
28/04/2024 09:51

Combining User and Database Perspective for Solving Keyword Queries over Relational Databases /
Bergamaschi, Sonia; Interlandi, Matteo; Guerra, Francesco; TRILLO LADO, Raquel; Velegrakis, Yannis. - In:
INFORMATION SYSTEMS. - ISSN 0306-4379. - STAMPA. - 55:(2016), pp. 1-19. [10.1016/j.is.2015.07.005]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

This is the peer reviewd version of the followng article:

Combining User and Database Perspective for Solving
Keyword Queries over Relational Databases

Sonia Bergamaschi a, Francesco Guerra a, Matteo Interlandi b, Raquel
Trillo-Lado c, Yannis Velegrakis d

a DIEF – University of Modena and Reggio Emilia, firstname.lastname@unimore.it
b UCLA – University of California, Los Angeles, USA, minterlandi@cs.ucla.edu

c DIIS – University of Zaragoza, Spain, raqueltl@unizar.es
d DISI – University of Trento, Italy, velgias@disi.unitn.eu

Abstract

Over the last decade, keyword search over relational data has attracted consid-
erable attention. A possible approach to face this issue is to transform keyword
queries into one or more SQL queries to be executed by the relational DBMS.
Finding these queries is a challenging task since the information they represent
may be modeled across different tables and attributes. This means that it is needed
to identify not only the schema elements where the data of interest is stored, but
also to find out how these elements are interconnected. All the approaches that
have been proposed so far provide a monolithic solution. In this work, we, in-
stead, divide the problem into three steps: the first one, driven by the user’s point
of view, takes into account what the user has in mind when formulating keyword
queries, the second one, driven by the database perspective, considers how the data
is represented in the database schema. Finally, the third step combines these two
processes. We present the theory behind our approach, and its implementation
into a system called QUEST (QUEry generator for STructured sources), which
has been deeply tested to show the efficiency and effectiveness of our approach.
Furthermore, we report on the outcomes of a number of experimental results that
we have conducted.

Keywords: Keyword search over relational databases, Hidden Markov Models,
Dempster-Shafer Theory, Machine Learning

Preprint submitted to Information Systems July 18, 2015

1. Introduction

Keyword search has become the de-facto standard for searching on the web.
Structured data sources contain a vast amount of information that is significant to
be available for querying. Typically, query interfaces consist of web forms that al-
low predefined queries to be posed on their contents. Besides, web search engines
index the content of these sources (the so called hidden web) through the results
of these web form queries, seen as free text. Apart from the fact that this restricts
the kind of data that can be searched, the great deal of semantic information pro-
vided by the structure of the data, e.g., the schema, is basically lost. This gave rise
to a special interest in supporting keyword search over structured databases [1] in
ways that are as effective as those offered on text data and at the same time exploit
as much as possible the structure of the data that databases provide.

Many approaches exploit full-text search functionalities natively imple-
mented in the DBMS, such as the contains function in SQL Server and
the match-against function in MySQL, to discover the attributes of the
database containing the query keywords at run-time. Then, they construct the
answer set by combining tuples containing different query keywords and select-
ing those combinations considered most likely to be what users were looking
for [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. All these approaches are typically heuristic-
based, without a clear specification of the steps required to answer the keyword
query. In this work, we advocate that there is a need for a more principled ap-
proach to keyword searching on structured data; in particular, we believe that
keyword search on structured sources requires three fundamental steps. Existing
works consist of either a monolithic end-to-end solution that provides no clear
distinction of these three steps, or are focused on only some of them, considering
some straightforward implementation of the remaining.

The three fundamental steps we consider are first to match the keywords to the
database structures, then to discover ways these matched structures can be com-
bined, and finally to select the best matches and combinations such that the iden-
tified database structures represent what the user had in mind to discover when
formulating the keyword query. The first step is focused on trying to capture
the meaning of the keywords in the query as they are understood by the user,
and express them in terms of database terms, i.e., the metadata structures of the
databases. In some sense, it provides the user perspective of the keyword query
and it does so by providing a mapping of the keywords into database terms. This
step is referred to as the forward analysis step since it starts from the keywords
and moves towards the database. The second step tries to capture the meaning of

2

the keywords as they can be understood from the point of view of the data engi-
neers who designed that database organization, and express them in semantically
coherent units of database structures containing the images of the keywords speci-
fied by the first step. So, in some sense, it provides the database perspective of the
keyword query and it does so by providing the relationships among the images of
the keywords. This task is referred to as the backward analysis step since it starts
from the database structures and moves towards the query keywords through their
images. The third step provides a ranking of the coherent units of database struc-
tures that the second step produced after selecting those that are more promising,
i.e., those whose semantics more likely express what the user had in mind while
was formulating the keyword query.

In our previous works we have studied different aspects of the keyword search
problem over relational databases. The KEYMANTIC [13, 14] system was fo-
cused on the first step. It provided a solution based on a bipartite graph matching
model where user keywords were matched to database schema elements by using
an extension of the Hungarian algorithm. KEYMANTIC is one of the first so-
lutions that deals with the problem of querying structural databases through key-
words when there is no prior access to the database content to build any indexes,
thus, relying on semantic information of the database meta-data. This feature
of KEYMANTIC makes it especially appropriate for keyword-based search on
federated databases systems and for exploring data sources in the Hidden Web.
KEYRY [15, 16] extended KEYMANTIC by providing a probabilistic frame-
work, based on a HMM, to match keywords into database schema elements. Both
works deal with the first step of the process described previously, i.e., the user
perspective step. Our experience with these systems made clear that this was not
enough for a complete solution. These systems were the motivation for the prin-
cipled, holistic and unified framework presented in this work.

The main contributions of the current paper are the following: (i) we intro-
duce a principled 3-step model for the keyword search problem over structured
databases; (ii) we develop two different implementations of the first step, one that
exploits heuristic rules and one that is based on machine learning techniques. Both
aim at finding the appropriate Hidden Markov Model specification to generate the
right mapping of the query keywords into database structures; (iii) we define an
implementation of the second step based on Steiner Tree discovery which ex-
ploits a mutual information-based distance as edge weight and which works at the
schema level instead of the instance level; (iv) we provide a probabilistic frame-
work founded on the Dempster Shafer Theory that is able to combine the first two
steps and modalities in a way that permits the system to promptly adapt to dif-

3

ferent working conditions by selecting the best combination among them; (v) we
implement all the above in a system called QUEST (QUEry generator for STruc-
tured sources) [17] and provide the details of its implementation; and finally (vi)
we perform an extensive set of experiments that offer a deep understanding of the
whole process, its effectiveness and efficiency.

The remainder of the paper is as follows. First, the principled 3-step approach
is introduced and our proposed framework is formally defined in Section 2. The
implementation of each of the three steps in our developed QUEST prototype
follows in Section 3. The relationship of our framework with the related works
alongside our own previous works on the topic is explained in Section 4. Finally,
the results of our extensive experimental evaluation are discussed in Section 5.

2. The three-step framework

As a data model for the structured database we assume the relational model,
however the framework can be easily extended to other structured models as well.

We assume an infinite set A of attribute names, R of relation names, and V
of value domains. A tuple is a finite set of attribute name-value pairs ⟨A1 : v1,
A2 : v2, . . . , An : vn⟩ where Ai∈A, vi∈Vi with Vi∈V , for i=1...n, and Ai ̸=Aj

if i̸=j. The schema of the tuple is the ⟨A1 : V1, A2 : V2, . . . , An : Vn⟩ and its
arity is the number n. The domain Vi is referred to as the domain of the attribute
Ai and will be denoted as Dom(Ai), for i=1...n. A relation instance is a finite
set of tuples, all with the same schema. The schema of the relation instance is the
common schema of its tuples and its cardinality the number of tuples it consists of.
A relation is a pair ⟨R, IR⟩, where R∈R, referred to as the relation name, and IR is
a relation instance. The schema of a relation ⟨R, IR⟩ is the schema of its relation
instance, and will be denoted as R(A1 : V1, . . . , An : Vn), where the ⟨A1 : V1,
. . . , An : Vn⟩ is the schema of the relation instance IR. In what follows, whenever
there is no risk of confusion, the name R will be used to refer to the whole relation
⟨R, IR⟩. Furthermore, the indication of the domains will be omitted leading to the
simplified expression of the relation schema as R(A1, A2, . . . , An). Finally, the
notation |R| will denote the arity of the relation R and the |IR| the cardinality of
its relation instance [18].

A database is a set of relations. The schema and instance of the database is
the set of schemas and instances, respectively, of its relations. The terminology
of a database is the set consisting of the names of its relations, their attributes
and the domains of these attributes. In other words the terminology of a database
D is the set TD={t | ∃R(A1, A2, ..., An)∈D ∧ (t=R ∨ t=Ai ∨ t=Dom(Ai)) ∧

4

Figure 1: Process Steps for Answering a Keyword Query over a Relational Database

1≤i≤n}. The members of the terminology are referred to as database terms. The
terminology of a database D has 2∗Σ|D|

i=1arity(Ri)+|D| elements. Note that the
model assumes that every attribute has its own domain. This, however, does not
mean that the domains have to be disjoint. Two domains may even have the same
content. So, such an assumption does not restrict the model, however, it offers a
great flexibility in the materialization of the model in a real system.

A keyword query q is an ordered list of keywords (k1, k2, . . . , km). It is
important to note that a keyword does not always mean a single word. A keyword
may be a combination of words that together form a unit and should be treated as
such, like for instance “United States” or “Barack Obama”. Two or more words
are considered as one keyword if they appear together as a value in one of the
domains V defined earlier. For instance, the term United States is one of the
values of the domain Countries, so when the two words are given together by the
user, the tokenizer will consider them as one keyword.

2.1. Mapping Keywords into Database Structures
The first step in answering a keyword query over a relational database is to

understand the meaning of the keywords used in it. Each keyword describes some
characteristic property of the elements of interest that the user has in mind. This
property has to be expressed in terms of characteristics as they are modeled in the
database through the database structures. Thus, understanding what each keyword
means requires each keyword to be mapped into the database terminology so that
it can be expressed with some database term. Such a mapping is referred to as a
configuration.

