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Abstract

Recent years have seen an increased interest in large-scale
analytical dataflows on non-relational data. These data-
flows are compiled into execution graphs scheduled on
large compute clusters. In many novel application ar-
eas the predominant building blocks of such dataflows
are user-defined predicates or functions (UDFs). However,
the heavy use of UDFs is not well taken into account for
dataflow optimization in current systems.

SOFA is a novel and extensible optimizer for UDF-heavy
dataflows. It builds on a concise set of properties for
describing the semantics of Map/Reduce-style UDFs and
a small set of rewrite rules, which use these properties
to find a much larger number of semantically equivalent
plan rewrites than possible with traditional techniques.
A salient feature of our approach is extensibility: We
arrange user-defined operators and their properties into
a subsumption hierarchy, which considerably eases inte-
gration and optimization of new operators. We evaluate
SOFA on a selection of UDF-heavy dataflows from differ-
ent domains and compare its performance to three other
algorithms for dataflow optimization. Our experiments
reveal that SOFA finds efficient plans, outperforming the
best plans found by its competitors by a factor of up to
6.

1 Introduction

In recent years, the characteristics of data analysis tasks
have changed significantly. One change is the increase in
the typical amounts of data to be processed; in addition,
the diversity of the data to be analyzed and the hetero-
geneity of analysis tasks has grown considerably. While
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in the past most analytics were performed on structured
data using relational data processors, such as SQL OLAP,
many applications today require complex analyses, such
as heavy-weight machine learning, predictive modeling,
or graph traversal on large texts, graphs, semi-structured
datasets, etc. Data processing systems support such ana-
lyses by providing system APIs for user-defined functions
(UpF). Commonly, these UDFs are specified with imper-
ative code, registered with the system, and called during
execution. In fact, a large portion of Map/Reduce’s pop-
ularity can be accounted to its widespread support for
custom data processing [7].

A variety of dataflow languages has been proposed that
aim at (a) making the definition of complex analytics
tasks easier and at (b) allowing flexible deployment of
such dataflows on diverse hardware infrastructures, espe-
cially compute clusters or compute clouds . Many
of these languages support UDFs [2,[14,[20]. Research
has shown that proper optimization of such dataflows
can improve the execution times by orders of magni-
tude , However, most of these systems focus on
relational operators and treat UDFs essentially as black
boxes, considerably hampering optimization. At the same
time, non-standard applications in areas such as informa-
tion extraction, graph analysis, or predictive modeling
often utilize UDF-rich dataflows. Traditional optimizers
focus on relational operations, because their semantics in
terms of optimization are well understood. In contrast,
Map/Reduce-style UDFs can exhibit all sorts of behavior,
which are difficult to describe in an abstract, optimizer-
enabling manner.

Different approaches have been proposed to overcome
this problem. Two broad classes can be discerned: Ap-
proaches that require manual annotations of UDFs ,



ma map map map

ilter

complex complex map ma ma
g ] remove split annotate annotate £
(a) duplicates| sentences [p.o.speech| person person

annotate filter
; . resul
relations relations

annotate filter
company

filter
company

b d | remove split annotate
( ) duplicates| sentences company

annotate
person

filter
company

filter
person

company
annotate annotate
: resul
[p.o.speech| relations

SchEmaJ text | key | sentencelp.o.speechl entity

| relation

Figure 1: High-level dataflow for employee relationship analysis. (a) Initial dataflow, (b) reordered dataflow based

on operator semantics.

and approaches performing code analysis to automati-
cally infer optimization options with UDFs [3,/11,/16]. We
present SOFA, a semantics-aware optimizer for UDF-heavy
dataﬂowsﬂ Compared to previous work, SOFA features
a richer, yet concise set of properties for automatic and
manual UDF annotation. It is capable of finding a much
larger and more efficient set of semantically equivalent
execution plans for a given dataflow than other systems.
Given a concrete dataflow, both automatically detected
and manually created annotations are evaluated by a cost-
based optimizer, which uses a concise set of rewrite tem-
plates to infer semantically equivalent execution plans.

Example. We use the following running example to ex-
plain the principles of SOFA throughout this paper: A
large set of news articles shall be analyzed to identify
persons, companies, and associations of persons to com-
panies. We assume the articles stem from a web crawl
and have already been stripped of HTML tags, advertise-
ments, etc.; still the set contains many duplicate articles,
as different news articles are often copied from reports
prepared by a news agency.

An exemplary dataflow for this task is shown in Fig-
ure a). The first operator performs duplicate removal
by first computing a grouping key followed by an analysis
of each group for similar documents, such that detected
duplicates are filtered out per group. Next, a series of
operators performs linguistic analysis (sentence splitting
and part-of-speech tagging), entity recognition (persons
and companies), and relation identification (persons <
companies). After each annotation operator, filter oper-
ators remove texts with no person, no company, or no
person-company relation, respectively. As displayed in
Figure a)7 the dataflow is composed of nine steps: seven
maps, and two complex operators (first and second from
left).

If UDpFs are treated as black boxes, this dataflow can-
not be reordered in any way. But when provisioned with

1SoFa is only a vague acronym but more of a metaphor.

proper information, such as data dependencies or opera-
tor commutativities, an optimizer has multiple options for
reordering. For example, the part-of-speech tagger can be
pushed multiple steps toward the end of the dataflow, as
annotations produced by this operator are necessary for
relationship annotation only. Moreover, the company and
person annotation operators are commutative, as they in-
dependently add annotations to the text, but never delete
existing annotations. Thus, both annotation operators
can be reordered for early filtering. Figure b) displays
an equivalent dataflow with prospectively smaller costs as
the most selective filters are executed as early as possible
and expensive predicates are moved as much to the end
of the dataflow as possible. As we see in Sections [3]and [7]
existing dataflow optimization techniques, such as [16,20],
cannot infer this plan.

A major obstacle to the optimization of Map/Reduce-
style UDFs is their diversity. Our algorithm is devel-
oped in Stratosphere, a platform for data analytics on
massive datasets with custom, domain-specific operator
packages [1]. Available packages for information extrac-
tion (IE) and data cleansing (DC) already contain 38
and 9 operators, respectively. Further packages, e.g., for
machine-learning and web analytics, are in development.
Defining semantic properties for each of these operators
individually would result in an unacceptable burden to
the designer and would considerably limit extensibility
and maintainability. Furthermore, the optimizer needs
rewrite rules for operator pairs that take operator seman-
tics into account. Thus, every new operator in principle
has to be analyzed with respect to every existing opera-
tor to specify possible rewritings. SOFA solves this prob-
lem by means of an extensible taxzonomy of operators,
operator properties, and rewrite templates called Presto.
SOFA uses the information encoded in Presto to reason
about relationships between operators during plan opti-
mization; specifically, it leverages subsumption relation-
ships between operators to derive reorderings not explic-
itly modeled. Presto considerably eases extensions, as
novel operators can be hooked to the system by specifying



a single subsumption relationship to an existing operator
exhibiting the same behavior with respect to optimiza-
tion; these new operators are immediately optimized in
the same manner as their parent. If desired and appro-
priate, more rewrite rules describing specific properties of
the new operator may be introduced later in a “pay-as-
you-go” manner [22].

