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Abstract

Process discovery is the task of generating process models from event logs. Min-
ing processes that operate in an environment of high variability is an ongoing
research challenge because various algorithms tend to produce spaghetti-like
process models. This is particularly the case when procedural models are gen-
erated. A promising direction to tackle this challenge is the usage of declarative
process modelling languages like Declare, which summarise complex behaviour
in a compact set of behavioural constraints on activities. A Declare constraint
is branched when one of its parameters is the disjunction of two or more activ-
ities. For example, branched Declare can be used to express rules like “in a
bank, a mortgage application is always eventually followed by a notification to
the applicant by phone or by a notification by e-mail”. However, branched
Declare constraints are expensive to be discovered. In addition, it is often the
case that hundreds of branched Declare constraints are valid for the same log,
thus making, again, the discovery results unreadable. In this paper, we address
these problems from a theoretical angle. More specifically, we define the class
of Target-Branched Declare constraints and investigate the formal properties
it exhibits. Furthermore, we present a technique for the efficient discovery of
compact Target-Branched Declare models. We discuss the merits of our work
through an evaluation based on a prototypical implementation using both arti-
ficial and real-life event logs.
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1. Introduction1

Process discovery is the important initial step of business process manage-2

ment that aims at arriving at an as-is model of an investigated process [1]. Due3

˚Corresponding author.
E-mail address: claudio.di.ciccio@wu.ac.at
Postal address: Vienna University of Economics and Business, Institute for Information Busi-
ness (Building D2, Entrance C) – Welthandelsplatz 1, A-1020 Vienna, Austria
Phone number: +43 1 31336 5222

Preprint submitted to Elsevier 28th July 2015

mailto:claudio.di.ciccio@wu.ac.at


to this step being difficult and time-consuming, various techniques have been4

proposed to automatically discover a process model from event logs. These log5

data are often generated by information systems that support parts or the en-6

tirety of a process. The result is typically presented as a Petri net or a similar7

kind of flow chart and the automatic discovery is referred to as process mining.8

While process mining has proven to be a powerful technique for structured9

and standardised processes, there is an ongoing debate on how processes with a10

high degree of variability can be effectively mined. One approach to this problem11

is to generate a declarative process model, which rather shows the constraints12

of behaviour instead of the available execution sequences. The resulting models13

are represented in languages like Declare. In many cases, they provide a way14

to represent complex, unstructured behaviour in a compact way, which would15

look overly complex in a spaghetti-like Petri net.16

Declare is a process modelling language first introduced in [2]. The language17

defines a set of classes of constraints, the Declare templates, that are considered18

the most interesting ones for describing business processes. Templates are para-19

meterised and constraints are instantiations of templates on real activities. For20

example, the Response constraint, stating that “activity pay is always eventually21

followed by activity send invoice” is an instantiation of the Declare template22

Response specifying that “an activity x is always eventually followed by an activ-23

ity y”. Templates have a graphical representation and formal semantics based24

on Linear Temporal Logic on Finite Traces (LTLf ). This allows Declare models25

to be verifiable and executable. Figure 1a shows the graphical representation of26

the Response template. Its LTLf semantics is lpxÑ 3yq. Constraints inherit27

the graphical representation and the LTLf semantics from the corresponding28

templates.29

The current techniques for the discovery of Declare models [3, 4, 5, 6, 7] are30

limited to the discovery of constraints based on the standard set of Declare tem-31

plates. This means that the discovered constraints will involve one activity for32

each parameter specified in the corresponding templates. However, as described33

in [2], a constraint can define more than one activity for each parameter. For34

example, a Response constraint can be used to express rules like “in a bank,35

a mortgage application is always eventually followed by a notification to the36

applicant by phone or by a notification by e-mail”. In this rule, the “mortgage37

application” plays the role of the activation. “Notification by phone” and “noti-38

fication by e-mail” constitute the so-called targets of the constraint. In this case,39

we say that the target parameter branches and, in the graphical representation,40

this is displayed by multiple arcs connecting the activation to the branched tar-41

gets. In LTLf semantics, a branched parameter is replaced by a disjunction42

of parameters. Figure 1b shows the graphical representation of the Response43

template branching on the target. Its LTLf semantics is lpxÑ 3py _ zqq.44

Target-Branched Declare (TBDeclare) extends Declare by encompassing45

constraints that branch on target parameters, thus providing the process mod-46

ellers with the possibility of defining a much wider set of constraints. In this47

paper, we address the problem of mining TBDeclare constraints efficiently. At48

the same time, the technique we propose aims at limiting the sheer amount of49
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(a) Responsepx,yq (b) Responsepx, ty, zuq

Figure 1: Declare (a) and Target-Branched Declare (b) Response templates.

returned constraints to the set of the most meaningful ones. To this extent, we50

rely on formal properties of TBDeclare, i.e., (i) set-dominance and (ii) subsump-51

tion hierarchy. Set-dominance is based on the observation that, for example,52

stating that “a is always eventually followed by b or c” entails that “a is al-53

ways eventually followed by b, c or d”, i.e., since the set of targets for the first54

constraint is included in the set of targets for the second constraint, the first55

constraint is stronger than the second one. In this case, if both constraints hold56

in the provided event log, only the stronger one will be discovered. In addition,57

Declare constraints are not independent, but form a subsumption hierarchy.58

Therefore, a constraint (e.g., a is eventually followed by b or c) is redundant if59

a stronger constraint holds (e.g., a is directly followed by b or c). Also in this60

case, it is possible to keep the stronger constraint and discard the weaker one61

in the discovered model. The key idea of our proposed approach is to exploit62

set-dominance and subsumption hierarchy relationships, in combination with63

the use of interestingness metrics like constraint support and confidence [5], to64

drastically prune the set of discovered constraints. We present formal proofs to65

demonstrate the merits of this approach and a prototypical implementation for66

emphasising its feasibility and efficiency.67

In this paper, we extend the work presented in [8] in four directions: (i) the-68

oretical discussion, (ii) algorithm presentation, (iii) implementation improve-69

ment, and (iv) evaluation. From a foundational perspective, this paper form-70

ally elaborates on how the monotonicity of LTLf temporal operators can be71

exploited to prove set-dominance for TBDeclare. The algorithm is presented72

in thorough detail here: it describes all the procedures undertaken to mine73

the constraints, along with trailing examples. The implementation of the al-74

gorithm is also improved now, as an entirely new technique for the computation75

of AlternateResponse and AlternatePrecedence constraints has been devised. In76

this way, a major limitation of the process discovery algorithm presented in [8]77

is resolved. Furthermore, this has enabled us to cover a broader range of exper-78

iments including the application to an additional benchmark based on the use79

of the log provided for the BPI challenge 2014 [9].80

Against this background, this paper is structured as follows. Section 2 in-81

troduces the essential concepts of LTLf and Declare as a background of our82

work. Section 3 provides the formal foundations for mining Target-Branched83

constraints. Section 4 defines the construction of a knowledge base from which84

the final constraint set is built. Section 5 describes the performance evaluation.85
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Section 6 investigates our contribution in the light of related work. Section 786

concludes the paper with an outlook on future research.87

2. Background88

Process mining is the set of techniques that aims at understanding the be-89

haviour of a process, given as input a set of data reporting the executions of90

such a process, i.e., an event log L. An event log consists of a collection of91

traces ~ti, with i P r1, |L|s and |L| being the size of the log, recording informa-92

tion about process instance executions. A trace is a sequence of events. Events93

are log entries specifying the execution data referred to an activity of the pro-94

cess. In the following, we will assume that each event is uniquely corresponding95

to the execution of a single activity. Therefore, we will interchangeably adopt96

the terms “event” and “activity” occurring in the log. The set of the activities97

that may occur in the log is called log alphabet. Hereinafter, the generic log98

alphabet is denoted as Σ. Elements of Σ will be collectively indicated as a, b, c.99

Denoting the set of sequences of activities as Σ˚, and indicating a multi-set as100

M p¨q, we have that L PM pΣ˚q.101

One of the challenges in process mining is the compact presentation of the102

mined behaviour. It has been observed that procedural models such as Petri nets103

tend to become overly complex for flexible processes that are situated in dynamic104

environments. Therefore, it has been argued to rather utilise declarative process105

modelling languages (like Declare) in such contexts, in order to facilitate a better106

understanding of the mined process models by humans [10, 11]. Declare has its107

formal foundation in linear temporal logic with finite trace semantics, which108

we introduce in Section 2.1. Section 2.2, then, describes Declare and how it is109

grounded in linear temporal logic.110

2.1. Linear Temporal Logic over Finite Traces111

Linear Temporal Logic (LTL) [12] is a language meant to express properties112

that hold true in systems that change their state over time. The behaviour of113

such systems is expressed in the form of a temporal structure, i.e., a transition114

system [13]. LTL was originally proposed in computer science as a specification115

language for concurrent programs. It was thought, in fact, to be adopted for116

the formal verification of server systems and very large system circuits, which117

in theory run infinitely. The states of such systems are expressed in terms of118

propositional formulae. The evolution is defined by transitions between states.119

A typical LTL formula expressing a fairness condition is l3Φ, where Φ is
a propositional formula, indicating the condition to always (l) eventually (3)
hold true. LTLf [14, 15] is the variant of LTL interpreted over finite system
executions. It adopts the syntax of LTL. Formulae of LTLf are built from
a set A of propositional symbols (atomic propositions) and are closed under
the boolean connectives ( , unary, and _, ^, Ñ, binary) and the temporal
operators © (next), 3 (eventually), l (always), unary, and U (until) and W
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(weak until), binary. The syntax is defined as follows.

ϕ,ψ “ α | ρ | λ (with α P A)

ρ “  ϕ | ϕ_ ψ | ϕ^ ψ | ϕÑ ψ

λ “ ©ϕ | 3ϕ | lϕ | ϕ U ψ | ϕ W ψ

Intuitively,©ϕ means that ϕ holds true in the next instant in time, 3ϕ signifies120

that ϕ holds eventually before the last instant in time (included), lϕ expresses121

the fact that from the current state until the last instant in time ϕ holds, ϕ U ψ122

says that ψ holds eventually in the future and ϕ holds until that point, and123

ϕ W ψ relaxes ϕ U ψ in the sense that either from the current state until the124

last instant in time ϕ holds, or ϕ U ψ holds.125

The semantics of LTLf is provided in terms of finite runs, i.e., finite se-126

quences of consecutive instants in time, represented by finite words π over 2A.127

The instant i in run π is denoted as πpiq, with i P r1, |π|s, with |π| being the128

length of the run. In the following, we indicate that, e.g., atomic proposition α129

is interpreted as true (J) at instant i in π with α P πpiq. Conversely, if α R πpiq,130

α is interpreted as false (K). Given a finite run π, we inductively define when131

an LTLf formula ϕ (respectively ψ) is true at an instant i, denoted as π, i |ù ϕ132

(respectively π, i |ù ψ), as:133

π, i |ù α for α P A, iff α P πpiq (α is interpreted as true in πpiq);134

π, i |ù  ϕ iff π, i * ϕ;135

π, i |ù ϕ^ ψ iff π, i |ù ϕ and π, i |ù ψ;136

π, i |ù ϕ_ ψ iff π, i |ù ϕ or π, i |ù ψ;137

π, i |ù©ϕ iff π, i`1 |ù ϕ, having i ă |π|;138

π, i |ù ϕ U ψ iff for some j P ri, |π|s, we have that π, j |ù ψ, and for all139

k P ri, j´1s, we have that π, k |ù ϕ.140

The semantics of the remaining operators can be derived by recalling that:141

ϕÑ ψ ”  ϕ_ ψ142

3ϕ ” J U ϕ;143

lϕ ”  3 ϕ;144

ϕW ψ ” lϕ_ pϕ U ψq.145

We recall here that, given two LTLf formulas ϕ,ψ, ϕ |ù ψ (ϕ models ψ) iff146

@i P r1,πs, π, i |ù ϕ entails π, i |ù ψ . As clarified in [16], temporal operators147

enjoy the property of monotonicity [17]. A function f : X Ñ Y , where X and148

Y are partially ordered sets under the binary relation ď, is monotonic iff, given149

x,x1 P X such that x ď x1, then fpxq ď fpx1q. f is said to be antimonotonic iff,150

given x,x1 P X such that x ď x1, then fpxq ě fpx1q, where ě is the inverse of151

ď.152

With a slight abuse of notation, given formulae ϕ and ψ, such that ϕ |ù ψ,153

then:154

1. a unary operator ‚ is monotonic iff ‚ϕ |ù ‚ψ;155

2. a unary operator ‚ is antimonotonic iff ‚ϕ ) ‚ψ;156

3. a binary operator b is monotonic iff ϕ |ù ϕb ψ;157
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Template Formalisation Notation Activ. Target

RespondedExistencepx, yq 3xÑ 3y x y

Responsepx, yq lpxÑ 3yq x y

Precedencepx, yq  y W x y x

AlternateResponsepx, yq lpxÑ©p xU yqq x y

AlternatePrecedencepx, yq p y W xq ^lpy Ñ©p y W xqq y x

ChainResponsepx, yq lpxÑ©yq x y

ChainPrecedencepx, yq lp©y Ñ xq y x

Table 1: Graphical notation and LTLf formalisation of some Declare templates.

