
GeoSRS: A Hybrid Social Recommender System

for Geolocated Data

Joan Capdevilaa,c,1, Marta Ariasb,c,2, Argimiro Arratiab,c,2,3

aBarcelona Supercomputing Center
bComputer Science Department

cBarcelona Tech / Universitat Politècnica de Catalunya, Spain

Abstract

We present GeoSRS, a hybrid recommender system for a popular location-
based social network (LBSN), in which users are able to write short reviews
on the places of interest they visit. Using state-of-the-art text mining tech-
niques, our system recommends locations to users using as source the whole
set of text reviews in addition to their geographical location. To evaluate our
system, we have collected our own datasets by crawling the social network
Foursquare. To do this efficiently, we propose the use of a parallel version
of the Quadtree technique, which may be applicable to crawling/exploring
other spatially distributed sources. Finally, we study the performance of
GeoSRS on our collected dataset and conclude that by combining sentiment
analysis and text modelling, GeoSRS generates more accurate recommenda-
tions. The performance of the system improves as more reviews are available,
which further motivates the use of large-scale crawling techniques such as the
Quadtree.

Key words: recommender systems, text mining, quadtree, crawling, social
networks, location-based social network

Email addresses: jc@ac.upc.edu (Joan Capdevila), marias@cs.upc.edu (Marta
Arias), argimiro@cs.upc.edu (Argimiro Arratia)

1Supported by Obra Social “la Caixa”
2Supported by MICINN project TIN2011-27479-C04-03 (BASMATI), MINECO project

TIN2014-57226-P (APCOM) and Gen. Cat. project SGR2014-890 (MACDA)
3Additional support by MEC project MTM2012-36917-C03-03 (SINGACOM)

Preprint submitted to Mining Urban Data October 30, 2015

1. Introduction

The proliferation of mobile communication and GPS technologies has al-
lowed users to add geographical identification metadata to various social
media, such as photographs, text reviews or video, among many others.
Location-based social networks (LBSNs) (Zheng, 2012), integrate into a sin-
gle network user relations (the “social” part) and geo-spatial information (the
“location-based” part). By taking into account the physical location of users,
LBSNs are bridging the gap between physical world and virtual communities
such as Foursquare4, Facebook 5 or Twitter 6.

The extensive use of these social networking sites has made them in-
valuable sources of information. However, the sheer volume of data flowing
through these sites, even for a single user, has made it increasingly difficult
for humans to track all this information. Therefore, most social networking
sites implement some sort of Social Recommendation System (SRS) (Guy and
Carmel, 2011): for example, Twitter suggests who to follow, Facebook filters
and prioritizes posts in users’ walls and Foursquare recommends locations
where to go. When the social content is geotagged, it becomes strictly neces-
sary to consider user and item localization in the recommendation paradigm.

Location-based recommendation constitutes a unique application in LB-
SNs and it substantially differs from traditional recommender systems in the
fact that the latter does not take into account the spatial properties of users
and items (Mokbel et al., 2011). Moreover, location-based recommendation
on top of LBSNs might also benefit from the interaction between the three
layers composing a LBSN, namely the user, the location and the content
layer (Symeonidis et al., 2014a).

In this paper, we propose a fully integrated system for information re-
trieval of geolocated data and end-to-end location-based recommender, suit-
able for the popular social network Foursquare. The reader should note,
however, that our methods are applicable to any other social network that
contains geolocated time-referenced reviews and hence, in our presentation
we abstract from the fact that we are using this particular site.

We believe that fully operative recommender systems on top of LBSNs
require end-to-end designs, capable of performing data retrieval from social

4https://foursquare.com/
5https://facebook.com/
6https://twitter.com/

2

networks, cleaning the noisy and duplicated data, extracting relevant features
and, not least, performing recommendation.

Our proposed location-based information system is summarized in Fig. 1.
It retrieves the short reviews together with their geolocated venues and re-
viewers identification as its basis for recommendations. In Foursquare, users
are able to check-in to places of interest (“venues”), write short reviews
(“tips”) for the venues where they checked into, and share this information
with users within their social network. For the task of crawling venues, users

Figure 1: Fully integrated location-based Information System. It includes modules
for crawling, preprocessing crawled data, modeling and recommendation. The bot-
tom part of the figure shows examples of data chunks that each module produces.

and tips, we had to use Foursquare’s API, an interface which imposes re-
strictions to the amount of information one can query and the amount of
requests one can make. Therefore, it was imperative to devise a crawling
mechanism that would make optimal use of the queries available to us. To
achieve this task, we have designed a parallel version of the Quadtree algo-
rithm (Samet, 1984), which is very well suited for crawling venues that are
spatially distributed, while at the same time gaining considerable through-
put. We have found that crawling all venues from large urban areas such as
Mexico D.F. or New York in reasonable time was possible by the proposed
Quadtree algorithm. We consider the application of the parallel Quadtree

3

algorithm to this problem an important contribution of our paper and we
believe that problems that require sweeping spatial devices (sensors, etc.)
could also benefit from it.

To make recommendations our system makes extensive use of user’s re-
views (“tips”). In order to extract meaningful information from these free-
form reviews, GeoSRS relies upon many state-of-the-art techniques for text
mining and sentiment analysis, which are evaluated in terms of recommen-
dation accuracy and the ones that outperform are selected to be used in
GeoSRS. Another relevant contribution from our paper is the increase of ac-
curacy when mixing the review’s sentiment and content into a simple but
rather effective weighted hybrid recommender setup (Burke, 2007). Senti-
ment refers to the global opinion that is reflected in the review (positive,
negative or neutral) while content indicates the topics that the review ad-
dresses. This enforces the idea that pure review-based choices are not merely
based on the opinion reflected on a short review (“The service was too slow”),
but also on the content relevant to the user (“This is a kinda working place
rather than a coffee shop”).

To evaluate our system, we have collected our own dataset of restaurants
and tips from the area of Manhattan in New York City. We have chosen
Manhattan due to the high density of venues and the number of active users,
to validate both the scalability of the Quadtree crawler and the effectiveness
and coverage of the recommender system. Recommender system is evaluated
in terms of retrieval accuracy (performance) measures rather than statistical
accuracy measures since we do not intend to predict individual venue ratings
but relative order among them. Moreover, we propose an evaluation method
in which we divide historically the tips dataset in training and testing. Test
tips are taken as ground truth to comparatively assess the recommendation.
Last but not least, the simple weighted hybrid recommender setup employed
in GeoSRS is compared against other state-of-the-art configurations such as
meta-level and cascade models.

To summarize, this paper proposes for a hybrid recommender system for
a location-based social network which is uniquely built upon text reviews.
Our main contributions are:

1. Using a parallel version of the Quadtree technique as the basic strategy
for crawling spatially distributed data.

2. Using sentiment analysis on text reviews to generate the source for
collaborative-filtering.

4

3. Using the aggregated reviews by user and venue respectively to generate
the profiling information for content-based recommendation.

4. Using a simple but powerful hybridization technique to improve rec-
ommendation performance.

5. Putting it all together into a working information system.

6. Evaluating and comparing GeoSRS against other state-of-the-art hy-
brid systems in terms of IR figures.

The rest of this paper is organized as follows. Section 2 presents an
overview of related work in social recommendation on top of LBSNs, senti-
ment and content analysis systems and general hybrid recommendation tech-
niques. Section 3 proposes a parallel efficient technique to retrieve spatially
distributed data sources. Our system GeoSRS is described in Section 4. Sec-
tion 5 brings together the geolocated reviews data set from Foursquare with
the working GeoSRS system, to assess different possible set-ups using an
offline evaluation methodology. Last but not least, Section 6 derives several
conclusions from our work and includes directions for future work.

2. Related work

The recommender system proposed in this paper falls within the class
of location-based social recommender systems, using sentiment and content
analysis of text combined with collaborative filtering techniques leading to
a hybrid recommender system. In order to place our system in context of the
known literature we briefly review each of these research areas relevant to
our work.