In summary, our work includes the following contribu-
tions:

1. We identify a small yet powerful set of common UDF
properties influencing important aspects in terms of
dataflow optimization.

2. We show how properties of UDFs in Map/Reduce-
style systems can be arranged in a concise taxonomy
to simplify UDF annotation, and to enhance extensi-
bility of dataflow languages.

3. We present a novel optimization algorithm that is
capable of rewriting DAG-shaped dataflows given
proper operator annotations.

4. We evaluate our approach using a diverse set of data-
flows cutting through different domains. We show
that SOFA subsumes three existing dataflow optimiz-
ers by enumerating a larger plan space and by finding
more efficient plans.

5. SOFA outperforms the best plans found with other
approaches in many situations with factors of up to 6.

This paper is structured as follows: Section [2] describes
preliminaries including a brief overview of Stratosphere
with a focus on its rich set of domain-specific UDFs. Sec-
tion [3| gives an overview of our approach for dataflow op-
timization. Details on Presto and SOFA are explained in
Sections M and Bl Section [6] discusses related work. We
evaluate our approach in Section |7 and conclude in Sec-
tion [

2 Preliminaries

We study the optimization of deterministic dataflows on
a semi-structured data model, such as JSON or XML.
A record is a potentially nested value tree consisting of
objects, arrays, and atomic values. An unordered bag
of records is called dataset. An operator o transforms a
list of input datasets I = (I1,...,In) into a list of out-
put datasets O = (O1,...,0,) by applying a UDF f to
I. We denote with 0i,,; and oout,; the ¢-th input and
output of operator o. We call S(0in,i) tnput schema and
S(0out,i) output schema of the i-th input and output of
o, respectively.

A dataflow is a connected directed acyclic graph D =
(V, E) with the following properties: Vertices in D are ei-
ther operators, data sources, or data sinks. Sources have
no incoming and sinks no outgoing edges, respectively.
Inner nodes with both incoming and outgoing edges are
concrete operators. For any directed edge (u,v) connect-
ing two operators we demand S(uout,j) 2 S(Vin,i), and
S (Vin,;) must meet the schema requirements of the i-th
input of v; according conditions hold for edges from an
input dataset or to a data sink. Our data model does
not require a schema definition in the first place, but op-
erators might require that the processed records have a
certain schema.

We call two deterministic dataflows D, D’ semantically
equivalent (denoted D = D'), if D and D’ produce the
same output sets T, given the same input datasets I.

2.1 Stratosphere

The SOFA optimizer is integrated into Stratosphere, a
full-fledged system for massively parallel data analytics.
Meteor |14], a dataflow-oriented declarative scripting lan-
guage resides at the top of the stack (see Figure . A
Meteor query is parsed into an abstract syntax tree com-
posed of basic or complex operators (see Section and
then compiled into a logical execution plan in the sys-
tem’s algebra called Sopremo. SOFA resides on the al-
gebraic layer of Stratosphere and employs information on
properties and semantics of operators stored in the Presto
taxonomy (see Section [4) as well as statistics on the op-
erators to perform dataflow optimization (see Section.

Meteor and Sopremo are designed for extensibility. Op-
erators are defined in domain-specific packages, which
are self-contained libraries of the operator implementa-
tions, their syntax, and semantic annotations. Algebraic
Sopremo plans are compiled into Pact programs, which
may consist of different parallelization primitives, such
as map or reduce, and the associated user-defined func-
tion [1]. Subsequently, Pact programs are physically op-
timized and translated into an execution graph, which is
deployed on the given hardware by means of Nephele, a
system for scheduling, executing, and monitoring DAG
structured execution graphs on distributed systems. A
detailed description of Stratosphere can be found in [1].
Here, we describe only the algebraic optimizer.

2.2 User-Defined Operators

Before we introduce our UDF annotation schema and
dataflow optimizer, we first introduce a subset of the op-
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Figure 2: Architecture of Stratosphere.

erators currently used in Stratosphere to highlight their
diversity and resulting optimization challenges. User-
defined operators are organized into packages specific to
a certain application domain. Operators can be either
abstract or concrete; for instance, anntt-ent-pers (see Ta-
ble 1) is an abstract operator for annotating person names
in texts, and its instantiations are different concrete al-
gorithms and tools for performing this task. All instan-
tiations of a given abstract operator share the same lan-
guage syntax. Note that concrete operators may use very
different implementations; for instance, the recognition
of person names may be performed by using dictionary-,
pattern-, or machine-learning-based methods.

Concrete operators can either be elementary or com-
plex. Elementary operators are implemented using a sin-
gle stub function, complex operators are composed of sev-
eral elementary operators similar to macros in program-
ming languages. Complex operators are of high practical
relevance, as they provide a shortcut for adding multiple
elementary operators to a query. They are also important
for dataflow optimization, since a complex operator may
exhibit other semantics than those of its elements (see
below).

Stratosphere currently contains three packages, namely
a base package, a package for IE, and a package for DC.
Packages for machine-learning and web data analytics are
under development. Table [I] shows example operators
from all three packages together with information describ-
ing their requirements and behavior. The base package

Operator Abbre- #in- Process- Preserves
viation puts ing type schema?
filter fitr 1 Record Yes
project prjt 1 Record No
(un)nest nst 1 Record No
join join n Record No
(co)group grp 1/2 Bag No
annotate entities anntt-ent 1 Record Yes
annotate tokens anntt-tok 1 Record Yes
merge mrg 2 Bag Yes
split sentences splt-sent 1 Record Yes
extract relations extr-rel 1 Record No
remove stopwords rm-stop 1 Record Yes
scrub scrb 1 Bag Yes
split records sptre 1 Record No
transform records trfre 1 Record No
detect duplicates ddup 1 Bag No
remove duplicates rdup 1 Bag No
fuse fuse 1 Record No

Table 1: Selected
and DC (bottom)
See for details.

general purpose (top), IE (middle),
operators available for Stratosphere.

contains 16 operators, the IE package 38 operators, and
the DC package 9 operators. The base package mostly
comprises typical relational operators, such as filter, pro-
jection, transformation, join, and group. These operators
are complemented by operators for semi-structured data,
such as nest or unnest.