Definition 2.1. A configuration c of a keyword query q on a database D is an

5

injective function from q to the terminology TD, i.e., c|q→TD. The image of a
keyword k through the configuration c is a database term t for which c(k)=t.

The configuration has been defined as a function, because we have made the
natural assumption first that each keyword is present in the query for a reason,
i.e. no redundant or unjustified keywords, and second, that there is no intentional
ambiguity, i.e., a keyword cannot serve more than one meaning in a query. For
every meaning that the user has in mind, it is assumed that a different keyword
has been selected and included in the query to represent it. The reason that the
function is considered injective, on the other hand, is two-fold. First, we assume
no over-specification, i.e., no two keywords are referring to the exact same thing.
Second, we need to avoid the case of self-joins because this may lead to an in-
finite number of cases to be considered. Mapping of two keywords on the same
term with a cyclic join path, may generate interpretations in which the path is
considered arbitrary number of times, leading to an infinite number of possible
interpretations. This choice is in line with similar mapping situations like schema
mapping [19, 20] where the chase technique used there generates infinite map-
pings if self joins or cycles exist.

A keyword query of m keywords, has |TD|!
(|TD|−m)!

possible configurations but not
all of them are equally likely to represent the meaning that the user had in mind
while formulating the keyword query. Determining the possible configurations
and ranking them from the most likely to the less likely constitutes the first (for-
ward analysis) step of the process of answering the keyword query (see Figure 1).

The forward analysis step needs to take into consideration not only the actual
keywords used in the query, but also their relative positions and try to guess their
meaning by exploiting this information. There are studies that show that queries
generated by users are typically having related keywords close to each other [21]
and that the order follows some logical sequence. The forward analysis step is
considered to provide the user perspective because it tries to model what the user
had in mind with the individual keywords.

Example 2.1. Consider a university database with information on personnel,
projects and research activities, a fragment of which is illustrated in Figure 2.
Assume that a user poses the query Vokram IT. Both Vokram and IT could
represent any database structure, however, it is more likely for the former to be
the name of a person. Similarly, the latter may be the name of a university, but
most likely it is the name of a country. Thus, the configuration

A: {‘‘Vokram’’→Dom(People.Name), ‘‘IT’’→Dom(University.Country) }

6

PEOPLE
Id Name Phone Country Email
p1 Vokram 4631234 USA vkm@aaa.bb
p2 Reniets 6987654 IT rts@bbb.cc
p3 Refahs D. 1937842 SP ds@ccc.dd

AFFILIATED
id prs id dpt Year
p1 x123 2009
p2 cs34 2012
p3 cs34 2010

DEPARTMENT
id Name Address University Director
x123 CS 25 Blicker SU p122
cs34 EE 15 Tribeca UM p54
ee67 ME 5 West Ocean UTN p432

UNIVERSITY
Name City Country
MIT Cambridge USA
UR Rome IT
UTN Trento IT
SU Stanford USA

MEMBER OF
Person Projct Date
p1 Rx1 5/4/2012
p2 Rx1 9/3/2012

PROJECT
id Name Year Topic
Rx1 Search it! 2011 DB & IR
Rt1 Analyze it! 2012 DB & ML

PARTICIPATION
Project University
Rx1 UR
Rx1 UTN
Rt1 UM

Figure 2: A fragment of a database schema with its data.

is more likely to be the one the user was thinking compared to the
B: {‘‘Vokram’’→Dom(People.Name), ‘‘IT’’→Dom(University.Name)}

Obviously, in case of adoption of full-text indexes the number of possible con-
figurations is reduced to the ones allowed by the database instance. In the case
in Figure 2, “Vokram” can be only the name of a person. “IT” can be a value
associated to the country attribute or to the People or University tables.

2.2. Combining the Identified Database Structures

The configurations are semantically ambiguous. They may describe the mean-
ing of the keywords in database terms, but they do not explain how the terms are
connected to form a coherent semantic unit that gives a semantic meaning to the
whole keyword query. This connection has to be based on the way the images of
the query keywords (as they are expressed through the configurations) are con-
nected in the database.

There are typically two main ways database terms are connected. One is the
structure, i.e., the way the data administrator has chosen to model the data in
the repository. For instance, two attributes are placed in the same relation when
the data designer believes that they describe two different properties of the con-
cept that the relation is about, and consequently they should be connected. The
other way is the use of schema constraints, in particular referential constraints
like key/foreign key relationships. These relationships describe ways in which
structures in different relations can be associated by forming join paths. We refer
to the ways that the database terms that serve as images of the query keywords
can be associate as interpretations because they do not simply indicate what each

7

keyword represents, but they also provide an interpretation of the whole keyword
query in terms of the database structures and semantic constraints.

To more formally define interpretations we introduce the notion of the
database graph.

Definition 2.2. A database graph G =⟨V,E⟩ is a graph structure where each
node represents a database term (i.e., a relation, an attribute or a domain of an
attribute). There is an edge between each attribute of a relation and its domain,
and between each attribute and the table (relation) it belongs. Furthermore, there
is an edge between the nodes that model the domains of two attributes that have
an inclusion dependency (e.g., a key/foreign key relationship).

For simplicity, we assume no primary or foreign key is spanning multiple at-
tributes. Nevertheless, this is not limiting QUEST since a surrogate key can al-
ways be created if a multi-attribute primary/foreign key exists.

Example 2.2. Figure 3 illustrates the database graph of the database instance
of Figure 2. Nodes of the form Dom(A) represent the domain of attribute A
and nodes in bold represent relations. The dotted lines represent referential con-
straints and the solid lines attribute-relation or attribute-domain relationships.

Using the database graph, the interpretations can be defined as sub-graphs of it.

Definition 2.3. Given a configuration c of a keyword query q on a database D,
an interpretation ⟨V S, ES⟩ is the connected component sub-graph of G composed
by every node modeling the image c(k), of a keyword k in the query q, and every
other node or edge that is part of a path connecting two such image nodes, in a
way that between any two image nodes there is one and only one path.

Note that since there may be multiple join paths connecting two attributes
in the database, it is natural that given a configuration there may be more than
one interpretation. Each interpretation describes some different semantics for the
keyword query that the user provided.

Example 2.3. Consider again the configuration
A: {‘‘Vokram’’→Dom(People.Name), ‘‘IT’’→Dom(University.Country)}

8

Figure 3: The Database graph corresponding to Figure 2

of Example 2.1. Looking at the database graph of Figure 3 different interpre-
tations can be found. One may be that Vokram is the director of a depart-
ment of an Italian university, specified by a subgraph that connects the nodes1

Dom(People.Name) and Dom(University.Country) through the DEPART-
MENT relation. The specific interpretation is illustrated at the top of Figure 4. Let

1Although in the graph we use only the expression Dom(A) as a label on the node modeling
the domain of the attribute A of a relation R, in order to avoid confusion in the text we instead
write Dom(R.A)

9

Figure 4: Interpretation examples of the configurations A and B of Example 2.1

it be referred to as interpretation [A.1]. Another interpretation, let it be referred
to as [A.2] is the one that assumes that Vokram is the name of a person that is a
member of a project in which an Italian university participates. This interpreta-
tion connects the nodes Dom(People.Name) and Dom(University.Country)
through the relations MEMBEROF, PROJECT and PARTICIPATION as the middle
graph in Figure 4 illustrates.

For what concerns the configuration

10

B: {‘‘Vokram’’→Dom(People.Name), ‘‘IT’’→Dom(University.Name)}
one possible interpretation is that Vokram is the director of a department of a
university called IT, illustrated under the name [B.1] in Figure 4.

Since this second step of providing some semantic interpretation of the config-
uration is driven by the way the data is structured in the database, it is referred to
as the backward analysis step. Intuitively, it provides the “database perspective”
on what keywords that the user used in the query may mean.

Of course not all the interpretations are equally likely to represent what the
user had in mind, so they should be ranked according to the likelihood that they
do so. In order to estimate this likelihood, different methods can be used. For
instance, a ranking can favor interpretations with the shorter paths between nodes,
or with paths passing through a specific central node as happens in star schemas
of warehouses.

Moreover, there is a second dimension to take into account in ranking the
interpretations: the existence in the database instance of tuples corresponding to
the selected interpretation. Not all the interpretations have the same information
power and some of them can produce empty results once they are translated in
SQL and executed in the DBMS. Estimating if an interpretation could provide an
empty result is useful to optimize the process and make it more responsive towards
the user’s needs.

Example 2.4. One of the heuristic rules commonly adopted for ranking the inter-
pretations is based on the number of edges involved. Interpretations with more
edges can include extra edges which are no justified by any term in the user query
and relate things that are semantically far. Among the two interpretations [A.1]
and [A.2] mentioned in Example 2.3, [A.2] has more edges. Although it is possi-
ble for [A.2] to actually represent the semantics that the user is looking for with
the provided keyword query, it is less likely since [A.2] involves elements that are
semantically further from the point of view of the database designer.

Moreover, when evaluated against the database, not all the interpretations
correspond to instances which are really available. For instance, this is the case
of [A.1] (i.e. the person “Vokram” is not the Director of a Department of a Uni-
versity from “IT”).

2.3. Producing the Explanations
Since the data is stored in a relational data store, to retrieve the elements of

interest it is needed to produce a number of SQL queries. We refer to these queries

11

as explanations since they are actually describing a set of data to be retrieved as a
response to the keyword query provided by the user, and in some sense “explain”
what the query could actually have meant. How the explanations are generated
is an issue of the specific implementation. However, what is important is that
the final sql query respects the configuration, i.e., ensures that the images of the
keywords as database terms are present in the query and these terms are associated
in the way that the interpretation specifies.

Naturally, not all the explanations are equally likely to represent the intention
that the user had in mind when formulating the query. The likelihood that an
explanation is actually representing such an intention is based on the degree that
both the configuration and the interpretation are believed to represent what the
user had in mind. This means that to create a ranked list of the most promising
candidate explanations, one needs first to create a ranked list of interpretations
that takes into consideration not only the ranking of the interpretations produced
by the backward analysis step, but also the ranking of the configurations from
which they were derived, as produced by the forward analysis step. It may be the
case for instance, that an interpretation ranks very high in the list produced by the
second step, but the configuration from which the interpretation was derived is
very low in the rank of configurations produced by the first step.