Social Recommender Systems (SRS). SRS have arisen as an applica-
tion of recommender systems to social networks, although they have been
accepted lately as a separate discipline in itself (Guy and Carmel, 2011).
Nonetheless, researchers have been proposing novel recommender set-ups
based on social content for the last five to ten years (Falahi et al., 2012;
Guy and Carmel, 2011; Jameson, 2004; Liu and Aberer, 2013).

Classical recommendation paradigms such as content-based recommenders
have been enhanced by adding friendship information into the matrix factor-
ization objective function (Liu and Aberer, 2013), configuring the so-called
Social Content-based Recommender (SoCo). Collaborative-based filtering
has also been redefined by including social information to improve the user

5

neighborhood identification and deal with data sparsity (Groh and Ehmig,
2007; Ma et al., 2008). According to Groh and Ehmig (2007), social filtering
outperforms collaborative-based filtering. Trust-based recommenders refine
the notion of social filtering even further by defining several notions of prop-
agation of trust or reputation through the network of users. Examples of this
are FeedbackTrust (Moghaddam et al., 2009) and TrustWalker (Jamali and
Ester, 2009) although many others exist (Massa and Avesani, 2007; Andersen
et al., 2008; O’Doherty et al., 2012). FeedbackTrust improves user-based rec-
ommendations by enhancing user’s similarities with trust-based similarities;
TrustWalker makes item-based recommendations by combining the result of
repeated random-walks over the network of connected users.

Others have proposed mechanisms to include interpersonal influences in
traditional recommender systems arguing that the interpersonal influence
plays a critical role in this scenario (Huang et al., 2010). The term social
regularization has been coined to refer to the use of a regularization based
on social content. In the context of group recommendation, which consists in
making recommendations to a group of individuals based on their interests,
the work of Gartrell et al. (2010) highlights the benefits of incorporating
social structure into the recommender.

Several practical SRS can be found in the literature applied to distinct
recommendation situations. For example, Diaby et al. (2013) describe an
online social network-based job recommender system for recruiters. Tu et al.
(2014) present an online dating recommending system that learns the user
preferences from a Latent Dirichlet Allocation (LDA) model. Xia et al. (2014)
propose a system that takes into account social ties in the area of scientific
articles to recommend scholarly papers to users.

Location-based Social Recommender Systems. Recommender systems
can be further improved by exploiting geolocated data to take into account
the spatial dimension (Sarwt et al., 2013); such systems are generally re-
ferred to as location-based social recommender systems. Examples in this
line of research are (Berjani and Strufe, 2011; Yang et al., 2013; Ye et al.,
2010; Zheng et al., 2011); for an introduction to LBSN recommender sys-
tems and updates on the state-of-the-art see the tutorial (Zheng, 2012) or
the recently published textbook by Symeonidis et al. (2014b). Compared to
Yang et al. (2013), we are using the same data source, and due to similar-
ity of contributions we hereby present our contributions with theirs. Yang
et al. (2013) proposed a location-based recommendation system that uses ge-

6

olocated tips from Foursquare jointly with check-in information to improve
the recommendation performance. Our hybrid recommender system GeoSRS
differs from this work in various aspects. While Yang et al. (2013) use only
sentiment information from tips, we also extract the topics structure from
them to model user and venue profiles. Additionally, authors based the rec-
ommendation scheme on a probabilistic factorization of the user-item matrix
that considers social influence, whereas we found out that by using social
influence on the collaborative-based branch of our hybrid system performed
poorly. Moreover, we evaluate the system by assessing the relative order of
near venues compared with the actual attendance rather than calculating
the statistical accuracy of the estimated ratings as they do. In our opinion,
our evaluation methodology is closer to the real recommendation behavior of
a location-based system. Therefore we believe that our work complements
their work on other important aspects of location-based social recommender
systems that have not been considered before.

Sentiment and text analysis. In this work, we propose the use of some
of the already mentioned and more of the state-of-the-art text mining tech-
niques to build a purely review-based recommender system. Several text
modelling techniques are assessed under our recommendation scheme, such
as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), Latent Semantic
Analysis (LSA) (Deerwester et al., 1990), or TF-IDF (Sparck Jones, 1972;
Salton and Buckley, 1988). Sentiment analysis is also included in these mod-
els by using trained traditional classifiers such as Naive Bayes (McCallum
et al., 1998), Multinomial Logistic Regression (Böhning, 1992) or supervised
LDA classifiers (Blei and McAuliffe, 2008).

There are many other recommender systems that leverage the information
found in free-form text. In fact, previous work show that considering text
sources improve standard collaborative filtering techniques. As an example,
(Aciar et al., 2007) build a recommender system for consumer products based
on product reviews, or (Jakob et al., 2009) improve movie recommendations
based on movie reviews. (Reschke et al., 2013) propose a recommendation
dialog system built upon narrow questions from reviews, which slightly dif-
fers from the recommendation problem definition. In contrast to all these
systems, our recommender system bases the whole recommendation on the
reviews text data which is modeled in a flexible and general procedure rather
than building a text ontology or extracting multiple aspects (Snyder and
Barzilay, 2007; Musat et al., 2013).

7

Social context has been used to improve results in problems other than
recommendation. An example that is directly relevant to our work here is
the problem of text analysis and in particular of review quality detection
(Lu et al., 2010). Most previous work in this field treat each review as a
stand-alone text document, extracting features from the text and learning a
function based on the features (Zhang and Varadarajan, 2006; Kim et al.,
2006; Liu et al., 2008). Naturally, taking into account additional information
in the form of social relations between authors of reviews should help improve
the predictions.

Hybrid social recommenders. A good deal of researchers have been com-
bining multiple recommendation techniques to boost the performance of the
so-called hybrid systems (Burke, 2002). Standalone collaborative or content-
based recommendation systems suffer from several shortcomings which can
be overcome by coupling their individual ratings. In this work, we show that
these deficiencies of individual recommenders happen as well in our problem
scenario and highlight the benefits of hybridization. Among a broad range of
hybridization techniques (Burke, 2007), linear weighted combination seems
to be one of the most simple but rather effective mechanisms, and it is the
one we implement here. For example, (Mobasher et al., 2004) mix two com-
ponents, a collaborative and a content-based branch, with a linear weighting
scheme to perform movie recommendation. For the sake of comparison, we
further develop two other hybrid mechanisms named the cascade and the
meta-level hybrid, which (Burke, 2007) found out to work well when combin-
ing two components of differing strength. A cascade hybrid called Entree was
developed by (Burke, 2002), who combined a knowledge-based and collabo-
rative recommender in a hierarchical manner based on the strength of their
recommendation. Finally, a meta-level hybrid that uses content-based recom-
mendation to identify the collaborative neighbors can be found in (Pazzani,
1999).

3. Data retrieval process

3.1. Social networks as sources of open data

Social networks (Facebook, Twitter, Foursquare, LinkedIn, Instagram,
etc.) act as consolidated data warehouses unifying distinct users’ social activ-
ities into common data schemes, which are often mined by in-house analytic
systems or accessible to application developer communities. These platforms

8

implement data security and privacy policies, accepted beforehand by the
user, which rule the accessibility to the users’ social data.

We refer to social open data as the content (posts, tweets, tips, publica-
tions, photos, etc.) which is visible or public to anyone. In the last decade,
open social data became essential in many research fields ranging from recom-
mender systems to urban design and planning (Resch et al., 2012). Among all
types of social open data, geolocated data cover a broad range of media types
that include geographical coordinates. This is the case of location-based so-
cial networks which link some media (tweets, tips, etc.) to the user location
gathered through the smart-phone GPS system. It also considers modern
urban cities containing thousands of physical sensors spread over large ge-
ographical areas, from which their sensed information (e.g. air-pollution,
traffic, light-level, etc.) is linked to a geographical coordinate.

Geolocated data, generated either by users acting as social sensors or real
physical sensors, can be consulted from third-party data providers (social
networks, open data portals, etc.) by means of geospatial queries. Typically,
these entities implement control mechanisms to avoid server traffic overload,
which hamper the retrieval of the totality of the data at once. Hence, any
retrieval process for geolocated data has to carefully take into account these
traffic limitations.