The IE package comprises three classes of operators:
One for producing text annotations, one to merge anno-
tations, and one for complex operators. Operators ana-
lyze the text and add, remove, or update annotations to
the record. They may also transform records, e.g., the
splt-sent operator takes as input single records formed of
documents and outputs a set of records formed of sen-
tences. The most abstract operator in the annotation
class is anntt. Specializations can be distinguished be-
tween those performing linguistic annotations, semantic
annotation of entities, or semantic annotations of rela-
tionships between entities. Each of these classes consists
of multiple concrete operators; e.g., operators for tok-
enization, or part-of-speech tagging (first group), for rec-
ognizing persons, companies, or biomedical entities (sec-
ond group), and for detecting binary or n-ary relation-
ships between entities (third group). Specializations of
anntt write to designated attributes in the output record;
for instance, all entity operators write to a list-valued
field “entities”. Some anntt specializations are in prece-
dence relations with other anntt variants, for example,
annotating relations between entities requires that entity



annotations are already present in the input records. The
merge operator mrg merges records a,b from two input
sets A, B based on a user-defined merge condition. The
set of complex operators comprises six operators, such
as operators for splitting text into sentences, stemming,
entity extraction, and stopword removal. Each of these
internally consists of an anntt operator, a trnsf operator,
and occasionally a fltr operator.

The DC package comprises six different classes of op-
erators for data cleansing and data integration [13] They
address common challenges of dirty or heterogeneous data
sources, such as inconsistent representation of equivalent
values, fuzzy duplicates, typographic errors, or missing
values. Inconsistencies and missing values can be fixed
with the scrb operator that either repairs these values or
filters invalid records. Fuzzy duplicates are found with
ddup and Inkrc within one relation or across several re-
lations, respectively. These duplicates can subsequently
be coalesced into a single record with fuse. The complex
duplicate removal operator (rdup) combines duplicate de-
tection and fusion of duplicates to solve the common task
of removing all duplicate records within one data source.

The algebraic plan for the dataflow for our running ex-
ample is shown in Figure a) together with properties
and schema information (cf. Figure[3|(b)), which are used
for optimization. Figure c) displays that complex oper-
ators may exhibit different properties than its elementary
components: the complex operator splt-sent has different
read/write set annotations and different I/O ratios than
its elementary components. In the following section, we
demonstrate how this plan can be reordered substantially
by exploiting information on operator semantics.

3 Dataflow Optimization

SOFA is an optimizer for rewriting UDF-heavy dataflows
into semantically equivalent dataflows whose expected ef-
ficiency is higher, according to a cost model. Rewriting
depends on a set of rewrite rules, each defining valid ma-
nipulations of dataflow sub-plans, such as a reordering of
two filter operations |9]. The novelty of SOFA is its flex-
ible and extensible treatment of Map/Reduce-style UDFs
going far beyond the capabilities of existing approaches.
In this section, we highlight the advantages of SOFA by
means of our running example.

Starting from a dataflow D, dataflows semantically
equivalent to D may be produced using different trans-
formation techniques. SOFA is capable of introducing,
removing, and reordering operators. Complex operators

are optimized both as a whole and after expansion. In the
following, we focus on reordering and treatment of com-
plex operators, which are the most intricate and most
effective optimization techniques.

Existing approaches for dataflow optimization enable
reorderings by using either manually defined rewrite rules
for relational operators |20] or by performing some kind
of code analysis |3//16]. The approach of Hueske et al. [16]
probably is the most general, as it automatically derives
dataflow reorderings based on read/write set analysis of
individual UDFs. In particular, the order of two subse-
quent tuple-at-a-time operators may safely be switched if
they have no read/write or write/write conflicts on any
attribute. The dataflow shown in Figure [3] allows only
one such reordering: The anntt-pos operator that anno-
tates part-of-speech tags and stores them in the fourth at-
tribute (first row, third from right) can be pushed before
the anntt-rel operator (second row, second from right),
because part-of-speech annotations are accessed only dur-
ing relation annotation. This reordering most likely saves
time, because the different fltr operators are now exe-
cuted before anntt-pos and thus fewer sentences have to
be annotated. Moving anntt-pos towards the start of the
dataflow is not possible, because it reads annotations pro-
duced by the complex splt-sent operator.

Semantics-aware rewrite rules allow to reorder the data-
flow in Figure[3]more extensively. Consider the two anntt-
ent operators. Both write into the same attribute (the
fifth), which collects all entity information. If the opti-
mizer knows that annotation operators only add values
and never delete or update existing values, these opera-
tors together with their subsequent filter operators may
be reordered. The best order very likely is the one that
filters the most sentences first; this decision can make use
of selectivity and execution time estimates at the oper-
ator level (see Section 5.3). Furthermore, the optimizer
can decompose complex operators and reorder the com-
ponents individually. For instance, splt-sent consists of
an anntt-sent operator and a UDF splitting the input
text into separate sentences based on the annotations
produced by anntt-sent. As shown in Figure c)7 the
two components of splt-sent differ in terms of read and
write access on attributes and 1/O ratio. Pushing split-
UDF some steps towards the end of the plan is valid, be-
cause all succeeding anntt operators perform their ana-
lyses sentence-based, since all anntt operators for entity,
relation, and part-of-speech annotation read sentence an-
notations. This reordering is likely beneficial, because
the split-UDF generates multiple output records for each
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Figure 3: Algebraic dataflow for the running example. (a) displays concrete operator instantiations together with
properties relevant for optimization. Colored boxes indicate read/write access on record attributes, which are part
of the global schema shown in (b). (c) shows the resolution of the complex spltsent operator (second operator in (a))

into its components annttsen: and split- UDF.

incoming record, depending on the number of annotated
sentence boundaries.

Note that sometimes the expansion of complex opera-
tors may make possible reorderings impossible. For in-
stance, think of an IE operator anntt-syns for expanding
existing entity annotations with all synonyms from a dic-
tionary. Subsequently, another operator repl-repr selects
one of these synonyms as representative and deletes all
others. Both operators change the existing list of en-
tity annotations, so reordering based on read/write-set
analysis is limited. However, a complex operator norm-
ent for normalizing entity annotations composed of both
anntt-syns and repl-repr is optimizable, since we know
that the number of entities does not change. Therefore,
SOFA always tries to reorder complex operators both as a
whole and after their expansion.

In summary, semantics-aware plan rewriting allows us
to pick the best plan (with respect to cost estimates) from
a larger set of equivalent dataflows compared to other
existing approaches. For instance, SOFA finds 4,545 dis-
tinct plans for the running example, compared to only
512 plans found with the read/write-set analysis of [16]
(see Section [7] for a detailed comparison).

4 Annotating and Rewriting
Operators with Presto

To enable optimizations like those shown in the previous
section, operators need to be annotated with meta data,
for instance to describe selectivity estimates or semantic

properties, such as associativities or commutativities. In
this section, we introduce Presto, an extensible taxonomy
for annotating and rewriting operators. Presto consists
of two major components, the operator-property graph
for modeling relationships between operators and prop-
erties (see Section 4.1), and a set of rewrite templates
for dataflow-rewriting (see Section 4.2). When designing
Presto, we paid special attention to extensibility by allow-
ing enhancements to the semantic operator descriptions
over time, to more and more unleash their optimization
potential (see Section 4.3).