Example 2.5. Consider again the case of the keyword query Vokram IT, the
configurations A and B mentioned in Example 2.1 and the three interpretations
[A.1], [A.2] and [B.1] described in Example 2.4 and illustrated in Figure 4. [A.1]
is preferable compared to [A.2], according to the usual heuristic rule, even if it
does not correspond to any tuple in the database as already mentioned. However,
between [A.1] and [B.1] the decision is not that clear since the graphs of the two
interpretations are both of the same size, as it can be seen in Figure 4. It was
mentioned in Example 2.1, however, that the configuration A, compared to B, is
more likely to represent what the user had in mind, which makes an explanation
derived by [A.1] more favorable than one derived by [B.1]. Whether an explana-
tion derived by [B.1] is preferred over one derived by [A.2], depends on whether
the mappings of the keywords into the database structures (i.e., the configuration)
are considered more important than the way these structures are related to each
other (i.e., the interpretation).

12

Figure 5: The Keyword Search process in QUEST.

3. Framework Implementation

We have materialized the previously described framework into a system called
QUEST. The system can be used as an add-on that operates on top of a database
system. Before operating, QUEST needs to know some meta-data information
about the database. The meta-data information consists of the database terms
alongside the referential constraints. This is done into a pre-processing step by
accessing the database catalog tables. It also needs access to the full-text indexes
over all the database attributes. Of course, there are cases in which such access
is not possible. One such case is the one in which the data source is part of an
integration system of independent sources. Typically these sources do not allow
unrestricted full access to their content but only access to specific parts through a
controlled interface. In these cases some partial information can be obtained from
the user or by analyzing the interface that the database provides.

The overall framework implementation process is illustrated in Figure 5. As
it can be seen, for the forward analysis there are two different implementations
that run on parallel and at the end their results are merged into one set of config-
urations. The configurations are provided to the backward step implementation,
which takes one at a time and produces a set of possible interpretations. All the
generated interpretations are then ranked according to their selection criteria and
the ranked list is provided to the ranking module. The latter combines the ranked
interpretations with the ranked configurations to produce a new ranked set of in-
terpretations and select the top k. At the end, each one in the top-k is translated

13

Algorithm 1: QUEST Implementation of the Keyword Query Answering
Input: Keyword Query: q
Number of top results to consider: k
Output: Set of SQL queries Qsql

QUEST()
(1) Capr ← FW-HMMA-PRIORI(q, k)
(2) Cfdback ← FW-HMMFEEDBACK(q, k)
(3) TopC ← COMBINERDST(q, k, Capr, Cfdback, Confapr, Conffdback)
(4) I ← ∅
(5) foreach c ∈ TopC
(6) I ← I ∪ BW-ST(q, c)
(7) TopI ← RANKST (I)
(8) TopI ← COMBINERDST(q, k, TopC, TopI , ConfTopC , ConfTopI)
(9) Qsql← CONFIGURATIONS2SQL(TopI)
(10) return Qsql

into a SQL query.

3.1. Discovering Configurations: The Forward Analysis Implementation

A number of different techniques can be used to generate the possible map-
pings of the keywords to database terms, i.e., the configurations. If full access
to the database content is available in advance and full-text search functions are
supported, they can be exploited [2] to identify the appearance of the keywords
in the content, and from there, the database structures these appearances belong.
However, in many cases, this is not enough, since the same keywords can be
found in several database relations, thus requiring the adoption of disambigua-
tion techniques. Moreover, especially on the web, access to the data is not always
available. Data sources expose typically a part of their schema that can be queried,
either through wrappers or through web form interfaces. For these cases, semantic
and heuristic techniques can be exploited. Existing works have shown to produce
interesting results [13].

Since the process is mainly a guess on what the keywords in the query actually
mean, each configuration proposed should be coming with some degree of confi-
dence. In our own implementation, we use a First-Order Hidden Markov Model
(HMM), similar to the one we presented in a previous work [15]. This approach
has the advantage of using a solid and effective probabilistic framework and works
as follows.

14

A HMM models a stochastic process that is not observable directly (it is hid-
den), but it can be observed indirectly through the observable symbols produced
by another stochastic process. The model is composed of a finite number N of
states. Assuming a time-discrete model, at each time step a new state is entered
based on a transition probability distribution, and an observation is produced ac-
cording to an emission probability distribution that depends on the current state,
where both these distributions are time-independent. Moreover, the process starts
from an initial state based on an initial state probability distribution. More for-
mally, the First-Order HMM consists of: (i) a set os states S = {si}, 1 ≤ i ≤ N ;
(ii) a set of observation symbols V = {vj}, 1 ≤ j ≤ M ; (iii) a transition proba-
bility distribution A = {aij}, 1 ≤ i ≤ N , 1 ≤ j ≤ N where

aij = P (qt+1 = sj|qt = si) and
∑

0<j<N

aij = 1;

(iv) an emission probability distribution B = {bi(m)}, 1 ≤ i ≤ N , 1 ≤ m ≤ M
where

bi(m) = P (ot = vm|qt = si) and
∑

0<m<M

bi(m) = 1

and (v) an initial state probability distribution Π = {πi}, 1 ≤ i ≤ N where

πi = P (q1 = si) and
∑

0<i<N

πi = 1

In our context, the keywords inserted by the user are the observable part of the
process, while the correspondent database terms are the unknown variables that
have to be inferred. For this reason, we model the keywords as observations and
each term in the database vocabulary as a state.

The use of HMM requires the specification of its transition, emission and ini-
tial state probabilities. The challenging question is how these probabilities can
be computed. We have developed two operating modes for the forward analy-
sis step, each one has its own method for the computation of these distributions.
These modes are based on techniques we have previously developed and imple-
mented [15, 16] for computing the transition probability and the initial state dis-
tributions. The first mode, is referred to as the “feedback-based”. In that mode
the system learns these probabilities by means of an Expectation-Maximization
(E-M) on-line training algorithm [22] applied to a dataset composed of previous
searches validated by the user. The second mode is referred to as the “a-priori”

15

mode. In that mode, the transition probabilities are defined by exploiting seman-
tics collected from the data source metadata independently of the feedback from
the users. They are computed by using heuristic rules that take into account the
semantic relationships that exist among the database terms. The goal of these
rules is to foster the transition between database terms belonging to the same ta-
ble and belonging to tables connected through foreign keys. This means that in
the A matrix the weights are established so that the values associated to:

• database terms belonging to the same table assume the highest values;

• database terms belonging to tables connected via foreign keys assume inter-
mediate values;

• database terms belonging to table not directly connected assume the lowest
values.

In all the above cases, the values are further differentiated on the basis of which
kinds of database terms they are representing. In particular, transitions between
states representing schema elements and their respective domains are assigned
higher values than those assigned to the transitions between states associated to
schema elements, states associated to attribute domains and finally, states asso-
ciated to schema elements and domain attributes of not related attributes. The
choice of the actual values are not important as long as they satisfy the above
rules. In all the cases, the values have to be normalized to add up to one.

The initial state probability is computed by means of an adaptation of the
HITS algorithm [23] that applied to a HMM retrieves the states with high “au-
thority” scores, i.e., the ones that contain valuable information concerning the
user query, thus associated with a higher initial state probability. The above two
techniques (details of which can be found in some previous work of ours [15, 16])
are extended and adapted in the QUEST environment. In particular, for both op-
erating modes, the emission probabilities are computed on-the-fly, by analyzing
the keyword query with the full-text index-based search function usually avail-
able in today DBMSs. The emission probability of a specific state is approxi-
mated by means of the scores returned by the full-text search function applied to
all the keywords with respect to the considered state, and normalized to add to
one. We use the calculated similarity as an estimate for the conditional probabil-
ity P (qt = si|ot = vm) then, using the Bayes theorem, we calculate the emis-
sion probability P (ot = vm|qt = si). If we do not have a complete access to
the database instance, we can adopt different measures to estimate the emission

16

probability, by means of regular expressions and the “Semantic Distance” as we
proposed in [14]. Note that the model is independent of the similarity measure
adopted. Other more complex measures that take into account external knowledge
sources (i.e., public ontologies and thesauri) can be applied without modifying the
model.

Once the HMM parameters have been defined, the resulting HMM is
used to compute the top-K configurations by applying the List Viterbi algo-
rithm [16]. The algorithm returns the ordered list of the K state sequences
Q̂k

l = (qk1 , q
k
2 , . . . , q

k
T), 1 ≤ k ≤ K (i.e., the database terms) which have the

highest probability of generating the sequence Ol = (o1, o2, . . . , oT) (i.e., the user
keywords).

Example 3.1. Let us consider a fragment of the database proposed in Figure 2,
composed only of the tables People and Department. The HMM (which has
been constructed in advanced as explained previously) contains a state for each
database term, i.e., a state for each attribute and attribute domain in the tables.
If we assume to have access to full-text indexes, given a set of keywords, we know
the database terms that more likely represent them. This is the emission proba-
bility distribution B. The transition probability matrix A, built according to one
of the two techniques described above, expresses the probability that a keyword is
assigned to a specific state, i.e., representing the respective database term for that
state, given the assignment of the preceding keyword in the query. Now, given for
example the keyword query Country IT, assuming that the first term is associ-
ated to the schema element Country of the table People, the probability to have the
second term “IT” associated to the domain of the attribute “Country” is higher
than any other assignment, if in matrix A the value associated to the transition
between the states representing the database terms Country and domain of Coun-
try is higher than any other value associated to transitions from the “Country”
state. The List Viterbi algorithm takes into account the transition and the emission
probability distributions for returning a list of possible state sequences, which are
likely to represent the database terms that can be associated to the user keywords.
In the specific case, the possible database terms associated to “Country” and
“IT”.

3.2. Discovering Interpretations: The Backward Analysis Implementation

Finding how the images of the keywords to the database terms, as they are
specified by the configurations, are connected to each other dictates the way the

17

data has been modeled in the database. For a relational system, this would trans-
late into an exploration of the join paths among their respective tables and se-
lecting those that most likely represents what the user that formulated the query
had in mind. To do so it is useful to see the database as a database graph (see
Definition 2.2).