4. a binary operator b is antimonotonic iff ϕ ) ϕb ψ.158

Monotonicity holds for propositional logic operators _, ^ and Ñ, whereas  is159

antimonotonic [17]. Temporal operators ©, 3, l, U and W are monotonic160

as well [13]. LTLf syntax and semantics will be used in the remainder of the161

paper.162

2.2. Declare163

One of the most frequently used declarative languages is Declare, first in-164

troduced in [2]. Instead of explicitly specifying the allowed sequences of events,165

Declare consists of a set of constraints that are applied to activities and must166

be valid during the process execution. Constraints are based on templates that167

define parametrised classes of temporal properties. Templates have a graph-168

ical representation and their semantics can be formalised using LTLf . In this169

way, analysts work with the graphical representation of templates, while the170

underlying formulae remain hidden. Table 1 summarises the most commonly171

used Declare templates. For a complete specification see [2]. Here, we indicate172

template parameters with x or y symbols. Generic symbols of real activities in173

their instantiations (generic elements of a generic log alphabet) are indicated as174

Σ “ ta, b, c, d, . . .u. Assigned activity identifiers are denoted as sans-serif letters175

a, b, c P Σ, where Σ is a set of activities that is assigned to a generic log alphabet176

Σ. Hence, a is a possible assignment of a. Following the same rationale, L is the177

symbol for the formal parameter denoting a generic log, whereas L is a concrete178

log. We remark here that the interpretation of Declare constraints restricts the179

common interpretation of LTLf in that two literals cannot be true at the same180

time. Furthermore, the run π on which an LTLf formula is evaluated is, in this181

context, a finite trace ~t of a log. We will univocally map atomic propositions of182

LTLf to the occurrence of an activity in the log alphabet (A ” Σ).183

The formulae shown in Table 1 can be readily formulated using natural184

language. The RespondedExistence template specifies that if x occurs, then y185

should also occur (either before or after x ). The Response template specifies186
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that when x occurs, then y should eventually occur after x. The Precedence187

template indicates that y should occur only if x has occurred before. Tem-188

plates AlternateResponse and AlternatePrecedence strengthen the Response and189

Precedence templates respectively by specifying that activities must alternate190

without repetitions in between. Even stronger ordering relations are specified191

by templates ChainResponse and ChainPrecedence. These templates require192

that the occurrences of the two activities (x and y) are next to each other.193

In order to illustrate these semantics, consider the Response constraint194

lpa Ñ 3bq. This constraint indicates that if a occurs, b must eventually195

follow. Given a log L “
 

~t1,~t2,~t3,~t4

(

, where ~t1 “ xa, a, b, cy, ~t2 “ xb, b, c, dy,196

~t3 “ xa, b, c, by, and ~t4 “ xa, b, a, cy, this constraint is satisfied in ~t1, ~t2, and ~t3,197

but not in ~t4, because the second instance of a is not followed by a b in such198

trace.199

An activation of a constraint in a trace is an event whose occurrence imposes200

some obligations on the occurrence of another event (the target) in the same201

trace. E.g., a is the activation and b is the target for the Response constraint202

lpa Ñ 3bq, because the execution of a forces b to be executed eventually. When203

a trace is compliant w.r.t. a constraint, every activation leads to a fulfilment.204

Consider, again, the Response constraint lpa Ñ 3bq. In trace~t1, the constraint205

is activated and fulfilled twice, whereas, in ~t3, the same constraint is activated206

and fulfilled only once. On the other hand, when a trace is non-compliant, an207

activation can lead to a fulfilment but at least one activation in the trace leads208

to a violation. For example, in trace ~t4, the Response constraint lpa Ñ 3bq209

is activated twice: the first activation leads to a fulfilment (eventually b oc-210

curs) and the second activation to a violation (b does not occur subsequently).211

An algorithm to identify fulfilments and violations in a trace is presented in [18].212

213

In the following, we will use C to denote the set of Declare templates. Form-214

ally, a Declare template C{n P C is a predicate of arity n ě 1, with C represent-215

ing the name of the template and arity n specifying the number of parameters.216

For instance, the aforementioned Response{2 constraint has arity n “ 2 and217

Response as name. Cpx, yq is an example of the notation we adopt to expli-218

citly identify the two parameters (x, y) of template C of arity 2. In standard219

Declare, constraints are templates whose parameters are assigned single dis-220

tinct activities. We will denote as CΣ the set of constraints that are obtained221

by assigning parameters of every C{n P C to n-permutations of distinct activ-222

ities in the log alphabet Σ. Having, e.g., Σ “ ta, b, cu, CΣ would comprise223

Responsepa, bq, Responsepb, aq, Responsepb, cq, Responsepc, bq, Responsepa, cq,224

Responsepc, aq, RespondedExistencepa, bq, RespondedExistencepb, aq, etc. We225

will use Cpa, bq P CΣ for indicating a generic constraint that assigns activit-226

ies a and b (a, b P Σ) to the parameters of the corresponding template C. C is227

a shorthand notation that denotes a generic constraint.228

In the remainder of this paper, we will focus on Declare constraints of arity229

2 known as relation constraints. In particular, we will consider the ones that230

are listed in Table 1, hereinafter indicated as unidirectional positive relation231
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constraints. The activation and target of a relation constraint C are henceforth232

denoted as C|‚ and C|ñ. Thus, Responsepa, bq|‚ is a and Responsepa, bq|ñ233

is b. Vice-versa, Precedencepa, bq|‚ is b and Precedencepa, bq|ñ is a. Table 1234

reports activations and targets for all the listed templates. In the semantics of235

a unidirectional positive relation constraint C “ Cpx, yq,236

1. tC|‚u X tC|ñu “ H, and237

2. C|ñ always falls under an even number of negations  .238

In the literature, relation templates of arity 2 that do not impose rule 1 are239

known as “coupling constraints”, whereas those that do not impose rule 2 are240

named “negative constraints” [19].241

Table 1 contains the list of activations and targets for the templates we242

consider in this paper. In Section 3, we will explain how the standard Declare243

specification is extended towards Target-Branched Declare.244

2.3. Support and confidence245

To evaluate the relevance of a Declare constraint, we adopt two metrics246

proposed in the association rule mining literature [20]. The first one is meant to247

assess the reliability of a constraint w.r.t. a log, i.e., support. The second metric248

is meant to assess the relevance of a constraint w.r.t. a log, i.e., confidence.249

The support of a Declare constraint C in an event log is defined as the250

proportion of fulfilments XLpCq of C in log L. For relation constraints, we251

can rely on the concept of activation. Therefore, we specify the support as252

the fraction of occurring activations of C that do not violate the constraint,253

w.r.t. the total number of activations in the log. Formally, let #Lpaq be the254

function # : ΣˆM pΣ˚q Ñ N, with N set of positive integers, that counts the255

occurrences of activity a P Σ in log L P M pΣ˚q; let XLpCq be the function256

X : CΣ ˆM pΣ˚q Ñ N that counts the number of fulfilments of constraint C P257

CΣ in log L PM pΣ˚q. Then, the support SLpCq of a constraint C in a log L is258

defined as a function S : CΣ ˆM pΣ˚q Ñ r0, 1s Ď R, with R set of real numbers,259

expressed as follows:260

SLpCq “
XLpCq

#LpC|‚q
(1)

where C|‚ is the activation of constraint C.261

The second metric is meant to assess the relevance of a constraint w.r.t. a262

log. It is named confidence, and scales the support of a constraint by the number263

of traces containing its activation. For the definition of confidence C of relation264

constraints, we rely on the notion of activity-related log fraction [21], i.e., the265

fraction of traces in which a given activity occurs at least once. Let ∅Lpaq be266

the function ∅ : Σ ˆM pΣ˚q Ñ N that counts the traces of log L P M pΣ˚q in267

which activity a P Σ does not occur. Then, the activity-related log fraction is268

expressible as 1´ ∅Lpaq
|L| where |L| is the number of traces in L. Therefore, given269
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a log L PM pΣ˚q and a constraint C P CΣ, the confidence of C can be defined270

as a function C : CΣ ˆM pΣ˚q Ñ r0, 1s Ď R, expressed as follows:271

CL pCq “ SLpCq ˆ

ˆ

1´
∅LpC|‚q
|L|

˙

. (2)

3. Target-Branched Declare272

In this section, we define Target-Branched Declare (TBDeclare). It extends273

Declare such that the target is not a single activity but a set of activities (see274

Table 2). This means that Responsepa, tb, cuq is a TBDeclare constraint stat-275

ing that “if a occurs, b or c must eventually follow”. tb, cu is referred to as a276

set-parameter. The cardinality of this set, indicating the number of branches, is277

called branching factor of the constraint. The class of TBDeclare exhibits some278

interesting properties, i.e., subsumption hierarchy and set-dominance. Sub-279

sumption hierarchy has already been investigated in [22] for branched Declare.280

In the following, we prove that the property of set-dominance holds. Then,281

we discuss implications of this property in terms of constraint support. These282

properties will be exploited in the mining algorithm.

TBDeclare template LTLf semantics

RespondedExistencepx,Y q 3xÑ 3

´

Žβ
i“1 yi

¯

Responsepx,Y q l

´

xÑ 3

´

Žβ
i“1 yi

¯¯

AlternateResponsepx,Y q l

´

xÑ©
´

 x U
Žβ
i“1 yi

¯¯

ChainResponsepx,Y q l

´

xÑ©
´

Žβ
i“1 yi

¯¯

PrecedencepY , xq  xW
´

Žβ
i“1 yi

¯

AlternatePrecedencepY , xq PrecedencepY , xq ^l pxÑ©PrecedencepY , xqq

ChainPrecedencepY , xq l

´

©xÑ
´

Žβ
i“1 yi

¯¯

Table 2: LTLf semantics for TBDeclare templates (Y “ ty1, . . . , yβu, with β
branching factor of the constraint).

283

Formally, TBDeclare is a sub-class of a more general class of constraints284

extending standard Declare, which we will henceforth refer to as Multi-valued285

Declare. As said in Section 2.2, standard Declare imposes that template para-286

meters are interpreted as single activities of the log alphabet Σ. Multi-valued287

Declare comprises the same set of templates of standard Declare, yet allowing288

the interpretation of parameters as elements of a boolean algebraic structure289

xΣ, ‹y (a.k.a. groupoid [23]) consisting of a set of symbols Σ (i.e., the log alpha-290

bet) and a binary operator ‹ under which the structure is closed. Thus, given291

a, b P Σ, and ρ “ a ‹ b, then ρ P xΣ, ‹y. A semigroup xΣ, ˚y is a groupoid s.t.292

operation ˚ is associative.293
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Branched Declare [2] restricts the algebraic structure to a join-semilattice294

xΣ,_y, i.e., an idempotent commutative semigroup, where _ is the join-295

operation [24]. For any semigroup xΣ, ˚y a natural partial-order relation296

can be defined [25]. A fortiori, we define it here for join-semilattices as297

ρ ě ρ1 iff ρ_ ρ1 “ ρ, for ρ, ρ1 P xΣ,_y. In the domain of boolean algebras, ě is298

defined by the inverse entailment relation ), and the equality “ by the logical299

equivalence ”. Indeed, e.g., considering a_ b as ρ and a as ρ1, we clearly have300

that a_ b ) a as a_ b_ a ” a_ b.301

TBDeclare belongs to the class of unidirectional positive relation constraints302

that further restrict Branched Declare as follows: the interpretation of the target303

can be an element of xΣ,_y, whereas the activation is interpretable only as a304

single activity in Σ. Thus, the example TBDeclare constraint given at the305

beginning of this section interprets the activation of Response as a and its target306

as b _ c, where a, b and c are respectively assigned with a, b and c, meaning307

that “if a occurs, b or c must eventually follow.” Notice that the join-operation308

of the join-semilattice in boolean algebra is such that semantics of Branched309

Declare and TBDeclare can still be expressed within LTLf .310

3.1. Set-Dominance311

In this section, we formally prove that set-dominance holds for TBDeclare,312

mainly relying on the property of monotonicity of the LTLf temporal operators.313

To this extent, we first define the class of Monotonic Branched Declare. Then,314

we show that two Monotonic Branched Declare constraints C and C 1 are such315

that if the assigned parameters of C are included in the assigned parameters of316

C 1, then the support of C is lower than or equal to the support of the C 1. The317

property of monotonic non-decreasing trend of support w.r.t. the containment318

of set-parameters, will also be simply referred to as set-dominance for short.319

Finally, we show that for all Branched Declare constraints, the property of320

set-dominance holds true.321

322

Preliminarily, we notice that, for join-semilattices, a bijective mapping323

µ can be established that connects elements of xΣ,_y to elements of xΣ,Yy324

where Y is the set-union operation: µ : xΣ,_y Ñ xΣ,Yy. It can be shown325

that µ is an isomorphism preserving the partial-order ě defined on xΣ,_y326

by the partial-order given by set-containment Ě in xΣ,Yy. In the following,327

we indicate by means of a capital letter, e.g., X or Y , a parameter that is328

interpreted as an element of xΣ,_y. Therefore, Responsepx,Y q specifies a329

template where the second parameter is interpreted as an element of xΣ,_y330

(cf. Table 2). Without loss of generality, we identify every element ρ in xΣ,_y331

by its µ-mapped set S “ µ pρq in xΣ,Yy. Hence, Response having a as the332

activation and b _ c as the target will be denoted as Responsepa, Sq where333

S “ b Y c. S will thus be also referred to as set-parameter. As an alternative,334

we will also adopt for such constraint the following notation: Responsepa, tb, cuq.335

336

Monotonic Branched Declare is the class of Multi-valued Declare templates337

for which it holds true that any two constraints CpR1, . . . , Rnq and CpS1, . . . , Snq,338
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obtained as instantiations of the same template C{n P C with set-parameters339

