hand, the I/O costs decrease approximately 18%

3) Effect of Ap: In this experiment, we vary the query area grils(iritl)ZZoon\:1trk;SIt)};iti1Vr;ci;ease of Ds for Uniform and Zipf
Ag as 5%, 10%, 15%, 20%, and 25% of the total dataspace ’ '
(Fig. [[2(a)-(b)). In case of British dataset, VCM), and VCMy VI. RELATED WORKS
run 5% and 3% faster than VCME, respectively. For Boston The notion of visibility is actively studied in different con-
dataset, VCM); runs 5% faster than both VCMEg and VCMy. texts: computer graphics and visualization [4]], [9] and spatial
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databases [1], [2], [3]. Most of these techniques consider
visibility as a binary notion, i.e., a point is either visible or
invisible from another point.

A. Visibility in Computer Graphics and Visualization

In computer graphics, the visibility map refers to a planar
subdivision that encodes the visibility information, i.e., which
points are mutually visible [4]. Two points are mutually visible
if the straight line segment connecting these points does not
intersect with any obstacle. If a scene is represented using a
planar straight-line graph, a horizontal (vertical) visibility map
is obtained by drawing a horizontal (vertical) straight line /
through each vertex p of that graph until / intersects an edge
e of the graph or extends to infinity. The edge e is horizontally
(vertically) visible from p. A large body of works [S], [6], [7]],
[8]], [O] construct such visibility maps efficiently.

Given a collection of surfaces representing boundaries of
obstacles, Tsai et al. considers visibility problem as determin-
ing the regions of space or the surfaces of obstacles that are
visible to an observer [21], [22]. They model visibility as a
binary notion and find the light and dark regions of a space
for a point light source.

Above methods involve the computation of visible surfaces
from a viewpoint and do not consider visibility factors such as
angle and distance to quantify the visibility of a target object.

B. Visibility in Spatial Queries

Visibility problems studied in spatial databases usually
involve finding the nearest object to a given query point in
the presence of obstacles. In recent years, several variants of
the nearest neighbor (NN) queries have been proposed that
include Visible NN (VNN) query [[1], Continuous Obstructed
NN (CONN) query [2], and Continuous Visible NN query [3].

Nutanong et al. introduce an approach to find the NN that
is visible to a query point [1]. A CNN query finds the £ NNs
for a moving query point [23]. Gao et al. propose a variation
of CNN; namely, a CONN query [2]]. Given a dataset P, an
obstacle set O, and a query line segment ¢ in a 2D space, a
CONN query retrieves the NN of each point on g according
to the obstructed distance.

The aforementioned spatial queries find the nearest object
in an obstructed space from a given query point where
query results are ranked according to visible distances from
that query point. Instead of quantifying visibility as a non-
increasing function from a target to a viewpoint, they label a
particular point or region as either visible or invisible. But for
constructing a VCM of the entire space, such binary notion is
not applicable.

Recently the concept of maximum visibility query is tossed
in [10]] that considers the effect of obstacles during quantifying
visibility of a target object. They measure the visibility of a
target from a given set of query points and rank these query
points based on the visibility measured as the visible surface
area of the target.

VII. CONCLUSION

In this paper, we have proposed a technique to compute a
visibility color map (VCM) that forms the basis of many real-
life visibility queries in 2D and 3D spaces. A VCM quantifies
the visibility of (from) a target object from (of) each viewpoint
of the surrounding space and assigns colors accordingly in the
presence of obstacles. Our approach exploits the limitation of
a human eye or a lens to partition the space into cells in the
presence of obstacles such that the target appears same from
all viewpoints inside a cell.

Our proposed solution significantly outperforms the base-
line approach by at least 800 times and six orders of magnitude
in terms of computational time and I/O cost, respectively for
both datasets. Our conducted experiments on real 2D and
3D datasets demonstrate the efficiency of our approximations,
VCMy; and VCMr. On average, the approximations VCM),
and VCMr improve the processing time by 65% and 17%
over VCME, respectively and require almost similar I/O costs.
Both of VCM), and VCMr improve the efficiency of VCMp
by introducing only 9% and 5% error on average.
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