4.1 Operator-Property Graph

The operator-property graph in Presto contains two taxo-
nomies for classifying operator properties. Both taxono-
mies are self-contained and model generalization—specia-
lization relationships (isA) between operators and prop-
erties, respectively. Figures [{{a) and (b) display sub-
graphs of Presto. For example, the anntt operator has
two specializations: anntt-ent and anntt-rel shown in Fig-
ure a)‘ Each leaf in the operator taxonomy describes a
concrete implementation of the parent operator, like dif-
ferent implementations for a join. This design allows us to
uniquely identify available operator instantiations, to use
subsumption to effectively assign properties and relation-
ships to operators, and to deduce rewrite options. Note
that such abstraction-implementation relationships are an
established concept in relational optimizers. However, in
the relational world the hierarchies are very flat; they
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become much deeper when dealing with domain-specific
UDFs.

As shown in Figure b), we distinguish between au-
tomatically detectable properties and properties that are
annotated by the package developer. The latter comprises
algebraic properties (e.g., commutativity, associativity, or
idempotence), cost model (e.g., cost functions, resource
consumption), and the ratio between the number of in-
put and output records. Automatically detectable prop-
erties comprise the parallelization function of the operator
implementation (e.g., map, reduce), schema information
available at query compile time, and the read/write be-
havior at attribute level.

Relationships connect operators and properties. As
usual, each specialization inherits all properties and rela-
tionships that are defined for the corresponding general-
izations. For instance, the union-all shown in Figure C)
is a specialization of the union operator and thus inher-
its the algebraic properties defined for union. Complex
operators can be characterized with respect to their com-
ponents using the hasPart relation (Figure[d{(d)). For ex-
ample, the complex operator splt-sent consists of the two
components anntt-sent and split-UDF. Next to isA and
hasPart, we define a hasProperty and a hasPrerequisite
relation.

HasProperty is a binary relation between an operator
and a property and is used to characterize operator se-
mantics. For instance, the following properties are at-
tached to fltr (Figure [#fc)):

— does not modify the schema of incoming records,
— is implemented with a Map function,

— does not modify inside fields,

— input > output,

— processes one record at a time, and

— is commutative to other fltr instantiations.

Precedence constraints between operators are captured
with hasPrerequisite(X,Y), which states that operator X
must be executed before operator Y. In Figure [d(d) it is
shown that anntt-rel based on linguistic patterns requires
part-of-speech and entity annotations to be performed in
advance. Since anntt-ent itself requires sentence anno-
tation and hasPrerequisite is a transitive relation, it is
necessary to apply anntt-sent before anntt-rel.

The isA relationship very much simplifies deriving
novel rewrite options for operators that are initially not
well annotated. Suppose, the data scrubbing operator
serb from the DC package is initially not equipped with
any hasProperty relationships. Later, the developer may
see that scrb is a specialization of the well-annotated Base
operator trnsf, i.e., both operators perform write opera-
tions in attributes of the incoming records. By formally
specifying this through an isA relationship, scrb inherits
all properties defined for trnsf (not shown in Figure[4|(a)).

Though the complete Presto graph is too large to show
here, it is still rather small and easy to understand: The
property taxonomy contains 32 nodes and the operator
taxonomy 78 nodes. Note that new packages mostly ex-



tend the operator taxonomy, while the property taxo- 1
nomy is a fairly stable structure in our experience.

4.2 Rewrite Templates

We perform dataflow-rewriting using a set of rules spec- o
ifying semantically valid reorderings, insertions, or dele—l‘l)
tions of operators. Because rewrite rules apply to combi-12
nations of operators, and because the different indepen—i3
dently developed and maintained packages available foris

Stratosphere already contain more than 60 individual op-;

erators, it is practically impossible to define all rewrite1s
rules across the different packages one-by-one. Instead,;g
we define a concise set of rewrite templates using Presto?!
relationships and abstract operators as building blocks.
Reasoning along relationships allows SOFA to automat-
ically instantiate the templates with concrete operators
and thus enables us to derive individual rewrite options
for concrete operator combinations on-the-fly. Currently,
SOFA requires only 10 rewrite templates, which are ex-
panded to over 150 individual rewrite rules.

Figure [f] displays a subset of the available templates
in Datalog notation; further rules cover different reorder-
ings based on algebraic properties as well as insertion and
removal of operators (not shown here for brevity). The
first three templates are static and can be evaluated at
package loading time, whereas the last two templates are
dynamic and are evaluable at query compile time only.
The first template covers commutative operators and ex-
presses that two consecutive appearances of operators X
annotated as commutative in Presto can be safely re-
ordered. Specifically, the goal reorder(X,X) evaluates
to true if Presto contains a hasProperty-relationship of X
with the property commutative. Note that the commuta-
tivity does not necessarily need to be defined directly on
X; the rule also applies if some ancestor of X in Presto
is marked as commutative. The second template (Line
4) enables reordering of operators based on the isA re-
lation and states that for any three operator instantia-
tions X,Y, Z, the operators X,Y are reorderable given
that X is not a prerequisite of Y, X is a specialization
of Z, and Y, Z are reorderable. We include the goal not
hasPrerequisite(Y,X) in the templates to ensure that
operator precedences are respected. The third template
(Lines 6-7) enables reorderings of consecutive anntt op-
erators X, Y, when X is not a prerequisite of Y.

Dynamic rewrite templates are partly based on infor-
mation not available before the query is compiled, for
example, information on concrete attribute access by op-
erators is only available after posing a query. Tem-

PN NG N V)

4 | reorder(X,Y) :-hasProperty(X,’single-in’),

%% static rules (package loading time) 4%
reorder (X,X) :~hasProperty (X, ’commutative’) ./ 1

reorder(X,Y) :-not hasPrerequisite(Y,X),isA(X,Z),reorder(Z,Y)./2

reorder(X,Y):-isA(X,’anntt’),isA(Y,’anntt’),
not hasPrerequisite(Y,X). % 3

X% dynamic rules (query compile time) JJ

reorder (X,Y) : -hasProperty (X, ’single-in’) ,hasProperty (X, ’RAAT’),
hasProperty(Y,’single-in’) ,hasProperty(Y, ’RAAT’),
not readWriteConflicts(X,Y). 7 4

hasProperty(X,’|I|=|0]"),

hasProperty(X, ’S_in contains S_out’),
hasProperty(X, ’no field updates’),
hasProperty (Y, ’single-in’),
hasProperty(Y,’|I|>=|01),
hasProperty(Y,’S_in = S_out’),

not hasPrerequisite(Y,X),accessedFields(Y,
S_out(X,0UTX), contains (OUTX, ACCY). / &5

AccY),

Figure 5: Rewrite template examples.

plate 4 (Lines 10-12) enables reordering of two single-
input record-at-a-time operators if these operators have
no read/write conflicts. This single rule essentially covers
most optimization options achieved by [16], which shows
the power of our approach.