R1, . . . , Rn and S1, . . . , Sn, with Si Ě Ri for every i P r1,ns, are such that340

CpR1, . . . , Rnq ( CpS1, . . . , Snq.341

Theorem 1 (Set-dominance of Monotonic Branched Declare). Given342

the non-empty sets of activities R1, . . . , Rn and S1, . . . , Sn of a log alphabet Σ343

such that Σ Ě Si Ě Ri for every i P r1,ns, a log L and a Monotonic Branched344

Declare template C, then the support of C 1 “ CpS1, . . . , Snq is greater than or345

equal to the support of C “ CpR1, . . . , Rnq, i.e., SLpC
1q ě SLpCq.346

Proof 1. Because the log L over which the support is evaluated is the same347

for both constraints, we focus on the number of fulfilments, namely XLpCq and348

XLpC
1q, for constraints C and C 1. By definition of Monotonic Branched De-349

clare, if Si Ě Ri for every i P r1,ns, where n is the arity of constraint template350

C, then C |ù C 1. Therefore, due to the definition of model for a constraint351

w.r.t. a log, we have that XLpCq ď XLpC
1q. The proof proceeds per absurdo. If352

XLpCq ą XLpC
1q, there would necessarily exist at least a case that verifies C353

but not C 1. This would contradict the fact that C |ù C 1. l354

Lemma 1 (Monotonicity of TBDeclare). Target-Branched Declare be-355

longs to the class of Monotonic Branched Declare, i.e., given an activity a356

in the log alphabet Σ, two non-empty sets of activities S and S1 such that357

S Ď S1 Ď Σ, and a TBDeclare template C, then Cpa, Sq |ù Cpa, S1q.358

Proof 2. In the base case, S “ S1 “ tb1, . . . , bnu. Therefore, Cpa, Sq ” Cpa, S1q.359

For the proof in the inductive case S1 “ S
Ť

tbn`1u where bn`1 R S, we resort360

on the fact that the semantics of constraint templates of Declare are expressible361

by means of LTLf . Among operators used in LTLf ,  is known to be anti-362

monotonic, whereas all the other LTLf operators are monotonic. The target of363

a Declare unidirectional positive relation constraint template always falls under364

an even number of  operators. By definition of TBDeclare, only the target is365

meant to be replaced by elements of the boolean join-semilattice xΣ,_y. Hence,366

the target set-parameter always lets the activities assigned fall under an even367

number of negations. This guarantees the monotonicity of the constraint, due368

to the principle of non-contradiction.1 l369

The section now proceeds with the application of the inductive part of the370

proof to each template under examination, listed in Table 1.371

RespondedExistence. RespondedExistencepa, S1q ” 3aÑ 3 p
Žn
i“1 bi _ bn`1q.372

Recalling that, given two LTLf formulae ϕ and ψ:373

(a) ϕÑ ψ ”  ϕ_ ψ, and374

(b) 3pϕ_ ψq ” 3ϕ_3ψ,375

1Given a boolean formula ϕ,  p  ϕq ” ϕ.
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we have that RespondedExistencepa, S1q ”  3a _ p
Žn
i“1 3biq _ 3bn`1. Con-376

sequently, RespondedExistencepa, S1q ” RespondedExistencepa, Sq _ 3bn`1.377

Given two LTLf formulae ϕ and ψ378

(c) ϕ |ù ϕ_ ψ379

due to the monotonicity of _. Therefore, Lemma 1 for RespondedExistence is380

proven.381

Response. Responsepa, S1q ” l p a_3 p
Žn
i“1 biq _3bn`1q due to (a) and (b).382

We have also that:383

(d) if ϕ |ù ψ, then lϕ |ù lψ384

for the monotonicity of the temporal operators in LTLf . Therefore,385

lϕ |ù lpϕ_ ψq, because of (c). Since Responsepa, Sq ” l p a_3 p
Žn
i“1 biqq,386

we have that Lemma 1 holds true for Response.387

AlternateResponse. As a consequence of the application of (a),388

AlternateResponsepa, S1q ” l p a_© p a U p
Žn
i“1 bi _ bn`1qqq, whereas389

AlternateResponsepa, Sq ” l p a_© p a U p
Žn
i“1 biqqq.390

Given the LTLf formulae ϕ, ψ and ψ1,391

(e) if ψ |ù ψ1, then ϕ U ψ |ù ϕ U ψ1392

due to the monotonicity of the temporal operators in LTLf . Therefore, we have393

that p a U p
Žn
i“1 biqq |ù p a U p

Žn
i“1 bi _ bn`1qq, because of (c).394

Furthermore, given two LTLf formulae ϕ and ψ,395

(f) if ϕ |ù ψ, then ©ϕ |ù©ψ396

due to the monotonicity of the temporal operators in LTLf . As a consequence,397

© p a U p
Žn
i“1 biqq |ù© p a U p

Žn
i“1 bi _ bn`1qq.398

Given the LTLf formulae ϕ, ψ and ψ1,399

(g) if ψ |ù ψ1, then ϕ_ ψ |ù ϕ_ ψ1.400

This leads to the conclusion that Lemma 1 holds true for AlternateResponse,401

considering (d).402

ChainResponse. Given two LTLf formulae ϕ and ψ, we have that:403

(h) ©pϕ_ ψq ”©ϕ_©ψ.404

Applying (a) and (h), we have that ChainResponsepa, S1q ” l p a_© p
Žn
i“1 biq _©bn`1q,405

whereas ChainResponsepa, Sq ” l p a_© p
Žn
i“1 biqq. Lemma 1 is proven for406

ChainResponse then, due to (c) and (d).407

Precedence. By definition of W , we have that408

PrecedencepS1, aq ” pl aq _ p a U p
Žn
i“1 bi _ bn`1qq, and409

PrecedencepS, aq ” pl aq _ p a U p
Žn
i“1 biqq. Lemma 1 naturally ex-410

tends to the case of Precedence by applying (c), since it is already proven411

that p a U p
Žn
i“1 biqq |ù p a U p

Žn
i“1 bi _ bn`1qq (see demonstration for412

AlternateResponse).413
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AlternatePrecedence. For what AlternatePrecedence is regarded, the two terms414

of the conjunction have to be considered separately. The first term refers to415

Precedence, and it is already proven that PrecedencepS, aq |ù PrecedencepS1, aq.416

The second term is l p a_©PrecedencepS, aqq for AlternatePrecedencepS, aq417

and l
`

 a_©PrecedencepS1, aq
˘

for AlternatePrecedencepS1, aq, due to (a). As418

a consequence, l p a_©PrecedencepS, aqq |ù l
`

 a_©PrecedencepS1, aq
˘

,419

due to (c) and (d). As a conclusion, since it is known that420

(i) if ϕ |ù ϕ1 and ψ |ù ψ1 then ϕ^ ψ |ù φ1 ^ ψ1421

we can conclude that Lemma 1 holds true for AlternatePrecedence.422

ChainPrecedence. We have that ChainPrecedencepa, S1q ” l p © a_ p
Ž

SPS biq _ bn`1q423

and ChainPrecedencepa, Sq ” l p © a_ p
Ž

SPS biqq, due to (a). Considering424

(c) and (d), it is thus proven that Lemma 1 is verified.425

426

Following Theorem 1 describes the monotonic non-decreasing trend of the427

support for constraints w.r.t. set-containment of the target set of activities for428

TBDeclare.429

Corollary 1 (Set-dominance of TBDeclare). Given an activity a in the430

log alphabet Σ, two non-empty sets of activities S, S1 such that Σ Ě S1 Ě S,431

a log L and a TBDeclare template C, then the support of Cpa, S1q is greater than432

or equal to the support of Cpa, Sq, i.e., SL

`

Cpa, S1q
˘

ě SLpCpa, Sqq.433

Proof 3. Directly follows from Theorem 1 and Lemma 1. l434

As a final remark, we highlight that the notion of support introduced in Equa-435

tion (1) especially for relation constraints, is still compliant with Corollary 1 in436

the light of the proof of Theorem 1. In fact, it still holds that the denominator437

of the proportion remains the same for both constraints, as the activations are438

the same along the log, and the activations that do not violate Cpa, S1q cannot439

be less than the ones of Cpa, Sq. Otherwise, if at least a fulfilment of Cpa, Sq440

were not a fulfilment of Cpa, S1q, it would constitute a counterexample against441

Lemma 1, according to which Cpa, Sq |ù Cpa, S1q.442

443

In the following section, we show how the discovery algorithm exploits the444

fact that the support of TBDeclare is monotonously non-decreasing w.r.t. the445

set-containment relation of target set-parameters.446

4. Discovery447

This section describes MINERful for Target-Branched Declare (TB-448

MINERful), a three-step algorithm that, starting from an input log L, (i) builds449

a knowledge base, which keeps statistics on activity occurrences in L; (ii) queries450

the knowledge base for support and confidence of constraints in L; (iii) prunes451

constraints not having sufficient support and confidence. The input of the al-452

gorithm is a log L. Three thresholds can be specified: (i) branching factor, i.e.,453
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the maximum branching factor allowed for the discovered constraints, (ii) min-454

imum support, and (iii) minimum confidence.455

4.1. The Knowledge Base456

The first step is the construction of a knowledge base, which keeps statistics457

on the occurrences of activities in the log. It comprises the 9 functions listed458

further below in this section. ∅ and # were already outlined in Section 2.3 and459

are here formally defined for the sake of completeness.460

Following the same rationale of the symbology introduced in Section 2.2,461

set-parameters are here indicated with symbols S, T Ď Σ. S “ tb, cu is possibly462

assigned with tb, cu.463

Let K “ tŻ,Ž,ŽŻ, §§, đđ, í, ìu and K1 “ t∅, #u be two sets of functions464

defined as follows. In the examples, “ν and “ν1 specify the number that would465

be assigned to the functions respectively in K and K1, given a log. As an example466

log we use L “ txa, a, b, a, c, ay, xa, a, b, a, c, a, dyu defined over Σ “ ta, b, c, du.467

∅ : ΣˆM pΣ˚q Ñ N. Function ∅ pa,Lq (hereinafter, ∅Lpaq for short) counts468

the traces of L P M pΣ˚q in which a P Σ did not occur. For instance,469

∅Lpaq “ν1 0, because a occurs in every trace in L. ∅Lpdq “ν1 1, instead.470

# : ΣˆM pΣ˚q Ñ N. Function # pa,Lq (hereinafter, #Lpaq for short) counts471

the occurrences of a P Σ in L PM pΣ˚q. Therefore, #Lpaq “ν1
8.472

Ż: Σˆ ℘ pΣq ˆM pΣ˚q Ñ N. 2 Function Ż pa, S,Lq (hereinafter, ŻL pa, Sq for473

short) counts the occurrences of a P Σ with no following b P S “474

tb1, . . . , bβu (for any β P r1, |Σ|s) in the traces of L P M pΣ˚q. In the475

example, ŻL pa, tduq “ν 4, ŻL pa, tbuq “ν 4, and ŻL pa, tb, cuq “ν 2.476

Ž: Σˆ ℘ pΣq ˆM pΣ˚q Ñ N. Function Ž pa, S,Lq (hereinafter, ŽL pa, Sq for477

short) counts the occurrences of a P Σ with no preceding b P S “478

tb1, . . . , bβu (for any β P r1, |Σ|s) in the traces of L P M pΣ˚q. Thus,479

e.g., ŽL pa, tduq “ν 8, ŽL pa, tbuq “ν 4, and ŽL pa, tb, cuq “ν 4.480

ŽŻ: Σˆ ℘ pΣq ˆM pΣ˚q Ñ N. Function ŽŻ pa, S,Lq (hereinafter, ŽŻL pa, Sq for481

short) counts the occurrences of a P Σ with no co-occurring b P S “482

tb1, . . . , bβu (for any β P r1, |Σ|s) in the traces of L P M pΣ˚q. Therefore,483