3.2. Data retrieval from social networks

Most of social networks give access to their data via Representational
State Transfer (REST) Application Programming Interfaces (API). This pro-
tocol enables an easy but effective interaction with the social network data
contents. However, these web services typically limit the rate of requests
per registered application and the response data volumes in order to avoid
incoming traffic overload.

For example, the geospatial query to obtain all the venues or places of
a given geographical area from the Foursquare social network is constrained
to return 50 venues at most. This necessarily implies that this area has to
be divided into smaller sub-areas with less than 50 venues each to effectively
retrieve all venues. Moreover, the Foursquare platform also limits up to 5000
requests per hour and per registered application, forcing the retrieval process
to prioritize optimal requests. Here, we propose and motivate the use of
Quadtree structures and the Quadtree construction algorithm, to effectively
and efficiently retrieve all geolocated content from a given region generated in
location-based social networks exhibiting the above-mentioned constraints.

9

3.3. The Quadtree algorithm

A Quadtree is a data structure based on the principle of recursive decom-
position of space. Quadtrees are used as hierarchical data representations in
the domains of computer vision, image processing, pattern recognition and
geographic information systems. The interest in this data structure stems
from the fact that it is designed to focus resources on the areas where the
information is of greatest density. For a comprehensive survey on quadtrees
and related hierarchical data structures see (Samet, 1984).

The general Quadtree construction scheme is presented in Algorithm 1,
and it works as follows. The algorithm iteratively divides each region or cell
into four subregions or subcells when the maximum capacity per cell, denoted
Nmax, is reached. Given two coordinates (the southern-west and northern-
east limits) defining the geographical bounding box, the algorithm defines
and queues a quadcell object which contains its geographical limits.

Algorithm 1: Quadtree Algorithm.

quad ← Quadcell(NElim, SWlim);
queue ← List(quad) ;
while Length(queue) > 0 do

q ← Pop(queue); // Obtains quad from the queue
if CheckQuad(q) then

aux ←SplitQuad(q);
Extend(queue,aux); // Push quad into the queue

end

end

For each quadcell in the queue, the algorithm queries the social net-
work REST API, and compares the cardinality of the response against the
maximum number of sensors per cell, Nmax. This task is performed by the
CheckQuad function described in Algorithm 2.

10

Algorithm 2: Check Quadcell Function.

Function CheckQuad(quad: Quadcell) : boolean
sensors ← APIrequest(quad.NElim,quad.SWlim) ;
if Length(sensors) < Nmax then

SaveSensors(sensors);
return False; // Do not split quad

else
return True; // Split quad

end

end

In case the response size exceeds Nmax, the quadcell is divided into four
subregions or children, whose geographical limits are computed from its par-
ents bounds, and these are also added into the pending queue. This task
is performed by the SplitQuad function described in Algorithm 3. Leaves
or quadcells whose API query returned fewer sensors than the maximum
allowed, are stored into disk and the quadcells removed from the queue.

Algorithm 3: Split Quadcell Function.

Function SplitQuad(quad: Quadcell) : List
// Computes the NElim and SWlim for each child

NElims, SElims, SWlims, NWlims ←
ChildrenLim(quad.NElim,quad.SWlim) ;

// Creates List of children
children ← List(Quadcell(NElims.NE,NElims.SW),
Quadcell(SElims.NE,SElims.SW),
Quadcell(SWlims.NE,SWlims.SW),
Quadcell(NWlims.NE,NWlims.SW)) ;

return children;

end

In order to interpret the results of the Quadtree algorithm for sensors
spread over a bounded region, we simulate the Quadtree execution for dif-
ferent spatial distributions, all containing equal number of sensors (top of
Figure 2). In other words, all distributions integrate to N , the number of
sensors in the region.

The resulting Quadtree structures (bottom of Figure 2), clearly shows
the dependency between the peakiness of the distribution and the number

11

Figure 2: At the top, spatial distribution of geolocated data uniform and normally
distributed with standard deviation σ = 100, 10, 0.25, respectively. Corresponding
quadtree structures at the bottom.

of quadcells. Given that each quadcell implies at least one HTTP query to
the REST API, peaky distributions of geospatial data result in less efficient
quadtree exectutions compared to flatter and more uniform distributions.

The Quadtree algorithm overcomes the API limitations by first parti-
tioning the geographical space into appropriate subregions and secondly by
keeping the HTTP request rate bounded. We have not included the ap-
propriate instructions for the control process over the request rate to keep
the description in Algorithm 1 simple. However, the implementation of the
Quadtree algorithm should keep control over the time between consecutive
requests or the overall number of requests per hour, and sleep the program
when necessary.

3.4. Scaling-up the Quadtree algorithm

Efficiency and scalability are key with today’s volume of data available.
Here, we propose a parallel version of the Quadtree algorithm. First, we state
the main scalability drawbacks of the proposed algorithm and then revisit
the algorithm to propose a new parallel Quadtree algorithm.

12

We assume that the maximum number of request per hour and per reg-
istered application is Rmax. This limit is imposed by the social network
administrator. When the number of sensors, N , is large Rmax becomes the
limiting factor of the algorithm performance.

Our approach uses parallelization of the algorithm into K sub-processes,
each using a different registered application key and hence, enabling greater
request rates (with K sub-processes the limit becomes KRmax). These sub-
processes could either run at the same machine or into different machines
with distinct public IP addresses, depending on social network directives.

One classical way to tackle this multiprocess problem is by means of the
producer-consumer paradigm. The producer is in charge of querying the
social network API, generating and queuing the quadcells into a processing
queue. Then, the consumer takes each queued quadcell and stores it into
the disk. By splitting the two most time consuming sub-processes (query-
ing the API and storing to disk), we experience considerable gains into the
parallelization of the Quadtree algorithm.

The producer-consumer scheme for the parallelization of Quadtree, de-
scribed in Algorithms 4 and 5, works as follows. The producer threads (Al-
gorithm 4) produce quadcells (prodQuad) by querying the Social Network
API about the quadcells stored in the pending queue (PendQueue), checks
whether the cardinality of the responses exceed the maximum number of
sensors per cell (Nmax) and splits the quadcells if they exceed. The split
quadcells whose number of sensors exceed Nmax are also push into the pend-
ing queue for the next producer. Then, the producer stores the leaves or
quadcells that have less sensors than Nmax into the processing queue (Proc-
Queue), and notifies the condition variable (Cond) to release the underlying
lock. This notification awakes the consumers threads (Algorithm 5) waiting
in the condition variable, which consume quadcells (consQuad) from the pro-
cessing queue. Consuming means pulling the quadcell from the queue and
storing the sensors’ values into disk. When the consumer thread completes
its task, it waits in the condition variable for the next release triggered by
the producers.

13

Algorithm 4: Producer Quadtree Algorithm.

Function Producer (PendQueue: Queue, ProcQueue: Queue,Cond:
Condition,API: APIhand) : void

while countQuads(PendQueue) > 0 do
with(Cond);

q = prodQuad(PendQueue, API);
putQuad(ProcQueue,q);
notify(Cond);

end
with Cond: ;

notifyAll(Cond)
end

Algorithm 5: Consumer Quadtree Algorithm.

Function Consumer (PendQueue: Queue, ProcQueue: Queue,
Cond: Condition) : void

while countQuads(PendQueue) > 0 do
with(Cond) ;
Wait(Cond) ;
if countQuads(ProcQueue) > 0 then

consQuad(ProcQueue)
end

end

end

3.5. Case study: the Foursquare platform

The Foursquare platform provides a REST API to interact with its com-
ponents as well as to access its open social data from registered applications.
Querying the platform on the geolocated venues data requires satisfying the
response size constraints (50 venues per request) and rate limitations (5000
request per hour and application). The parallel Quadtree algorithm enables
an effective and efficient data retrieval process by parallelizing API requests
into Kp subprocesses and storing to disk into Kc subprocesses. We found
out that using Kp = 3 producers and Kc = 10 consumers exhibits a proper
performance, although the optimization of these parameters is beyond the
scope of this paper.