Selecting the best join path is a challenging issue. Between two terms, the
most natural selection would be the join path with the shortest length based on the
idea that the closer two terms are, the higher the likelihood that they are semanti-
cally related. When there are more than two terms, the way they can be connected
is more complex and the semantics of the shortest path is not so clear. For this
reason, the idea of the Steiner Tree [24] is often adopted: given an edge-weighted
graph G = ⟨V,E⟩ and a subset Vq ⊆ V , find the top-k minimum cost trees con-
taining at least all the elements of Vq. For our case, the nodes Vq are the database
terms that serve as images of the query keywords through the configuration. The
cost of a Steiner tree t : ⟨Vt, Et⟩ is the sum of the weights of its edges, i.e.,

cost(t) =
∑
e∈Et

weight(e) (1)

where weight(e) is the weight of the edge e∈Et

Since the Steiner Tree discovery process is about a weighted graph, QUEST
employs weight(e) = 1 for “attribute-domain of the attribute” edges and
“relation-attribute of the relation” edges, and a mutual-information-based distance
for computing the rest of weights on the edges (previously used in the context of
databases summarization [6]). This assures to select the most informative join-
paths, i.e., those that are more likely to contain tuples that can join. A similar
measure has been adopted in the context of database summarization [25]. Con-
sider two attributes A1 and A2 that appear in the same Steiner tree, A1 is a primary
key, and A2 is a foreign key referencing A1. If I(A1, A2) and H(A1, A2) are re-
spectively the mutual information and the entropy, as defined elsewhere [25], the
weight of the edge between them can be defined as the distance function

D(A1, A2) = 1− I(A1, A2)

H(A1, A2)
(2)

To define and apply the distance function, the works by X. Yang et al. [25] are
considered to define a joint distribution2 between two variables, XA1 and XA2 ,

2Joint distribution is a brief form of joint probability distribution function defined as a proba-

18

that represent the attributes A1 and A2, respectively. In particular, if A1 and A2

belong to different relations, the joint distribution between XA1 and XA2 is defined
by taking into account the full outer join on the attributes A1 and A2 as in this
way, the distance function is aware of pairs of the types (value, null) and (null,
value). If A1 and A2 belong to the same relation, then the joint distribution is the
projection of the relation on {XA1 and XA2}.

Once this distribution gets computed and the distance function mentioned
above calculated, its value is divided among the two edges that connect the two
attributes through their common relation and become their respective weights. In
practice, in order to further optimize the execution time, we are actually using a
summary graph [25] instead of the whole Steiner tree. The summary graphs are
similar to the graph previously described, but their edges are meta-edges corre-
sponding to paths of the original graph (in our case the Steiner tree) so we do not
really have to do this division of the weights. The fundamental concept, however,
remains the same even in the case of the summary graphs. Given the set of top-k
configurations, the set of interpretations that the backward analysis step is return-
ing is the union of all the top-k summary graphs generated for each of the top-k
configurations.

In QUEST we have extended a Steiner Tree discovery algorithm [24] by mak-
ing it to work at the schema level instead of the instance level, and implemented
a mechanism to efficiently discard trees whose computation does not provide any
additional results, like for instance, those that are super-trees of other Steiner trees
already computed. More specifically, Steiner Trees are computed using an ad-hoc
extension of the DPBF algorithm [24]: we introduce a tree-similarity function to
discard, among the computed partial results, those that are subgraphs of others.
Assume that we denote by S(t) the Steiner nodes (i.e., non-terminals nodes), and
with T (t) the terminal nodes of tree t, the similarity function simil(t, t′) returns
true if S(t) ⊆ S(t′) and T (t) = T (t′). The motivation is that the join-path associ-
ated to the Steiner Tree, which is super-graph of another tree, does not introduce
any new information concerning how to map the keyword query into the graph
and therefore can be discarded.

Working on graphs modeling the meta-data instead of the actual tuples in the
instance [4, 24, 26], offers QUEST a number of advantages. In particular, (i) the
graph is typically smaller and hence the technique is in general more scalable,

bility distribution that gives the probability that each pair (XA1 , XA2) falls in a particular range or
in a discrete set of values specified for those variables.

19

(ii) it is less subject to changes than a graph over the database instance, (iii) it
has uniform semantics for edges, i.e., primary/foreign key join, and (iv) it can
be computed even in cases where the database instance is not directly accessible.
These advantages allow QUEST to deal with “critical” real scenarios where the
database size gives rise to graphs with millions of vertices and edges, for which
the problem of finding Steiner Trees is becoming intractable.

Using graphs that model database schemas requires to address an additional
important issue: the case that the obtained Steiner tree does not provide any direct
result (i.e., no actual tuple is returned), but only the specification of a join-path that
could result in an empty set of tuples. This happens because the configurations dis-
covered in the forward step map keywords into database terms in isolation. There-
fore, there are no guarantees for a configuration to correspond to a tuple actually
existing in the database instance. However, the use of the mutual-information-
based approach that we have described previously minimizes the chances that the
top-k interpretations that are selected based on the weights have this problem.

3.3. Ranking Combination Implementation
There are two points in the framework implementation in which different

ranked results alongside their confidence score need to be combined into one,
and the confidence scores of the elements in the new ranking list needs to also
be computed. The first point is in the forward analysis step in which the results
of the two different implementations of the step need to be combined into one.
The second is at the point in which the ranked list of the interpretations computed
by the backward analysis step need to be updated by taking into consideration
the scores of the configurations that produced these interpretations in the forward
analysis step. By updated, it is not meant simply changing the order but also com-
puted the new scores for the elements in the list. When this is done, the top-k
elements can then be selected. Although there are popular algorithms for merging
multiple ranking lists into one [27], the need to also accurately compute the con-
fidence probabilistic score of the elements in the final list poses some additional
challenges.

We believe that a promising approach for this purpose is a probabilistic frame-
work and for that we have selected the Dempster Shafer Theory (DST). The
DST [28] is a generalization of the Bayesian theory of subjective probability that
allows evidences coming from different independent sources, under uncertainty
conditions, to be combined. Given a set of elements in which we are interested,
called universe and denoted by U (the so-called frame of discernment), the idea
of DST is to:

20

1. Obtain a belief function (a. k. a. mass function) m : P(U)→ [0, 1] for each
source providing some type of information. Each belief function m must
satisfy the following properties: (i) m(∅)=0, (ii)

∑
E∈P(U)m(E)=1. More-

over, m(U) represents the degree of uncertainty specified for that particular
source.

2. Combine the different degrees of belief by means of Dempster’s rule. This
rule establishes that given two mass functions m1, m2 representing source
1 and 2 respectively, then the aggregation mass functions m12 is computed
by the following equations:

m12(E) =

∑
E′∩E′′=E m1(E

′)m2(E
′′)

1−K
if E ̸= ∅ (3)

m12(∅) = 0 (4)

K =
∑

E′∩E′′=∅

m1(E
′)m2(E

′′) (5)

where K represents the mass associated with conflicting evidences, i.e,
when the intersection is empty.

There have been different proposals to aggregate evidences by considering
other methods to hand conflicts [28]. We have selected the Dempster’s rule be-
cause it is well-known and extensively used in practice. Nevertheless, the ap-
proach can be easily adapted to use other rules.

For the case of combining the results of the a-priori and the feedback based im-
plementations of the forward analysis step, as universe it is considered the union of
the two respective result sets. Furthermore, the scores of the elements in the two
respective lists are used to approximate a probability distribution function. For
doing so they have to first be normalized and add up to 1. This probability dis-
tribution function is what considered as the mass function that the DST requires.
Finally, there is a need for deciding which ranking to trust more and which not.
For this, two additional parameters are used that describe the confidence that is
put on each of the two lists. These are the Confapr and Conffdback, respectively.

The specific values of the latter two parameters may change as the system is
operating, making QUEST a tool easily adaptable and reacting to changes in its
working context. For example, when QUEST is used to query a new database, lit-
tle feedback is available. Thus, the feedback-based mode can become less reliable
than what will be after some long time querying the data source. Consequently,
the parameter Confapr is increased in order to allow the system to achieve a better

21

Result
Scores of the approaches Explanation Score (Rank)

forward (f) backward (b) Conffw = Confbw Conffw < Confbw Conffw > Confbw

[A.1] -5.080 (1) -0.174 (1) -4.809 (1) -11.217 (1) -2.402 (1)

[A.2] -5.080 (1) -0.492 (3) -4.959 (3) -12.048 (3) -2.780 (2)

[B.1] -9.123 (2) -0.178 (2) -4.820 (2) -11.321 (2) -4.596 (3)

Table 1: Ranking Scores for the Running Example Results

overall performance. However, as the amount of the available feedback increases,
the parameter Conffdback is incremented. This same parameter will on the other
hand decrease when “negative” feedback is obtained and the system will be re-
configured automatically according to this decrease.

For the case of combining the results of the interpretations with the config-
urations of the forward analysis step, the approach is similar. The scores that
have been assigned to the configurations and interpretations from the forward and
backward analysis step, respectively, are considered observation values (i.e., evi-
dences) and are used to compute the probability distribution function.

One issue to be taken care here is that the two lists have heterogeneous con-
tents (one has configurations, the other interpretations) and some configurations
may be orphan, i.e., a configuration for which the interpretations has not made
it to the top-k list that the backward analysis step has produced. For this, be-
fore performing the combination, this orphan configurations are discarded. Other
than that, in this second case one can have two confidence parameters, Conffw
and Confbw that specify the importance that is to be placed on the configuration
(forward analysis) or the interpretation (backward analysis), respectively. Giving
higher value to the first will lead towards results covering more disparate tables
or attributes in the database, even if loosely connected (i.e., through very long
paths). On the other hand, higher confidence value on the backward analysis will
lead to strongly related database terms, i.e., more coherent structures be returned.
The exact values to set is application specific. Although they can get any values,
a good practice would be to assign values that add up to 1. In that way, knowing
the value of one of the parameters, which will be between 0 and 1, the other can
be computed.