ŽŻL pa, tduq “ν 4, and ŽŻL pa, tb, duq “ν 0.484

§§ : Σˆ ΣˆM pΣ˚q Ñ N. Function §§ pa, b,Lq (hereinafter, §§Lpa, bq for short)485

counts the occurrences of a P Σ having b P Σ as the next event in the486

traces of L PM pΣ˚q. Hence, e.g., §§Lpa, bq “ν 2, and §§Lpa, dq “ν 1.487

đđ : Σˆ ΣˆM pΣ˚q Ñ N. Function đđ pa, b,Lq (hereinafter, đđLpa, bq for short)488

counts the occurrences of a P Σ having b P Σ as the preceding event in the489

traces of L PM pΣ˚q. In the example, đđLpa, bq “ν 2, and đđLpa, dq “ν 0.490

2By ℘ pΣq, we mean the power set of Σ.
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í: Σˆ ℘ pΣq ˆM pΣ˚q Ñ N. Function í pa, S,Lq (hereinafter, íL pa, Sq for491

short) counts how many times, after an occurrence of a P Σ, a repeats492

until the first b P S “ tb1, . . . , bβu follows in the same trace, for all the493

traces of L P M pΣ˚q. If no b P S appears in the trace after a, the494

repetitions after a are not counted. In the example, íL pa, tbuq “ν 2,495

íL pa, tcuq “ν 4, íL pa, tb, cuq “ν 2, and íL pa, tb, duq “ν 3.496

ì: Σˆ Σβ ˆM pΣ˚q Ñ N. Function ì pa, S,Lq (hereinafter, ìL pa, Sq for497

short) is similar to íL pa, Sq, but reading the traces of L P M pΣ˚q con-498

trariwise. Thus, ìL pa, tbuq “ν 2, ìL pa, tcuq “ν 0, ìL pa, tb, cuq “ν 0,499

and ìL pa, tb, duq “ν 2.500

The knowledge base is thus a tuple KB “ xΣ,L,K,K1, ν, ν1y, consisting of a501

log alphabet Σ, a log L P M pΣ˚q, two sets of functions K and K1, and two502

interpretation functions ν1 : K1 ˆ Σˆ LÑ N and ν : Kˆ Σˆ ℘ pΣq ˆ LÑ N.503

ν1 assigns an integer value to the functions of the knowledge base that pertain504

to a single activity, for all the activities in the log alphabet, on the basis of the505

given log. ν assigns an integer value to the functions of the knowledge base506

that pertain to the interplay of every activity with all subsets of other activities507

in the log alphabet, on the basis of the given log. Next, we discuss how the508

knowledge base is built based on an input log.509

4.2. Building the Knowledge Base510

The objective of the algorithm for building the knowledge base formally is511

the definition of the interpretation functions that is consistent with the given512

log and log alphabet. To this extent, we adopt different approaches for different513

functions. However, the common characteristic is that they do not need more514

than one parse of the traces of the log to update the knowledge base. This leads515

to a reduction in the computation time. In particular, it makes the algorithm516

linear w.r.t. the number of traces.517

The rationale behind the technique is that the parsing of the log is done for518

counting (i) the occurrences and misses of single activities a P Σ, and (ii) the519

co-occurrences and misses of pairs of activities a, b P Σ in each trace. Variables520

storing such counts will be named (i) singleton counters and (ii) pairwise coun-521

ters, respectively. Singleton and pairwise counters refer to specific elements of522

the knowledge base. For the sake of readability, counters will be henceforth523

identified by a N (tele-type) letter, indexed by the (parametric) activities that524

they consider. The symbol put at the apex specifies the element of the know-525

ledge base for which the counter is meant to be utilised. For instance, singleton526

counter N#
a counts the total number of occurrences of a in the log. In log527

L “ txa, a, b, a, c, ay, xa, a, b, a, c, a, dyu, N#
a “ 8. Pairwise counter N

Ż

a,b is dedic-528

ated to counting the occurrences of a in a trace, after which no b occurs. In log529

L, NŻa,b “ 4. NŻa,b is discussed in detail in Section 4.2.2.530

Pairwise counters do not take into account the relation of an activity a with531

sets of other activities, though. On the other hand, computing a value for each532

S P ℘ pΣztauq would be impractical. Therefore, we build differential cumulative533
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set-counters. They are named “cumulative” because they derive co-occurrences534

and misses of activity a with sets of activities S “
Ťβ
i“1tbi : bi P Σztauu with535

β P r1, |Σ|s, starting from the values of single pairwise counters that refer to536

pairs of activities a, bi. They are qualified as “differential” due to the fact that537

they store values by differences. In the remainder, differential cumulative set-538

counters will be identified by symbol ∆ (indicating the differential nature), put539

in front of the pairwise counter from which they are derived. For instance, ∆NŻa,S540

is a differential cumulative set-counter that stores the (differential) number of541

cases in which a is not followed by any of the activities in S.542

Co-inductively, given S Ď Σz tau, ∆N
Ż

a,S reports the difference between543

(i) the number of times in which no b P S occurred and (ii)
ř

TĚS

∆N
Ż

a,T, hav-544

ing T Ď Σz tau. After parsing log L, we thus have the following values:545

(i) ∆N
Ż

a,tbu “ 1, (ii) ∆N
Ż

a,tb,cu “ 1, (iii) ∆N
Ż

a,tb,c,du “ 1, (iv) ∆N
Ż

a,tb,du “ 1,546

(v) ∆N
Ż

a,tdu “ 2.547

In fact, none of the activities in tb, cu occurred after a in 2 cases. It also548

holds true that none of the activities in tb, c, du occurred after a in 1 case, and549

tb, cu Ď tb, c, du. Therefore,550

∆N
Ż

a,tb,c,du “ 1, and ∆N
Ż

a,tb,cu “ 1, i.e., ∆NŻa,tb,cu “ 2´ ∆N
Ż

a,tb,c,du.551

By the same line of reasoning, since b did not occur after a in 4 cases, ∆NŻa,tbu “ 1,552

i.e., ∆NŻa,tbu “ 4´ ∆N
Ż

a,tb,cu ´ ∆N
Ż

a,tb,du ´ ∆N
Ż

a,tb,c,du.553

The next section explains the procedure computing such values in detail.554

The differential cumulative set-counters are used to compactly store the555

values to assign to interpretation functions. In the case of Ż, it is done as556

follows:557

ŻL pa, Sq “ν
ÿ

TĚS

∆N
Ż

a,T

In the example log, indeed,558

ŻL pa, tbuq “ν 4, and ŻL pa, tb, cuq “ν 2,559

i.e.,560

ŻL pa, tbuq “ν ∆N
Ż

a,tbu ` ∆N
Ż

a,tb,cu ` ∆N
Ż

a,tb,c,du, and561

ŻL pa, tb, cuq “ν ∆N
Ż

a,tb,cu ` ∆N
Ż

a,tb,c,du.562

4.2.1. The main algorithm563

Algorithm 1 shows the main algorithm that leads to the building of the564

knowledge base, based on a log alphabet Σ over a log L.565

Notations and conventions. In the remainder of this section, we will assume566

that the concatenation operator ˝ is defined for sequences, i.e., given a sequence567

~s “
@

s1, . . . , s|~s|
D

and an element s1, then ~s ˝ s1 “
@

s1, . . . , s|~s|, s
1
D

. Since a trace568

of a log is defined as a sequence of events, ˝ also applies to appending events to569

traces. If we indicate with k P K the generic function of the set of functions K,570

the generic pairwise counter on activities a, b P Σ will be denoted as Nka,b, and571

the generic differential cumulative set-counter on a P Σ, S Ď Σ as ∆Nka,S. As a572
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Algorithm 1: EvaluateKBpΣ,Lq, the main algorithm for the building
of the knowledge base

Input: A log alphabet Σ and a log L “
@

~t1, . . . ,~t|L|
D

P Σ˚, where ~ti “
A

t1, . . . , t|~t|

E

Output: The knowledge base, whose values are assigned on the basis of Σ and L

1 for iÐ 1 to |L| do
/* Initialisation */

2 ~t R
i Ð ~ti with events in reverse order

3 foreach a P Σ, b P Σz tau do // Reset of pairwise counters

4 N
Ż

a,b Ð 0 ; NŽa,b Ð 0 ; NŽŻa,b Ð 0 ; Ní
a,b Ð 0 ; Nì

a,b Ð 0

/* Update of singleton counters */

5 foreach a P Σ : a R ~ti do // Activities not occurring in trace ~ti
6 N∅a Ð N∅a ` 1

7 for j Ð 1 to
ˇ

ˇ~ti
ˇ

ˇ do
8 aÐ tij
9 N#

a Ð N#
a ` 1

/* Update of pairwise counters and differential cumulative set-counters */

10 foreach ∆N
Ż
ia,S

P EvalMissingAfter
`

Σ,~ti
˘

do ∆N
Ż
a,S Ð ∆N

Ż
a,S ‘ ∆N

Ż
ia,S

11 foreach ∆N
Ž
ia,S

P EvalMissingBefore
`

Σ,~t Ri
˘

do ∆N
Ž
a,S Ð ∆N

Ž
a,S ‘ ∆N

Ž
ia,S

12 foreach ∆N
ŽŻ
ia,S

P EvalMissing
`

Σ,~ti
˘

do ∆N
ŽŻ
a,S Ð ∆N

ŽŻ
a,S ‘ ∆N

ŽŻ
ia,S

13 foreach ∆N
í
ia,S

P EvalFollowingRepsInBetween
`

Σ,~ti
˘

do ∆N
í
a,S Ð ∆N

í
a,S ‘ ∆N

í
ia,S

14 foreach ∆N
ì
ia,S

P EvalPrecedingRepsInBetween
`

Σ,~t Ri
˘

do ∆N
ì
a,S Ð ∆N

ì
a,S ‘ ∆N

ì
ia,S

15 foreach N§§
ia,b

P EvalFollowing
`

Σ,~ti
˘

do N§§
a,b Ð N§§

a,b ` N§§
ia,b

16 foreach Nđđ
ia,b

P EvalPreceding
`

Σ,~ti
˘

do Nđđ
a,b Ð Nđđ

a,b ` Nđđ
ia,b

shorthand notation for sets of pairwise counters referring to all a P Σ, b P Σztau,573

we will adopt the usual pairwise counter notation, having a @@ pedix in place of574

the referred activities (e.g., NŻ@@ “
Ť

aPΣ,bPΣztau

N
Ż

a,b).575

Description of the algorithm. The algorithm iterates over every trace of L. At576

every iteration i, the pairwise counters are reset to 0, and a variable ~t R
i keeps577

a clone of the trace under analysis, with events reversed in their original order.578

Thereafter, singleton counters are updated. For every activity a P Σ that does579

not occur in the trace under analysis, N∅a is incremented by 1. In the sample580

trace xa, a, b, a, c, ay, N∅a “ 0, because a occurs in it. N∅d “ 1 instead. For each581

activity a, counter N#
a is incremented by 1 every time a occurs. Thus, N#

a “ 4582

in the sample trace, since a occurs 4 times, whereas N
#
d “ 0. Consequently, we583

have the following, for every a P Σ:584

#Lpaq “ν1
N#
a (3)

and585

∅Lpaq “ν1
N∅a . (4)

586

587
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Algorithm 2: Procedure Pairwise2DiffpΣ, Nk@@q, deriving differential cu-
mulative set-counters from pairwise counters.

Input: A log alphabet Σ and a set of pairwise counters Nk@@
Output: A set of differential cumulative set-counters derived from Nk@@

1 foreach a P Σ do

2 for nÐ 1 to max
bPΣ

!

Nka,b Ď Nk@@

)

do

3 Sn Ð
!

b : Nka,b ě n
)

4 ~n “ tn : Sn ‰ Hu sorted by n descending
5 for iÐ 1 to |~n| ´ 1 do
6 nÐ ~ni
7 n1 Ð ~ni`1

8 ∆Nka,Sn
Ð pn´ n1q

9 return
Ť

aPΣ
nP~n

∆Nka,Sn

The computation of pairwise counters and corresponding differential cumu-588

lative set-counters are generally less trivial. Therefore, separate subsections589

follow that describe each dedicated procedure (EvalMissingAfter, Eval-590

MissingBefore, . . . ). All such procedures except EvalFollowing and591

EvalPreceding return new sets of differential cumulative set-counters (each592

identified as ∆NŻia,S, ∆NŽia,S, . . . ). Each element of these new sets are used to up-593

date the current value of the corresponding differential cumulative set-counter.594

We assume that all differential cumulative set-counters are initially assigned595

with a default value of 0. The addition operation over differential cumulative596

set-counters, ‘, is defined as follows:597

∆Nka,S ‘ ∆Nkia1,S1 “

#

∆Nka,S ` ∆Nkia1,S1 if a “ a1 and S “ S1

∆Nka,S otherwise

Given an example log L “ txa, a, b, a, c, ay, xa, a, b, a, c, a, dy, xc, a, a, dyu, the598

parsing of the first trace leads to the following values of the differential599

cumulative set-counters referred to activity a:600

(i) ∆N
Ż

a,tb,c,du “ 1, (ii) ∆N
Ż

a,tb,du “ 1, and (iii) ∆N
Ż

a,tdu “ 2.601

After the analysis of the second trace, we have:602

(i) ∆N
Ż

a,tbu “ 1, (ii) ∆N
Ż

a,tb,cu “ 1, (iii) ∆N
Ż

a,tb,c,du “ 1, (iv) ∆N
Ż

a,tb,du “ 1, and603

(v) ∆N
Ż

a,tdu “ 2.604

Finally, the third trace leads to the following values:605

(i) ∆N
Ż

a,tbu “ 1, (ii) ∆N
Ż

a,tb,cu “ 3, (iii) ∆N
Ż

a,tb,c,du “ 1, (iv) ∆N
Ż

a,tb,du “ 1,606

(v) ∆N
Ż

a,tdu “ 2.607

608

Procedures EvalFollowing and EvalPreceding return instead sets of609

pairwise counters (each identified as Nđđ
ia,b and N§§

ia,b). Therefore, the update610

operation is an addition. The following subsections explain in detail all the611

procedures that compute values for pairwise counters and differential cumulative612
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Algorithm 3: Procedure EvalMissingAfterpΣ,~tq, evaluating sub-
sequent missing occurrences of activities in a trace

Input: A log alphabet Σ and a trace ~t “
A

t1, . . . , t|~t|

E

Output: The set of differential cumulative set-counters ∆NŻ derived from trace ~t

1 for iÐ 1 to
ˇ

ˇ~t
ˇ

ˇ do
2 bÐ ti
3 foreach a P Σztbu do

4 N
Ż

a,b Ð 0 // Flush operation �

5 N
Ż

b,a Ð N
Ż

b,a ` 1

6 N
Ż
@@
Ð

Ť

aPΣ,bPΣztau

N
Ż

a,b

7 return Pairwise2Diff
´

Σ, NŻ
@@

¯

Trace

a a b a c a

N
Ż

a,b 1 2 � 1 2

NŻa,c 1 2 3 � 1

N
Ż

a,d 1 2 3 4

(a) Computation of NŻa,¨

NŻa,¨ ∆NŻa,¨

N
Ż

a,b “ 1` NŻa,c “ 1 N
Ż

a,d “ 1` ñ ∆N
Ż

a,tb,c,du
“ 1

1 “ 1` ñ ∆N
Ż

a,tb, du
“ 1

2 “ ñ ∆N
Ż

a,t du
“ 2

2 4

(b) Computation of ∆NŻa,¨, given the values of NŻa,¨

Table 3: Computation of NŻa,¨ and ∆N
Ż
a,¨, given a sample trace: xa, a, b, a, c, ay.