Figure 3 shows the Quadtree structures for three large urban areas: Athens,

14

(a) Athens (b) Manhattan (c) Mexico DF

Figure 3: Parallell Quadtree structures

Manhattan and Mexico City. As we could expect, the Quadtree grows deeper
in the city downtown and business and comercial subareas, while being shal-
lower in residential areas, parks and city surroundings. Table 1 presents some
other features about the Quadtrees built in each of these urban areas.

Athens New York Mexico D.F.
NE lim 38.03, 23.79 40.80,-73.91 19.59, -98.94
SW lim 37.95, 23.69 40.70,-74.07 19.13, -99.36
Venues 48.215 297.924 511.096
Quadcells 2.997 18.682 32.270
Quadcell leaves 2.248 14.011 24.202
Quadtree time (s) 4.432 27.980 32.015

Table 1: Urban Quadtrees with Kp = 3 producers and Kc = 10 consumers

15

4. GeoSRS system description

4.1. Overview

Figure 4: A graphical overview of the hybrid recommender system and its recommendation
matrix.

GeoSRS uses a rating-based scheme to perform item recommendation.
This means that given a utility function f : U × I → R, a rate or measure of
importance is estimated from the set of all users, U , and the set of all items,
I. The recommendation problem can be seen as the following optimization
problem,

iu = argmax
i∈I

f(u, i) ∀u ∈ U (1)

in which, for each user u, the goal is to determine the item, i, that maximizes
the utility function among all available items. The item, iu, that satisfies
this maximization is recommended to the user u. However, the utility func-
tion is usually not defined for the whole space U × I, and consequently, the
recommender needs to estimate the missing ratings to perform an accurate
recommendation, as shown in the recommendation matrix from (Figure 4).

GeoSRS is a hybrid social recommender system that combines a collab-
orative and a content-based subsystems to define the utility function which
estimates the ratings for the unseen items. In particular, the utility function
is defined from the user-item affinity as well as the community opinion by
combining them into a hybrid system, given by the following linear combi-
nation,

f = fcol + αfcont

16

where α is a a positive real, and while the content-based branch, fcont, mainly
uses the inferred features of the item and the profile of the user, the collab-
orative branch, fcol, takes advantage of the “wisdom of the crowd”.

4.2. Content-based branch

The content-based recommendation branch brings into the system the
user preferences and item features with the purpose of making recommenda-
tions according to the user profile. Following the introduced nomenclature,
the utility function for the content-based branch predicts the rate for both
seen and unseen items. The rate, R, is predicted from the dot product of
the users profile vectors, wu, and items features vectors, wi. Thus, the utility
function can be redefined as,

fcont : wu × wi → R (2)

Due to the fact that items and users spaces are large, mechanism to reduce
dimensionality or filtering items/users are often used.

4.2.1. Similarity Measurement

Similarity measurement among pairs of users and items can be either
calculated using heuristic models or statistical models learned from the un-
derlying data (Adomavicius and Tuzhilin, 2005). Our proposed approach
for the content-based branch uses a cosine-based heuristic model in order to
compute the similarity rate between user profiles and items features. Hence,
the utility function formulation can be expressed as:

fcont = cos(wu, wi) =
−→wu
−→wi

||−→wu||||−→wi||
(3)

where wu and wi are the profile vectors for the users and items defined from
the reviews content models described below.

4.2.2. Review content models

Text reviews have been preprocessed using standard techniques, in par-
ticular we have removed stop-words and punctuation marks, stripped white
space, and converted all text to lower case.

In this work we consider several state-of-the-art techniques for review
modeling. The aim of modeling reviews is to build descriptive profiles for
both users and items. To this end, we aggregate all reviews by a user, and

17

consider the aggregated reviews as a single text document to be modeled,
wu. Analogously, we aggregate all reviews of a given item in order to build
a document that once modeled will represent the item, wi. In what follows,
we list and briefly explain the modeling techniques we have used to model
aggregated text reviews into K components for both profile vectors.

Term Frequency - Inverse Document Frequency. TF-IDF maps the contents
of a review into a set of K keywords depending on the measurement of
importance through the calculation of a numeric statistic (Sparck Jones,
1972; Salton and Buckley, 1988). The numeric statistic is calculated for each
word from the review and then, the K more relevant words are kept.

Latent Semantic Analysis. LSA can be used to map the contents of a re-
view into K latent concepts which turn out to be words that are close in
meaning (Deerwester et al., 1990). LSA is performed applying single value
decomposition of a term-document matrix. This matrix contains the terms
or words in the rows and the documents or reviews in the columns. The real
number in the intersection of rows and columns indicates the occurrence of
terms in the document. The K largest eigenvalues and their corresponding
eigenvectors lead to a rank K approximation of the term-document matrix.

Latent Dirichlet Allocation. LDA is a generative probabilistic model in which
documents or reviews are represented as random mixtures over latent topics,
and each topic is characterized by a distribution over words (Blei et al., 2003).
LDA is used to model reviews contents into topics that occurs in a review.
Intuitively, a review can talk about the service of a Japanese restaurant, and
another review refers to the food of a local restaurant. Both reviews lead to
different topics if the space of topics is large enough to differentiate among
them.

4.3. Collaborative branch

The collaborative branch of the review-based recommender system aims
to gather the opinion of the crowd from the posted reviews. Recommendation
is done based on the opinion that the close neighborhood has about a specific
item. Thus, we define the utility function f for the seen items ru′,i to be the
sentiment indicator that comes from the sentiment analysis of a text review
that a user wrote about an item. For the unseen items, the heuristic proposed
is an averaging over the rates of those similar users (“neighbors”) who have
seen the item. Formally,

18

fcol = ru,i =
1

N

∑
u′∈Nu

ru′,i (4)

where Nu represent the N users in the neighborhood of u. Determining N
and the neighborhood is key to achieve a good rate estimate for unseen items.

4.3.1. Neighborhood Identification

The neighborhood identification plays a key role to achieve an accurate
prediction of the recommender rate. Recommender systems have tradition-
ally used the similarity among users from the matrix of user-item ratings (Di-
aby et al., 2013). Similarity usually takes into account pairs of ratings that
both users have rated. Similarity measurement has been usually calculated
by means of a heuristic mechanism such as the Pearson correlation coefficient
or cosine-based similarity (Adomavicius and Tuzhilin, 2005).

We propose to use the cosine-based similarity for the review-based rec-
ommender collaborative branch, as the heuristic measurement of similarity
of two pairs of user vectors −→ux, −→uy. This is

sim(ux, uy) = cos(ux, uy) =
−→ux−→uy

||−→ux||||−→uy||
(5)

The user vectors are defined from sentiment ratings over all items. With
this approach, pairs of users who have both rated positively or negatively
pairs of items, share similar opinions for the unseen items. The cosine-based
similarity becomes a useful metric to identify them.

Lately, social recommender systems have introduced novel mechanism
to identify the neighbor for collaborative filtering. Groh and Ehmig (2007)
propose to use social friendships or relationship to generate the neighborhood
for a collaborative recommender. According to them, this approach could
outperform the traditional collaborative filtering.

4.3.2. Review sentiment models

Text reviews have also been preprocessed using the aforementioned tech-
niques before applying the following supervised sentiment models. These
models have been trained with tagged reviews data and then used to pre-
dict the sentiment for the out-of-sample reviews. In fact, we have used three
different data sets to build, test and validate the sentiment classifiers:

19

• A training data set. It is composed of 1500 text reviews. These reviews
are tagged using AFINN (Nielsen, 2011), a list of english words rated
for valence with an integer between minus five (negative) and plus five
(positive). The rating is discretized in three values -1, 0 and 1 via a
modified version of sign function, indicating the negative, neutral and
positive reviews respectively.

• A testing data set. It is composed of 500 text reviews which also tagged
using the AFINN approach.

• A validation data set. It is composed of 200 text reviews that we have
manually tagged as positive, neutral or negative reviews.