Example 3.2. Applying the forward and the backward analysis implementations
of QUEST on the running example keyword query Vokram IT leads to the scores
indicated in Figure 1. Each line corresponds to one of the three interpretations
[A.1], [A.2] and [B.1] of Example 2.3. The first column indicates the scores for

22

the respective configurations, i.e., the A for the [A.1] and [A.2], and the B for the
[B.1], as they are resulting from the forward analysis. The second column are the
scores of the three interpretations resulting from the backward analysis. The next
three columns indicate the scores of each interpretation depending on the rela-
tionship of the value of the confidence parameters. The number that is shown in
parenthesis simply indicates the ranked position position of the respective number
among the three. The goal here is not to explain in details how these numbers
were created, but simply to illustrate the effect that the values of the confidence
parameters Conffw and Confbw can have to the final list that the system will
return.

3.4. Generating Explanations: the Translation
One approach for generating the explanations from an interpretation is to con-

sider all the tables for which there is an attribute or attribute domain database
term in the interpretation, or the table itself appears as a database term in the
interpretation. All these tables form part of the where clause. Furthermore, for
every association between the database terms included in the configuration, the
join conditions among their respective tables are added in the where clause. The
challenging question is what to be placed in the select clause, since in contrast to
SQL or other structured form of queries, keyword queries do not specify neither
the objects to be retrieved nor the form or the attributes they should have. In the
absence of such information, QUEST is returning a complete picture of the in-
volved structures, i.e., the set of all the attributes related to the relation database
terms involved in the interpretation. In other words, for QUEST an explanation,
i.e., the generated final SQL query, is defined as follows:

Definition 3.1. An explanation e of an interpretation ⟨V S, ES⟩ derived by a con-
figuration c of a keyword query q is an SQL query in the form

select a1, a2, . . ., an
from R1 join R2 on J1 join . . . join Ro on Jp

where A′
1=k1 and A′

2=k2 and . . . and A′
m=km

formulated by adding: (i) a condition A=k in the where clause for every node in
V S that corresponds to an attribute domain Dom(A) which is the image c(k) of
the keyword k; (ii) a join condition J : A=A′′ in the from clause for every edge
between two nodes Dom(A) and Dom(A′′); and (iii) a reference to the attribute
a of relation R in the select clause if a node representing R is in V S .

The above definition is implemented in the Interpretation2SQLmodule
in Figure 5 illustration.

23

Keyword queries are very vague. They are flat lists with no explicit relation-
ships between the keywords, thus many different interpretations are possible [29].
The whole framework presented here is based on the hidden assumption that the
semantics the user had in mind when formulating the query are expressible as an
SPJ query. However, SPJ queries form a large class of queries that can fulfill the
requirements of the majority or real life applications, something that has already
been recognized [30]. Almost all the keyword query answering techniques on
structured databases follow a similar assumption [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
Clearly, there may be applications that require more complex queries that cannot
be covered by our approach, e.g., self-joins. These are focused on specific appli-
cations, and can be handled on a case-by-case basis. For instance, the self-joins
can be implemented by considering multiple copies of the same database term
modeling the table for which a self join may be applied. As an example, the graph
of Figure 3 could have more than one nodes representing the table Person, and
its included attributes to allow self-joins on that table to be considered as expla-
nations produced by the system.

4. Related work

Over the last decade, a great amount of approaches to allow users to access
structured data by means of keyword queries has been proposed. These proposals
can be classified into two main categories [1]: schema-based (a.k.a. relation-
based) and graph-based (a.k.a. tuple-based).

The schema-based approaches model the database to be queried as a graph
where nodes represent relations and attributes, and edges represent key/foreign-
key or membership relationships. In this kind of systems, a keyword query is
typically evaluated in two steps. Firstly, SQL queries are generated to describe
the intended meaning of the user query in database terms. Moreover, queries
are ranked and evaluated based on their relevance (semantic proximity) to the
assumed user query semantics. Secondly, the most relevant SQL queries are exe-
cuted to retrieve tuples from the database. The main goal here is to optimize the
algorithms used to generate the SQL queries and to select the right metrics for the
evaluation of the tuples retrieved by these queries. Examples of systems following
the schema-based approach include DISCOVER [2], DBXplorer [3], SPARK [5],
and SQAK [6].

The graph-based approaches model relational databases as graphs where
nodes are tuples and an edge between two tuples denotes that they are connected
by a key foreign-key constraint. Thus, connected tuples can be extracted directly

24

from the data-graph. BANKS [4], BLINKS [31], PRECIS [9], DPBF [24] and
STAR [32] are examples of graph-based systems. Their main aim is to optimize
the computation of specific structures over the graphs (e.g., Steiner trees, rooted
trees, etc.) to find the most relevant top-k connected tuples. Their challenge is
to handle the large and complex graphs induced by the database instance, as it
could make the problem hardly tractable. Furthemore, different interpretations
(with different structures) that arise due to inherent keyword ambiguities appear
all mixed up in the result sets.

Our QUEST system is a schema-based approach as it performs the matching
of keyword queries into database structures by means of the forward step, and af-
ter that, it exploits information from the schema and the instances of the database
to generate possible interpretations (called “candidate networks” in some previ-
ous schema-based approaches), i.e., portions of the database schema graph that
includes the keywords in the user query seen as a bag of words. Nevertheless, by
using the HMM, these words are seen as a sequence, considering their relative po-
sitions in the query and the inter-dependencies between the matchings of the key-
words to the various database structures. QUEST also makes use of techniques
based on Steiner trees, which are generally exploited by graph-based approaches.
In [1, 24], Steiner trees are applied to the instance graph for identifying the results
of a query. However, in the backward step, QUEST builds a graph of the database
schema instead, and uses Steiner trees to identify the tables and join paths needed
for the SQL query formulation.

SQL query SUGGestion (SQLSUGG) [33] is currently the most similar sys-
tem to QUEST. It implements a schema-based approach that also uses a proba-
bilistic model based on entropy to suggest SQL queries efficiently to the users
by means of a friendly interface. The main differences between SQLSUGG and
QUEST are the following ones: 1) in QUEST, firstly users keywords are matched
to elements of the database, and, after that, the different elements of a set of
matches (i.e., a configuration) are related among them by exploiting schema-
information (i.e., different interpretations are generated). On the other hand, in
SQLSUGG firstly templates are selected (i.e., a fragment of the database that con-
nect different elements of the database) and after that keywords are matched to
elements in the different fragments; 2) in SQLSUGG templates to generate the
SQL queries are generated offline (i.e. they are predefined) while in QUEST are
generated on-the-fly at run time; and 3) SQLSUGG considers aggregate functions
and QUEST does not consider them. Nevertheless, the techniques used by SQL-
SUGG to consider that kind of operators can be easily incorporated to QUEST.
Another interesting work is DBease [34], a system that allows users to choose

25

between three different options to perform their search: 1) using a recommenda-
tion system that suggests keywords from the database instance while the users are
typing their queries, 2) using multiples input boxes to formulate queries instead
of only one (the different boxes are related to different tables of the database un-
derlying), or 3) using SQLSUGG (previously described). Nevertheless, neither
DBease nor SQLSUGG consider queries previously formulated by users or the
order of the keywords in the query to suggest SQL queries. In this way, they only
exploit the information obtained from the database without taking into account
the users’ point of view (users’ perspective).

Most of the existing approaches rely on indexes and functions over the data
values to select the most prominent tuples as results of queries. Only recently
metadata-based approaches have been developed [35]. These approaches are use-
ful when there is not direct access to the database instance (as it happens for
sources that are behind data-intensive web applications in the deep web) or when
frequent updates make the process of building and updating indexes too expen-
sive. QUEST can also work in this scenario, by “simulating” and approximating
the results of full-text index search (unavailable in these conditions) with semantic
matchings, similarity measures and data type compatibilities using the techniques
we have previously developed [13].

Finally, although keyword search is the most well-known approach that fa-
cilitates query answering, there are others that also try to help the user in vari-
ous ways. These include the Query-by-example [36], the Exemplar Queries [29],
Query Relaxation [37, 38].

5. Experimental evaluation

5.1. Experimental setup

The data sources. We employed two databases frequently used in the liter-
ature for experimental evaluations: Mondial3 and a relational implementation of
DBLP4. Even if the databases contain a comparable number of database terms
(227 and 237 terms, respectively), they differ in size and number of connections
among the data structures. DBLP has a simple structure where the tables can be
joined in the majority of the cases by a unique path. Conversely, the Mondial
structure is complex and tables are often joined by multiple paths. Concerning the

3http://www.dbis.informatik.uni-goettingen.de/Mondial/
4http://dblp.uni-trier.de/

26

instances, the size of Mondial is more than two orders of magnitude smaller than
DBLP. By way of example, “People” and “inproceedings”, describing authors and
papers, are definitely two of the largest DBLP tables and have both a cardinality
close to one million tuples. Moreover, papers are linked to the respective authors
through the table “author inproceedings” which counts around four million tuples.
The tables in Mondial are smaller: only one table, “city” contains three thousand
instances, and the other tables include around (or less) five hundred tuples. Table
2 summarizes the main characteristics of the evaluation dataset5.

Dataset Size (MBs) Relations | V | | E | | T |
Mondial 16 28 17 56 12
DBLP >1800 15 >4000 >7500 >4000

Legend:
| V | number of nodes (tuples) in data graph (in thousands)
| E | number of edges (foreign keys) in data graph (in thousands)
| T | number of unique terms (in thousands)

Table 2: Main characteristics of the evaluation dataset

These features make the selected databases at opposite levels in an evalua-
tion system which compares small size vs. big size databases and flat databases
vs. databases with complex data structures. Consequently, we expect that in the
computation of configurations (i.e. the matching of user keywords into database
terms) QUEST performs better in Mondial than in DBLP, due to the database size.
On the contrary, we expect that in the computation of the interpretations QUEST
performs better in DBLP, since Mondial has a greater number of possible paths
(i.e. FK-PK relations) connecting the tables.