set-counters. Each subsection concludes with the assignment of the formulation613

of the interpretation function, on the basis of the referring pairwise counter or614

differential cumulative set-counter.615

4.2.2. Count of missing events after an activity616

For evaluating ŻL pa, Sq, procedure EvalMissingAfter computes for every617

b P Σztau the value N
Ż

a,b. Algorithm 3 lists its pseudocode. Table 3a shows how618

N
Ż
a,¨ values are computed for xa, a, b, a, c, ay. NŻa,b is incremented by 1 every time619

a is read, while parsing the trace. When b is read, NŻa,b is reset to 0. The �620

symbol indicates this operation (“flush”). At the end of the trace, the value621

stored in N
Ż

a,b reports the occurrences of a after which no b occurred. In the622

example, we have N
Ż

a,b “ 2, NŻa,c “ 1 and N
Ż

a,d “ 4.623

The output of the procedure is a set of differential cumulative set-counters,624

obtained by invoking the Pairwise2Diff procedure. Passing from pairwise625

counters to differential cumulative set-counters is a linear procedure, whose626

pseudocode is listed in Algorithm 2, for general sets of pairwise counters, and627

sketched in Table 3b, especially for ∆NŻ. For each a P Σ, all pairwise counters628

Nka,b (for every b P Σ) are indexed according to their value n. A set of activities629

Sn contains those b P Σ such that Nka,b ě n. In the example, considering a as630
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∆NŻa,¨ ñ ŻL pa, ¨ q

tb, c, du “ 1 ñ ŻL pa, tb, c, duq “νŻL pa, tc, duq “νŻL pa, tcuq “ 1

tb, du “ 1 ñ ŻL pa, tb, duq “νŻL pa, tbuq “ 2

t du “ 2 ñ ŻL pa, tduq “ 4

Table 4: Interpretation of ŻL pa, ¨q for a w.r.t. all subsets of log alphabet

Σ “ ta, b, c, du, given ∆N
Ż
a,¨, for a w.r.t. tb, c, du, tb, du, and tdu

the assignment of a, S4 “ tdu, S2 “ tb, du, and S1 “ tb, c, du, because N
Ż

a,d “ 4,631

N
Ż

a,b “ 2, and NŻa,c “ 1. A sequence ~n is thus created that stores the values of632

pairwise counters in descending order. In the example, ~n is t4, 2, 1u. Elements633

of ~n are meant to act as an index for sets Sn. All elements in the sequence are634

indeed visited from the first to the second last. For each of them, a differential635

cumulative set-counter ∆Nka,Sn
is created that associates a to Sn. The value of636

∆Nka,Sn
is assigned with n´ n1, where n1 is the following element in the list.637

For example, in xa, a, b, a, c, ay, we have that ∆N
Ż

a,tb,c,du “ 1, ∆N
Ż

a,tb,du “ 1,638

and ∆N
Ż

a,tdu “ 2. Table 3b shows the passage from
!

N
Ż

a,b, NŻa,c, N
Ż

a,d

)

to ∆N
Ż

a,tb,c,du,639

∆N
Ż

a,tb,du and ∆N
Ż

a,tdu for the sample trace. It is straightforward to see that the640

differential accumulation (∆NŻa,S) allows for keeping fewer values in memory (3 in641

the example) than the possible entries for the knowledge base (ŻL pa, Sq, which642

amounts to 6). The memory saving is possible as we do not store information643

about those ∆N
Ż

a,S that amount to 0 as, for instance, ∆NŻa,tc,du in the example of644

Table 3b.645

As previously said, the interpretation of ŻL pa, Sq can be derived from this646

compact data structures as follows:647

ŻL pa, Sq “ν
ÿ

TĚS

∆N
Ż

a,T (5)

Table 4 shows the application of this derivation step for the sample trace.648

4.2.3. Count of missing events before the occurrence of an activity649

The technique seen for ŻL pa, Sq extends to the computation of ŽL pa, Sq650

with slight modifications. In fact, ŽL pa, Sq executes the procedures described651

above (i.e., computation of pairwise counters and derivation of differential cu-652

mulative set-counters, for every trace), although reversing the order in which653

the traces are parsed. We report the pseudocode in Algorithm 4 for the sake654

of completeness. Thus, e.g., the pairwise counter N
Ž

a,b is assigned with values655

in the same way in which N
Ż

a,b was computed, although parsing xa, c, a, b, a, ay656

in place of xa, a, b, a, c, ay (see Table 5). Thereafter, the differential cumulative657

set-counter ∆NŽa,S is derived from N
Ž

a,b, exactly as ∆N
Ż

a,S is derived from N
Ż

a,b.658
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Algorithm 4: Procedure EvalMissingBeforepΣ,~t Rq, evaluating pre-
ceding missing occurrences of activities in a reversed trace.

Input: A log alphabet Σ and a reversed trace ~t R
“

A

t1, . . . , t|~t R|

E

Output: The set of differential cumulative set-counters ∆NŽ derived from reversed trace ~t R

1 for iÐ 1 to
ˇ

ˇ~t R
ˇ

ˇ do
2 bÐ ti
3 foreach a P Σztbu do

4 N
Ž

a,b Ð 0 // Flush operation �

5 N
Ž

b,a Ð N
Ž

b,a ` 1

6 N
Ž
@@
Ð

Ť

aPΣ,bPΣztau

N
Ž

a,b

7 return Pairwise2Diff
´

Σ, NŽ
@@

¯

Reversed trace

a c a b a a

N
Ž

a,b 1 2 � 1 2

NŽa,c 1 � 1 2 3

N
Ž

a,d 1 2 3 4

(a) Computation of NŽa,¨

NŽa,¨ ∆NŽa,¨

N
Ž

a,b “ 2 NŽa,c “ 2` N
Ž

a,d “ 2` ñ ∆N
Ž

a,tb,c,du
“ 2

1 “ 1` ñ ∆N
Ž

a,t c,du
“ 1

1 “ ñ ∆N
Ž

a,t du
“ 1

3 4

(b) Computation of ∆NŽa,¨, given the values of NŽa,¨

Table 5: Computation of NŽa,¨ and ∆N
Ž
a,¨, given a sample trace: xa, a, b, a, c, ay.

After a trace has been completely parsed, ∆NŽa,S is ‘-added to the differential659

cumulative set-counter. As a consequence, we have that:660

ŽL pa, Sq “ν
ÿ

TĚS

∆N
Ž

a,T (6)

661

4.2.4. Count of missing events in the same trace in which an activity occurs662

For what ŽŻL pa, Sq is concerned, its computation is based on the differential663

cumulative set-counter ∆N
ŽŻ

a,S, in turn derived from pairwise counter N
ŽŻ

a,b. The664

pseudocode is listed in Algorithm 5 (procedure EvalMissingq. N
ŽŻ

a,b stores for665

each trace and each a P Σ either 0, if b occurs in the trace at least once, or the666

number of occurrences of a, if b did not occur in the trace. Referring to a and667

trace xa, a, b, a, c, ay, we have that: (i) N
ŽŻ

a,b “ 0, (ii) NŽŻa,c “ 0, and (iii) N
ŽŻ

a,d “ 4.668

The accumulation of NŽŻa,b in ∆N
ŽŻ

a,S is performed in the same way seen for ∆N
Ż

a,S669

and ∆N
Ž

a,S. It follows that:670

ŽŻL pa, Sq “ν
ÿ

TĚS

∆N
ŽŻ

a,T (7)
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Algorithm 5: Procedure EvalMissingpΣ,~tq, evaluating missing co-
occurrences of activities in a trace

Input: A log alphabet Σ and a trace ~t “
A

t1, . . . , t|~t|

E

Output: The set of differential cumulative set-counters ∆NŽŻ derived from trace ~t

1 foreach a P Σ, b P Σz tau do ?ŽŻa,b Ð J

2 for iÐ 1 to
ˇ

ˇ~t
ˇ

ˇ do
3 aÐ ti
4 foreach a P Σztbu do

5 if ?ŽŻa,b “ J then

6 N
ŽŻ

a,b Ð N
ŽŻ

a,b ` 1

7 if ?ŽŻb,a “ J then

8 N
ŽŻ

b,a Ð 0 // Flush operation �

9 ?ŽŻb,a Ð K

10 N
ŽŻ
@@
Ð

Ť

aPΣ,bPΣztau

N
ŽŻ

a,b

11 return Pairwise2Diff
´

Σ, NŽŻ
@@

¯

4.2.5. Count of repeated occurrences of an activity before other events671

For the computation of íL pa, Sq, we here present a far more efficient calcu-672

lation as opposed to the one used in [8]. The new algorithm follows the general673

framework seen so far (computation of values for pairwise counters Ní
a,b first,674

then derivation of differential cumulative set-counters ∆Ní
a,S). Its pseudocode is675

reported in Algorithm 6 (procedure EvalFollowingRepsInBetween). The676

input traces are sliced into sub-traces, at every new occurrence of a following677

the first one. Given, e.g., the sample trace xa, a, b, a, c, a, dy, it is sliced into the678

following sub-traces (see Table 6): (i) xay, (ii) xa, by, (iii) xa, cy, and (iv) xa, dy.679

Thereafter, pairwise counter Ní
a,b is computed for every sub-trace except the680

last one (sub-trace iv, xa, dy, in the example). The calculation of Ní
a,b is sim-681

ilar to the one of NŻa,b for entire traces (see Section 4.2.2), with one exception:682

not all activities b P Σ are considered, but only those that occur in the trace683

under analysis. For instance, on a trace like xa, a, b, a, c, ay, Ní
a,b would not be684

computed for b P tdu. In the example of Table 6, xa, a, b, a, c, a, dy, sub-trace685

ii, xa, by, leads to the following values of Ní
a,b: Ní

a,b “ 0, Ní
a,c “ 1, and Ní

a,d “ 1.686

The rationale is, that for every pair of a’s in the trace, the b event which misses687

in-between will eventually occur after at least two occurrences of a. Therefore,688

a is repeated at least twice before b. In fact, the last sub-trace is not considered689

in the computation of Ní
a,b, because the missing b represents an event which does690

not occur at all after a. However, this case is already covered by N
Ż

a,b.691

A new value for differential cumulative set-counter ∆Ní
a,S is aggregated from692

Ní
a,b for each b P S at every slicing point, i.e., before the next occurrence of a.693

Thereafter, it is ‘-added to the preceding values. In the example, ∆Ní

a,tb,c,du “ 1694

is calculated for subtrace i, xay. Then, from subtrace ii (xa, by), ∆Ní
1a,tc,du “ 1 is695
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Algorithm 6: Procedure EvalFollowingRepsInBetweenpΣ,~tq, eval-
uating missing co-occurrences of activities in a trace

Input: A log alphabet Σ and a trace ~t “
A

t1, . . . , t|~t|

E

Output: The set of differential cumulative set-counters ∆Ní derived from trace ~t

1 foreach a P Σ do

2 ?í
a Ð K // A flag checking whether a already occurred in the trace

3 ~sa Ð xy // A sub-trace appending events after a

4 Si Ð tu // Stores pairs that index with activity a the activity sets before which a
recurred

5 for iÐ 1 to
ˇ

ˇ~t
ˇ

ˇ do
6 aÐ ti

7 if ?í
a “ J then

/* Increment the pairwise counters for activities not in the subtrace */
8 foreach b P Σztau do
9 if b R ~sa then

10 N
í
a,b Ð N

í
a,b ` 1

/* Derive differential cumulative set-counters */

11 foreach ∆N
í

~sa,S
P Pairwise2Diff

˜

Σ,
Ť

bPΣztau

N
í
a,b

¸

do

12 Si Ð Si Y xa, Sy

13 ∆N
í
ia,S

Ð ∆N
í
ia,S

‘ ∆N
í

~sa,S

14 foreach b P Σztau do N
í
a,b Ð 0 ; // Reset the pairwise counters

15 ~sa Ð xy // Reset the substring related to a

16 else

17 ?í
a Ð J

18 ~sa Ð ~sa ˝ a

19 foreach b P Σztau do

20 if ?í
b “ J then

21 ~sb Ð ~sb ˝ a

22 return
Ť

xa,Sy PSi
∆N

í
ia,S

computed. ∆Ní
2a,tb,du “ 1 stems from sub-trace iii, i.e., xa, cy. It follows that:696

íL pa, Sq “ν
ÿ

TĚS

∆Ní
a,T (8)

697

4.2.6. Count of repeated occurrences of an activity before other events on re-698

versed traces699

The calculation of ìL pa, Sq executes the operations described for íL pa, Sq,700

reversing the order in which the trace is parsed. Thus, the pairwise counter701

Nì
a,b is assigned with values in the same way in which Ní

a,b was computed, but702

parsing, e.g., xd, a, c, a, b, a, ay in place of xa, a, b, a, c, a, dy (see Table 7). Traces703

are divided into sub-traces at every occurrence of the activation. In the example,704

the reversed trace xd, a, c, a, b, a, ay is thus sliced into: (i) xd, a, cy, (ii) xa, by,705

(iii) xay, and (iv) xay. The differential cumulative set-counter ∆Nì
a,S is derived706

from Nì
a,b exactly as ∆Ní

a,S stems from Ní
a,b. Each time a sub-trace is parsed,707
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Sliced trace N
í
a,b Ní

a,c N
í
a,d ∆Ní

a,¨

xay Ðâ 1 1 1 ∆N
í

a,tb,c,du
“ 1

xa, by Ðâ 1 1 ∆N
í
1a,t c,du

“ 1

xa, cy Ðâ 1 1 ∆N
í
2a,tb, du

“ 1

xa, dy

Table 6: Computation of Ní
a,¨ and ∆Ní

a,¨, given a sample trace: xa, a, b, a, c, a, dy.
The Ðâ symbol indicates the point in which the trace has been split (i.e., before
the next occurrence of a).