While most rules in Presto are generic and apply to
many operator combinations, other rules are more spe-
cific. Suppose, we are given a dataflow that consists of
an equi-join of two data sources I, I> followed by trnsf
that transforms only attributes of I, which are not part
of the join condition. This dataflow can be rewritten into
an equivalent dataflow, which first applies trnsf to I; and
afterwards joins I; and Ia:
I, — join — trnsf — O

/V
I

I; — trnsf — join — O

A I

Similar to extending Presto with new operators and
properties, package developers can also extend the set
of rewrite templates to enable dataflow optimization for
their concrete application domain. For example, the third
template was added by the IE package developer, since
it enables reordering anntt instantiations, which is not
supported by any other Presto template.

4.3 Pay-as-you-go annotation of operators

A key feature of SOFA is its extensible design. Consider
a new package for web analytics to be integrated into
Stratosphere, containing an operator rmark for detecting
and removing HTML markup in web pages. Initially, this
operator would probably not be equipped with any Presto
annotations. In this case, the SOFA optimizer can infer



only automatically detectable properties, i.e., reordering
can only be performed on the basis of read /write-set ana-
lysis. Later, the package developer invests some thought
and annotates that rmark outputs as many records as in-
coming (|I| = |0OJ). SoFa infers from the set of automat-
ically detectable properties, that rmark is a single-input
operator implemented with a map function and does not
change the schema of the incoming records. Taken these
properties together, the last template of Figure[f]|becomes
applicable to rmark. A full specification of rmark would
include the definition of isA relationships to other oper-
ators. Actually, rmark has the same semantics as the
trnsf operator from the Base package, as it essentially
performs a transformation of the input texts. Now all
templates valid for trnsf become applicable, such as the
rule for reordering a join and a trnsf operator introduced
in Section 4.2. Given that rmark accesses only attributes
present in input I; that are not part of the join condition,
SOFA can then reorder a dataflow containing rmark and
join as follows:

I, — join — rmark — O Iy — rmark — join — O

5 Algorithms

Given a dataflow D, the SOFA optimizer performs two
passes of the following three steps. First, D is analyzed
for precedence relationships between operators based on
rewrite templates and operator properties contained in
Presto. This analysis yields a precedence graph, which
is used in the plan enumeration phase, to secondly enu-
merate and thirdly rank valid plan alternatives based on a
cost model. Afterwards, the complex operators contained
in D are resolved into their elementary components and
the three steps are repeated. Finally, the best plan is se-
lected, translated, and physically optimized for parallel
execution by the underlying execution engine (see |1] for
details on this step). In the following, we discuss Phases
2—4 in more detail.

5.1 Precedence analysis

Presto models dependencies between operators either ex-
plicitly on the basis of the hasPrecedence relation or in-
ferred, if the goal reorder(X,Y) fails for two operator
instantiations X,Y. The precedence graph construction
starts by creating the directed transitive closure of the
given dataflow, which explicitly models all pairwise op-
erator execution orders in D. The algorithm then in-

anntt-rel I(—'
<

anntt- fltr ii

ent-pers pers>0
T I I I L 4
" fltr
| anntt-pos |(—| anntt-sent |—)| split-UDF |—>| rel>0 |(—| rdup

anntt-

fltr
ent-comp comp>0

Figure 6: Precedence graph for running example with
complex operator resolution.

spects this graph to detect and remove edges that are
not logically required. It retains all edges incident to a
data source or a sink to prevent reordering of sources
and sinks. The goal reorder(X,Y) is instantiated with
start and end node of each edge (u,v) and the inference
mechanism tries to resolve the goal based on the opera-
tor properties and rewrite templates stored in Presto. If
successful, both nodes are reorderable and the edge (u, v)
is removed from the precedence graph. Precedence ana-
lysis is a polynomial time algorithm; its complexity is de-
termined by computing the transitive closure in O(|V|?)
using the Floyd-Warshall algorithm and the data com-
plexity of stratified non-recursive Datalog, which we use
for reasoning in Presto [6].

Figure |§| shows the final precedence graph for our run-
ning example (omitting data sources and sinks for read-
ability). The displayed graph reflects precedences be-
tween DC, IE, and Base operators, e.g., rdup and anntt-
ent-person are a prerequisite for the fltryerson>0 operator,
and anntt-rel is in a hasPrerequisite relation with anntt-
pos (cf. Figure [f{d)). The graph contains edges between
anntt and fltr reflecting that the concrete instantiations
of fltr have read/write conflicts with their preceding anntt
operators.

5.2 Plan enumeration

Plan enumeration essentially generates different topolog-
ical orders given by the precedence graph, while perform-
ing cost-based pruning. On contrast to topological sort-
ing, the outcome are not full orders but DAG-shaped
plans. The main idea is to construct alternative plans
for a given dataflow D iteratively by analyzing the cor-
responding precedence graph for operators that have no
outgoing edges. Such operators are not required by any
other operator and can therefore be added to the emerg-
ing physical dataflows. If multiple operators have no out-
going edges, the algorithm creates a set of alternative
partial plans. The algorithm continues to pursue each al-
ternative, removing the newly added operator from the
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Figure 7: DAG-shaped dataflow (top) and correspond—iz
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example.

precedence graph, estimating the costs of the partial plan22
(see Section, and pruning costly partial plan alterna—zi
tives where possible. 2;

We explain its principles using the simplified dataflow27
shown in Figurem (top). Note that this dataflow is DAG-g
shaped, which poses no problem to SOFA. The dataﬂowg‘;
performs task-parallel annotation of persons and compa-s»
nies. Annotations are subsequently merged, and the re—gi
sult set is filtered for articles published after 2010. Thess
resulting precedence graph is displayed in Figure Iﬂ (bot-g’;3
tom). 38

The recursive plan enumeration algorithm is displayed
in Figure It takes as input the original dataflow,
the corresponding precedence graph, and a partial plan,
which initially is empty (Lines 1-2). First, the algorithm
selects the set of nodes from the precedence graph that
have out-degree 0 (Line 8). These operators are not a
prerequisite of any remaining operator and can thus be
added to the partial plan (Lines 11-13) without violating
precedence constraints. In our example, only the data
sink can be selected. Once added, the selected node is
removed from the precedence graph (Line 14). Since the
partial plan was empty before adding the data sink, we
cannot insert any edges in the partial plan and therefore,
plan enumeration is recursively invoked again (Lines 16—
17). Now, mrg and flir both have no outgoing edges
anymore and are therefore added to the set of candidate
nodes. Each candidate node is processed individually,
added to the partial plan and removed from the prece-
dence graph. This yields in two alternative partial plans,
which are both inspected further.