The query datasets. The construction of a query training dataset is a criti-
cal task since synthetic keyword queries do not resemble the actual distribution
of information needs, and, on the other hand, self-authored queries have a strong
potential for bias [40, 41]. In addition, it is unfeasible to have a sufficient num-
ber of queries formulated by independent third parties with a description of their
intended meaning. For this reason, we adopted a mixed approach where a small
dataset of queries provided by independent users are exploited for creating a large
dataset. In particular, we asked a set of users (25 person) to provide keyword
queries for these databases alongside a natural language description of what they
were looking for. We obtained a total of 69 and 144 queries for the Mondial and

5The data about the Mondial database are taken from [39]

27

DBLP database, respectively. The numbers of keywords in the queries ranges
from 1 to 5 (3.2 in average). A database expert translated each description into
an explanation (i.e., an SQL query), obtaining a reference to evaluate the results
returned by QUEST6. Then, the explanations have been exploited by a software
application as a template for the generation of new keyword queries. We adopted
a 10-fold cross validation evaluation approach, where each fold is composed of
10000 keyword queries (9000 queries are used as training dataset, and 1000 as
test dataset). We performed the experiments for each fold, and we computed the
result as the average of the outcomes obtained in each fold. We also adopted sub-
sets of the training datasets (i.e., including the first 0, 250, 500, and 1000 keyword
queries of each fold) for evaluating the performance of the system in cold-start
scenarios.

The system setup. The experiments were performed on a Linux Ubuntu vir-
tual machine created in Oracle VM VirtualBox. This machine was setup with 3
processors and 5 GB of RAM. QUEST modules were implemented in C++ and in
Java. MySQL was our DBMS.

The experiments. QUEST has been evaluated by taking into account five
perspectives. Firstly, the three components of the approach have been evaluated
separately: in Section 5.2 the forward step, in Section 5.3 the backward step, and
in Section 5.4 the combination. Then, in Section 5.5 we evaluated how QUEST
performs on sources where no direct access to the instance is available. Finally, in
Section 5.6 a benchmark [39] is used for comparing QUEST with other systems.

The evaluation. The experiments aimed to evaluate the effectiveness and the
efficiency of the approach. In the literature, the effectiveness of a keyword search
engine is usually evaluated in terms of recall and precision of the results retrieved.
Nevertheless, except for the comparison with the benchmark, we decided to eval-
uate the effectiveness by measuring the accuracy of the results considering the
top-k results retrieved (the percentage of correct results in k results retrieved). For
example, if the accuracy of the top-1 results is 90%, this means that in 90% of
queries evaluated the first output matches the expected result of the user. More-
over, we applied the accuracy measure to the configurations / interpretations /
explanations because QUEST actually does not retrieve directly the data, but it
generates a set of keyword queries to be executed by the database management
system holding the data.

6Note that the extraction of the corresponding configuration and interpretation from an expla-
nation is a straightforward process.

28

Finally, the system efficiency was measured by taking into account the time
needed for generating a set of configurations / interpretations / explanations. We
did not report the time required to actually evaluate the explanations –i.e., SQL
queries running time– since our aim is to measure QUEST avoiding the perfor-
mance of the DBMS to blur the results.

5.2. The forward analysis step
The goal of the forward analysis step is to compute configurations, i.e., map-

ping of user keywords into database terms. Two operating modes, the “a-priori”,
based of the database analysis, and the “feedback-based”, exploiting the user feed-
back, have been implemented and evaluated.

Effectiveness. We expect our application to be employed for querying un-
known databases where little or no information about the queries previously sub-
mitted to the system is available for the training. In such scenario, the a-priori op-
erating mode is able to compute configurations of keywords based on the knowl-
edge of the database schema and contents. Figure 6 reports the cumulative accu-

���

���

���

���

���

���

	���

��	
���
���
���
��	�

�����������

�����������

��������������

��������������

Figure 6: Cumulative accuracy of the a-priori forward analysis step.

racy achieved in our experiments. The result expected by the user is always in
the top-10 results generated by QUEST in the Mondial database, slightly worse
accurate levels are achieved against DBLP, as expected for the large size of this
database. Let us recall that the a-priori operating mode is based on a transition
matrix where the values are computed by applying heuristic rules. As a reference,
Figure 6 shows the accuracy obtained with a transition matrix populated with uni-
form values (no heuristic rules are applied).

In the feedback-based operating mode, the implicit feedback provided by the
users is used as a training supervised dataset, i.e., the user can in some way spec-
ify if and which answers satisfy their information needs. To simulate the perfor-
mance of the system in this scenario, we conducted several experiments where
QUEST has been trained with a dataset composed of two parts: one including su-
pervised data, the other unsupervised data. In particular, the unsupervised dataset

29

���

���

���

���

���

���

	���

��	
���
���

����������

	����

	�����	�	��

�����

������	�	��

�����

������	�	��

������������

	�	��

(a) DBLP database - large datasets

���

���

���

���

���

���

	���

��	
���
���

���������

�����������

���������

�����������

���������

	�����������

	���������

(b) DBLP database - small datasets

���

���

���

���

���

���

	���

��	
���
���

����������

	����

	�����	�	��

�����

������	�	��

�����

������	�	��

������������

	�	��

(c) Mondial database - large datasets

���

���

���

���

���

���

���

���

����

	
��� 	
�� 	
���

���������

����������

��������

�����������

���������

������������

����������

(d) Mondial database - small datasets

��

���

���

���

���

����

�	
������

����������

�����	
��

��	��	

����	��	

�����	��	

�� �� ���

(e) Application of the DST to Mondial

����

�����

� � � � � � � � � � � �

��
�
	

�
�	
�

������	������

������� ����

������������������

(f) Time for computing the configurations

Figure 7: Cumulative accuracy of the forward analysis step with feedback.

was built by assuming the system working correctly. Therefore, the unsupervised
dataset contains for each instance a query and the best configuration computed by
QUEST. By means of this setting, we try to mimic the users’ behavior (i.e., we
assume that the user feedback is not always available). The fraction of supervised
/ unsupervised data in the training dataset was different in each test-run.

30

Figure 7 shows the results of our experiments. We label series in Figures 7(a)
and 7(c) (referring to the DBLP and Mondial database, respectively) with the for-
mat “###S 1/X” to indicate that we are using a training dataset of 9000 queries
with a supervised initial training set of ### queries, and after there is a user feed-
back for 1 out of X queries (i.e., 1 out X queries in the dataset is supervised).
Figures 7(b) and 7(d) show how accurate the performance is after smaller train-
ing datasets composed of 07, 250, 500 and 1000 queries (in this case, the labels
of the series have the format “$$$:”, meaning that we are considered a dataset
composed of just $$$ queries) are used. In both cases, the test set includes 1000
queries. We experimented these last scenarios with only a complete supervised
and unsupervised approach.

The experiments show that with a large training dataset only a little amount
of supervised queries is required for obtaining high performance. With smaller
training datasets, the behaviour of the system is polarized: only few supervised
queries (more than 250) enable accurate results, around 100% even considering
only top-1 answers. When the datasets are uniquely composed of unsupervised
queries, the performance decreases. Note that (i) the accuracy is generally worse
in the experiments against DBLP, due to the large size of the database; (ii) in the
DBLP database, the accuracy slightly descreases when the set of unsupervised
queries increases (see Figure 7(b)). This is due to the “wrong answers” learned
by the system. Finally, note that the level of accuracy obtained when no query is
provided as training (i.e., the lines referred as unsupervised in Figures 7(a) and
Figure 7(c), and the line referred as 0:unsuper in Figure 7(b) and Figure 7(d)) is
different from what obtained in the a-priori mode. This is due to the different
probability distribution in matrix A. In the first case the distribution follows the
heuristic rules described in Section 3.1. In the second case, the distribution is
uniform: the E-M training algorithm did not perform any change to the initial
probability distribution, since no training query has been provided.

To experiment the accuracy of the combination of the operating modes, we
performed a number of test-runs where the results computed with the a-priori and
the feedback-based modes are combined with different “degrees of uncertainty”.
Figure 7(e) reports the results of our experimentation for some settings of the
Mondial database with the parameters maximizing the accuracy of the results.
Similar results are obtained with DBLP. Note that in small size datasets, where
the operating modes in isolation do not perform well, the combination of the ap-

7In this case no query is provided as training set.

31

proaches generates high accuracy results.
Efficiency. The forward analysis step has been evaluated considering two pa-

rameters: the number of keywords in a query, and the number of configurations to
be computed as a result. In particular, we tested the system with queries composed
of 1, 2, 3 and 5 keywords, and we computed the time required for retrieving top-
1, top-10 and top-100 results. Figure 7(f) reports the results of the experiments:
the time performance differs in the two databases (solving queries in DBLP is
up to 10 times slower than in Mondial) and it increases with the number of key-
words. Since Mondial and DBLP have almost the same number of database terms,
the experimental result seems to be only partially consistent with the computa-
tional complexity of the Viterbi algorithm, used for computing the configurations,
which is O(lkd2), where l is the number of keywords, k the number of answers
considered (top-k), and d the number of states. The discrepancy can be justified
by the different size of the databases: DBLP is far larger than Mondial, and the
time required to the full-text search function for retrieving the possible attributes
(not estimated in the theoretical complexity calculus) largely differs between the
databases. In addition, we would expect the efficiency to get worse with the in-
crease of the results retrieved. In practice this is not the case since the number
of possible configurations is in the majority of the cases less than 10. Finally, we
do not take into account efficiency concerns related to the combination process
performed by the DST, since it takes only a few milliseconds and therefore can be
ignored.

��

���

���

���

���

����

�	
�� �	
�� �	
�� �	
� �	
���

���������

�	����������

�������

�	��������

Figure 8: Cumulative accuracy of the backward analysis step.

5.3. The backward analysis step
The backward analysis step provides the interpretations of the configurations

computed with the forward analysis step, i.e., it maps the configurations into paths
over the database schema.

Effectiveness. For evaluating the effectiveness, we firstly tested the accuracy
of the step in isolation, i.e., without the previous forward analysis step. In this

32

way, we compute the highest level of accuracy that the backward analysis step
can achieve. Then, we implemented and tested an algorithm computing the in-
terpretations as the top-k shortest path connecting the terms in the configurations.
This allowed us to compare the capability of the backward analysis step with an-
other technique. The series with a ‘BEST” suffix in Figure 8 measure the accuracy
of the backward analysis step implemented as described in Section 3.2; the series
with a suffix “SP” show the shortest path trends. As expected, the accuracy is
higher in DBLP, due to the flat structure of the schema, and the BEST algorithm
performs better than the shortest path (especially for a database with complex
schema as the Mondial database).