Sliced trace N
ì
a,b Nì

a,c N
ì
a,d ∆Nì

a,¨

xd, a, cy Ðâ 1 1 ∆N
ì

a,tb, du
“ 1

xa, by Ðâ 1 1 ∆N
ì
1a,t c,du

“ 1

xay Ðâ 1 1 1 ∆N
ì
2a,tb,c,du

“ 1

xay

Table 7: Computation of Nì
a,¨ and ∆Nì

a,¨, given a sample trace, xa, a, b, a, c, a, dy,
which is reversed into xd, a, c, a, b, a, ay. The Ðâ symbol indicates the point in
which the trace has been split (i.e., before the next occurrence of a).

Nì
a,b is reset to 0 for every a, b P Σ. After the next sub-trace has been parsed,708

∆Ní
a,S is ‘-added by the differential cumulative set-counter. The last sub-trace709

in the reversed trace (xay, in the example) is not considered in the computation.710

Therefore, we have that:711

ìL pa, Sq “ν
ÿ

TĚS

∆Nì
a,T (9)

712

4.2.7. Count of events immediately following the occurrence of an activity713

In order to compute the value of § §L pa, bq, the pairwise counter N§§
a,b is714

utilised. For each trace, N§§
a,b stores the occurrences of b immediately following715

a, as described in Algorithm 7 (procedure EvalFollowing). In xa, a, b, a, c, ay,716

e.g., N§§
a,b “ 1, N§§

a,c “ 1 and N§§
a,d “ 0. Traces in event logs are defined as sequences717

of events. As such, two events cannot be contemporary. Therefore, only one718

event can immediately follow the occurrence of an activity a. Owing to this,719

our technique does not require the usage of differential cumulative set-counters720

here:721

§§Lpa, bq “ν N
§§
a,b (10)

The same observation holds true for the computation of Nđđ
a,b.722
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Algorithm 7: Procedure EvalMissingpΣ,~tq, evaluating missing co-
occurrences of activities in a trace

Input: A log alphabet Σ and a trace ~t “
A

t1, . . . , t|~t|

E

Output: All values of Ż, interpreted over Σ and ~t

1 for iÐ 1 to
ˇ

ˇ~t
ˇ

ˇ do
2 if i ą 1 then aÐ b
3 bÐ ti
4 if i ą 1 then N§§

a,b Ð N§§
a,b ` 1

5 N§§
@@ Ð

Ť

aPΣ,bPΣztau

N§§
a,b

6 return N§§
@@

Target-Branched Declare constraint Support

RespondedExistencepa, Sq 1´ ŽŻLpa,Sq
#Lpaq

Responsepa, Sq 1´ ŻLpa,Sq
#Lpaq

AlternateResponsepa, Sq 1´ ŻLpa,Sq`íLpa,Sq
#Lpaq

ChainResponsepa, Sq

ř

bPS
§§Lpa,Sq

#Lpaq

PrecedencepS, aq 1´ ŽLpa,Sq
#Lpaq

AlternatePrecedencepS, aq 1´ ŽLpa,Sq`ìLpa,Sq
#Lpaq

ChainPrecedencepS, aq

ř

bPS
đđLpa,Sq

#Lpaq

Table 8: Target-Branched Declare constraints and support functions.

4.2.8. Count of events immediately preceding the occurrence of an activity723

The computation of đđLpa, bq takes advantage of pairwise counter Nđđ
a,b. For724

each trace, Nđđ
a,b stores the occurrences of b immediately preceding a. Instruc-725

tions of EvalPreceding are the same as EvalFollowing (Algorithm 7) but726

applied to a reversed trace. In xa, a, b, a, c, a, dy, e.g., Nđđ
a,b “ 1, Nđđ

a,c “ 1 and727

Nđđ
a,d “ 0. To determine these values, the same technique adopted for N§§

a,b can be728

utilised after reversing the trace. In the sample trace, xd, a, c, a, b, a, ay would be729

parsed in place of xa, a, b, a, c, a, dy:730

đđLpa, bq “ν N
đđ
a,b (11)

4.3. Querying the Knowledge Base731

Once the knowledge base is built, the support of constraints can be cal-732

culated. Table 8 lists the functions adopted to this end for each TBDeclare733

constraint. All queries build upon a Laplacian concept of probability with sup-734

port being computed as the number of supporting cases divided by the total735
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number of cases. In particular, the total number of cases is the count of oc-736

currences of the activation a P Σ in the log #Lpaq. For ChainResponsepa, Sq,737

supporting cases are those occurrences of a immediately followed by some b P S,738

i.e., § §L pa, bq. Supporting cases can be summed up because if a is followed739

by a given b P S in a trace, it cannot be immediately followed by any other740

event c P S. In other words, the two cases are mutually exclusive. However,741

this assumption does not hold true, e.g., for Responsepa, Sq. Therefore, in this742

case, we consider the non-supporting cases, when a is not followed by any of743

the b P S, i.e., ŻL pa, Sq. We get that P pEq “ 1 ´ P pEq with P pEq being the744

probability of E and E its negation. Hence, the support of Responsepa, Sq is745

1 ´ ŻLpa,Sq
#Lpaq

. Likewise, the support of RespondedExistencepa, Sq is computed on746

the basis of the non-supporting cases. The support of AlternateResponsepa, Sq747

is based on the cases when either (i) a is not followed by any b P S (ŽŻL pa, Sq),748

or (ii) a occurs more than once before the first occurrence of b P S (íL pa, Sq).749

The two conditions are mutually exclusive. Therefore, it is appropriate to sum750

them up. Analogous considerations lead to the definition of support functions751

for PrecedencepS, aq, AlternatePrecedencepS, aq and ChainPrecedencepS, aq.752

4.4. Pruning the Returned Constraints753

The power-set of activities in the log alphabet amounts to 2|Σ|´1. There-754

fore, if we name the number of TBDeclare templates as N , up to N ˆ 2|Σ|´1
755

constraints can potentially hold true. When a maximum limit of the branching756

factor β to the cardinality of the set is imposed, this number is reduced to757

|Σ| ˆN ˆ

min tβ , |Σ|´1u
ÿ

i“1

ˆ

|Σ| ´ 1

i

˙

However, even with branching factor set to 3 and |Σ| “ 10, already 3,087 con-758

straints have to be evaluated. A model including such a number of constraints759

would be hardly comprehensible for humans [26, 27]. In order to reduce this760

number, we adopt pruning based on set-dominance and on hierarchy subsump-761

tion.762

4.4.1. Pruning Based on Set-Dominance.763

The idea of this pruning approach is that if, e.g., Responsepa, tb, cuq and764

Responsepa, tb, c, duq have the same support, the first is more informative than765

the second. Indeed, stating that “if a is executed then either b or c would766

eventually follow”, entails that also “either b, c or d would eventually follow”.767

In general terms, the support of TBDeclare constraints that are instantiations768

of the same template and share the activation increases according to the set-769

containment relation of target activities (see Corollary 1). To this end, the770

mining algorithm distributes the discovered constraints, along with their com-771

puted support, on a structure like the Hasse Diagram of Figure 2. This is a772

Direct-acyclic graph, such that a breadth-first search can be implemented. For773

each constraint, the pruning technique visits the nodes, from the biggest in size774
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tu

tbu tcu tdu teu

tb, cu tb, du tb, eu tc, du tc, eu td, eu

tb, c, du tb, c, eu tb, d, eu tc, d, eu

tb, c, d, eu
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β “ 1

β “ 2
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β “ 4

Figure 2: A Hasse Diagram representing the Partial Order set containment
relation. Containing sets are at the head of connecting arcs, contained sets are
at the tail.

RespondedExistencepa, Sq

Responsepa, Sq

AlternateResponsepa, Sq

ChainResponsepa, Sq

PrecedencepS, aq

AlternatePrecedencepS, aq

ChainPrecedencepS, aq

Figure 3: Diagram showing the subsumption hierarchy relation. Constraints
that are subsumed are at the tail.

to the smallest. For instance, it can start from Responsepa, tb, c, d, euq, i.e., the775

sink node, if the branching factor is equal to the size of the log alphabet. Given776

the current node, it checks whether in one of the parent nodes a constraint777

is stored (i.e., Responsepa, tb, c, duq, Responsepa, tb, c, euq, Responsepa, tb, d, euq,778

Responsepa, tc, d, euq) with greater or equal support. If so, it marks the current779

as redundant, and proceeds the visit towards the parent nodes that are not780

already marked as redundant. Otherwise, it marks all the ancestors as redund-781

ant. The parsing ends when either (i) the visit reaches the root node or (ii) no782

parent, which is not already marked as redundant, is available for the visit.783

4.4.2. Pruning Based on Hierarchy Subsumption.784

As investigated in [4, 22, 28], Declare constraints are not independent,785

but partially form a subsumption hierarchy. We consider a constraint Cpa, Sq786

subsumed by another constraint C1pa, Sq when all the traces that comply787

with Cpa, Sq also comply with C1pa, Sq. Responsepa, Sq, e.g., is subsumed788

by RespondedExistencepa, Sq. Figure 3 depicts the subsumption hierarchy789

for TBDeclare constraints. It follows that a subsumed constraint always790
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has a support which is less than or equal to the subsuming one. This791

pruning technique aims at keeping those constraints that are the most re-792

strictive, among the most supported. Therefore, it labels as redundant793

every constraint C which is at the same time (i) subsumed by another794

constraint C 1, and (ii) having a lower support than C 1. Therefore, if,795

e.g, given a log L defined over a log alphabet Σ s.t. a P Σ and S Ď Σ,796

SLpRespondedExistencepa, Sqq ą SLpResponsepa, Sqq, then Responsepa, Sq is797

marked as redundant. However, if SLpRespondedExistencepa, Sqq “798

SLpResponsepa, Sqq, then Responsepa, Sq is preferred. This is due to the fact799

that more restrictive constraints hold more information than the less restrict-800

ive ones. The pruning approach is based on the monotone non-decrement of801

support (cf. Figure 3). It operates as follows. Starting from the root of the802

hierarchy tree, if a constraint has a support equal to one of the children, it is803

marked as redundant and the visit proceeds with the children. If a child has804

a support which is lower than the parent, it is marked as redundant. All its805

children will be automatically marked as redundant as well, as they cannot have806

a higher support.807

Both pruning techniques complement one another in reducing the set of the808

discovered constraints.809

5. Experiments and Evaluation810

In this section, we investigate the efficiency and effectiveness of our ap-811

proach. In particular, we compare the performances of the new proposed al-812

gorithms w.r.t. the ones described in [8]. Section 5.1 shows the results obtained813

by applying the proposed technique to synthetic logs. Section 5.2 validates our814

approach by using event logs from a process to solve disruptions of ICT-services815

in the Rabobank Netherlands Group ICT and from a loan application process816

of a Dutch financial institute. All experiments were run on a server machine817

equipped with Intel Xeon CPU E5-2650 v2 2.60GHz, using 1 64-bit CPU core818

and 16GB main memory quota.819

5.1. Evaluation Based on Simulation820

To test the effectiveness and the efficiency of our approach, we have defined821

a simple Declare model including the following constraints:822

• ChainPrecedence(ta,bu,c)823

• ChainPrecedence(ta,b,du,c)824

• AlternateResponse(a,tb,cu)825

• RespondedExistencepa,tb,c,d,euq826

• Responsepa,tb,cuq827

• Precedence(ta,b,c,du,e)828

and we have simulated it to generate a compliant event log as described in [4].829

In our experiments, we focus on different characteristics of the discovery task830

including average length of the traces, number of traces, and number of activ-831

ities. Moreover, we consider characteristics of the discovered model including832
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minimum support and maximum branching factor. In our experiments, we have833

run the algorithm varying the value of one variable at a time. The remaining834

variables were fixed and corresponding to 4 and 25 for minimum and maximum835

trace length respectively, 10,000 for log size, 8 for log alphabet size, 1.0 for836

support threshold, and 3 for branching factor. Each configuration has been837

averaged over 10 randomly generated logs.838

Branch.F Supp.T Equal Restr. None Branch.F Supp.T Equal Restr. None

1

0.85 0 1 13

5

0.85 2 1 85.6

0.9 0 1 12.6 0.9 2 1 86.9

0.95 0 1 9.1 0.95 2 1 81.7

1 0 0 0 1 2 1 17

2

0.85 2 4.1 95.9

6

0.85 2 1 28.3

0.9 2 3.4 73.9 0.9 2 1 25.8

0.95 2 2 69.3 0.95 2 1 22.9

1 2 0 0 1 2 1 15.8

3

0.85 2 3 232.2

7

0.85 2 1 23.2

0.9 2 3 209.1 0.9 2 1 19.4

0.95 2 2.8 159.7 0.95 2 1 18.8

1 2 1 2.4 1 2 1 16.8

4

0.85 2 1 203.7

8

0.85 2 1 24.5

0.9 2 1 202.2 0.9 2 1 21.1

0.95 2 1 186.9 0.95 2 1 18.5

1 2 1 10 1 2 1 15.1

Table 9: Summary of matching constraints in the mined process.