We exemplarily follow the plan with the mrg operator.
The operator is added to the plan and subsequently, the
set of inputNodes is divided into required and optional
nodes (Lines 19-24). Required nodes are those nodes that
have the currently added node as its direct predecessor
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enumAlternatives(Graph precedGraph, Graph plan,
Graph partialPlan) {

if (isEmpty(precedGraph)) {
addPlanToResultSet (partialPlan);
return;
}
candidateNodes = getNodesWithOutDegreeZero(precedGraph) ;

foreach(Node n in candidateNodes) {
inputNodes = getlNodesWithOpenInputs(partialPlan);

addNodeToPartialPlan(n) ;
removeNodeAndIncidentEdgesFromPrecedenceGraph(n) ;

if (isEmpty(inputNodes))
enumAlternatives (precedGraph, plan, partialPlan);

foreach(Node m in inputNodes){
/*split inputNodes into required and optional successors*/
if (inputGraphcontainsEdge(n,m))
addNodeToRequiredNodes (m) ;
else addNodeToOptionalNodes (m);
¥
if (not isEmpty(requiredNodes)) {
addEdgesToAllRequiredNodesInPartialPlan(m);
if (costs(partialPlan) < costs(originalPlan))
enumAlternatives (precedGraph, plan, partialPlan);
}
foreach(Node 1 in optionalNodes) {
addEdgeToPartialPlan(n,1);
if (costs(partialPlan) < costs(originalPlan))
enumAlternatives (precedGraph, plan, partialPlan);
¥
¥
addPlanToResultSet (plan);
return;

}

Figure 8: Plan enumeration with SOFA.

in the original dataflow, optional successors are all other
operators contained in inputNodes. In our example, the
set of required nodes is empty, and the set of optional
nodes contains fitr. For each required node m, we cre-
ate an edge (n,m) for the newly added node n, add it
to the edge set of our partial plan, estimate the costs of
the partial plan, and recursively call the plan enumer-
ation algorithm (Lines 25-29). Each optional node [ is
processed individually. We iteratively create edges (n, 1),
estimate the costs of the new partial plan, and again re-
cursively call the plan enumeration algorithm if necessary
(Lines 30-34). A recursive invocation of the plan enumer-
ation algorithm terminates either if the precedence graph
is empty and an alternative plan has been found (Lines 4—
7), or if no alternative plans with smaller costs compared
to the initial plan were found (Line 33).

Figure [0]shows all stages of enumerating the plan space
for the dataflow from Figure[7] In Stage 1, only the data
sink can be selected (grey box) and is thus removed in
Stage 2. The algorithm can now either add mrg or fitr
(red and green boxes) as both have no outgoing edges in
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Figure 9: Plan enumeration for the DAG-shaped dataflow from Figure []] Columns are alternative partial plans
grouped into stages of the algorithm. Boxes correspond to operators with isochromatic frames as defined in Figure[7]

Stage 7 contains all valid plans for this dataflow.

Stage 3. In Stage 4, the mrg plan results in three further
alternatives, namely fltr, anntt-ent-comp, and anntt-ent-
pers. At that point, only the source cannot be added to
the plan yet and consequently the remaining two oper-
ators can be added in arbitrary order. Thus, the four
alternatives are expanded to eight plans in Stage 5. Fi-
nally, the last operator and source is added in Stage 6 and
7 resulting in 12 different alternatives.

Pruning. The plan enumeration algorithm has exponen-
tial worst-case complexity (consider for instance a prece-
dence graph without any edges). We included a simple
technique for search space pruning in our algorithm pre-
venting completion of partial plans whose estimated costs
are higher than the estimated costs for the current best
dataflow. Once a cheaper plan was found, we update the
costs of the best plan, in a manner similar to accumulated
cost pruning in top-down query optimization |9/10]. If no
alternative plan with lower estimated costs compared to
the best plan could be constructed, we terminate (cf. Fig-
ure |8 Line 33).

5.3 Cost estimation

To estimate costs and result sizes of a dataflow, SOFA
depends on estimates for key figures of operators, which
can either be provided by the developer by adding appro-
priate annotations to Presto, by sampling from the input
data, or by runtime monitoring of previously executed
dataflows. We estimate the costs of a plan by comput-
ing the weighted sum of estimated ship data volume, I/O
volume, and CPU usage of the UDFs per stub call.
Specifically, the costs of an operator o; are estimated
as follows: let ¢; be the average CPU usage of o; per
invocation, s; the estimated startup costs of o;, and r;
the estimated number of processed input items of o;. In-
cluding startup times of operators is particularly impor-
tant for complex non-relational UDFs, as many IE and
DC operators need a long startup time for instance to
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load large dictionaries, or to assemble trained models.
Furthermore, let d; denote the estimated I/O costs of
an input item processed by o;, n; the estimated ship-
ping costs of an output item produced by o;, and sel;
the selectivity of o;. The estimated number of items
r; processed by an operator o; is calculated as r; =
Z(h’i)eE(D) rp*selp. The costs of an operator o; are esti-
mated as the weighted sum of the estimated ship data vol-
ume, I/O volume, and CPU usage of o; using the formula
costs(0;) = wk (i xri+8;) Fux(dix7r;) v (ngxr; x sel;),
where u, v, w denote weight constants for each cost com-
ponent. Note that the formula for operator costs can be
replaced with custom cost functions, which are added to
Presto by the package developers. For example, to ac-
curately estimate the costs for dataflows containing IE
operators, we also capture the projectivity of anntt oper-
ators, i.e., the average number of annotations produced
by an anntt instantiation. Consequently, the selectivity of
ftrannie is denoted as sel(fltranntt) = ri—1 * proj(anntt).

Finally, the total costs of a dataflow D are estimated
as costs(D) = > | costs(o;). Note that our cost model
optimizes for total computation time, disregarding paral-
lelization in the underlying execution engine. However,
we see in Section [7] that this approach already allows us
to correctly rank enumerated plan alternatives in many
cases.

6 Related Work

Query optimization is a prominent topic in database re-
search and many facets of our problem setting have been
addressed before. The optimizer of the Starburst project
leverages an extensible set of rules to rewrite query ex-
pressions [12]. Rules are specified as pairs of condition
and action functions implemented in a procedural lan-
guage [21]. Volcano 9] and Cascades [10] have extensible
sets of transformation and implementation rules, which



rewrite query expressions and compile them to physical
execution plans. Chaudhuri et al. proposed declarative
rewrite rules to improve the optimization of queries with
external functions [4]. All aforementioned approaches
deal with the optimization of relational queries and as-
sume that rewrite rules are manually added to the op-
timizer framework. Owur work differs as it focuses on
UDF-heavy query, also deals with DAG-shaped plans, and
does not require the explicit definition of condition—action
rules for new operators but automatically infers them
from a concise set of operator properties. This consid-
erably increases extensibility.