�

�
��

��
���

���
����

����
�����

�����
������

� � � � � � � � � � � �

��
�
�
��
	�

�

����������	

�������

����

���������������

Figure 9: Time required for computing the interpretations.

Efficiency. Figure 9 shows the time required for building the interpretations.
The time complexity of the DPBF algorithm extended in QUEST for computing
the Steiner Trees is O(3ln2k + 2lmnk), where l is the number of keywords, n the
number of nodes (i.e., the attributes in the database), k the number of answer to be
considered, and m the number of edges in the tree (i.e., the connections from at-
tributes to primary keys in the same table, and from foreign keys to primary keys).
The performances are consistent with the theoretic computation: they decrease
with the increase of keywords, connections among schema elements (m), and the
number of answers to be computed (k).

5.4. Combining the steps

Effectiveness. To experiment the accuracy of the combination of the steps,
we ran the backward analysis step with the configurations computed by the for-
ward analysis step. Then, we computed the final scores of the explanations as
the combination of the scores returned by the forward and the backward analysis
step. Again, we conducted a number of test runs where different “degrees of un-
certainty” have been fixed for both the steps to find the parameters maximizing

33

���

���

���

���

���

���

	���

��	
���
���
���
��	�

����������

	����

	�����	�	��

�����

������	�	��

�����

������	�	��

������������

	�	��

(a) DBLP database - large datasets

���

���

���

���

���

���

	���

��	
���
���
���
��	�

���������

�����������

���������

�����������

���������

	�����������

	���������

(b) DBLP database - small datasets

���

���

���

���

���

���

	���

��	
���
���
���
��	�

����������

	����

	�����	�	��

�����

������	�	��

�����

������	�	��

������������

	�	��

(c) Mondial database - large datasets

���

���

���

���

���

���

	���

��	
���
���
���
��	�

���������

�����������

���������

�����������

���������

	�����������

	���������

(d) Mondial database - small datasets

��

���

���

���

���

����

�	
�� �	
�� �	
�� �	
� �	
���

�������
��

�����
��

�������
��

�����
��

�������
��

���������
��

(e) DBLP database without full text indexes

��

���

���

���

���

����

�	
�� �	
�� �	
�� �	
� �	
���

�������
�������

�	��������
�������

�������

������ !

�	��������

�	������� !

(f) Simulation for the steps in isolation

Figure 10: Cumulative accuracy of the combined step.

the accuracy of the results. Figure 10 ((a)-(b) for DBLP and (c)-(d) for Mondial)
shows that there is no relevant difference considering a small or a large dataset.

In addition, we ran another experiment, depicted in Figure 10(f), with two
particular settings to evaluate if the forward and the backward analysis steps can

34

provide accurate results in isolation. In the first setting (the series with the suffix
“SP”), we computed the interpretations of the configurations retrieved with the
forward analysis step by selecting the ones with the shortest path (similarly to
what we did in the previous Section). In the second setting (represented by the
series with the postfix “NOF”), we ran the backward analysis step decoupled from
the forward analysis step, i.e., interpretations are computed for all the possible
combinations of the attributes associated to the keywords, as found by the full-
text search function. The experiment shows that the results achieved with these
settings are worse than the ones computed with the QUEST technique (marked as
“supervised”).

Efficiency. The time for computing the combinations and generating the ex-
planations is few milliseconds and can be ignored.

5.5. QUEST without full access to the database
In some scenarios, to suppose a full access to the database instance and the

availability of full-text indexes could be infeasible. This is the case for databases
behind data-intensive websites in the deep web (i.e., the database is not directly
accessible, only its schema), data sources which are the result of a virtual data in-
tegration process (i.e., there is no data, only an integrated schema), and databases
which are subject to frequent and unpredictable updates (due to the high costs for
keeping the indexes updated). To experiment if QUEST is able to perform well
in these circumstances, we considered a scenario where only schema descriptions
are available. The application of techniques exploiting this knowledge for find-
ing out which database terms can be possibly matched into the user keywords
makes QUEST usable also in this scenario. In this experiment, we used regular
expressions for defining for each attribute a syntactic description of its possible
content. Other techniques, based for example on public ontologies and thesauri or
on the “Semantic Distance” as we proposed in [14] can provide improved results.
Figure 11 shows the cumulative accuracy of the configurations obtained in some
settings of the DBLP database. As expected, the accuracy is lower compared to
the scenarios where the full-text indexes are available.

As described in Section 3.2, the computation of the interpretations in the back-
ward analysis step relies on a distance based on mutual information. Such a
distance is computed by analyzing the data actually stored in the source. If the
data are not accessible, as in the current scenario, this measure cannot be com-
puted. Despite of this fact, we performed an experiment where the results ob-
tained from previous queries are used for populating a “reduced” version of the
original database, having the same schema and containing only the tuples returned

35

to the user as an answer. Hence we employed a training dataset of 250, 500, and
1000 query to accordingly populate the reduced database following the usual su-
pervised / unsupervised settings. The results reported in Figure 12 show that in
unsupervised scenarios, even if a relative small training dataset is available, in the
80% of the cases, the interpretation matching the intended meaning of the user
query is in the first 10 results provided by the system. In the supervised scenarios,
this happens almost for the 100 % of the queries.

Finally, we combined the interpretations obtained with the corresponding con-
figurations. The results in Figure 10(e) show that QUEST has a polarized behav-
ior. Without supervised queries the accuracy is low and only 60% of the correct
answers are in the top-10 results provided by the system. Nevertheless, with a
few amount of supervised queries, the performance increases and reaches values
greater than 85%. The performance remains practically unvaried if we consider
supervised datasets of 250, 500 and 1000 queries. With a supervised set of 9000
queries (not shown in Figure 10(e)), the results improve: the accuracy is 64.7%
considering the top-1 result, and 93.7% considering the top-10.

5.6. Comparison with other approaches

The comparison of the performance obtained by keyword search approaches
over relational databases is a complex task, mainly, due to the absence of a stan-
dard benchmark. The existing approaches have been evaluated against different
databases with different query sets. This fact prevents their direct comparison
based on their original experimental results. Moreover, in some cases, the evalu-
ation framework adopted seems to be inadequate, mainly, due to the employment
of a small number of self-authored queries [41], leading to biased results. Only
recently, a benchmark [39] proposed some metrics and a query set to evaluate
approaches against three data sources (Mondial, IMDB and Wikipedia). Even

��

���

���

���

���

����

�	
�� �	
�� �	
�� �	
� �	
���

������
��

�������
��

�����
��

�������
��

�����
��

���������
��

�������
��

��
��	��

Figure 11: Cumulative accuracy of the forward analysis step applied to the DBLP database without
full text indexes.

36

���

���

���

���

���

����

	
��� 	
�� 	
��� 	
��� 	
����

����������

��������

�����������

���������

����������

������������

Figure 12: Cumulative accuracy of the backward analysis step applied to the DBLP database
without full text indexes.

if the benchmark represents an important step towards a fair evaluation of key-
word search approaches, the metrics adopted (precision and recall compared to
a golden standard, and time needed for returning the results) cannot be suitable
when applied to a schema-based keyword search system, such as QUEST, which
transform keyword queries into SQL queries. The benchmark, in fact, computes
the effectiveness of the approaches by analyzing the results (instances) retrieved
with specific keyword queries whereas schema-based search approaches provide
SQL queries as results [42]. Note that all the tuples resulting from the same SQL
query have intrinsically the same score, and that the same result can be obtained
by different queries.

Aware of the possible limitations, we evaluated the effectiveness of our ap-
proach against the benchmark in [39], to provide an “external” reference to the
QUEST capabilities. The Mondial database has been selected as reference source,
since it has a complex schema (more challenging than the other sources) and a
non trivial size. Figure 13 illustrates the result of our experiments in which for the
forward analysis we use the HMM with the a-priori mode only. We limited the
experimentation to 35 queries out of the 50 included in the benchmark. The 15
queries that were not considered8 since their resolution is possible only with SQL
queries with self-joins, feature currently not supported in QUEST. This choice in
the design of our framework directly implies from the definition of a configura-
tion as an injective function, and, consequently, two keywords in the same query
cannot be mapped into the same database term. Nevertheless, this kind of query is
not frequent (in our experiments with “real” users we have never found this kind
of queries) and this constraint can be removed with the only effect to increase the
number of possible configurations. To make our approach as simple as possible,
we preferred to maintain the constraint in the paper and to limit the number of

8These are the queries 21-25 and 36-45

37

���

���

���

���

�

�	
�� ���� ������
�������
���� ������� ��� ����� ����

(a) Recall

���

���

���

���

�

�	
�� ���� ������
�������
���� ������� ��� ����� ����

(b) Precision top 1

Figure 13: Comparison with other approaches

experiments. moreover, as highlighted in the benchmark, most of the approaches
are not able to solve all the queries over all the databases. Figure 13(a) shows
that QUEST is able to find the solution for all the 35 queries. Figure 13(b) shows
the precision if we only consider the first result provided by the search engines.
QUEST obtains results with high precision degree, even if compared to the other
approaches. The same happens if we consider the precision degree with respect to
the top-10 results provided by the search engines. In this case, QUEST achieves
a precision equal to 0.58 with a standard error 0.06. The precision of the other
approaches is an average around 0.4 (only the STAR system obtains a final score
similar to QUEST, close to 0.6).

6. Conclusion

We have presented QUEST, a framework for keyword search over relational
databases which divides the process for solving keyword queries in three steps:
forward, backward and the combination of the two. The forward step generates
configurations, i.e., mappings keywords into database terms. Configurations are
derived following a user perspective, i.e., taking into account how the query has
been formulated by the user. The backward step formulates interpretations of the
obtained configurations, i.e., paths joining the database structures involved in a
configuration. These are computed following a database perspective, i.e., taking
into account how the information is actually fragmented in a number of tables in

38

the database. Configurations and respective interpretations are combined to form
an answer to the keyword query and ranked by means of a probabilistic framework
which allows users to specify a level of uncertainty.