Effectiveness. First, we demonstrate the effectiveness of our approach by invest-839

igating the reduction effect of the proposed pruning techniques. In particular,840

we analyse the trend of the variable “number of discovered constraints” as a841

function of log alphabet size, branching factor, and support threshold, in logar-842

ithmic scale.843

Figure 4a shows the trend of the number of discovered constraints by varying844

the log alphabet size. Different curves refer to different configurations of the845

miner: without any pruning (diamonds); with set-containment-based pruning846

(crosses); with set-containment- and hierarchy-based pruning (asterisks); with847

set-containment- and hierarchy-based pruning and support threshold (points);848

with support threshold only (triangles). This plot provides evidence that as the849

number of activities in the log alphabet increases, the number of discovered con-850
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Figure 4: Effectiveness tests performed on synthetic logs.

straints increases as well. However, we discover a lower increase of constraints851

as we proceed further in the sequence of pruning techniques. Moreover, there852

is a significant difference between the number of discovered constraints with fil-853

tering based on the minimum support threshold only, and based on the pruning854

techniques presented in this paper. This improvement yields a reduction ratio855

of 94.84% (205.6 versus 10.6, on average), for a log alphabet size of 30.856

Figure 4b shows the trend of the number of discovered constraints by varying857

the branching factor. Without pruning, or with the simple filtering by minimum858

support threshold, the number of discovered constraints increases as the number859

of branches increases. On the other hand, when we apply the set-dominance860

and hierarchy-based pruning techniques, the number of discovered constraints861

is approximately constant up to a branching value of 3. After this value, the862

number of constraints decreases. When we apply all the proposed pruning tech-863

niques together, the number of constraints eventually increases. In addition,864

the number of constraints obtained by applying set-dominance and subsump-865

tion hierarchy converges to the number of constraints discovered when all the866

pruning techniques are applied together. The difference between the number867

of discovered constraints with support threshold and the number of discovered868

constraints after using the pruning techniques presented in this paper is quan-869

tified (branching factor of 8) in a reduction ratio of 95.51% (307.7 versus 13.8,870

on average).871

The plot in Figure 4c confirms that for any threshold between 0.85 and 1.0,872

the number of constraints discovered by applying all the pruning techniques is873

lower than the one obtained by applying the support threshold filtering only.874

The reduction ratio is indeed 88.74% (46.2 versus 5.2, on average) when the875

threshold is set to 1.0.876

An additional experiment to test the effectiveness of our approach is illus-877

trated in Table 9. Here, for different values of branching factor (ranging from878

1 to 8) and support threshold (ranging from 0.85 to 1), we evaluate the capab-879

ility of the discovery algorithm to rediscover the model that was used for log880
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generation. In particular, for each combination of branching factor and support881

threshold, we have generated 10 random logs starting from the model described882

at the beginning of this section. Then, we have considered the average number883

of constraints correctly discovered (column Equal in the table) and the aver-884

age number of discovered constraints that strengthen one of the constraints885

of the original model (column Restr. in the table).3 In column None in the886

table, we show the average number of additional constraints discovered. These887

constraints are characteristic of each specific (random) log but still compliant888

with the original model. Note that the branching factor affects the number of889

constraints correctly discovered since, for example, if we specify a maximum890

branching factor equal to 2, it will be impossible to discover a constraint with891

3 branches.892

The constraints correctly discovered with branching factor equal to893

2 and support threshold equal to 1 are ChainPrecedence(ta,bu,c) and894

AlternateResponse(a,tb,cu). This model contains the only constraints that895

can be correctly discovered using a branching factor of 2. Indeed, the896

third constraint with 2 branches in the original model is Responsepa,tb,cuq,897

which is entailed by AlternateResponse(a,tb,cu). The constraints correctly dis-898

covered with branching factor equal to 3 and support equal to 1 are, again,899

ChainPrecedence(ta,bu,c) and AlternateResponse(a,tb,cu). However, in this900

case, also Precedence(ta,b,du,e), restriction of Precedence(ta,b,c,du,e), is dis-901

covered. This result improves the original models that contains a redundancy.902

Indeed, in all cases in which e is preceded by c, it is also preceded by a or by903

b due to ChainPrecedence(ta,bu,c). Starting from a branching factor of 3 up to904

a branching factor of 8, these 3 constraints are always part of the discovered905

models. This confirms the effectiveness of the proposed approach since this set906

of constraints corresponds to the original set after removing redundancies.907

Efficiency. Figure 5 shows the efficiency of our approach by plotting the com-908

putation time as a function of log alphabet size, branching factor, log size, and909

average trace size. Figure 5a shows the trend of the computation time (in log-910

arithmic scale) by varying the log alphabet size. Different curves refer to the911

computation time for (i) the knowledge base construction, (ii) the querying on912

the knowledge base, and (iii) to the total computation time. Notice that there913

is a break point, when the log alphabet is composed of 12 activities: there the914

query time becomes higher than the knowledge base construction time. In Fig-915

ure 5b, we can see that the computation time (here displayed in logarithmic916

scale) does not depend on the branching factor. It is approximately constant917

and higher for querying the knowledge base. Figure 5c shows the trend of the918

computation time by varying the log size, whereas Figure 5d depicts the trend919

of the computation time by varying the average trace size (both displayed in920

linear scale). In both cases, the query time clearly outperforms the knowledge921

3Note that there is also the possibility, in some cases, that the discovered model contains
constraints that are entailed by one of the constraints of the original model. However, this
happens very rarely using randomly generated logs and it never occurred in our experiments.
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Figure 5: Efficiency tests performed on synthetic logs, comparing the computa-
tion time needed for building the knowledge base (“KB” time), and for deriving
the constraints (“querying” time).

base construction time. Generally speaking, the only factor that makes queries922

less efficient than the knowledge base construction is the size of the alphabet.923

In Figure 6, we compare the time performances of the new version of the924

discovery algorithm, w.r.t. the version presented in [8]. In particular, we plot925

the computation time as a function of log alphabet size, branching factor, log926

size, and average trace size, in logarithmic scale. For all these parameters,927

the plots highlight the dramatic reduction of the computation time when using928

the new proposed approach. The main factor that contributed to the per-929

formance improvement is the new algorithm adopted for the computation of930
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Figure 6: Efficiency tests performed on synthetic logs, comparing the time per-
formances of the new version of the discovery algorithm versus the version of
[8].

AlternateResponse and AlternatePrecedence constraints.931

5.2. Evaluation Based on Real Data932

In this section, we validate our approach using real-life logs. The results are933

described in the following sections. The first log we use has been provided by a934

Dutch financial institute. The second log has been provided by the Rabobank935

Netherlands Group ICT.936
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5.2.1. A Dutch Financial Institution937

We have evaluated the applicability of our approach using a real-life event938

log provided for the BPI challenge 2012 [29]. The event log pertains to an ap-939

plication process for personal loans or overdrafts of a Dutch financial institution.940

It contains 262 200 events distributed across 24 different possible activities and941

includes 13 087 cases.942

In this case, it is possible to prune the list of discovered constraints in943

order to obtain a compact set of constraint, which is understandable for944

human analysts. By applying the miner with a support threshold equal to 1,945

confidence threshold set to 0.8, and branching factor 5, we obtain the following946

11 constraints:947

ChainResponse(A SUBMITTED, A PARTLYSUBMITTED)948

AlternateResponse(A SUBMITTED, tA PREACCEPTED,A DECLINED,A CANCELLEDu)949

AlternateResponse(A SUBMITTED, tA PREACCEPTED,A DECLINED,W Afhandelen leadsu)950

AlternateResponse(A SUBMITTED, tW Completeren aanvraag,A DECLINED,A CANCELLEDu)951

AlternateResponse(A SUBMITTED, tW Completeren aanvraag,A DECLINED,W Afhandelen leadsu)952

ChainPrecedence(A SUBMITTED, A PARTLYSUBMITTED)953

AlternateResponse(A PARTLYSUBMITTED, tA PREACCEPTED,A DECLINED,A CANCELLEDu)954

AlternateResponse(A PARTLYSUBMITTED, tA PREACCEPTED,A DECLINED,W Afhandelen leadsu)955

ChainResponse(A PARTLYSUBMITTED, tA PREACCEPTED,A DECLINED,W Afhandelen leads,W Beoordelen fraudeu)956

AlternateResponse(A PARTLYSUBMITTED, tW Completeren aanvraag,A DECLINED,A CANCELLEDu)957

AlternateResponse(A PARTLYSUBMITTED, tW Completeren aanvraag,A DECLINED,W Afhandelen leadsu)958

959

This results are in line with what described in the report published by the960

winners of the BPI challenge 2012 [30]. For example, one of the results discussed961

in this report is that each case starts with an application of a customer where962

an application is first submitted and, immediately after, partly submitted. In963

addition, over 13 087 cases in the log, in 4 852 cases, an application partly sub-964

mitted is immediately pre-accepted, in 3 429 cases it is immediately declined965

and in the remaining cases is followed up (through activities corresponding to966

events A Afhandelenleads or A Beoordelenfraude). This is in line with the967

ChainResponse constraints discovered.968

5.2.2. Rabobank969

The case study we illustrate in this section has been provided for the BPI970

challenge 2014 by the Rabobank Netherlands Group ICT [9]. The log we use971

pertains to the management of calls or mails from customers to the Service972

Desk concerning disruptions of ICT-services. The log contains 46 616 cases,973

466 737 events referring to 39 different activities. There are 242 originators974

and domain specific event attributes like KM number, Interaction ID and975

IncidentActivity Number.976

By applying the miner with a support threshold equal to 1, confidence977

threshold set to 0.8, and branching factor 5, we obtain the following 18978

constraints:979

Precedence(tReassignment, Operator Update, Update from customer, Openu,Assignment)980
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RespondedExistencepAssignment,tReassignment, Closed, Pending vendoruq981

RespondedExistencepAssignment,tReassignment, Openuq982

RespondedExistencepAssignment,tOperator Update, Update from customer, Openuq983

RespondedExistencepAssignment,tUpdate from customer, Caused By CI, Openuq984

RespondedExistencepAssignment,tUpdate from customer, Description Update, Openuq985

RespondedExistencepAssignment,tUpdate from customer, Update, Openuq986

RespondedExistencepAssignment,tUpdate from customer, OO Response, Openuq987

RespondedExistencepAssignment,tClosed, Status Changeuq988

RespondedExistencepAssignment,tClosed, External Vendor Assignmentuq989

RespondedExistencepAssignment,tClosed, Pending vendor, Vendor Referenceuq990

RespondedExistencepAssignment,tClosed, Openuq991

RespondedExistencepAssignment,tCaused By CI, Resolved, Openuq992

ResponsepOpen,tReassignment, Closed, Pending vendoruq993

ResponsepOpen,tAssignment, Closed, Pending vendoruq994

ResponsepOpen,tClosed, Status Changeuq995

ResponsepOpen,tClosed, External Vendor Assignmentuq996

ResponsepOpen,tClosed, Pending vendor, Vendor Referenceuq997

998

From further analysis of the log (see also http://www.win.tue.nl/bpi/999

2014/challenge), it is possible to verify that these results reflect the reality.1000

For example, over 46 616 cases in the log, only in 449 cases an opened incident1001

is not eventually closed. These 449 cases always contain a status change and an1002

external vendor assignment. Only 447 of them contain a pending vendor and1003

the remaining 2 as well as a status change and an external vendor assignment1004

both contain an assignment, a reassignment and a vendor reference. This is in1005

line with the list of Response constraints discovered.1006

6. Related Work1007

Process Mining [31] is the set of techniques for the extraction of process de-1008

scriptions, stemming from a set of recorded real executions (event logs). ProM1009

[32] is one of the most used plug-in based software environments for implement-1010

ing process mining techniques. Process Mining mainly covers three different1011

aspects: process discovery, conformance checking and operational support. The1012

first aims at discovering the process model from logs. Control-flow mining in1013

particular focuses on the causal and sequential relations among activities. The1014

second focuses on the assessment of the compliance of a given process model1015

with event logs, and the possible enhancement of the process model in this re-1016

gard. The third is finally meant to assist the enactment of processes at run-time,1017

based on given process models.1018

From [33] onwards, many techniques have been proposed for the control-flow1019

mining: pure algorithmic (e.g., α algorithm, drawn in [34] and its evolution α``1020

[35]), heuristic (e.g., [36]), genetic (e.g., [37]), etc. A very smart extension to the1021

previous research work was achieved by the two-steps algorithm proposed in [38].1022