The optimization of relational queries with user-defined
predicates has been another focus of research [5l{15/26]. In
these works, the semantics of the UDFs to be reordered
is assumed to be uniform, i.e., filtering tuples. Conse-
quently, these approaches focus on the problem of iden-
tifying the optimal order of filters and do not address
the question whether general UDFs can be reordered or
not; besides, they disregard the effects of parallelization
functions on UDFs. In contrast, our work addresses the
optimization of Map/Reduce-style dataflows with user-
defined operators for which additional information is re-
quired to answer this question. In our approach, this
information is provided by the developer or inferred from
Presto.

While common query optimizers use tree-shaped query
execution plans, our work focuses on DAG-shaped data-
flows in the spirit of [18]. There, Neumann investigated
the problem of generating and executing DAG-shaped
query evaluation plans for relational queries in order to
enable sharing of intermediate results. This is different
from our setting as the input of our optimizer are al-
ready DAG-shaped dataflows in contrast to declarative
relational queries.

Several methods to optimize more general dataflows
have been proposed. Ogasawara et al. propose an alge-
braic approach to define scientific workflows [19] and op-
timize their execution. Operators are classified as UDFs
with strict templates or as relational expressions. While
their classification of UDFs is somewhat similar to partic-
ular combinations of our operator properties, we regard
our approach as more general as it features a richer set
of properties that can be freely composed to precisely
reflect the characteristics of an operator. Furthermore,
their work does not contain a transformation-based op-
timizer. Simitsis et al. present an approach for opti-
mizing ETL processes |25]. They introduce three differ-
ent optimization techniques, namely reorderings of ad-
jacent single-input/single-output operators that have no
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read/write-conflicts, merging and splitting of operators,
and factorization of operators. Our approach is more gen-
eral as SOFA is able to optimize arbitrary dataflows and
it is able to reorder any operator combinations given that
precedence constraints are respected. Stubby is an opti-
mizer for workflows constructed of multiple Map/Reduce
jobs [17]. This approach is orthogonal to SOFA, as it lever-
ages manual annotations of Map and Reduce functions to
merge Map/Reduce jobs while preserving the logical or-
der of operations. The MRQL framework performs physi-
cal algebraic optimizations of Map/Reduce dataflows con-
sisting only of relational operators |8, but disregard gen-
eral UDFs. Both approaches identify valid transforma-
tions from static rules and operator properties, such as
in- and output schema. Our approach differs in using an
extensible taxonomy of a richer set of operator proper-
ties and rewrite rules to deduce precedence constraints.
Work presented by Hueske et al. [16] on reordering oper-
ators in Map/Reduce-style dataflows is based on specific
information about the operator’s behavior in terms of ac-
cessed data attributes obtained by static code analysis.
We included this idea in SOFA, but also show how seman-
tic annotations that describe the behavior of UDFs more
precisely can help to further increase the space of pos-
sible rewritings; besides, our approach allows to rewrite
DAG-shaped dataflows, which is not possible with the
algorithm presented in [16]. The SUDO optimizer [28]
combines manual annotation and code analysis to ana-
lyze UDF properties with respect to data partitioning to
avoid unnecessary data shufflings. This problem is or-
thogonal to SOFA, where we analyze semantic operator
properties to reduce execution times by reordering opera-
tors. Pig Latin [20] is a procedural higher-level language
for Hadoop and features a “safe” optimizer. It applies a
limited set of heuristic transformation rules, such as fil-
ter push down, that most likely is beneficial and relies
otherwise on the decisions of the programmer.

In summary, we believe that SOFA is the first extensi-
ble, fully functional optimizer for arbitrary DAG-shaped
dataflows for Map/Reduce-style systems.

7 Evaluation

We evaluated SOFA on a 28-node cluster, each equipped
with a 6-core Intel Xeon E5 processor, 24 GB RAM, and
1TB HDD using Stratosphere 0.2.1.

Queries. We implemented, optimized, and executed
seven UDF-heavy queries originating from different ap-



Q1 Q2 Q3 Q4 Q5 Q6 Q7

SoFA 4545 (783) | 5 (5) | 7624 (844) | 12 (10) | 6 (4) | 4 (4) | 4 (2)
Hueske et al. |16] 512 (214) 1(1) | 7624 (844) 1(1) 1(1) [ 4@) | 1(1)
Olston et al. [20] 1(1) 1(1) | 240 (192) 6(6) | 1(1) |22 |10)
Simitis et al. [25)] 38 (38) 1(1) | 240 (192) 44) | 2@ | 2@ | 1)

Table 2: Number of plan alternatives per query. Counts in braces denote the number of plans considered with pruning
enabled. Bold numbers indicate the plan space containing the fastest measured plan (see Figure .

plication domainﬂ Q1, Q2, and Q7 are pipeline-shaped,
Q3 and Q6 are tree-shaped, and Q4 and Q5 are DAG-
shaped.

Q1 adopts the dataflow described in our running ex-
ample for relationship extraction from biomedical litera-
ture using IE and DC UbDrs. Q2 performs an advanced
word count by computing term frequencies in a corpus
grouped by year. The query first splits the input data
into sentences, reduces terms to their stem, removes stop-
words, splits the text into tokens, and aggregates the to-
ken counts by year. Q3 extracts NASDAQ-listed compa-
nies that went bankrupt between 2010 and 2012 from a
subset of Wikipedia. This query takes article versions
from two different points in time, annotates company
names in both sets and applies different fitr operators
and a join to accomplish the task. Q4 corresponds to
the dataflow shown in Figure[7]and performs task-parallel
annotation of person and location names. Q5 analyzes
DBpedia to retrieve politicians named 'Bush’ and their
corresponding parties using a mixture of DC and base
operators. Q6 is a relational query inspired by the TPC-
H query 15. It filters the lineitem table for a time range,
joins it with the supplier table, groups the result by join
key, and aggregates the total revenue to compute the final
result. Q7 uses two complex IE operators to split incom-
ing texts into sentences and to extract person names.
Datasets. We evaluated Q1 on a set of 10 million ran-
domly selected citations from Medline, Q2 was evaluated
on a set of 100,000 full-text articles from the English
Wikipedia initially published between 2008 and 2012, Q3
was evaluated on two sets of English Wikipedia articles of
50,000 articles each, one set from 2010 and one set from
2012, Q4 and Q7 on a set of 100,000 full-text articles
from the English Wikipedia downloaded in 2012, Q5 on
the full DBpedia dataset v. 3.8, and Q6 was evaluated on
a 100GB relational dataset generated using the TPC-H
data generator. For each experiment, we report the av-
erage of three runs. Estimates on operator selectivities,

2Queries may be found at http://bit.ly/1dP9Nm2, datasets are
available on request.
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projectivities, startup costs, and average execution times
per input item were derived from 5% random samples of
each dataset.