Bernoulli Naive Bayes sentiment classifier. A Naive Bayes classifier consid-
ers a probabilistic model with naive independence assumptions between the
features to predict the probability distribution of a sample over the set of
classes. We aim to simply model the review sentiment by using a Naive
Bayes classifier which considers a bag-of-words model for the review text.
This means that we consider words as the model features without taking
their position in the review into account and assuming independence among
words of a given class (positive, negative or neutral). This can be achieved
by using the Bernoulli Naive Bayes model, which defines features as inde-
pendent binary inputs describing whether or not a word occurs in a given
review (see McCallum et al. (1998) for a clarification on the different types
of Naive Bayes classifiers).

Multinomial Logistic Regression sentiment classifier. Since we aim to esti-
mate three possible outcomes for each review, positive, negative and neutral
reviews, a multi-class classifier is needed. The Multinomial Logistic regres-
sion generalizes the logistic regression to a multi-class setting (Kim et al.,
2002). This classifier estimates the probabilities of the possible outcomes
based on a set of features. It differs from the Naive Bayes classifier in that
there is no need for statistical independence on the set of features or words
used in the multinomial logit regression. A drawback, compared with Naive
Bayes, is the fact that estimating the regression coefficients from a Multino-
mial classifier is much complex and generally requires an iterative process.

Supervised Latent Dirichlet Allocation. The SLDA classifier for sentiment
analysis extends the LDA topic model with response variables for each doc-
ument (Blei and McAuliffe, 2008). The response variable for a sentiment

20

analysis classifier corresponds to the sentiment class: positive, negative or
neutral. Documents and their responses are jointly modeled to find the la-
tent topics that best predict the responses for future unlabeled documents.

4.4. Hybrid set-up

Using a hybrid linear combination of the collaborative and content-based
branches, we pretend to minimize the drawbacks of each individual approach.
The hybrid model can be represented as follows, with α > 0,

f : U × I → R =⇒ f : fcol + αfcont (6)

On the one hand, collaborative approaches highly depend on the avail-
ability of a critical mass of users who have rated enough items to effectively
predict unseen items. One way to overcome the sparsity of the user-item
rating matrix is to jointly use profiling data to identify the close neighbor-
hood. Our approach minimize the sparsity problem by combining the rates
from the content-based branch when the collaborative rates are not accurate
enough.

On the other hand, content-based approaches basically fail to recommend
items whose features have not been rated yet by the user. In other words,
the content-based recommender is overspecialized to the features from the
seen items since user profiling arises from the items already seen by the user.
Item diversity is added into our system to overcome this overspecialization.
By combining the collaborative sentiment into the proposed system, unseen
item features are also recommended enhancing the overall accuracy.

There also exist drawbacks which are common to both approaches, such
as the cold start problem (Lika et al., 2014). For example, the new user
problem happens when a user has not reviewed any items or very few. In this
situation, the recommender is not capable of performing a recommendation
and this lowers the system coverage. The new item problem is also a drawback
difficult to minimize in both set-ups. It occurs when an item is new into the
system and it has not yet been reviewed by any user. Since no user feedback
exist for these items, the system is not capable of performing an accurate
recommendation, also impacting the system coverage.

These two drawbacks are mainly due to the lack of data and hence their
solution necessarily undergoes through the process of effectively crawling
more data from users and items.

21

5. System evaluation

The evaluation methodology will measure how effectively GeoSRS rec-
ommends an unseen item to a given user. It will then make use of the social
network to assess the performance accuracy of the system by comparing the
actual user feedback about an item against the potential recommendation
rate for that item. Hence, we assume that there exists some degree of causal-
ity between the fact of purchasing/experiencing an item and the subsequent
action of reviewing the product/experience.

This approach also provides a simple but powerful mechanism to measure
the recommendation coverage, or simply, the proportion of recommendations
that the system is able to output. The inability to make a recommendation
can happen due to the facts that either the user provides feedback for the
first time –new user problem– or the item has not yet been reviewed –new
item problem. For example, a user who checks into a Foursquare venue like
a restaurant to have some food, would probably provide its own feedback in
form of a review at the social network. The interpretation of this feedback
(positive, negative or neutral) is used in our evaluation approach to be com-
pared against the recommendation rate from GeoSRS at the reviewing time
and within the neighborhood of that restaurant.

Next, we describe the Foursquare data set that is later used to assess
GeoSRS in terms of recommendation coverage and performance accuracy.

5.1. The Foursquare Restaurant Tips Data set

The Foursquare restaurant tips data set consists of 309.640 short reviews
or tips from the Manhattan region. The whole data set is split into training
(70% oldest tips) and test set (30% newest tips).

22

(a) Number of Foursquare restaurant reviews over time.

(b) Tips Sentiment Probability Density Function

Figure 5: Description of the Foursquare dataset used in our evaluation.

In Figure 5a, we show the number of reviews as a function of time, from
the first review in 2008 until the last crawling execution in February 2014.
Furthermore, this graphic shows a positive tendency in the number of reviews
created since 2008, what indicates us that Foursquare has been growing since

23

then, despite some seasonal patterns. As it has been said, the whole data set
is split into two subsets, which are also indicated in the plot.

Figure 5b shows the distribution of sentiment polarity of tips in the test
dataset. While negative values in the pdf express negative sentiment, positive
sentiment is contained in the interval (0, 1]. On the other hand, neutral user
feedback is represented by a sentiment value of zero. For evaluation purposes,
we consider neutral feedback as a positive experience since most of them are
statements such as “Try the hot chocolate!”; we make the assumption that
the user implicitly rates the experience as positive.

We also note that the test data set is unbalanced in terms of positive
and negative ratings, reflecting the reality of Foursquare tips data from early
2013 till 2014. This might not be extremely relevant when assessing the
performance accuracy of this data set, but it is relevant when comparing
different recommender set-ups and the generalization capabilities.

5.2. Recommendation Coverage

Recommendation coverage measures the domain of items over which the
system can perform recommendations (Ge et al., 2010). Typically, the term
coverage has been associated with (1) the percentage of the items for which
the system is able to generate a recommendation and (2) the percentage of
the available items which are effectively recommended. Here, we adopt the
former definition since we gather the latter in the concept of performance
accuracy defined later. Thus, formally, Coverage is defined as the percent-
age of available items (I) for which the recommender system can output a
prediction (IP) i.e. Cov = (| IP | / | I |) · 100.

In GeoSRS and within the proposed evaluation scheme, IP only depends
on the presence or absence of historical data (tips) in the training data set for
an item and user from the test data set. Given that the content-based branch
outputs a rate always that a given item and user have more than one tip,
the overall recommendation coverage does not depend on the collaborative
branch.

In Figure 6, we plot the recommendation coverage as a function of time
in order to show how the coverage softly increases when the number of tips
starts to be large (cf. Figure 5a) and the proportion between new and old
items/users stabilizes.

24

Figure 6: Recommendation coverage for venues and users.

From this picture, we can also see that while there is a good coverage
value on restaurants venues (85% in 2014), coverage on users is quite low
(45% in 2014). This low recommendation coverage on users is mainly due
to two reasons. On the one hand, there are new users who signed up to
Foursquare during the test data set time frame (2013-2014); on the other
hand, some users might have tipped just once Manhattan restaurants, but
they might have tipped restaurants out of Manhattan. This poor recommen-
dation coverage on users could be mitigated by adapting the crawling system
to also crawl tips from users, instead of just crawling tips from venues.

5.3. Performance Accuracy

Performance accuracy measures the goodness of the rate prediction against
the actual rate (Shani and Gunawardana, 2011; Hernández del Olmo and
Gaudioso, 2008). Typically, it is formulated as the number of successful
cases over all the cases in the test data set,

accuracy =
good cases

overall cases
(7)

As a difference with most of the evaluation methodologies in recommender
systems, our approach assumes that a successful recommendation is the one

25

that leads the user to a positive experience. The positiveness of the ex-
perience is measured through the user feedback in the review, while the
recommendation is generated by the engine.