Differently from the former approaches, which typically provide a single process1023

mining step, it splits the computation in two phases: (i) the configurable mining1024
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of a Transition System (TS) representing the process behavior and (ii) the1025

automated construction of a Petri net bisimilar to the TS [39, 40]. In the1026

field of conformance checking, [41, 42, 43] have proposed techniques capable of1027

realigning procedural process models to logs.1028

The need for flexibility in the definition of some types of process, such as1029

the knowledge-intensive processes [44], has led to an alternative to the clas-1030

sical “procedural” approach: the “declarative” approach. Rather than using a1031

procedural language for expressing the allowed sequences of activities (“closed”1032

models), it is based on the description of workflows through the usage of con-1033

straints: the idea is that every task can be performed, except what does not1034

respect such constraints (“open” models). The work of van der Aalst et al.1035

[27] showed how the declarative approach (such as the one adopted by Declare1036

[45]) could help in obtaining a fair trade-off between flexibility in managing1037

collaborative processes and support in controlling and assisting the enactment1038

of workflows. The original semantics of Declare used in these works is based1039

on LTLf . Other semantics for Declare have been proposed in [46] (based on1040

the Event Calculus) and in [47, 48, 49] (based on Dynamic Condition Response1041

Graphs). Very recent investigations have compared the procedural and the de-1042

clarative paradigms and discussed the possibility of adopting hybrid approaches1043

based on both procedural and declarative models [50, 51, 11, 52, 53, 54, 55].1044

Our work contributes to the area of declarative process mining. In this1045

context, Maggi et al. [5] first proposed an unsupervised algorithm for mining1046

Declare processes. They based the discovery of constraints on the replay of the1047

log on specific automata, each accepting only those traces that are compliant1048

to one constraint. Candidate constraints are generated considering all the in-1049

stantiations of Declare templates with activities that occur in the log. Each1050

constraint among the candidates becomes part of the discovered process only1051

if the percentage of traces accepted by the related automaton exceeds a user-1052

defined threshold. In order to remove irrelevant constraints from the output set,1053

the authors apply vacuity detection techniques [56]. Constraints are considered1054

as vacuously satisfied when no trace in the log violates them, yet no trace shows1055

the effect of their application either. A vacuously satisfied constraint is, e.g.,1056

that every request is eventually acknowledged, in a process instance that does1057

not contain requests.1058

[6] describes an evolution of [5], with the adoption of a two-phase approach.1059

The first phase is based on the Apriori algorithm, developed by Agrawal and1060

Srikant for mining association rules [20]. During this preliminary phase, the fre-1061

quent sets of correlated activities are identified. The candidate constraints are1062

computed on the basis of the correlated activity sets only. During the second1063

phase, the candidate constraints are checked as in [5]. Therefore, the search1064

space for the second phase is reduced. In output, constraints constituting the1065

discovered process are weighted according to their support, i.e., the probability1066

of such constraints to hold in the mined process. To filter out irrelevant con-1067

straints, more metrics are introduced, such as confidence and interest factor.1068

Both the concepts of support and confidence have been adopted in this paper.1069

In [28], Maggi et al. refined the technique of [6] by pruning returned con-1070
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straints on the basis of three main methods: (i) the removal of weaker con-1071

straints entailed by stronger constraints; (ii) the reparation of predefined basic1072

Declare models; (iii) an ontology-guided search for constraints, linking activities1073

that either belong to different groups of interest, or to the same group. The last1074

two require the user input, whereas the first does not. A technique for pruning1075

an existing Declare model based on event correlations has been presented in1076

[57].1077

All the aforementioned “automata based” methods have been implemented1078

in [58]. Unfortunately, none of these methods turned out to be practical in our1079

context. This is mainly due to their checking algorithm, based on the replay1080

of the log on one automaton for each candidate constraint. In TBDeclare, the1081

search space of candidate constraints would be much too vast to make this1082

approach feasible.1083

[59, 60, 61] describe the usage of inductive logic programming techniques to1084

mine models expressed as a SCIFF [62] first-order logic theory, consisting of a1085

set of implication rules named Social Integrity Constraints (IC’s for short). To1086

complete the Declare discovery, the learned theory is automatedly translated1087

into Declare notation. [63, 64] extend this technique by weighting in a second1088

phase the constraints with a probabilistic estimation. The learned IC’s are1089

indeed translated from SCIFF, discovered by DPML, into Markov Logic formu-1090

lae [65]. Their probabilistic-based weighting is computed by the Alchemy tool1091

[64]. Both the techniques in [59] and [64] rely on the availability of compliant1092

and non-compliant traces of execution, w.r.t. the process to mine. As in the1093

aforementioned “logic-based” approaches, we preferred to elaborate a technique1094

which avoided the replay of every trace on automata in the log. On the other1095

hand, we had to deal with traces which were not labeled in advance. Therefore,1096

our technique does not require the user’s specification of positive and negative1097

past executions.1098

The third branch of Declare mining algorithms, alternative to the automata-1099

and logic-based, is the one that started with [3]. It is based on a two-step1100

approach. The first step computes statistic data describing the occurrences of1101

activities and their interplay in the log. The second one checks the validity1102

of Declare constraints by querying such a statistic data structure (knowledge1103

base). [4] extends such an approach by weighing each constraint with reliability1104

and interest metrics, such as support and confidence. [21] shows the boost in1105

performance that such algorithm allowed, w.r.t. the automata-based approaches1106

and [66] reports on its application in the context of highly flexible processes1107

[44]. Although fast, these algorithms do not broaden the spectrum of returned1108

constraints to TBDeclare. Therefore, we extended these works with a wider1109

range of constraints and an efficient implementation algorithm.1110

Recently, [67] have proposed a framework for discovering general LTLf rules1111

in event logs. Though more flexible than other approaches, it reveals not suit-1112

able for TBDeclare, due to a deep increase of computation time, as soon as1113

disjunction among variables are introduced. An efficient approach for the dis-1114

covery of Declare models at runtime has been presented in [68]. However, this1115

technique only allows for the discovery of standard Declare constraints.1116
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Various conceptual extensions of Declare have been proposed in the literat-1117

ure, partially with accompanying mining algorithms. In [69], the authors define1118

Timed Declare, an extension of Declare based on a metric temporal logic se-1119

mantics allowing for the specification of required delays and deadlines. The ap-1120

proach relies on timed automata to monitor metric dynamic constraints. In [70],1121

such semantics is used for the discovery of metric temporal Declare constraints.1122

[71] presents an approach for the discovery of Declare rules characterizing the1123

lifecycle of non-atomic activities in a log. In [72], the authors propose an ap-1124

proach for monitoring data-aware Declare constraints at run-time, based on the1125

data-aware semantics for Declare presented in [46, 73]. In the work proposed1126

in [7], an alternative data-aware semantics for Declare has been introduced by1127

using a first-order variant of LTL to specify data-aware patterns. Such ex-1128

tended patterns are used in [7] as the target language for a process discovery1129

algorithm, which produces data-aware Declare constraints from raw event logs.1130

The data-aware semantics for Declare has been further extended in [74]. In1131

[75], a semantics for Declare based on metric first order temporal logics allows1132

for combining data and temporal perspectives. Our work is complementary to1133

these works. It is an avenue of future research to integrate TBDeclare with1134

these perspectives.1135

7. Conclusion1136

In this paper, we have defined the class of Target-Branched Declare, which1137

exhibits interesting properties in terms of set-dominance. We exploit these1138

properties for the definition of an efficient mining approach. Furthermore, we1139

specify pruning rules in order to arrive at a compact rule set. Our technique is1140

evaluated for efficiency and effectiveness using simulated data and the case of the1141

BPI Challenges of 2012 and 2014. In future research, we aim to further study1142

broader classes of branched Declare. At this stage, we have focused on target-1143

branched constraints. It is an open question how our results can be translated1144

to the class of activation-branched constraints. Furthermore, we also plan to1145

extend our technique towards the coverage of the entire Declare language.1146
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X. Franch, S. Brinkkemper, S. Wrycza (Eds.), CAiSE, Vol. 7328 of Lecture1174

Notes in Computer Science, Springer, 2012, pp. 270–285.1175

URL http://dx.doi.org/10.1007/978-3-642-31095-9_181176
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[67] M. Räim, C. Di Ciccio, F. M. Maggi, M. Mecella, J. Mendling, Log-based1439

understanding of business processes through temporal logic query checking,1440

in: R. Meersman, H. Panetto, T. S. Dillon, M. Missikoff, L. Liu, O. Pastor,1441

A. Cuzzocrea, T. Sellis (Eds.), International Conference on Cooperative In-1442

formation Systems, On the Move to Meaningful Internet Systems Confed-1443

erated International Conferences, Vol. 8841 of Lecture Notes in Computer1444

Science, Springer, 2014, pp. 75–92. doi:10.1007/978-3-662-45563-0_5.1445

URL http://dx.doi.org/10.1007/978-3-662-45563-01446

[68] F. M. Maggi, A. Burattin, M. Cimitile, A. Sperduti, Online process dis-1447

covery to detect concept drifts in ltl-based declarative process models, in:1448

On the Move to Meaningful Internet Systems: OTM 2013 Conferences1449

- Confederated International Conferences: CoopIS, DOA-Trusted Cloud,1450

and ODBASE 2013, Graz, Austria, September 9-13, 2013. Proceedings,1451

2013, pp. 94–111.1452

[69] M. Westergaard, F. M. Maggi, Looking into the future. using timed auto-1453

mata to provide a priori advice about timed declarative process models,1454

in: R. Meersman, H. Panetto, T. S. Dillon, S. Rinderle-Ma, P. Dadam,1455

X. Zhou, S. Pearson, A. Ferscha, S. Bergamaschi, I. F. Cruz (Eds.),1456

On the Move to Meaningful Internet Systems: OTM 2012, Confeder-1457

ated International Conferences: CoopIS, DOA-SVI, and ODBASE 2012,1458

Rome, Italy, September 10-14, 2012. Proceedings, Part I, Vol. 7565 of1459

Lecture Notes in Computer Science, Springer, 2012, pp. 250–267. doi:1460

10.1007/978-3-642-33606-5_16.1461

URL http://dx.doi.org/10.1007/978-3-642-33606-5_161462

[70] F. M. Maggi, Discovering metric temporal business constraints from event1463

logs, in: Perspectives in Business Informatics Research - 13th International1464

Conference, BIR 2014, Lund, Sweden, September 22-24, 2014. Proceedings,1465

2014, pp. 261–275.1466

[71] M. L. Bernardi, M. Cimitile, C. D. Francescomarino, F. M. Maggi, Using1467

discriminative rule mining to discover declarative process models with non-1468

atomic activities, in: Rules on the Web. From Theory to Applications1469

- 8th International Symposium, RuleML 2014, Co-located with the 21st1470

European Conference on Artificial Intelligence, ECAI 2014, Prague, Czech1471

Republic, August 18-20, 2014. Proceedings, 2014, pp. 281–295.1472

46

http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1007/s10994-006-5833-1
http://dx.doi.org/10.1109/MIC.2013.60
http://dx.doi.org/10.1109/MIC.2013.60
http://dx.doi.org/10.1109/MIC.2013.60
http://dx.doi.org/10.1007/978-3-662-45563-0
http://dx.doi.org/10.1007/978-3-662-45563-0
http://dx.doi.org/10.1007/978-3-662-45563-0
http://dx.doi.org/10.1007/978-3-662-45563-0_5
http://dx.doi.org/10.1007/978-3-662-45563-0
http://dx.doi.org/10.1007/978-3-642-33606-5_16
http://dx.doi.org/10.1007/978-3-642-33606-5_16
http://dx.doi.org/10.1007/978-3-642-33606-5_16
http://dx.doi.org/10.1007/978-3-642-33606-5_16
http://dx.doi.org/10.1007/978-3-642-33606-5_16
http://dx.doi.org/10.1007/978-3-642-33606-5_16
http://dx.doi.org/10.1007/978-3-642-33606-5_16


[72] M. Montali, F. M. Maggi, F. Chesani, P. Mello, W. M. P. van der Aalst,1473

Monitoring business constraints with the event calculus, ACM TIST 5 (1)1474

(2013) 17.1475

[73] M. Montali, F. Chesani, F. M. Maggi, P. Mello, Towards data-aware con-1476

straints in declare, in: SAC, ACM Press and Addison Wesley, 2013, pp.1477

1391–1396.1478

[74] R. D. Masellis, F. M. Maggi, M. Montali, Monitoring data-aware business1479

constraints with finite state automata, in: International Conference on1480

Software and Systems Process 2014, ICSSP ’14, Nanjing, China - May 261481

- 28, 2014, 2014, pp. 134–143.1482

[75] A. Burattin, F. M. Maggi, A. Sperduti, Conformance checking based on1483

multi-perspective declarative process models, CoRR abs/1503.04957.1484

[76] F. Daniel, J. Wang, B. Weber (Eds.), Business Process Management - 11th1485

International Conference, BPM 2013, Beijing, China, August 26-30, 2013.1486

Proceedings, Vol. 8094 of Lecture Notes in Computer Science, Springer,1487

2013. doi:10.1007/978-3-642-40176-3.1488

47

http://dx.doi.org/10.1007/978-3-642-40176-3

	Introduction
	Background
	Linear Temporal Logic over Finite Traces
	Declare
	Support and confidence

	Target-Branched Declare
	Set-Dominance

	Discovery
	The Knowledge Base
	Building the Knowledge Base
	The main algorithm
	Count of missing events after an activity
	Count of missing events before the occurrence of an activity
	Count of missing events in the same trace in which an activity occurs
	Count of repeated occurrences of an activity before other events
	Count of repeated occurrences of an activity before other events on reversed traces
	Count of events immediately following the occurrence of an activity
	Count of events immediately preceding the occurrence of an activity

	Querying the Knowledge Base
	Pruning the Returned Constraints
	Pruning Based on Set-Dominance.
	Pruning Based on Hierarchy Subsumption.


	Experiments and Evaluation
	Evaluation Based on Simulation
	Evaluation Based on Real Data
	A Dutch Financial Institution
	Rabobank


	Related Work
	Conclusion