Competitors. Although dataflow languages for Big
Data are a hot topic in current research, surprisingly few
systems actually optimize the dataflow at the logical level
as we do. Thus, detecting appropriate competitors is dif-
ficult, because optimizers are commonly deeply coupled
to a particular system. We reimplemented the ideas of
three current dataflow optimizers, namely techniques pre-
sented by Hueske et al. [16], Olston et al. [20], and Simitsis
et al. [25]. We compare the number of plan alternatives
found and the achieved runtime improvements. For each
method, we disabled rules and information on operator
properties stored in Presto and replaced them with the
appropriate rewrite rules described in [16}[20/|25]. For the
method of Olston et al., we referred to the online docu-
mentation of rewrite rules for Apache Pig, version 0.11.1.
For Hueske et al., we enabled annotation of read- and
write-sets, but disabled reordering of DAG-shaped plans.

7.1 Finding optimal plans

A large number of semantically equivalent plans for a con-
crete dataflow has the potential to contain the most ef-
fective variant. Therefore, we first evaluate SOFA to all
three competitors with respect to the number of alterna-
tive plans found with each method. We turned search
space pruning off and enumerated the complete space of
alternative dataflows for all queries. In Section [d] we ex-
plained how complex operators can be resolved into a se-
ries of interconnected elementary operators. Q1, Q2, and
Q7 contain complex operators, thus, we enumerated the
plan space for these queries both using only elementary
operators and using combinations of elementary and com-
plex operators. For the methods presented in [16/20L[25],
we used complex operators only, as this methods do not
provide mechanisms for operator expansion.

As displayed in Table [2 SOFA enumerates the largest
plan space in all cases. The method presented by Hueske
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et al. is unable to rewrite Q2, Q4, Q5, and Q7, because
it is neither capable of rewriting DAG-shaped dataflows
(Q4, Q5) nor of expanding complex operators (Q2, Q7).
The approach of Olston et al. can rewrite only Q3, Q4,
and Q6, because these are the only methods that involve
filter push-ups. Simitis et al. find no alternative plans
for Q2 and Q7, as in these cases, no adjacent single-
input/single-output operators were reorderable. For Q3
and Q6, SOFA and both enumerate the largest plan
space, as for both queries the predominant rewrite options
concerned fltr operators.

To evaluate the correctness of plan ranking performed
by SOFA, we sorted the complete plan space for each query
plan ascending by estimated costs, selected different plans
from a rank interval, and report estimated costs and ob-
served runtimes for these plans. As shown in Figure [10]
SOFA ranks the different algebraic execution plans cor-
rectly, and for Q1, Q2, Q5, and Q7, the best ranked plans
were retrieved only with SOFA.

We also observed a large optimization potential for
most tasks. For example, the best ranked plans for Q1—
Q4 outperform the worst ranked plans with factors in
the range of 4.2 (Q2) to 9.1 (Q1). For the remaining
queries Q5-Q7 we observed differences in execution times
of 23 to 28 % between the best and worst plan. Note
that these three queries were the shortest running in our
experiments with total runtimes between 10 to 30 min-
utes, and a significant portion of these runtimes can be
attributed to system initialization and communication.
Thus, we expect that these queries benefit much more
from optimization on larger datasets.
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7.2 Pruning

Table [2] displays the plan space with search space prun-
ing enabled in brackets. For queries spanning the largest
plan space (Q1 and Q3), pruning helps to significantly
reduce the enumerated plan space. For the methods
presented in [201[25], which both enumerate significantly
smaller plan spaces than SOFA, pruning as performed by
our enumeration algorithm does not reduce the plan space
in most cases. For each tested query, the optimization
time with pruning enabled takes not longer than 2.5 sec-
onds with SOFA. Enumerating the complete plan space
for each query takes at most 10 seconds, which is negligi-
ble compared to the execution times of our long-running
evaluation queries. Note that the largest part of these
optimization times can be attributed to reasoning along
Presto relationships, which could be improved in many

known ways [23].

7.3 Optimization benefits

In our third experiment, we evaluated to which extent
dataflow optimization benefits from information on oper-
ator semantics. Figure [[T] displays the execution times of
the best ranked plan found with SOFA as well as the meth-
ods described in [16][20,[25]. For each tested query, SOFA
finds the fastest plan, and for Q1, Q2, Q5, and Q7, SOFA
finds significantly faster plans than competitors: the best
plan found with SOFA outperforms the best plans found
by with factors of up to 6.8 (Q4), by and
with factors up to 4.2 (Q2). The method of Hueske et
al. performs as well as SOFA for Q3 and Q6, because
both methods enumerate the same plan space for these
two queries. The rewrite rules of Olston et al. and Sim-



itsis et al. find the same best plan as SOFA for Q4. In
these cases, plan optimization involves only reordering
filter operators, which is addressed equally well in these
methods as in SOFA. Note that the method of Hueske et
al. cannot rewrite Q4, as this query is DAG-shaped. All
other queries involve rewriting general UDFs and expan-
sion of complex operators, and thus, optimization bene-
fits notably from semantic information that is available
in SOFA.

7.4 Extensibility

Finally, we concretize the example from Section 4.3 to
quantify the effect of pay-as-you-go annotation of oper-
ators in SOFA. Recall the novel rmark operator, which
replaces HTML tags in web pages by a series of ‘%’ of the
same length as the removed tags to retain text length and
markup position. Imagine a query Q8 that first replaces
HTML markup in websites, computes term frequencies
from the websites content, and finally filters terms start-
ing with a series of ‘%’. The high-level dataflow looks as

follows:
I > rmark > splt-sent » stem » rm-stop » splt-tok » 9rp » flir » O

Initially, rmark is annotated only with an isA-
relationship to the abstract Presto concept operator. In
this case, SOFA can analyze only read and write access on
attributes similar to the method presented in [16], which
yields in 10 semantically equivalent plans for Q8. After
adding the information that rmark is a schema preserving
record-at-a-time operator implemented with a Map func-
tion, Presto already finds 18 equivalent algebraic plans.
Finally, when rmark is fully specified, including an isA
relationship to the Base operator trnsf, SOFA would find
75 alternative plans.

8 Conclusions

We addressed the problem of logical optimization for
UDF-heavy dataflows and present SOFA, a novel, ex-
tensible, and comprehensive optimizer. SOFA builds on
a concise set of properties describing the semantics of
Map/Reduce-style UDFs and a small set of rewrite tem-
plates to derive equivalent plans. A unique character-
istic of our approach is extensibility: we arrange opera-
tors and their properties into a taxonomy, which consider-
ably eases integration and optimization of new operators.
We implemented our solution in Stratosphere, a fully-
functional system for large-scale data analytics. Our ex-
periments reveal that SOFA is able to reorder acyclic data-
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flows of arbitrary shape (pipeline, tree, DAG) from differ-
ent application domains, leading to considerable runtime
improvements. We also show that SOFA finds plans that
clearly outperform those from other techniques.
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