Since the overall number of cases can be decomposed into positive and
negative cases, the accuracy can be also expressed in terms of the average
error rate, ε, as,

accuracy = 1− # negative cases

overall cases
= 1− ε (8)

where εk is the recommendation error rate for the kth experiment, defined
as follows:

εk =

{
Nposk

Nk
Sentiment is positive

1− Nposk

Nk
Sentiment is negative

(9)

where Nk is the number of items recommended in the k experiment and
Nposk, the position in a ordered list that occupies the item that the user has
experienced.

Notice that if a review is positive, then εk is low if the item is ranked at
the top of the recommendation list, while if a review is negative, εk is low if
the item is ranked at the bottom of the list.

5.3.1. Collaborative-based model results

The proposed collaborative models gather the opinion of the crowd by
averaging the feedback from users whose taste is similar to the recommended
user, a.k.a. neighborhood. As introduced earlier, the N neighbors are identi-
fied through the k-nearest neighbor algorithm that uses the cosine similarity
of the historical user experiences.

First, we plot the Area Under the Curves (AUC) of the recommendation
error cumulative density functions (cdf) which let us interpret the goodness
of the models with the available Foursquare data sets.

26

Figure 7: AUCs from the recommendation error cdf for different sentiment models.

As Figure 7 suggests Naive Bayes outperforms the Multinomial and SLDA
models. Even more relevant is the fact that using no sentiment performs
better than using a sentiment model. The collaborative model without senti-
ment considers all tips as positive instead of using the sentiment model which
extracts the opinion from the reviewer.

However, the fact of using an unbalanced data set with more positive than
negative experiences, benefits those models that are biased towards positive
ratings. As shown in the table below, Naive Bayes, and obviously the no-
sentiment model, have bigger proportions of positive ratings in the training
data sets (because the trained sentiment classifier was generated in this way)
and they perform better in test data set which has greater number of positive
experiences.

SLDA Multinomial Naive Bayes No Sentiment

positivie ratings 191.809 142.758 205.585 212.947

negative ratings 21.138 70.189 7.362 0

Table 2: Number of positive and negative predicted ratings

In order to mitigate the unbalancing effects described above, we propose
to subsample the testing data set in two balanced data sets and then compute
the performance accuracy. In order to estimate properly the cumulative
density function and the AUC statistic, we repeat the sub-sampling process
hundreds of times and average the results. The results of this assessments
are shown in Figure 8 for each of the sentiment models.

27

Figure 8: AUCs from the recommendation error cdf for different sentiment models
in a balanced data set.

The results of this analysis show that the sentiment models behaves bet-
ter than the collaborative model without sentiment, except for Naive Bayes
which behaves similarly. Furthermore, we realize that the SLDA models,
which takes into account the word polysemy, performs also better than oth-
ers when used in a collaborative recommender.

5.3.2. Content-based model results

Content-based models cope with the user tastes, which are represented by
features extracted from the tips data. We have presented earlier three state-
of-the-art text models to represent the user tastes into data features. Note
that the content model gathers the a priori knowledge about a restaurant.
In other words, it takes into account the similarity between a user and a
venue based on their preferences and traits, respectively. Consequently, we
assess the content model against the fact that user has gone or not to the
recommended venue, more than evaluating the experience on it, since we
understand that the goal of the content-based model is to match similar
profiles more than taking into account the global opinion about a restaurant.

In what follows, we compare the performance accuracy of these three
models by examining the AUC of the recommendation error cdf. In this
section, the recommendation error is defined as if all tips in the test data set
were positive experiences.

28

(a) AUC of the cdc as a function of the number of features.

(b) AUC of the cdf as a function of the number of reviews

Figure 9: Performance of the content-based branch.

Figure 9a shows the performance accuracy as a function of the feature
space size. Note that, in TF-IDF, features are keywords; in LSA, semantic
concepts; and in LDA, document topics. Although the complexity that en-
tails LSA and LDA models, the simplicity of TF-IDF content model tends to
generate more accurate recommendations for feature space size ranging from

29

2 to 100 features, since it outputs a greater AUC and hence less recommen-
dation error.

Despite the noisiness of these curves, clearly related to noisy text reviews,
there is a tendency that states that the greater the number of features, the
more AUC and the better performance accuracy is. However, the feature
space size directly impacts the computation time and hence the velocity
to make a recommendation. From now on, we use k = 100 for all three
models, which guarantees a fair trade off between performance accuracy and
computation cost. The different cdf and their AUC for each of the content
models with k = 100 features can be seen in Figure 10.

Figure 10: AUC from the cdf of the recommendation error

One of the aspects that could affect the performance accuracy of the
content-based models is the number of reviews or tips per venue and user.
As shown in Figure 9b, the performance accuracy increases with the number
of reviews per venue and user. The graphic plots the AUC for observations
of users and venues in the test data set with more than a given number of
reviews. Consequently, it says that the more knowledge we have about the
venue and the user, the better we can estimate its recommendation. Note
also that TF-IDF outperforms the LSA and LDA for any number of tips.

In general, it can be interpreted that not only the number of the reviews
influence the performance accuracy and coverage of a review-based recom-
mendation system, but other features about the data such as the quality
of the reviews, the heterogeneity of topics reviewed, the influence of the re-
viewer, amongst others.

As a closing remark for this section we point out that we believe our
selection of metrics for capturing the quality of our rankings are adequate
for the task and data at hand. The reader should note that we are not

30

predicting ratings, and so more common measures such as MAE or RMSE are
not appropriate in our context. Please refer to (Adomavicius and Tuzhilin,
2005; Lü et al., 2012) for more in depth discussion on the topic of classification
accuracy metrics for ranking systems.

5.3.3. GeoSRS: our hybrid recommender system

Finally, we show results of GeoSRS, obtained by linearly combining both
content-based and collaborative approaches, as discussed in Section 4.1. Our
aim in this section is twofold. Firstly, we want to optimize the coefficient α
from Eq. (6) that minimizes the recommendation error. In other words, we
seek to find α values that maximizes the AUC of the recommendation error
cumulative density function. Hence, we simulate several recommendations
for different α value and computed its associated AUC to find the one that
maximizes it. Secondly, we aim to show that the hybrid approach consistently
outperforms each individual component.

To globally assess the recommender, we consider again the evaluation
model with the testing experiences classified as positive or negative. The
SLDA sentiment model is chosen since it scored higher in the balanced eval-
uation test. Furthermore, TF-IDF is chosen as the content-based model to
be included in this hybrid approach.

Figure 11: Hybrid Linear Combiner Optimization

Figure 11 plots two curves, both representing the AUC of GeoSRS for

31

different values of α ranging from 0 to 20, see Eq.(6). Notice that the col-
laborative branch does not always output predictions due to lack of close
neighbors to the given user. The left-most plot shows the performance of
GeoSRS for all reviews in the test data set, whereas the right-most plot
shows the performance of GeoSRS reviews that can be covered (make a rec-
ommendation) by both system branches (“paired” recommendations). As
the graphic shows, an α equal to 1.5 maximizes AUCs from both scenarios.
Note also that α = 0 corresponds to the collaborative recommender, while
α→∞ corresponds to the content-based recommender.

Next, we plot the empirical cdf for both situations with α = 1.5. Fig-
ure 12a shows the performance accuracy for paired recommendations. That
the hybrid system has greater AUC can also be clearly seen in Table 3.

(a) Paired recommendations (b) Unpaired recommendations

Figure 12: Empirical cumulative density functions for Content-based (green), Collabora-
tive (red) and Hybrid (black) set-ups

Figure 12b plots the empirical cumulative density function for the real
Foursquare data set dominated by unpaired recommendations, what this
means is that recommendations do not necessarily have a collaborative pre-
diction for each content-based. Particularly, we observe that in our situation
for every 5 content-based recommendations, there is only one collaborative
recommendation. This has a huge impact into the overall system evaluation
because unpaired recommendations weights more than paired recommenda-
tions and the content-based branch seems to perform more accurately. As
shown in Figure 12b, the Hybrid curve is now closer to the content-based
curve than to the collaborative which is much lower because it cannot out-
put an appropriate recommendation for those users without neighborhood.

By exposing the results split into two separate data sets (paired and un-
paired recommendations), the fact of using a linear model always guarantees

32

greater performance. The hybrid recommender performance benefits from
either when the collaborative branch can work out a rating or when it can-
not. Nonetheless, the biggest contributions happens when the collaborative
branch can recommend.