QUEST is completely customizable and able to provide – as experimental
results demonstrate – highly accurate results independently of the database size,
structure complexity, direct access to the instance, and availability of full-text
search functions.

Acknowledgement

The authors would like to acknowledge networking support by the ICT COST
Action IC1302 KEYSTONE - Semantic keyword-based search on structured data
sources (www.keystone-cost.eu).

REFERENCES

[1] J. X. Yu, L. Qin, and L. Chang, Keyword Search in Databases, ser. Synthesis Lec-
tures on Data Management. Morgan & Claypool Pub., 2010.

[2] V. Hristidis and Y. Papakonstantinou, “Discover: Keyword search in relational
databases,” in VLDB 2002, Proceedings of 28th International Conference on Very
Large Data Bases, August 20-23, 2002, Hong Kong, China, 2002, pp. 670–681.

[3] S. Agrawal, S. Chaudhuri, and G. Das, “Dbxplorer: A system for keyword-based
search over relational databases,” in Proceedings of the 18th International Confer-
ence on Data Engineering, San Jose, CA, USA, February 26 - March 1, 2002. IEEE
Computer Society, 2002, pp. 5–16.

[4] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe, Parag, and S. Sudar-
shan, “Banks: Browsing and keyword searching in relational databases,” in VLDB
2002, Proceedings of 28th International Conference on Very Large Data Bases, Au-
gust 20-23, 2002, Hong Kong, China, 2002, pp. 1083–1086.

[5] Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: top-k keyword query in relational
databases,” in Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Beijing, China, June 12-14, 2007. ACM, 2007, pp. 115–126.

[6] S. Tata and G. M. Lohman, “SQAK: doing more with keywords,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2008, Vancouver, BC, Canada, June 10-12, 2008. ACM, 2008, pp. 889–902.

[7] F. Liu, C. T. Yu, W. Meng, and A. Chowdhury, “Effective keyword search in rela-
tional databases,” in Proceedings of the ACM SIGMOD International Conference on
Management of Data, Chicago, Illinois, USA, June 27-29, 2006, 2006, pp. 563–574.

39

[8] L. Qin, J. X. Yu, and L. Chang, “Keyword search in databases: the power of rdbms,”
in Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July 2, 2009.
ACM, 2009, pp. 681–694.

[9] A. Simitsis, G. Koutrika, and Y. E. Ioannidis, “Précis: from unstructured keywords
as queries to structured databases as answers,” VLDB Journal, vol. 17, no. 1, pp.
117–149, 2008.

[10] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k exploration of query candi-
dates for efficient keyword search on graph-shaped (rdf) data,” in Proceedings of the
25th International Conference on Data Engineering, ICDE 2009, March 29 2009 -
April 2 2009, Shanghai, China. IEEE Computer Society, 2009, pp. 405–416.

[11] V. S. Uren, Y. Lei, and E. Motta, “Semsearch: Refining semantic search,” in The
Semantic Web: Research and Applications, 5th European Semantic Web Conference,
ESWC 2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings. LNCS
Springer, 2008, pp. 874–878.

[12] Q. Zhou, C. Wang, M. Xiong, H. Wang, and Y. Yu, “Spark: Adapting keyword
query to semantic search,” in The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Bu-
san, Korea, November 11-15, 2007., 2007, pp. 694–707.

[13] S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo-Lado, and Y. Velegrakis, “Key-
word search over relational databases: a metadata approach,” in Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2011,
Athens, Greece, June 12-16, 2011. ACM, 2011, pp. 565–576.

[14] S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. Trillo-Lado, and Y. Vele-
grakis, “Keymantic: Semantic keyword-based searching in data integration sys-
tems,” PVLDB, vol. 3, no. 2, pp. 1637–1640, 2010.

[15] S. Bergamaschi, F. Guerra, S. Rota, and Y. Velegrakis, “A hidden markov model ap-
proach to keyword-based search over relational databases,” in Conceptual Modeling
- ER 2011, 30th International Conference, ER 2011, Brussels, Belgium, October 31
- November 3, 2011. Proceedings, ser. LNCS 6998. Springer, 2011, pp. 411–420.

[16] S. Rota, S. Bergamaschi, and F. Guerra, “The list viterbi training algorithm and
its application to keyword search over databases,” in Proceedings of the 20th ACM
Conference on Information and Knowledge Management, CIKM 2011, Glasgow,
United Kingdom, October 24-28, 2011. ACM, 2011, pp. 1601–1606.

[17] S. Bergamaschi, F. Guerra, M. Interlandi, R. Trillo-Lado, and Y. Velegrakis,
“QUEST: A keyword search system for relational data based on semantic and ma-
chine learning techniques,” PVLDB, vol. 6, no. 12, pp. 1222–1225, 2013.

[18] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases. Addison-Wesley,
1995.

40

[19] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin, “Translating
web data,” in VLDB 2002, Proceedings of 28th International Conference on Very
Large Data Bases, August 20-23, 2002, Hong Kong, China, 2002, pp. 598–609.

[20] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller, L. Popa, and Y. Velegrakis,
“Clio: Schema mapping creation and data exchange,” in Conceptual Modeling:
Foundations and Applications - Essays in Honor of John Mylopoulos, ser. Lecture
Notes in Computer Science, vol. 5600. Springer, 2009, pp. 198–236.

[21] R. Kumar and A. Tomkins, “A Characterization of Online Search Behavior,” IEEE
Data Engineering Bulletin, vol. 32, no. 2, pp. 3–11, 2009.

[22] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the EM algorithm,” Journal of the Royal Statistical Society: Series B,
vol. 39, pp. 1–38, 1977.

[23] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” J. ACM,
vol. 46, no. 5, pp. 604–632, Sep. 1999.

[24] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin, “Finding top-k min-cost
connected trees in databases,” in Proceedings of the 23rd International Conference
on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-
20, 2007. IEEE, 2007, pp. 836–845.

[25] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summary graphs for relational
database schemas,” PVLDB, vol. 4, no. 11, pp. 899–910, 2011.

[26] K. Golenberg, B. Kimelfeld, and Y. Sagiv, “Keyword proximity search in complex
data graphs,” in SIGMOD. New York, NY, USA: ACM, 2008, pp. 927–940.

[27] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee, “Comparing and ag-
gregating rankings with ties,” in Proceedings of the Twenty-third ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, June 14-16,
2004, Paris, France, 2004, pp. 47–58.

[28] L. Liu and R. R. Yager, “Classic works of the dempster-shafer theory of belief func-
tions: An introduction,” in Classic Works of the Dempster-Shafer Theory of Belief
Functions, ser. Studies in Fuzziness and Soft Computing. Springer, 2008, vol. 219,
pp. 1–34.

[29] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar Queries: Give
me an Example of What You Need,” PVLDB, vol. 7, no. 5, pp. 365–376, 2014.

[30] A. Bonifati and Y. Velegrakis, “Schema matching and mapping: From usage to eval-
uation,” in EDBT 2011, 14th International Conference on Extending Database Tech-
nology, Uppsala, Sweden, March 21-24, 2011, Proceedings, 2011, pp. 527–529.

[31] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: ranked keyword searches on graphs,”
in Proceedings of the ACM SIGMOD International Conference on Management of
Data, Beijing, China, June 12-14, 2007. ACM, 2007, pp. 305–316.

41

[32] G. Kasneci, M. Ramanath, M. Sozio, F. M. Suchanek, and G. Weikum, “Star:
Steiner-tree approximation in relationship graphs.” in Proceedings of the 19th ACM
Conference on Information and Knowledge Management, CIKM 2010, Toronto, On-
tario, Canada, October 26-30, 2010. IEEE, 2009, pp. 868–879.

[33] J. Fan, G. Li, and L. Zhou, “Interactive sql query suggestion: Making databases user-
friendly.” in Proceedings of the 27th International Conference on Data Engineering,
ICDE 2011, April 11-16, 2011, Hannover, Germany. IEEE Computer Society,
2011, pp. 351–362.

[34] G. Li, J. Fan, H. Wu, J. Wang, and J. Feng, “Dbease: Making databases user-friendly
and easily accessible,” in CIDR 2011, Fifth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings,
2011, pp. 45–56.

[35] L. Blunschi, C. Jossen, D. Kossmann, M. Mori, and K. Stockinger, “Soda: Generat-
ing sql for business users,” PVLDB, vol. 5, no. 10, pp. 932–943, 2012.

[36] D. Braga, A. Campi, and S. Ceri, “XQBE (XQuery By Example): A visual interface
to the standard XML query language,” ACM Trans. Database Syst., vol. 30, no. 2,
pp. 398–443, 2005.

[37] D. Mottin, A. Marascu, S. B. Roy, G. Das, T. Palpanas, and Y. Velegrakis, “A prob-
abilistic optimization framework for the empty-answer problem,” PVLDB, vol. 6,
no. 14, pp. 1762–1773, 2013.

[38] C. Mishra and N. Koudas, “Interactive query refinement,” in EDBT 2009, 12th Inter-
national Conference on Extending Database Technology, Saint Petersburg, Russia,
March 24-26, 2009, Proceedings, ser. ACM International Conference Proceeding
Series, M. L. Kersten, B. Novikov, J. Teubner, V. Polutin, and S. Manegold, Eds.,
vol. 360. ACM, 2009, pp. 862–873.

[39] J. Coffman and A. C. Weaver, “An empirical performance evaluation of relational
keyword search techniques,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 30–
42, 2014.

[40] ——, “A framework for evaluating database keyword search strategies,” in Pro-
ceedings of the 19th ACM Conference on Information and Knowledge Management,
CIKM 2010, Toronto, Ontario, Canada, October 26-30, 2010. ACM, 2010, pp.
729–738.

[41] W. Webber, “Evaluating the effectiveness of keyword search,” IEEE Data Engin.
Bull., vol. 33, no. 1, pp. 55–60, 2010.

[42] S. Bergamaschi, N. Ferro, F. Guerra, and G. Silvello, “Keyword search and evalua-
tion over relational databases: an outlook to the future,” in 7th International Work-
shop on Ranking in Databases, DBRank 2013, Riva del Garda, Italy - August 30 -
30, 2013. ACM, 2013, p. 8.

42