It is relevant to say that restricting the recommender just to those users
with a collaborative prediction (paired recommendation) has a huge impact
to the overall recommendation coverage since the collaborative branch has
low coverage due to the high sparsity in commonly rated venues. Table 3
shows the relationship between the performance accuracy in terms of AUC
for different system configurations and the recommendation coverage in each
data set situation mentioned above.

Hybrid Content-based Collaborative Coverage

Paired rec. 0.6566 0.5984 0.6351 8.34%

Unpaired rec. 0.6044 0.5922 0.5514 39.81%

Table 3: AUC and coverage for different set-ups of the review-based recommender

For the sake of comparison, we implement two state-of-the-art hybridiza-
tion techniques that have been shown to work specially well when employ-
ing two components of different strengths (for example, collaborative and
content-based) named meta-level and cascade (Burke, 2007).

Regarding the meta-level setup, we build a collaborative through con-
tent approach similar to (Pazzani, 1999), which uses the content-based rec-
ommendation matrix to identify the close neighborhood of each user under
evaluation. The unseen rates are estimated by means of averaging their neigh-
bor’s sentiment rates, computed beforehand through the sentiment analysis
model. On the contrary, the cascade configuration builds a strictly hierar-
chical hybrid which first applies the stronger branch, in our scenario this is
the collaborative, and then it uses the content-based branch for those items
which the collaborative could not decide well. A very similar system was
proposed by (Burke, 2002) for restaurant recommendation, but their hybrid
system relied on a knowledge-based in place of a content-based recommender
branch.

Fig. 13 shows the empirical density curves of the error for weighted, meta-
level and cascade hybrids. As it is shown, the simple weighted hybrid system
used in GeoSRS outperforms the other two enabling a simple but rather
powerful hybridization technique.

33

Figure 13: Comparison against state-of-the-art hybridization techniques

6. Conclusions and future work

GeoSRS enables social network users to mitigate the information overload
problem by digging into text reviews data and recommending personalized
items according to their preferences based on their past reviews. GeoSRS
supposes a novel attempt to purely integrate text reviews data into a working
recommending system.

This paper assesses different GeoSRS set-ups which use several state-of-
the-art text mining techniques. According to the proposed offline evaluation
approach, the results justify combining text review content and sentiment
into an hybrid recommending engine. This is particularly relevant in bal-
anced and paired data sets. Concretely, our results show that for our data
set the best configuration is given by TF-IDF for the content-based branch
and SLDA for the collaborative branch with a coefficient of α = 1.5. More-
over, the evaluation outcomes point out the importance of the data retrieval
process and the quality of the data set, by showing that the larger the num-
ber of reviews, the greater the performance accuracy. Not least, we have also
shown the benefits of using a simple hybridization technique like the weighted
linear combination compared to employing more complex techniques such as
cascade or meta-level.

Within this evaluation scheme and GeoSRS, we show the goodness of

34

recommendation coverage is tied to the fact of having historical reviews for
all users and all items. We observe that the growth of the social network
activity over the years directly improves this evaluation figure, but we also
state that the more retrieved data, the better the coverage. We speculate
that the quality of our recommendations should improve as the number of
reviews increases over time.

In order to directly impact the performance accuracy and recommenda-
tion coverage of the GeoSRS, this article also motivates the use of Quadtree
algorithm to efficiently retrieve geolocated data, such as reviews from Four-
square. A parallel version of Quadtree is detailed in this article with the
aim to effectively crawl data from large urban areas. As a result, GeoSRS
together with the Quadtree crawling process become key components of a
recommending system capable of working in large data sets of reviews for
large urban areas.

Finally, we can conclude that GeoSRS results, as in many other recom-
mender systems, highly depend on the availability and quality of the data.
We have shown that by balancing data sets or making paired recommenda-
tions in the hybrid set-up, the outcome of the system could differ. Because
of this, we deeply encourage GeoSRS to undergo through online evaluation
tests, such as randomized experiments or A/B testing, in order to mitigate
the skewness on the Foursquare test data sets and get more reliable results.

Acknowledgements. The authors gratefully acknowledge the extensive com-

ments of the anonymous reviewers that lead to an improvement of the original

manuscript.

References

Aciar, S., Zhang, D., Simoff, S., Debenham, J., 2007. Informed recommender:
Basing recommendations on consumer product reviews. IEEE Intelligent
Systems 22 (3), 39–47.

Adomavicius, G., Tuzhilin, A., Jun. 2005. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible ex-
tensions. IEEE Trans. on Knowl. and Data Eng. 17 (6), 734–749.

Andersen, R., Borgs, C., Chayes, J., Feige, U., Flaxman, A., Kalai, A., Mir-
rokni, V., Tennenholtz, M., 2008. Trust-based recommendation systems:

35

an axiomatic approach. In: Proc. of the 17th Int. Conf. on World Wide
Web (Beijing). ACM, pp. 199–208.

Berjani, B., Strufe, T., 2011. A recommendation system for spots in location-
based online social networks. In: Proc. of the 4th Workshop on Social
Network Systems (Salzburg). ACM, p. 4.

Blei, D., McAuliffe, J., 2008. Supervised topic models. In: Platt, J., Koller,
D., Singer, Y., Roweis, S. (Eds.), Advances in Neural Information Process-
ing Systems (Vancouver). Vol. 20. MIT Press, pp. 121–128.

Blei, D. M., Ng, A. Y., Jordan, M. I., Mar. 2003. Latent dirichlet allocation.
J. Mach. Learn. Res. 3, 993–1022.

Böhning, D., 1992. Multinomial logistic regression algorithm. Annals of the
Institute of Statistical Mathematics 44 (1), 197–200.

Burke, R., 2002. Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction 12 (4), 331–370.

Burke, R., 2007. Hybrid web recommender systems. In: The adaptive web.
Springer, pp. 377–408.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., Harshman,
R., 1990. Indexing by latent semantic analysis. J. of the American Soc. for
Information Sci. 41 (6), 391–407.

Diaby, M., Viennet, E., Launay, T., 2013. Toward the next generation of re-
cruitment tools: An online social network-based job recommender system.
In: Proc. of the 2013 IEEE/ACM Int. Conf. on Advances in Social Net-
works Analysis and Mining (Niagara Falls). ASONAM ’13. pp. 821–828.

Falahi, K., Mavridis, N., Atif, Y., 2012. Social networks and recommender
systems: A world of current and future synergies. In: Abraham, A., Has-
sanien, A.-E. (Eds.), Computational Social Networks. pp. 445–465.

Gartrell, M., Xing, X., Lv, Q., Beach, A., Han, R., Mishra, S., Seada, K.,
2010. Enhancing group recommendation by incorporating social relation-
ship interactions. In: Proc. of the 16th ACM Int. Conf. on Supporting
Group Work (Sanibel Island). GROUP ’10. pp. 97–106.

36

Ge, M., Delgado-Battenfeld, C., Jannach, D., 2010. Beyond accuracy: Eval-
uating recommender systems by coverage and serendipity. In: Proc. of the
Fourth ACM Conf. on Recommender Systems (Foster City). RecSys ’10.
pp. 257–260.

Groh, G., Ehmig, C., 2007. Recommendations in taste related domains: Col-
laborative filtering vs. social filtering. In: Proc. of the 2007 Int. ACM Conf.
on Supporting Group Work (Sanibel Island). GROUP ’07. pp. 127–136.

Guy, I., Carmel, D., 2011. Social recommender systems. In: Proc. of the 20th
Int. Conf. Companion on World Wide Web (Hyderabad). WWW ’11. pp.
283–284.

Hernández del Olmo, F., Gaudioso, E., 2008. Evaluation of recommender
systems: A new approach. Expert Syst. Appl. 35 (3), 790–804.

Huang, J., Cheng, X.-Q., Guo, J., Shen, H.-W., Yang, K., 2010. Social rec-
ommendation with interpersonal influence. In: Proc. of the 2010 Conf. on
ECAI 2010: 19th European Conf. on Artificial Intelligence. pp. 601–606.

Jakob, N., Weber, S. H., Müller, M. C., Gurevych, I., 2009. Beyond the
stars: Exploiting free-text user reviews to improve the accuracy of movie
recommendations. In: Proc. of the 1st Int.l CIKM Workshop on Topic-
sentiment Analysis for Mass Opinion (Hong Kong). TSA ’09. pp. 57–64.

Jamali, M., Ester, M., 2009. Trustwalker: a random walk model for combin-
ing trust-based and item-based recommendation. In: Proc. of the 15th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
(Paris). ACM, pp. 397–406.

Jameson, A., 2004. More than the sum of its members: Challenges for group
recommender systems. In: Proc. of the Working Conference on Advanced
Visual Interfaces (Gallipoli). AVI ’04. pp. 48–54.

Kim, S.-B., Rim, H.-C., Yook, D., Lim, H.-S., 2002. Effective methods for im-
proving Naive Bayes text classifiers. In: PRICAI 2002: Trends in Artificial
Intelligence. Springer, pp. 414–423.

Kim, S.-M., Pantel, P., Chklovski, T., Pennacchiotti, M., 2006. Automati-
cally assessing review helpfulness. In: Proc. of the 2006 Conf. on Empirical
Methods in Natural Language Processing. EMNLP ’06. pp. 423–430.

37

Lika, B., Kolomvatsos, K., Hadjiefthymiades, S., 2014. Facing the cold start
problem in recommender systems. Expert Systems with Applications 41 (4,
Part 2), 2065 – 2073.

Liu, X., Aberer, K., 2013. SoCo: A social network aided context-aware rec-
ommender system. In: Proc. of the 22nd Int. Conf. on World Wide Web.
WWW ’13. pp. 781–802.

Liu, Y., Huang, X., An, A., Yu, X., 2008. Modeling and predicting the
helpfulness of online reviews. In: Eighth IEEE Int. Conf. on Data Mining,
ICDM ’08. pp. 443–452.

Lü, L., Medo, M., Yeung, C. H., Zhang, Y.-C., Zhang, Z.-K., Zhou, T., 2012.
Recommender systems. Physics Reports 519 (1), 1–49.

Lu, Y., Tsaparas, P., Ntoulas, A., Polanyi, L., 2010. Exploiting social context
for review quality prediction. In: Proc. of the 19th Int. Conf. on World
Wide Web. WWW ’10. pp. 691–700.

Ma, H., Yang, H., Lyu, M. R., King, I., 2008. SoRec: Social recommendation
using probabilistic matrix factorization. In: Proc. of the 17th ACM Conf.
on Information and Knowledge Management. CIKM ’08. pp. 931–940.

Massa, P., Avesani, P., 2007. Trust-aware recommender systems. In: Proc.
of the 2007 ACM Conf. on Recommender systems. ACM, pp. 17–24.

McCallum, A., Nigam, K., et al., 1998. A comparison of event models for
Naive Bayes text classification. In: AAAI-98 Workshop on Learning for
Text Categorization. Vol. 752. pp. 41–48.

Mobasher, B., Jin, X., Zhou, Y., 2004. Semantically enhanced collabora-
tive filtering on the web. In: Web Mining: From Web to Semantic Web.
Springer, pp. 57–76.

Moghaddam, S., Jamali, M., Ester, M., Habibi, J., 2009. Feedbacktrust:
Using feedback effects in trust-based recommendation systems. In: Proc.
of the 3rd ACM Conf. on Recommender Systems. RecSys ’09. pp. 269–272.

Mokbel, M. F., Bao, J., Eldawy, A., Levandoski, J. J., Sarwat, M., 2011.
Personalization, socialization, and recommendations in location-based ser-
vices 2.0. In: PersDB 2011 Workshop, Seattle, Washington, USA.

38

Musat, C.-C., Liang, Y., Faltings, B., 2013. Recommendation using textual
opinions. In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence.
AAAI Press, pp. 2684–2690.

Nielsen, F. Å., 2011. A new ANEW: Evaluation of a word list for sentiment
analysis in microblogs. In: Proc. of the ESWC2011 Workshop on ’Making
Sense of Microposts’: Big things come in small packages. pp. 93–98.

O’Doherty, D., Jouili, S., Van Roy, P., et al., 2012. Trust-based recommenda-
tion: An empirical analysis. In: Sixth ACM Workshop on Social Network
Mining and Analysis (SNA-KDD 2012),, Aug. 12, 2012.

Pazzani, M. J., 1999. A framework for collaborative, content-based and de-
mographic filtering. Artificial Intelligence Review 13 (5-6), 393–408.

Resch, B., Zipf, A., Beinat, E., Breuss-Schneeweis, P., Boher, M., 2012.
Towards the live city: paving the way to real-time urbanism. International
Journal on Advances in Intelligent Systems 5 (3-4), 470–482.

Reschke, K., Vogel, A., Jurafsky, D., 2013. Generating recommendation di-
alogs by extracting information from user reviews. In: ACL (2). pp. 499–
504.

Salton, G., Buckley, C., 1988. Term-weighting approaches in automatic text
retrieval. Information Processing & Management 24 (5), 513–523.

Samet, H., Jun. 1984. The quadtree and related hierarchical data structures.
ACM Comput. Survey 16 (2), 187–260.

Sarwt, M., Levandoski, J. J., Eldawy, A., Mokbel, M. F., 2013. Lars*: An
efficient and scalable location-aware recommender system. IEEE Transac-
tions on Knowledge and Data Engineering 99.

Shani, G., Gunawardana, A., 2011. Evaluating recommendation systems.
Recommender Systems Handbook, 257–297.

Snyder, B., Barzilay, R., 2007. Multiple aspect ranking using the good grief
algorithm. In: Proc. of the Human Language Tech. Conf. of the North
American Chap. of the Assoc. of Comput. Linguistics (HLT-NAACL). pp.
300–307.

39

Sparck Jones, K., 1972. A statistical interpretation of term specificity and
its application in retrieval. J. of Documentation 28, 11–21.

Symeonidis, P., Ntempos, D., Manolopoulos, Y., 2014a. Location-based so-
cial networks. In: Recommender Systems for Location-based Social Net-
works. Springer, pp. 35–48.

Symeonidis, P., Ntempos, D., Manolopoulos, Y., 2014b. Recommender Sys-
tems for Location-based Social Networks. Springer.

Tu, K., Ribeiro, B., Jensen, D., Towsley, D., Liu, B., Jiang, H., Wang,
X., 2014. Online dating recommendations: matching markets and learning
preferences. In: Proc. of the Companion Pub. of the 23rd Int. Conf. on
World Wide Web Companion. pp. 787–792.

Xia, F., Asabere, N. Y., Liu, H., Deonauth, N., Li, F., 2014. Folksonomy
based socially-aware recommendation of scholarly papers for conference
participants. In: Proc. of the 23rd Int. Conf. on World Wide Web Com-
panion. pp. 781–786.

Yang, D., Zhang, D., Yu, Z., Wang, Z., 2013. A sentiment-enhanced per-
sonalized location recommendation system. In: Proc. of the 24th ACM
Conference on Hypertext and Social Media. ACM, pp. 119–128.

Ye, M., Yin, P., Lee, W.-C., 2010. Location recommendation for location-
based social networks. In: Proc. of the 18th SIGSPATIAL Int. Conf. on
Advances in Geographic Information Systems. ACM, pp. 458–461.

Zhang, Z., Varadarajan, B., 2006. Utility scoring of product reviews. In:
Proc. of the 15th ACM Int. Conf. on Information and Knowledge Manage-
ment. CIKM ’06. pp. 51–57.

Zheng, Y., 2012. Tutorial on location-based social networks. In: Proc. of the
21st Int. Conf. on World Wide Web (WWW). ACM.

Zheng, Y., Zhang, L., Ma, Z., Xie, X., Ma, W.-Y., 2011. Recommending
friends and locations based on individual location history. ACM Trans.
Web 5 (1), 5:1–5:44.

40

